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We propose a new statistical estimation framework for a large family of global sensitivity analysis indices. Our
approach is based on rank statistics and uses an empirical correlation coefficient recently introduced by Chatterjee
(Calcutta Statist. Assoc. Bull. 33 (1984) 1–2). We show how to apply this approach to compute not only the
Cramér-von-Mises indices, directly related to Chatterjee’s notion of correlation, but also first-order Sobol’ indices,
general metric space indices and higher-order moment indices. We establish consistency of the resulting estimators
and demonstrate their numerical efficiency, especially for small sample sizes. In addition, we prove a central limit
theorem for the estimators of the first-order Sobol’ indices.
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1. Introduction

The use of complex computer models for the analysis of applications from the sciences, engineering
and other fields is by now routine. Often, the models are expensive to run in terms of computational
time. It is thus crucial to understand, with just a few runs, the global influence of one or several inputs
on the output of the system under study [33]. When these inputs are regarded as random elements, this
problem is generally referred to as Global Sensitivity Analysis (GSA). We refer to [12,32,35] for an
overview of the practical aspects of GSA.

A popular and highly useful tool to quantify input influence is the Sobol’ indices. These indices
were first introduced in [36] and are well tailored to the case of scalar outputs (and even to the case
of vectorial and functional outputs). Thanks to the Hoeffding decomposition [24], the Sobol’ indices
compare the conditional variance of the output knowing some of the input variables to the total variance
of the output. Since Sobol’ indices are variance based, they only quantify the second-order influence of
the inputs. Many authors proposed other criteria to compare the conditional distribution of the output
knowing some of the inputs to the distribution of the output (see, e.g., higher moments indices in
[29–31], indices using divergences or distances between measures in [4,5,10], goal-oriented indices
using contrast functions in [15], distribution-based indices as Cramér-von-Mises indices in [19]).

Many different estimation procedures of the Sobol’ indices have been proposed and studied. Some
estimation procedures are based on different designs of experiment using for example polynomial chaos
(see [37] and the reference therein for more details). Some other natural procedures are based on Monte-
Carlo or quasi Monte-Carlo design of experiments (see [26,29] and references therein for more details).
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In particular, an efficient estimation of the Sobol’ indices can be performed through the so-called Pick-
Freeze method. See Section 2.1 below for its description. Observe that the Pick-Freeze estimation
procedure allows the estimation of several sensitivity indices: the classical Sobol’ indices for real-
valued outputs, as well as their generalization for vectorial-valued codes, but also the indices based
on higher moments [31] and the Cramér-von-Mises indices which take into account on the whole
distribution (see [16,19] and Section 2.2 below for more details on such indices). In addition, the Pick-
Freeze estimators have desirable statistical properties such as consistency, central limit theorem (CLT)
with a rate of convergence in

√
n, concentration inequalities and Berry-Esseen bounds, and asymptotic

efficiency (see [18,25] and Section 2.1 below for more details). However, the Pick-Freeze scheme has
two major drawbacks. First, it relies on a particular experimental design that may be unavailable in
practice. Second, its cost may be prohibitive when estimating several indices. Naturally, the cost of an
estimator depends on the cost of each evaluation of the code and on the number of evaluations. The
number of model calls to estimate all first-order Sobol’ indices grows linearly with the number of input
parameters. For example, if we consider p = 99 input parameters and only n = 1000 calls are allowed,
then only a sample of size n/(p+ 1) = 10 is available to estimate each single first-order Sobol’ index. It
is a poor amount of information to get a satisfying estimation of the Sobol’ indices.

In a recent work [9], Chatterjee studies the dependence between two variables by introducing an em-
pirical correlation coefficient based on rank statistics, see Section 3.1 below for the precise definition.
Further, the quantification of the dependence has also been investigated in the bivariate case (namely, in
the copula setting), see [3,13,38]. The striking point of [9] is that this empirical correlation coefficient
converges almost surely (a.s.) to the Cramér-von-Mises index priorly introduced in [19] as the sample
size goes to infinity.

In this paper, we show how to embed Chatterjee’s method in the GSA framework, thereby eliminating
the two drawbacks of the classical Pick-Freeze estimation mentioned above. Thus no particular design
of experiment is needed for the estimation that can be done with a unique n-sample. In addition, we
generalize Chatterjee’s approach to allow the estimation of a large class of GSA indices which includes
the Sobol’ indices and the higher-order moment indices proposed by Owen [29–31] (see Section 2.1
below). Using a single sample of size n, it is now possible to estimate at the same time all the first-
order Sobol’ indices, the Cramér-von-Mises indices, and other useful sensitivity indices. Furthermore,
we show that this new procedure provides estimators also converging at rate

√
n by proving a CLT in

the estimation of the first-order Sobol’ indices.
The paper is organized as follows. In Section 2, we recall the context of GSA, the definition of the

Sobol’ indices and Cramér-von-Mises indices, and their classical Pick-Freeze estimations. Section 3
focuses on Chatterjee’s method, called rank-based method in this paper. More precisely, we show how
the Cramér-von-Mises indices can be also estimated using the rank-based method (Section 3.1) and we
present its generalization to estimate sensitivity indices together with the consistency of the estimation
procedure (Section 3.2). Section 4 is dedicated to Sobol’ indices. We prove the asymptotic normal-
ity of their estimators based on rank statistics. In addition, we propose a comparison of the different
estimation procedures in Section 4.3 while Section 4.4 considers other classical sensitivity indices.
Section 5 is dedicated to a numerical comparison between the Pick-Freeze estimation procedure and
the rank-based method. We first compare the numerical performances of both estimators on a linear
model. Finally, we consider a real life application. As expected, the rank-based estimation method
outperforms the classical Pick-Freeze procedure, even for small sample sizes (which are common in
practice). Conclusions and perspectives are offered in Section 6.

After a first submission of this paper, we have been aware of the very nice work of Broto et al [8]
concerning the statistical estimation of Shapley effect where the use of closest neighbors is also put
in action to built consistent estimates. We also notice that there is actually a strong scientific interest
around asymptotic behavior for the statistical method introduced in [9]. Indeed, during the revision of
this paper, we have a look on the very nice paper [2] where an asymptotic contiguity study is performed.
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2. Global sensitivity analysis and Pick-Freeze estimation

2.1. Sobol’ indices

Context and definition of the Sobol’ indices. The quantity of interest (QoI) Y is obtained from the
numerical code and is regarded as a function f of the vector of the distributed input (Xi)i=1,...,p

Y = f (X1, . . . ,Xp), (1)

where f is defined on the state space E1 × . . . × Ep , Xi ∈ Ei , i = 1, . . . ,p. Classically, the Xi’s are
assumed to be independent random variables and a sensitivity analysis is performed using the Ho-
effding decomposition [1,39] leading to the standard Sobol’ indices [35]. This assumption is made
throughout the paper, unless explicitly stated otherwise. More precisely, assume f to be real-valued
and square integrable and let u be a subset of {1, . . . ,p} and ∼u its complementary set in {1, . . . ,p}.
Setting Xu = (Xi,i ∈ u) and X∼u = (Xi,i ∈∼u), the corresponding Sobol’ indices take the form

Su =
Var (E[Y |Xu])

Var(Y ) and S∼u =
Var (E[Y |X∼u])

Var(Y ) . (2)

By definition, the Sobol’ indices quantify the fluctuations of the output Y around its mean. When
the practitioner is not interested in the mean behavior of Y but rather in its median, in its tail, or even
in its quantiles, the Sobol’ indices become less appropriate to quantify sensitivity. GSA must then
be performed in a framework which takes into account more than one specific moment, such as the
variance for Sobol’ indices.

Pick-Freeze estimation procedure of the Sobol’ indices. A Monte-Carlo scheme can be used to esti-
mate the Sobol’ indices. The corresponding Pick-Freeze approach from [18,19,25] relies on expressing
the variances of the conditional expectations in terms of covariances which are easily and well esti-
mated by their empirical versions. To that end, we define, for any subset u of {1, . . . ,p}

Yu := f (Xu). (3)

where Xu is such that Xu
u = Xu and Xu

i = X ′
i if i ∈∼ u, X ′

i being an independent copy of Xi . The
estimation procedure relies on the following result

Var(E[Y |Xu]) = Cov(Y,Yu). (4)

The reader is referred to [25, Lemma 1.2] for its proof.
The natural estimator of Su is then given by

Su
n =

1
n

∑n
j=1 YjYu

j −
(

1
n

∑n
j=1 Yj

) (
1
n

∑n
j=1 Yu

j

)
1
n

∑n
j=1(Yj )2 −

(
1
n

∑n
j=1 Yj

) 2 . (5)

A slightly different estimator that uses all the information available is introduced in [25]:

Tu
n =

1
n

∑n
j=1 YjYu

j −
(

1
n

∑n
j=1

Yj+Y
u
j

2

) 2

1
n

∑n
j=1

(Yj )2+(Yu
j
)2

2 −
(

1
n

∑n
j=1

Yj+Y
u
j

2

) 2 . (6)
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Asymptotic study. Such estimation procedures have been proved to be consistent and asymptotically
normal (i.e. the rate of convergence is

√
n) in [18,25]. The limiting variances can be computed explicitly,

allowing the practitioner to build confidence intervals. In addition, the sequence of estimators (Tu
n )n is

asymptotically efficient to estimate Su from such a design of experiment (see, [39] for the definition of
the asymptotic efficiency and [18] for the details of the result).

2.2. Cramér-von-Mises indices

Definition of the Cramér-von-Mises indices. The Cramér-von-Mises indices introduced in [19] pro-
vide alternative indices based on the whole distribution rather than on the second moment of the output
Y only. The main idea of Cramér-von-Mises indices is to compare the conditional cumulative distribu-
tion function (c.d.f.) to the unconditional one via the L2-norm. As for the Sobol’ indices, they compare
the conditional expectation of the output to the unconditional one. Notably, they are constructed fol-
lowing a similar scheme so that any procedure that estimates one index can be adapted to estimate the
other.

More precisely, the Cramér-von-Mises indices are defined by

Su
2,CVM =

∫
R
E

[
(F(t) − Fu(t))2

]
dF(t)∫

R
F(t)(1 − F(t))dF(t)

(7)

where F is the cumulative distribution function of Y

F(t) = P (Y ≤ t) = E
[
1{Y≤t }

]
(t ∈ R)

and Fu is its Pick-Freeze version:

Fu(t) = P (Y ≤ t |Xu) = E
[
1{Y≤t } |Xu

]
(t ∈ R).

This definition stems from the Hoeffding decomposition of the collection of r.v. (1{Y≤t })t∈R.

Pick-Freeze estimation procedure of the Cramér-von-Mises indices. The estimation procedure relies
on (4) with Y ← 1{Y≤t }:

Var(E[1{Y≤t } |Xu]) = Cov(1{Y≤t },1{Yu≤t }). (8)

Consequently, the Monte-Carlo estimation can be done as follows. In addition to the classical design
of experiment required to estimate the Sobol’ indices (an n-sample (Y1, . . . ,Yn) of the output Y and an
n-sample (Yu

1 , . . . ,Y
u
n ) of its Pick-Freeze version Yu), a third independent n sample (W1, . . . ,Wn) of the

output Y is necessary in order to deal with the integral with respect to dF(t) in (7). Then the empirical
estimator of Su

2,CVM
is

1
n

∑n
k=1

(
1
n

∑n
j=1 1{Yj ≤Wk }1{Yu

j
≤Wk } −

1
n

∑n
j=1 1{Yj ≤Wk }

1
n

∑n
j=1 1{Yu

j
≤Wk }

)
1
n

∑n
k=1

(
1
n

∑n
j=1 1{Yj ≤Wk } −

(
1
n

∑n
j=1 1{Yj ≤Wk }

) 2
) . (9)

Asymptotic study. As showed in [19], this estimator is consistent and asymptotically Gaussian (i.e. the
rate of convergence is

√
n). The limiting variance can be computed explicitly, allowing the practitioner

to build confidence intervals.
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3. A novel generation of estimators based on rank statistics

3.1. Chatterjee’s correlation coefficient

In [9], Chatterjee considers a pair of real-valued random variables (V,Y ) and an i.i.d. sample
(Vj,Yj )1≤ j≤n. In order to simplify the presentation, we assume that the laws of V and Y are both diffuse
(ties are excluded). The pairs (V(1),Y(1)), . . . ,(V(n),Y(n)) are rearranged in such a way that

V(1) < . . . < V(n).

Then let π( j) be the rank of Vj in the sample (V1, . . . ,Vn) of V and define

N ′( j) =
{
π−1(π( j) + 1) if π( j) + 1 ≤ n,
j if π( j) = n.

(10)

The new correlation coefficient defined by Chatterjee in [9] is denoted ξn(V,Y ) and given by

1
n

n∑
j=1

( 1
n

n∑
k=1

1{Yk ≤Yj }1{Yk ≤YN ′( j) } −
( 1

n

n∑
k=1

1{Yj ≤Yk }
) 2) / 1

n

n∑
j=1

Fn(Yj )(1 − Fn(Yj)) (11)

where Fn stands for the empirical distribution function of Y : Fn(t) = 1
n

∑n
k=1 1{Yk ≤t }.

The author proves that ξn(V,Y ) converges a.s. to a deterministic limit ξ(V,Y ) which is equal to the
Cramér-von-Mises sensitivity index SV2,CVM

with respect to V as soon as V is one of the random
variables X1,..., Xp in the model (1) that are assumed to be real-valued. Further, he also proves a CLT
when V and Y are independent.

Observe that the analogue of the Pick-Freeze version YV with respect to V of Y becomes YN and (8)
is replaced by the formula

E[1{Yj ≥t }1{YN ′( j) ≥t } |V1, . . . ,Vn] =GVj (t)GVN ′( j) (t) (12)

for all j = 1, . . . ,n that is mentioned in the proof of Lemma 7.10 in [9, p.24], with GV the conditional
survival function: GV (t) = P(Y ≥ t |V).

It is worth noticing that a unique n sample of input-output provides consistent estimations of the p
first-order Cramér-von-Mises indices.

3.2. Generalization of Chatterjee’s method

In this section, we propose a universal estimation procedure of expectations of the form

E[E[g(Y )|V]E[h(Y )|V]],

for two integrable functions g and h. In fact, we consider a more general random element V (no longer
assumed to be real) and a more general permutation denoted by τn. This result is a generalization of
(12) and can be interpreted as an approximation of (4). To this end, we introduce the function ΨV
defined by

ΨV (g) = E[g(Y )|V] (13)

for any integrable function g. Let Fn be the σ-algebra generated by {V1, . . . ,Vn}. Note that in Sec-
tion 3.1, we have considered g(x) = gt (x) = 1{x≥t } so that ΨV (g) = P(Y ≥ t |V) =GV (t).
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Lemma 3.1. Let g and h be two integrable functions such that gh is also integrable. Let (Vj,Yj )1≤ j≤n
be an n-sample of (V,Y ). Consider a Fn-measurable random permutation τn such that τn( j) � j, for
all j = 1, . . . ,n. Then

E
[
g(Yj )h(Yτn(j))|V1, . . . ,Vn

]
= ΨVj (g)ΨVτn ( j) (h). (14)

The previous lemma (the proof of which has been postponed to Appendix A) leads to a generalization
of the first part of the numerator of ξn defined in (11). Following the same lines as in [9], one may
prove that such a quantity converges a.s. as n →∞ under some mild conditions. The reader is referred
to Appendix A for the detailed proof of Proposition 3.2.

Proposition 3.2. Let g and h be two bounded measurable functions. Consider a Fn-measurable ran-

dom permutation τn with no fix point (i.e. τn( j) � j for all j = 1, . . . ,n) and such that Vτn(i)
L
= Vτn(j) for

any i and j = 1, . . . ,n. In addition, we assume that for any j = 1, . . . ,n, Vτn (j) →Vj as n →∞ a.s. Then
χn(V,Y ;g,h) defined by

χn(V,Y ;g,h) =1
n

n∑
j=1

g(Yj )h(Yτn(j)) (15)

converges a.s. as n →∞ to χ(V,Y ;g,h) = E[ΨV (g)ΨV (h)], where ΨV has been defined in (13).

Notice that the permutation τn = N defined by

N( j) =
{
π−1(π( j) + 1) if π( j) + 1 ≤ n,
π−1(1) if π( j) = n.

(16)

satisfies the assumptions of Lemma 3.1 and Proposition 3.2. Observe that N only differs from N ′

defined in (10) at j such that π( j) = n.

4. The rank estimator of the first-order Sobol’ indices

4.1. Estimation procedure based on rank statistics

We can now leverage the above results and construct a new family of estimators for Sobol’ indices.
More precisely, let us consider the model (1) and assume we want to estimate the first-order Sobol’
index S1 defined in (2) with respect to V = X1 assumed to be real-valued. We then define N as in (16)
where π is the rank of X1. Taking g(x) = h(x) = x and τn = N , (14) provides the analogue to ξn to
estimate the classical Sobol’ indices:

ξSobol’
n (X1,Y ) :=

1
n

∑n
j=1 YjYN (j) −

(
1
n

∑n
j=1 Yj

) 2

1
n

∑n
j=1(Yj)2 −

(
1
n

∑n
j=1 Yj

) 2 , (17)

where the denominator is reduced to the empirical variance of Y . As the functions g and h are here
unbounded, Proposition 3.2 does not apply and thus offers no asymptotic information. However, the
quantity of interest Y being generally bounded in practice, appropriately truncated versions of g and h
could be considered.
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4.2. A central limit theorem

We establish a CLT for the estimator ξSobol’
n (X1,Y ) of the first-order Sobol’ index with respect to X1

(assumed to be real-valued) under some mild assumptions on the model f and the random input X1 in
(1). The proof of the theorem is given in Appendix B.

Theorem 4.1. Assume that X1 is uniformly distributed on [0,1] and f in (1) is a twice differentiable
function with respect to its first coordinate. Further, we suppose that f and its two first derivatives (with
respect to its first coordinate) are bounded. Then

√
n
(
ξSobol’
n (X1,Y ) − S1

)
is asymptotically Gaussian with zero mean and explicit variance σ2 given in Appendix B.4.

Remark 4.2. The boundedness of f implies that f has a fourth moment, that is the minimal assumption
to get a CLT.

Moreover, let us observe that Theorem 4.1 only implies the convergence in probability. Nevertheless,
under the assumptions of Theorem 4.1 ( f bounded so is Y ), Proposition 3.2 applies to derive the almost
sure convergence of ξSoboln (X1,Y ).

The assumption on the distribution of X1 can be relaxed as stated in the following corollary.

Corollary 4.3. Let FX1 be the cumulative distribution function of X1. Assume that f ◦ F−1
X1

is a twice
differentiable function such that f ◦ F−1

X1
and its two first derivatives are bounded. Then the conclusion

of Theorem 4.1 still holds.

Theorem 4.1 and Corollary 4.3 naturally allow to build statistical tests for testing H0 : S1 =

0 against H1 : S1 � 0. One can note that Chatterjee [9] result allows to test the independence of
the input X1 with respect to the output Y which is a stronger assumption than S1 = 0, this was for ex-
ample studied in [34]. In addition, our result allows to compute the power of the statistical test against
any alternative of the kind H1,0 : S1 > s1

0 for any s1
0 > 0.

Remark 4.4. A careful reading of the different steps of the proof shows that Theorem 4.1 can be
slightly extended to more general situations involving more than two successive order statistics and
with more general second variable (X2, . . . ,Xp). See the forthcoming paper [20].

The proof of our CLT is a bit long and technical and is postponed to the Appendix B. In a nut-
shell, this proof stands on three main ingredients. First, the regularity assumption on the function f
allows to expand the statistic under study as a quadratic functional of the two independent sequences
of random variables. The quadratic part for the first sequence involves order statistics of the uniform
distribution and may be linearized. The second ingredient is the distribution representation of uniform
order statistics by ratios of exponential convolution. The third ingredient is less classical and involves a
conditional trick to show a central limit theorem for an empirical mean of a product. Let sketch the idea
on a simple example. Let (ξn)n and (δn)n be two independent sequences of centered square integrable
random variables. We set Mn = n−1/2∑n

j=1 ξjδj and let T be the σ-field generated by the sequence
(δn). Of course, the classical CLT gives that Mn converges in distribution towards a centered Gaus-
sian distribution with variance Var(ξ1)Var(δ1). A less classical proof of this result consists in showing
that, a.s., conditionally to T the same convergence in distribution holds. Indeed, this last result follows
directly from the Lindeberg CLT and the strong law of large numbers for n−1∑n

j=1 δ
2
j .
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4.3. Comparison of the different estimation procedures

The estimator based on rank statistics ξSobol’
n (X1,Y ) defined in (17) can be compared to the classical

Pick-Freeze estimators S1
n and T1

n given in (5) and (6) respectively (with u = {1}) but also to a sequence
of estimators involving the estimators T̂n introduced in [11].

Required sample sizes. With the rank-based procedure, a unique n-sample of input-output provides
consistent and asymptotically normal estimations of the p first-order Sobol’ indices (together with
consistent and asymptotically normal estimations of the p first-order Cramér-von-Mises indices with
no extra cost). In contrast, using the Pick-Freeze estimation, if one wants to estimate all the p first-order
Sobol’ indices and the p Cramér-von-Mises indices, (p + 2)n calls of the computer code are required.
The number of calls grows linearly with respect to the number of input parameters. This is a practical
issue for large input dimension domains. A second drawback of the Pick-Freeze estimation scheme
comes from the need of the particular Pick-Freeze design that is not always available.

Limiting variances. Since the empirical mean and variance are already known to be asymptotically
efficient in the statistical sense1 to estimate the expectation and the variance of the output, we restrict
our study to the comparison of the limiting variances obtained via the Pick-Freeze and the rank-based
procedures in the estimation of E[E[Y |X1]2] only.

In view of the proof of [25, Proposition 2.2], the Pick-Freeze limiting variance obtained using both
S1
n and T1

n in estimating E[E[Y |X1]2] = E[YY1] is simply given by Var(YY1), where Y1 = f (X1,W1) is
the Pick-Freeze version of Y = f (X1,X2, . . . ,Xp) = f (X1,W).

Using the above Lemmas B.1 and B.2 together with (41) leads to the rank-based limiting variance
obtained using ξSobol’

n (X1,Y ):

Σ
1,1
B + Σ

1,1
C
= E
[
Var
(
YY1 |X1

) ]
+ E
[
Cov
(
YY1,YY11 |X1

) ]
− E[(Y +Y1) fx(X1,W)X1]2

+ E[(Y +Y1)(Ỹ + Ỹ1) fx(X1,W) fx(X̃1,W̃)(X1 ∧ X̃1)], (18)

where Y = f (X1,X2, . . . ,Xp) = f (X1,W), Y1 = f (X1,W1), Y11 = f (X1,W11), Ỹ = f (X̃1,W̃), and Ỹ1 =

f (X̃1,W̃1) with X1 and X̃1 i.i.d., W , W̃ , W1, and W11 i.i.d. also independent of X1 and X̃1. Note that Y1

and Y11 (respectively Ỹ1) are Pick-Freeze versions of Y (resp. Ỹ ). The paragraph’s aim is to compare
the limiting variances obtained by the two methods (Pick-Freeze and rank-based).

To do so, we recall that the Pick-Freeze experiment requires n(p + 1) observations (or computations
of the black-box code) to estimate the p first-order Sobol’ indices. In order to have a fair comparison
of both estimation methods, we then consider that we have n(p + 1) i.i.d. observations of Y given by
model (1) to estimate the p first-order Sobol’ indices using the rank statistics. With n(p+1) observations
instead of n, the asymptotic variance obtained using the rank-based methodology is divided by (p+ 1),
so that we want to compare

VPF := (p + 1)(Var(YY1), . . . ,Var(YY p))
 to VRank := (Σ1,1
B + Σ

1,1
C
, . . . ,Σ

p,p
B + Σ

p,p
C

)


where Y i is the Pick-Freeze version of Y with respect to Xi (for i = 2, . . . ,p) and Σi,iB +Σ
i,i
C

has the same
expression as Σ1,1

B + Σ
1,1
C

in (18) replacing the superscripts and the subscripts 1 by i (for i = 2, . . . ,p).

1The reader is referred to [39, Section 25] for the definition of the asymptotic efficiency and related results.
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Example. We consider the following linear model

Y = f (X1, . . . ,Xp) = αX1 + X2 + . . . + Xp, (19)

where α > 0 is a fixed constant, X1, X2, . . ., and Xp are p independent and uniformly distributed random
variables on [0,1].

We denote by m1,p and m2,p the two first moments of Zp := X2 + . . . + Xp and m1,p,α and m2,p,α
the two first moments of Zp,α := αX1 + X3 + . . . + Xp . In addition, let vp and vp,α be the variances of
Zp of Zp,α. Hence vp =m2,p − m2

1,p , vp,α =m2,p,α − m2
1,p,α,

m1,p =
1
2
(p − 1), m2,p =

1
12

(p − 1)(3p − 2), m1,p,α =
1
2
(α +m1,p−1) =

1
2
(α + p − 2),

m2,p,α =
1
3
α2 + αm1,p−1 +m2,p−1 =

1
3
α2 +

1
2
(p − 2)α + 1

12
(p − 2)(3p − 5).

By symmetry, after obvious computations, one gets, for i = 2, . . . ,p,

Var(YY1) = 4
45
α4 +

1
3

m1,pα
3 +

1
3

(
2vp +m2

1,p

)
α2 + 2m1,pvpα + vp(vp + 2m2

1,p)

Var(YY i) = 4
45
+

1
3

m1,p,α +
1
3

(
2vp,α +m2

1,p,α

)
+ 2m1,p,αvp,α + vp,α(vp,α + 2m2

1,p,α)

while

V1
Rank =

4
45
α4 +

1
3

m1,pα
3 +

1
3

(
4vp +m2

1,p

)
α2 + 4m1,pvpα + vp

(
vp + 4m2

1,p

)
V i

Rank =
4

45
+

1
3

m1,p,α +
1
3

(
4vp,α +m2

1,p,α

)
+ 4m1,p,αvp,α + vp,α

(
vp,α + 4m2

1,p,α

)
.

We compare these limiting variances in Figures 1 and 2. The results are clear and illustrate the fact
that the rank-based methodology works much better for all value of p ≥ 2. In addition, the more the
value of p increases the greater the gain, as expected.

Remark 4.5. Observe that a more precise comparison should consists in comparing (via definite-
positiveness) the limiting covariance-variance matrices involving both the limiting variances and the
limiting covariances. If it is straightforward to compute the covariance terms for the Pick-Freeze
methodology: for i = 2, . . . ,p,

Cov(YY1,YY i) = 1
24
α4 +

1
12

m1,p−1α
3 +
( 7

144
+

1
4
vp−1 +

1
6

(
m1,p−1 +

1
2

) 2)
α2

+
( 1

8
+

1
12

m1,p−1 +
1
2
vp−1 + vp−1m1,p−1

)
α + vp−1

(
m1,p−1 +

1
2

) 2
,

it is much more tricky to deal with the rank-based procedure. Indeed, to do so a joint CLT is required
for the vector of all p first-order Sobol’ indices whose proof is not a direct generalization of the proof
of Theorem 4.1. Such an extension will be done in a forthcoming paper.

Asymptotic efficiency. The two previous procedures do not rely on the same design of experiment so
that it is not possible to determine which one is the more efficient in the sense of [39, Section 25].



2354 Gamboa, Gremaud, Klein and Lagnoux

Figure 1. Linear model defined in (19). The limiting variances with respect to X1 (plain lines) and to X2 (plain lines
with +) are plotted. The rank-based estimation procedure is represented in blue while the Pick-Freeze estimation
procedure is represented in red. As explained, the Pick-Freeze estimation procedure has been weighted by (p + 1)
to have a fair comparison. The number of variables involved in the model varies from p = 2 to p = 7.

By [18, Proposition 2.5], the sequence of estimators (T1
n )n is asymptotically efficient to estimate S1

when the distribution P of (Y,Y1) belongs to P, the set of all c.d.f. of exchangeable random vectors in
L2(R2).

Using a unique n-sample, one may compare the rank-based estimators introduced in this paper and
the procedure involving the estimators T̂n defined in [11, page 11]. Such estimator is particularly tricky

Figure 2. Linear model defined in (19). The difference between the limiting variances with respect to X1 (left
panel) and to X2 (right panel) are plotted. As explained, the Pick-Freeze estimation procedure has been weighted
by (p + 1) to have a fair comparison. The number of variables involved in the model varies from p = 2 to p = 7.
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to compute and not easily tractable in practice. More precisely, the initial n-sample is split into two
samples of sizes n1 and n2 = n − n1. The first sample is dedicated to the estimation of the joint density
of (X,Y ) while the second one is used to compute a Monte-Carlo estimation of the integral involved in
the quantity of interest. In a work under progress [22], another estimator based on kernels and the same
design of experiment is proposed. This estimator is more tractable in practice.

By [11, Theorems 3.4 and 3.5], the sequence of estimators (T̂n)n is asymptotically efficient to esti-
mate E[E[Y |X]2] leading to an asymptotically efficient sequence of estimators of S1. The proof of the
following proposition has been postponed in Appendix C.

Proposition 4.6. Consider the sequence of estimators T̂n introduced in [11, page 11]. Assume that the
joint distribution P of (X,Y ) is absolutely continuous with respect to the product probability PX ⊗ PY ,
namely P(dx,dy) = f (x, y)PX (dx)PY (dy). Then the sequence (R1

n)n

R1
n =

T̂n −
(

1
n

∑n
i=1 Yi

) 2

1
n

∑n
i=1 Y2

i −
(

1
n

∑n
i=1 Yi

) 2

is asymptotically efficient in estimating S1. In addition, its (minimal) variance σ2
min is

σ2
min :=

1
Var(Y )2

Var
(
2E[Y ](1 − S1)Y + S1Y2 + E[Y |X](E[Y |X] − 2Y )

)
.

Thus we are interested in the comparison of σ2
min and σ2 given in Theorem 4.1. Let us consider again

the example of the linear model (19) introduced in the previous paragraph.

Example (continued). We consider the model defined in (19). As done in the previous paragraph, we
only compare V1

Eff :=Var(E[Y |X1](2Y −E[Y |X1])) to Σ1,1
B +Σ

1,1
C

and V i
Eff :=Var(E[Y |Xi](2Y −E[Y |Xi]))

to Σi,iB + Σ
i,i
C

for i = 2, . . . ,p. After some trivial computations, one gets

V1
Eff =

4
45
α4 +

1
3

m1,pα
3 +

1
3

(
4vp +m2

1,p

)
α2 + 4m1,pvpα + 4vpm2

1,p,

V i
Eff =

4
45
+

1
3

m1,p,α +
1
3

(
4vp,α +m2

1,p,α

)
+ 4m1,p,αvp,α + 4vp,αm2

1,p,α .

We compare these limiting variances in Figure 3. We observe that the limiting variances obtained
with the rank methodology do not differ much from the efficient variances.

4.4. Recovering other classical indices

In [16], the authors considered computer codes of the form (1) valued on a compact Riemannian mani-
fold. In this framework, they proposed a sensitivity index in the flavour of the Cramé-von-Mises index
and they used the Pick-Freeze scheme to provide a consistent estimator. The authors of [21] extend
the previous indices to the context of general metric spaces and propose U-statistics-based estimators
improving the classical Pick-Freeze procedure. In light of Section 3.2, one may introduce a novel esti-
mation of the indices introduced in [21] requiring a unique n-sample. The reader is referred to [14] for
more details on the procedure.
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Figure 3. Linear model defined in (19). The limiting variances with respect to X1 (plain lines) and to X2 (plain
lines with +) are plotted. The rank-based estimation procedure is represented in blue while the efficient variances
are represented in red. The number of variables involved in the model varies from p = 2 to p = 7.

Following [30,31], extensions to Sobol’ indices are obtained by replacing their numerator by higher-
order moments. In [19], the authors construct a Pick-Freeze estimator for such extensions. One again,
we are now able to propose another estimation scheme based on a unique n-sample. The reader is
referred to [20] for the generalization of Lemma 3.1 and the corresponding asymptotic study.

5. Numerical experiments

5.1. Numerical comparison on the Sobol’ g-function: Conventional Pick-Freeze
estimators vs Chatterjee’s estimators

In this section, we compare the performances of both estimation procedures on an analytic function:
the so-called Sobol’ g-function, that is defined by

g(X1, . . . ,Xp) =
p∏
i=1

|4Xi − 2| + ai
1 + ai

, (20)

where (ai)i∈N is a sequence of real numbers and the Xi’s are i.i.d. random variables uniformly dis-
tributed on [0,1]. In this setting, one may easily compute the exact expression of the first-order Sobol’
indices:

Si =
(1 + a2

i )
−1/3

3−p
∏p

i=1(1 + a2
i )−1 − 1

.

As expected, the lower the coefficient ai , the more significant the variable Xi . In the sequel, we simply
fix ai = i. Due to its complexity (non-linear and non-monotonic correlations) and the analytical expres-
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Figure 4. The Sobol’ g-function model (20). Convergence of both methods when N increases. The sixth first-
order Sobol’ indices have been represented from left to right and up to bottom. Several sample sizes have been
considered: N = 100, 500, 1000, 5000, 10000, 50000, 100000, and 500000 for the Pick-Freeze estimation procedure
(in blue) and correspondingly (p + 1)N for the rank estimation procedure (in red). The true indices are displayed
in black plain line. The x-axis is in log. scale.

sion of the Sobol’ indices, the Sobol’ g-function is a classical test example commonly used in GSA
(see e.g. [32]).

Convergence as the sample size increases. In Figure 4, we compare the estimations of the six first-
order Sobol’ indices given by both methods (p = 6). In the Pick-Freeze estimations given by (6), several
sizes of sample N have been considered: N = 100, 500, 1000, 5000, 10000, 50000, 100000, and 500000.
The Pick-Freeze procedure requires (p+1) = 7 samples of size N . To have a fair comparison, the sample
sizes considered in the estimation of ξSobol’

n are n = (p + 1)N = 7N . Both methods converge and give
precise results for large sample sizes.

Comparison of the mean square errors. We now compare the efficiency of both methods at a fixed
sample size. In that view, we assume that only n = 700 calls of the computer code f are allowed to
estimate the six first-order Sobol’ indices. We repeat the estimation procedure 500 times. The boxplot
of the mean square errors for the estimation of the first-order Sobol’ index S1 with respect to X1 has
been represented in Figure 5. We observe that, for a fixed sample size n = 700 (corresponding to a
Pick-Freeze sample size N = 100), Chatterjee’s estimation procedure performs much better than the
Pick-Freeze method with significantly lower mean errors. The same behavior can be observed for all
the first Sobol’ indices as can be seen in Table 1 that provides some characteristics of the mean squares
errors.

Performances for small sample sizes or for large number of input variables. As expected, we can
observe in Table 2 that Chatterjee’s procedure proceeds much better than the Pick-Freeze methodology
for small sample sizes. Similarly, if the number of input variables increases drastically, we can observe
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Figure 5. The Sobol’ g-function model (20). Boxplot of the mean square errors of the estimation of S1 with a
fixed sample size and 500 replications. The results of Chatterjee’s methodology with n = 700 are provided in the
left panel. The results of the Pick-Freeze estimation procedure with N = 100 are provided in the right panel.

the same behavior as can be seen in Figure 6. In that case, we consider the model (20) for several values
of p: 6, 10, 15, 20, 30, 40, and 50.

5.2. An application in biology

Here, we illustrate the nature and the performance of the Cramér-von-Mises indices and their corre-
sponding Chatterjee estimators as a screening mechanism for high-dimensional problems. To do so, we
consider the neurovascular coupling model from [23]. Mathematically, this corresponds to the follow-
ing differential-algebraic equation (DAE) system

dW
dt
=G(W,Z,X), 0 = H(W,Z,X), (21)

Pick-Freeze Chatterjee

Mean Median Stdev Mean Median Stdev

mse S1 0.0095548 0.0039458 0.0145033 0.0010218 0.0004498 0.0013999
mse S2 0.0105727 0.0046104 0.0148873 0.0017314 0.0006870 0.0027436
mse S3 0.0101785 0.0041789 0.0143846 0.0016667 0.0006409 0.0024392
mse S4 0.0105463 0.0047284 0.0178064 0.0018522 0.0008126 0.0025296
mse S5 0.0097979 0.0042995 0.0135533 0.0016285 0.0006855 0.0024264
mse S6 0.0096109 0.0046822 0.0134822 0.0015590 0.0007080 0.0021333

Table 1. The Sobol’ g-function model (20). Characteristics of the mean square errors for the estimation of the six
first-order Sobol’ indices with a fixed sample size and 500 replications. In Chatterjee’s methodology, the sample
size is n = 700 while in the Pick-Freeze estimation procedure, it is N = 100.
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Pick-Freeze Chatterjee

N = 10 N = 50 N = 100 n = 70 n = 350 n = 700

mse S1 0.1128686 0.0172275 0.0095548 0.0116790 0.0022941 0.0010218
mse S2 0.1509575 0.0223196 0.0105727 0.0177522 0.0033719 0.0017314
mse S3 0.1469124 0.0220015 0.0101785 0.0175517 0.0032474 0.0016667
mse S4 0.1591130 0.0196357 0.0105463 0.0159360 0.0033948 0.0018522
mse S5 0.1646339 0.0240353 0.0097979 0.0158563 0.0032230 0.0016285
mse S6 0.1466408 0.0217638 0.0096109 0.0166701 0.0029653 0.0015590

Table 2. The Sobol’ g-function model (20). Mean squares errors of the estimation of the six first-order Sobol’
indices with small sample sizes and with both methods.

where W = (W1, . . . ,WN ) and Z = (Z1, . . . ,ZM ) correspond respectively to the differential and algebraic
state variables of the models. The variables X = (X1, . . . ,Xp) correspond to the uncertain parameters of
the model. Our quantity of interest corresponds to the time average over [0,T] of W∗ (which is one of
the differential state variables W1,..., WN ), i.e.

Y =
1
T

∫ 


0
W∗(t) dt . (22)

As above, we regard Y as a function of the unknown parameters, i.e., Y = f (X1, . . . ,Xp). In our im-
plementation, the values of W∗ are obtained by solving the above DAE system (Equation (21)) by the
MATLAB routine ode15s (it can be checked that (21) form an index one system). Further, in the current

Figure 6. The Sobol’ g-function model (20). Mean square errors of the estimation of the six first-order Sobol’
indices with respect to the number of input variables with a fixed sample size and 500 replications. We consider
the sample sizes n = 200 in the rank methodology (in red) and N = n/(p + 1) in the Pick-Freeze procedure (in
blue). The number of input variables considered are p = 6,10,15,20,30,40, and 50.
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Figure 7. Chatterjee estimators corresponding to the Cramér-von-Mises indices as a screening mechanics for the
DAE system given by (21) and (21).

example, N = 67 and p = 160 and the distributions of most of the Xi’s are uniform and allowed to vary
±10% from nominal values (see [23] for additional details).

We compare the results from the Chatterjee estimators as described above to those resulting from
the linear regression

f (X1, . . . ,X160) ≈ λ0 +

160∑
j=1

λjXj .

As shown in [23], the above approximation performs well for the considered QoI. We assign to each
variable X1, . . . ,X160 a relative importance Lj where

Lj =
|λj |∑160
�=1 |λ� |

, j = 1, . . . ,160.

Figure 7 displays the results. Both screening approaches identify the same to three influential param-
eters. More parameters are identified as being non-influential through the linear regression approach
than using the Cramér-von-Mises indices.

6. Conclusion

In this paper, we explain how to use the estimator proposed by Chatterjee in [9] to provide a very
nice and mighty procedure to estimate both all the first-order Sobol’ indices and the so-called Cramér-
von-Mises indices [19] at a small cost (only n calls of the computer code). We emphasize on the
fact that this estimation procedure requires a unique sample contrary to the Pick-Freeze procedure
based on a particular design of experiment, the size of which is 2n when estimating a single index and
increases with the number of indices to estimate. We also extend Chatterjee’s method to estimate more
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general quantities. Furthermore, we show a CLT for our estimations of Sobol’ indices. As examples,
we consider two indices already introduced in sensitivity analysis: the indices adapted to output valued
in general metric spaces defined in [21] and the higher-moment indices [30,31]. A general CLT will be
established soon in [20].

Appendix A: Proof of the consistency

Proof of Lemma 3.1. Since τn has no fix point, and using the measurability of τn and the indepen-
dence, we have

E
[
g(Yj)h(Yτn(j))|Fn

]
= E
[
g(Yj)

n∑
l=1,
l�j

h(Yl)1{τn(j)=l } |Fn

]
=

n∑
l=1,
l�j

1{τn(j)=l }E
[
g(Yj )h(Yl)|Fn

]

=

n∑
l=1,
l�j

1{τn(j)=l }E
[
g(Yj)|Fn

]
E

[
h(Yl)|Fn

]
= E
[
g(Yj )|Vj

] n∑
l=1,
l�j

1{τn(j)=l }E
[
h(Yl)|Vl

]
= ΨVj (g)

n∑
l=1,
l�j

1{τn(j)=l }ΨVl
(h) = ΨVj (g)ΨVτn ( j) (h).

Proof of Proposition 3.2. We follow the steps of the proof of Corollary 7.12 in [9]. Our proof is sig-
nificantly simpler since τn is assumed to have no fix points and V is continuous so that there are no
ties in the sample. To simplify the notation, we denote χn(V,Y ;g,h) and χ(V,Y ;g,h) by χn and χ
respectively.

We first prove that, for any measurable function ϕ,

ϕ(V1) − ϕ(Vτn (1)) → 0 (23)

in probability as n →∞. Let ε > 0. By the special case of Lusin’s theorem (see [9, Lemma 7.5]), there
exists a compactly supported continuous function ϕ̃ : R→ R such that P({x; ϕ(x) � ϕ̃(x)}) < ε, where
P stands for the distribution of V . Then for any δ > 0,

P

( ��ϕ(V1) − ϕ(Vτn (1))
�� > δ) ≤ P (��ϕ̃(V1) − ϕ̃(Vτn(1))

�� > δ)
+ P
(
ϕ(V1) � ϕ̃(V1)) + P(ϕ(Vτn (1)) � ϕ̃(Vτn (1))

)
. (24)

By continuity of ϕ̃ and since Vτn(1) →V1 as n →∞ with probability one, the first term in the right hand
side of (24) converges to 0 as n →∞. By construction of ϕ̃, the second term is lower than ε. Turning
to the third one, we have thus

E[ϕ(Vτn (1))] =
1
n

n∑
j=1

E[ϕ(Vτn (j))] =
1
n

n∑
j=1

n∑
l=1
l�j

E[ϕ(Vl)1{τn(j)=l }]

=
1
n

n∑
l=1

n∑
j=1
j�l

E[ϕ(Vl)1{τn (j)=l }] =
1
n

n∑
l=1

E[ϕ(Vl)
n∑
j=1
j�l

1{τn(j)=l }] =
1
n

n∑
l=1

E[ϕ(Vl)] = E[ϕ(V1)]
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where we have used the fact that τn has no fix point, Vτn(i)
L
= Vτn (j) for any i and j = 1, . . . ,n, and the

Vi’s have no ties. This yields

P(ϕ(Vτn (1)) � ϕ̃(Vτn (1))) = P(ϕ(V1) � ϕ̃(V1)) < ε,

and, since ε and δ are arbitrary, (23) is therefore proved. Now, since x �→ Ψx is a measurable and
bounded function and applying (23), we have{

ΨV1 (g) −ΨVτn (1) (g) → 0,
ΨV1 (h) −ΨVτn (1) (h) → 0, in probability as n →∞. (25)

Lemma 3.1 and the dominated convergence theorem lead to

E[χn] =
1
n

n∑
j=1
E[g(Yj )h(Yτn (j))] = E[g(Y1)h(Yτn (1))] = E[ΨV1 (g)ΨVτn (1) (h)] → E[ΨV (g)ΨV (h)] = χ (26)

where we have taken into account the fact that ΨV (g) and ΨV (h) are bounded (due to the boundedness
of g and h) and used (25).

The last step of the proof consists in comparing χn with E[χn] using Mc Diarmid’s concentration
inequality [27]. Sharper constants can be obtained in Mc Diarmid’s inequality by using the inequalities
from [6,7]. As we are interested in asymptotic results the accuracy of the constant has no impact on
the result. Following the same lines as in the proof of [9, Lemma 7.11], Mc Diarmid’s concentration
inequality in [27] then implies

P(| χn − E[χn]| ≥ t) ≤ 2 exp{−2n2t2/C2}, (27)

where C is a universal constant and we conclude the proof by combining (26) and (27).

Appendix B: Proof of the asymtotic normality
Framework and goal We consider the model defined in (1) that can be rewritten as Y = f (X,W) where
X = X1 and W = (X2, . . . ,Xp) are two independent inputs of the numerical code f that is assumed to be
bounded.

The random variables X and W are defined on a product space Ω = ΩX × ΩW ; so that for any
ω ∈ Ω, there exists ωX ∈ ΩX and ωW ∈ ΩW and we have (X,W)(ω) = (X(ωX ),W(ωW )). Further, we
consider πW the projection on ΩW and the product measure P = PX ⊗ PW = LX ⊗ LW , where LX is
the distribution of X and LW is the distribution of W . Naturally, PW = P ◦ π−1

W .
We aim to prove a CLT for the estimator ξSobol’

n (X,Y ) of the classical first-order Sobol’ index with
respect to X given by (2), the estimator of which defined in (17) is given by

ξSobol’
n (X1,Y ) =

1
n

∑n
j=1 YjYN (j) −

(
1
n

∑n
j=1 Yj

) 2

1
n

∑n
j=1 Y2

j −
(

1
n

∑n
j=1 Yj

) 2

where N is defined in (16). Notice that the denominator is reduced to the empirical variance of Y . As
explained in Section 3.1, we denote by Y(j) the output associated to X(j) where X(j) stands for the j-th
order statistics of (X1, . . . ,Xn). Then observing that

n∑
j=1

YjYN (j) =
n∑
j=1

Y(j)Y(j+1) =:
n∑
j=1

Yσn(j)Yσn(j+1)
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where, to avoid any confusion, σn stands for the permutation that rearranges the sample (X1, . . . ,Xn),
the estimator ξSobol’

n (X1,Y ) can be written as

ξSobol’
n (X1,Y ) =

1
n

∑n
j=1 Yσn(j)Yσn(j+1) −

(
1
n

∑n
j=1 Yσn(j)

) 2

1
n

∑n
j=1 Y2

σn(j) −
(

1
n

∑n
j=1 Yσn(j)

) 2 . (28)

B.1. Proof of Theorem 4.1

The proof will proceed as follows. First, in view of (28), we prove a CLT for

���1
n

n−1∑
j=1

Yσn(j)Yσn(j+1),
1
n

n∑
j=1

Yσn(j),
1
n

n∑
j=1

Y2
σn(j)
��� .

that amounts to prove a CLT for

���1
n

n−1∑
j=1

Yσn(j)Yσn(j+1),
1
n

n−1∑
j=1

Yσn(j),
1
n

n−1∑
j=1

Y2
σn(j)
��� ,

since f is bounded. Secondly, we use the so-called delta method [39, Theorem 3.1] to conclude to
Theorem 4.1.

It is worth noticing that the permutation on the W’s do not affect the result as seen in the sequel. For
j = 1, . . . n − 1, introducing

Δn, j := f
(
Xσn(j),Wj

)
− f
(

j
n + 1

,Wj

)
, Wn, j :=

( j
n + 1

,Wj
)

(29)

leads to Yσn(j) = f
(
Xσn(j),Wσn(j)

) L
= f
(
Xσn(j),Wj

)
= Δn, j + f

(
Wn, j
)

and

Yσn(j)Yσn(j+1) = f
(
Xσn(j),Wσn (j)

)
f
(
Xσn(j+1),Wσn(j+1)

)
L
= f
(
Xσn(j),Wj

)
f
(
Xσn(j+1),Wj+1

)
=
(

f
(
Wn, j
)
+ Δn, j

) (
f
(
Wn, j+1

)
+ Δn, j+1

)
= f
(
Wn, j
)

f
(
Wn, j+1

)
+ Δn, j f

(
Wn, j+1

)
+ Δn, j+1 f

(
Wn, j
)
+ Δn, jΔn, j+1.

Thus we are led to establish a CLT for

Zn =
1
n

n−1∑
j=1

���
f (Wn, j) f (Wn, j+1) + Δn, j f

(
Wn, j+1

)
+ Δn, j+1 f

(
Wn, j
)
+ Δn, jΔn, j+1

f (Wn, j) + Δn, j(
f (Wn, j) + Δn, j

) 2 ��� . (30)

Let us discard the negligible terms in the CLT for Zn. In that view, noticing that

E
[
Xσn(j)

]
=

j
n + 1

and Var(Xσn (j)) =
j(n − j + 1)

(n + 1)2(n + 2)
= E

[ (
Xσn(j) −

j
n + 1

) 2
]
≤ 4

n + 2
,



2364 Gamboa, Gremaud, Klein and Lagnoux

we first establish

Xσn(j) −
j

n + 1
=OP

(
1
√

n

)
. (31)

As explained below, (31) will imply

1
n

n−1∑
j=1

Δ2
n, j =OP

(
1
n

)
and

1
n

n−1∑
j=1

Δn, jΔn, j+1 =OP

(
1
n

)
. (32)

First of all, we expand Δn, j (resp. Δn, j+1) using the Taylor-Lagrange formula, for any j = 1, . . . n− 1
and we obtain

Δn, j =

(
Xσn(j) −

j
n + 1

)
fx
(
Wn, j
)
+

1
2

(
Xσn(j) −

j
n + 1

) 2

fxx
(
δn, j,Wσn(j)

)
, (33)

where δn, j (resp. δn, j+1) lies in the unordered segment (Xσn (j), j/(n+ 1)) (resp. (Xσn (j+1),( j + 1)/(n+
1))) and where fx and fxx are the first and second derivatives of f with respect to the first coordinate.
This leads to expansions for Δ2

n, j and Δn, jΔn, j+1:

Δ2
n, j =

(
Xσn(j) −

j
n + 1

) 2 (
fx
(
Wn, j
)
+

1
2

(
Xσn(j) −

j
n + 1

)
fxx
(
δn, j,Wσn(j)

) ) 2

Δn, jΔn, j+1 =

(
Xσn(j) −

j
n + 1

) (
Xσn(j+1) −

j + 1
n + 1

)
×
(

fx
(
Wn, j
)
+

1
2

(
Xσn(j) −

j
n + 1

)
fxx
(
δn, j,Wσn (j)

) )
×
(

fx
(
Wn, j+1

)
+

1
2

(
Xσn(j+1) −

j + 1
n + 1

)
fxx
(
δn, j+1,Wσn(j+1)

) )
.

Finally, using the boundedness of f , fx , and fxx , together with (31), (32) follows.
Remark that the proof of (32) yields also

1
n

n−1∑
j=1

Δn, j =OP

(
1
√

n

)
, (34)

from which it is clear that this term will contribute in the CLT on Zn. Then (32) entails that the
asymptotic study reduces to that of the empirical mean of Zn, j = Bn, j +Cn, j where

Bn, j := ���
f
(
Wn, j
)

f
(
Wn, j+1

)
f (Wn, j)
f (Wn, j)2

��� and Cn, j := ���
Δn, j f

(
Wn, j+1

)
+ Δn, j+1 f

(
Wn, j
)

Δn, j

2Δn, j f (Wn, j)

��� . (35)

First, we consider Bn, j in (35) and we establish the following result, the proof of which has been
postponed to Appendix B.2.
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Lemma B.1. As n →∞, the random vector Bn given by

1
n

n−1∑
j=1

Bn, j =
1
n

n−1∑
j=1

(
f
(
Wn, j
)

f
(
Wn, j+1

)
, f
(
Wn, j
)
, f
(
Wn, j
) 2)


satisfies a CLT. More precisely,
√

n
(
Bn − mB

) L−→
n→∞

N3(0,ΣB), where

mB :=
(
E[YY ′],E[Y ],E[Y2]

)

, (36)

Y ′ = f (X,W ′), W ′ is an independent copy of W, and ΣB has an explicit expression given in Ap-
pendix B.2.

Remark that Y ′ is the so-called Pick-Freeze version of Y with respect to X . Secondly, we estab-
lish a conditional CLT for the empirical mean of the Cn, j’s defined in (35). The reader is referred to
Appendix B.3 for the proof of this result.

Lemma B.2. There exists a measurable set Π ∈ ΩW having PW -probability one such that, for any
ωW ∈ Π, we have

√
nCn(·,ωW ) LX−→

n→∞
N3(0,ΣC ).

Moreover, ΣC does not depend on ωW and has an explicit expression given Appendix B.3.

Considering the characteristic function of the vector
√

n(Bn − E[Bn],Cn), one may write

E

[
ei(

√
n〈s,(Bn−E[Bn])〉+

√
n〈t ,Cn 〉)

]
= E
[
ei
√
n〈s,(Bn−E[Bn])〉E

[
ei
√
n〈t ,Cn 〉

��FW ] ]
for any s and t ∈ R3. On the one hand, E

[
ei
√
n〈t ,Cn 〉

��FW ] converges a.s. to exp{−t
ΣC t/2} which is

not random. On the other hand,
√

n〈s,(Bn − E[Bn])〉 converges in distribution to a Gaussian random
variable denoted by Bs . By Slutsky’s lemma,(√

n〈s,(Bn − E[Bn])〉,E
[
ei
√
n〈t ,Cn 〉

��FW ] )
converges in distribution to (Bs,exp{−t
ΣC t/2}). We consider the application h : (u,v) ∈ R×D(0,1) �→
eiuv ∈ Cwhere D(0,1) is the unit disc in C. The continuity and the boundedness of h lead to the conver-
gence in distribution of ei

√
n〈s,(Bn−E[Bn])〉

[
ei
√
n〈t ,Cn 〉

��FW ] and we conclude to the asymptotic normal-

ity of
√

n(Bn − E[Bn],Cn) to a six-dimensional Gaussian random vector with zero mean and variance-

covariance matrix
(
ΣB 0
0 ΣC

)
. It remains to apply the so-called delta method [39, Theorem 3.1] and

Slutsky’s lemma to get the required result. The details of the computation of the asymptotic variance
σ2 can be found in Appendix B.4.
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B.2. Proof of Lemma B.1

One has

E[Bn] =
1
n

n−1∑
j=1

(
E
[

f
(
Wn, j
)

f
(
Wn, j+1

) ]
,E
[

f
(
Wn, j
) ]
,E
[

f
(
Wn, j
) 2] )


,

the first coordinate of which converges as n →∞ to∫
E [ f (x,W) f (x′,W ′)]dL(X ,X)(x, x′) =

∫ 1

0
E [ f (x,W) f (x′,W ′)]dx

= E [E [ f (X,W) f (X,W ′) |X]]

= E [ f (X,W) f (X,W ′)] = E [YY ′] .

The two other coordinates can be handled similarly leading to

E[Bn] →
n→∞

(
E[YY ′],E[Y ],E[Y2]

)

=mB .

We apply the CLT for dependent variables proved in [28] to B̃1
n, j , the centered version of the random

variables f
(
Wn, j
)

f
(
Wn, j+1

)
/
√

n with m = 1, α = 0, and because f is bounded (so is B̃1
n, j). Assump-

tions (1) and (2) in [28] obviously hold, the assumption (3) is naturally fulfilled and assumption (4) is a
mere consequence of Chebyshev’s inequality and the boundedness of f . Now, it remains to check that
assumption (5) holds. We have

n−1∑
i, j=1

Cov(B̃1
n,i, B̃

1
n, j) =

1
n

n−1∑
i, j=1

Cov
(

f
(
Wn,i
)

f
(
Wn,i+1

)
, f
(
Wn, j
)

f
(
Wn, j+1

) )
=

1
n

n−1∑
j=1

Var
(

f
(
Wn, j
)

f
(
Wn, j+1

) )
+

2
n

n−2∑
j=1

Cov
(

f
(
Wn, j
)

f
(
Wn, j+1

)
, f
(
Wn, j+1

)
f
(
Wn, j+2

) )
.

On the one hand, by [17, Corollary 1.2],

1
n

n−1∑
j=1

Var
(

f
(
Wn, j
)

f
(
Wn, j+1

) )
→

n→∞

∫
Var ( f (x,W) f (x′,W ′))dL(X ,X)(x, x′)

=

∫ 1

0
Var ( f (x,W) f (x,W ′))dx = E [Var ( f (X,W) f (X,W ′) |X)] = E [Var (YY ′|X)] ,

where W ′ is an independent copies of W , Y = f (X,W) and Y ′ = f (X,W ′). On the other hand, by [17,
Corollary 1.2],

1
n

n−2∑
j=1

Cov
(

f
(
Wn, j
)

f
(
Wn, j+1

)
, f
(
Wn, j+1

)
f
(
Wn, j+2

) )
→

n→∞
E [Cov ( f (X,W) f (X,W ′) , f (X,W ′) f (X,W ′′) |X)] = E [Cov (YY ′,YY ′′|X)] ,
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where W ′ and W ′′ are two independent copies of W . Further, Y = f (X,W), Y ′ = f (X,W ′), and Y ′′ =
f (X,W ′′). Actually, notice that all linear combination of the coordinates of(

f (Wn, j) f (Wn, j+1), f (Wn, j), f (Wn, j)2
)
 (37)

is a one-dependent random variable. In addition, following the same lines as above, one may check
that any linear combination still satisfies the assumptions of [28]. Hence, any linear combination of the
coordinates of Bn satisfies a CLT so that Lemma B.1 is proved, up to the computation of the asymptotic
variance-covariance matrix ΣB done in what follows.

Computation of the asymptotic covariance matrix ΣB

We consider a linear combination of the random vector in (37) given by

u f (Wn, j) f (Wn, j+1) + v f (Wn, j) + w f (Wn, j)2,

where (u,v,w) ∈ R3. This one-dimensional random vector is one-dependent and its centered version
normalized by

√
n, denoted by B̃n, j , satisfies the assumptions of [28]. To calculate the asymptotic

variance-covariance matrix ΣB, we compute explicitly the limit of

n−1∑
i, j=1

Cov(B̃n,i, B̃n, j),

as n → ∞ using [17, Corollary 1.2]. It remains to take (u,0,0), (0,v,0) and (0,0,w) to get the diag-
onal terms of the asymptotic variance-covariance matrix and to solve a three-dimensional system of
equations to get the remaining terms. Finally, as computed previously and using notation of [17, Corol-
lary 1.2], the first diagonal term of ΣB is:

Σ
1,1
B
=

∫
Var ( f (x,W) f (x′,W ′))dL(X ,X)(x, x′)

+ 2
∫

Cov ( f (x,W) f (x′,W ′) , f (x′,W ′) f (x′′,W ′′))dL(X ,X ,X)(x, x′, x′′)

=

∫ 1

0
Var ( f (x,W) f (x,W ′))dx + 2

∫ 1

0
Cov ( f (x,W) f (x,W ′) , f (x,W ′) f (x,W ′′))dx

= E [Var ( f (X,W) f (X,W ′) |X)] + 2E [Cov ( f (X,W) f (X,W ′) , f (X,W ′) f (X,W ′′) |X)]

= E [Var (YY ′|X)] + 2E [Cov (YY ′,YY ′′|X)] ,

where we remind that Y = f (X,W), Y ′ = f (X,W ′), and Y ′′ = f (X,W ′′) with W ′ and W ′′ independent
copies of W . The other terms are

Σ
2,2
B =

∫ 1

0
Var ( f (x,W))dx = E [Var ( f (X,W) |X)] = E [Var(Y |X)] ,

Σ
3,3
B =

∫ 1

0
Var
(

f (x,W)2
)

dx = E
[
Var
(
Y2 |X

) ]
,

Σ
1,2
B = Σ

2,1
B = 2

∫ 1

0
Cov ( f (x,W) f (x,W ′) , f (x,W))dx = 2E [Cov (YY ′,Y |X)] ,
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Σ
1,3
B
= Σ

3,1
B
= 2
∫ 1

0
Cov
(

f (x,W) f (x,W ′) , f (x,W)2
)

dx = 2E
[
Cov
(
YY ′,Y2 |X

) ]
,

Σ
2,3
B = Σ

3,2
B =

∫ 1

0
Cov
(

f (x,W) , f (x,W)2
)

dx = E
[
Cov(Y,Y2 |X)

]
.

B.3. Proof of Lemma B.2

Let ωW ∈ Π as defined in [17, Lemma 1.1]. The aim is to establish a CLT for
√

nCn, j(·,ωW ). To ease
the reading, we omit the notation (·,ωW ) as classically done in probability. First, dealing with the first
coordinate f

(
Wn, j+1

)
Δn, j + f

(
Wn, j
)
Δn, j+1 of Cn, j of Cn, j defined in (35), one has

f
(
Wn, j+1

)
Δn, j =

(
Xσn(j) −

j
n + 1

)
f
(
Wn, j+1

)
fx
(
Wn, j
)

+
1
2

(
Xσn(j) −

j
n + 1

) 2

f
(
Wn, j+1

)
fxx
(
δn, j,Wj

)
using the expansion of Δn, j given in (33). By (31) and using the boundedness of f and fxx , we get that

1
n

n−1∑
j=1

(
Xσn(j) −

j
n + 1

) 2

f
(
Wn, j+1

)
fxx
(
δn, j,Wj

)
is OP (1/n). We follow the same lines to treat the term f

(
Wn, j
)
Δn, j+1 and thus

1
n

n−1∑
j=1

f
(
Wn, j+1

)
Δn, j + f

(
Wn, j
)
Δn, j+1 =

1
n

n−1∑
j=1

(
Xσn(j) −

j
n + 1

)
f
(
Wn, j+1

)
fx
(
Wn, j
)

+
1
n

n−1∑
j=1

(
Xσn(j+1) −

j + 1
n + 1

)
f
(
Wn, j
)

fx
(
Wn, j+1

)
+OP

(
1
n

)
=

1
n

n−1∑
j=1

(
Xσn(j) −

j
n + 1

)
fx
(
Wn, j
) (

f
(
Wn, j−1

)
+ f
(
Wn, j+1

) )
+OP

(
1
n

)
.

So that, using also the expansion of Δn, j given in (33), (31), and the boundedness of f and fxx , the
study of Cn reduces to that of the random vector

1
n

n−1∑
j=1

(
Xσn(j) −

j
n + 1

)
fx
(
Wn, j
) ���

f
(
Wn, j−1

)
+ f
(
Wn, j+1

)
1

2 f
(
Wn, j+1

) ��� (38)

by the independence between σn and W1, . . . ,Wn. In that view, let us consider the following linear
combination u( f (Wn, j−1)+ f (Wn, j+1))+ v+2w f (Wn, j+1), where (u,v,w) ∈ R3 and the empirical mean

1
n

n−1∑
j=1

(
Xσn(j)−

j
n + 1

)
fx
(
Wn, j
)
×
(
u( f (Wn, j−1) + f (Wn, j+1)) + v + 2w f (Wn, j+1)

)
. (39)
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Now it remains to apply [17, Lemma 1.4] 2 with χj =
(
Wj−1,Wj,Wj+1

)
and ψ = ψuvw with

ψuvw

(
j − 1
n + 1

,
j

n + 1
,

j + 1
n + 1

, χj

)
= fx
(
Wn, j
) (

u( f (Wn, j−1) + f (Wn, j+1)) + v + 2w f (Wn, j+1)
)
, (40)

noticing that, as n → ∞, (1/n)
∑n−1

j=1 δ(j−1)/(n+1), j/(n+1),(j+1)/(n+1),χj
converges in distribution to Q =

L(X ,X ,X) ⊗ LW ⊗ LW ⊗ LW by [17, Lemma 1.1]. Thus we deduce that the empirical mean in (39)
converges in distribution for any 3-uplet (u,v,w). Since any linear combination of the components
of the random vector defined in (38) satisfies a CLT, so does the random vector itself. The proof of
Lemma B.2 is now complete, up to the computation of the asymptotic variance-covariance matrix ΣC
done in the paragraph that follows.

Computation of the asymptotic covariance matrix ΣC

We use the explicited expression (4) in the proof of [17, Lemma 1.4] of the asymptotic variance σ2
ψ

(actually a slightly generalized version of the lemma) with Q = L(X ,X ,X) ⊗ LW ⊗ LW ⊗ LW and with
ψ given by (40). Then taking the values (1,0,0), (0,1,0) and (0,0,1) leads to the diagonal terms of
the asymptotic variance-covariance matrix ΣC while solving a three-dimensional system of equations
provides the remaining terms. For instance, reminding that χj = (Wj−1,Wj,Wj+1) and Wn, j = ( j/(n +
1),Wj ) and

ψ100

(
j − 1
n + 1

,
j

n + 1
,

j + 1
n + 1

, χj

)
= fx
(
Wn, j
)
( f (Wn, j−1) + f (Wn, j+1))

(namely, ψuvw with (u,v,w) = (1,0,0)), we have

Σ
1,1
C
=

∬
ψ100(x1, x′1, x

′′
1 , χ1)ψ100(x2, x′2, x

′′
2 , χ2)x1 ∧ x2 ∧ x′1 ∧ x′2 ∧ x′′1 ∧ x′′2

× dQ(x1, x′1, x
′′
1 , χ1)dQ(x2, x′2, x

′′
2 , χ2) −

(∫
ψ100(x, x′, x′′, χ)x ∧ x′ ∧ x′′dQ(x, x′, x′′, χ)

) 2

=E[(Y1 +Y ′
1 )(Y2 +Y ′

2 ) fx(X1,W1) fx(X2,W2)(X1 ∧ X2)] − E[(Y +Y ′) fx(X,W)X]2,

where we remind that Y = f (X,W) and Y ′ = f (X,W ′) with W ′ an independent copy of W (and analo-
gously for Y1 and Y2). Finally, the remaining terms of ΣC are:

Σ
2,2
C
= E[ fx(X1,W1) fx(X2,W2)(X1 ∧ X2)] − E[ fx(X,W)X]2

Σ
3,3
C
= 4E[Y ′

1Y ′
2 fx(X1,W1) fx(X2,W2)(X1 ∧ X2)] − 4E[Y ′ fx(X,W)X]2

Σ
1,2
C
= Σ

2,1
C
= E[(Y1 +Y ′

1 ) fx(X1,W1) fx(X2,W2)(X1 ∧ X2)] − E[(Y +Y ′) fx(X,W)X]E[ fx(X,W)X]

Σ
1,3
C
= Σ

3,1
C
= 2E[(Y1 +Y ′

1 ) fx(X1,W1)Y ′
2 fx(X2,W2)(X1 ∧ X2)]

− 2E[(Y +Y ′) fx(X,W)X]E[Y ′ fx(X,W)X]

Σ
2,3
C
= Σ

3,2
C
= 2E[ fx(X1,W1)Y ′

2 fx(X2,W2)(X1 ∧ X2)] − 2E[ fx(X,W)X]E[Y ′ fx(X,W)X].

2A slightly generalization of this lemma is required to handle the pair ((j − 1)/(n + 1), j/(n + 1), (j + 1)/(n + 1)) rather than the
quantity j/n. Its proof comes directly following the same lines as in the proof of this lemma
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B.4. Asymptotic variance σ2 of Theorem 4.1

We have proved yet that

√
n
( (

Bn

Cn

)
−
(
mB

0

) )
L−→

n→∞
N6

(
0,
(
ΣB 0
0 ΣC

) )
,

where the explicit expressions of mB, ΣB and ΣC are given in (36) of Lemma B.1, Appendices B.2
and B.3 respectively. Applying the so-called delta method [39, Theorem 3.1] to the linear function
f (x, y) = x + y, we conclude that

√
n(Zn − mB)

L−→
n→∞

N3 (0,ΣB + ΣC) (41)

Further, we notice that ξSobol’
n (X,Y ) L

= Ψ(Zn) with Ψ(x, y, z) = (x − y2)/(z − y2). The so-called delta
method [39, Theorem 3.1] then gives

√
N
(
ξSobol’
n (X,Y ) − SX

) L−→
n→∞

N1(0,σ2)

where SX = Var(E[Y |X])/Var(Y ) is the first-order Sobol’ index with respect to X and σ2 = g
(ΣB +
ΣC)g with g = ∇Ψ(mB). By assumption Var(Y ) � 0, Ψ is differentiable at mB and we will see in the
sequel that g
(ΣB +ΣC)g � 0, so that the application of the delta method is justified. By differentiation,
we get that, for any x, y, and z so that z � y2:

∇Ψ(x, y, z) =
(

1
z − y2 ,−2y

z − x
(z − y2)2

,− x − y2

(z − y2)2

)

(42)

so that

g = ∇Ψ(mB) =
(

1
Var(Y ) ,2E[Y ]

E[YY ′] − E[Y2]
Var(Y )2

,− SX

Var(Y )

)

=

1
Var(Y )

(
1,2E[Y ](SX − 1),−SX

)

.

Hence the asymptotic variance σ2 in Theorem 4.1 is finally given by σ2 = g
 (ΣB + ΣC)g where ΣB
and ΣC have been defined in Appendices B.2 and B.3 respectively. The matrix ΣB rewrites as

ΣB =
���
v01 + 2c01,02 2c01,03 2c01,00

2c01,03 Var(Y )(1 − SX ) 2c03,00
2c01,00 2c03,00 v00

���
where vi j = E[Var(AiAj |X)], ci j ,kl = E[Cov(AiAj,Ak Al |X)], A0 =Y , A1 =Y ′, A2 =Y ′′, and A3 = 1 (Y
and Y ′′ have been defined just before (37)). The matrix ΣC rewrites as

ΣC =
����
s2
ψ100

s2
ψ110

s2
ψ101

s2
ψ110

s2
ψ010

s2
ψ011

s2
ψ101

s2
ψ011

s2
ψ001

����
where s2

ψ and ψuvw have been defined in [17, Equation (4)] and (40) respectively.



GSA: Mighty estimators and rank statistics 2371

Appendix C: Proof of the asymtotic efficiency of R1
n

Proof of Proposition 4.6. By [11, Theorems 3.4 and 3.5] and classical results on efficiency, observe
that

Un =

(
T̂n,

1
n

n∑
i=1

Yi,
1
n

n∑
i=1

Y2
i

)

is asymptotically efficient, componentwise, for estimating U =

(
E[E[Y |X]2],E[Y ],E[Y2]

)

. The ef-

ficiency in product space [39, Theorem 25.50] yields the joint efficiency from this componentwise
efficiency. Now, we consider once again the function Ψ introduced in the proof of Theorem 4.1.
Since Ψ is differentiable on R3 \

{
(x, y, z)

�� z � y2} , the efficiency and delta method result [39, The-
orem 25.47] implies that (Ψ (Un))n is asymptotically efficient for estimating Ψ(U). The conclusion
follows as Ψ(U) = SX .

Let us compute the minimal variance. To do so, assume that the joint distribution P of (X,Y ) is abso-
lutely continuous with respect to the Cartesian product PX ⊗ PY , namely P(dx,dy) = f (x, y)PX (dx) ×
PY (dy). Then

E[Y |X = x] =
∫

y fY |X=x(y)PY (dy) =
∫

y
f (x, y)∫

f (x, y)PY (dy)
PY (dy).

For any t ∈ (0,1), let us introduce ft (x, y) := (1 + th(x, y)) f (x, y) and

Pt (dx,dy) := (1 + th(x, y)) f (x, y)PX (dx)PY (dy)

where h(x, y) > −1 and
∫

h(x, y) f (x, y)Px(dx)PY (dy) = 0. Now we consider the function

F(t) :=
∬

x,y′

( ∫
y ft (x, y)PY (dy)∫
ft (x, y)PY (dy)

) 2

Pt (dx,dy′).

Denoting by G(x, t) :=
∫
y ft (x, y)PY (dy)/

∫
ft (x, y)PY (dy), one gets

F ′(t) =
∬

x,y′

[
2G(x, t) ∂

∂t
G(x, t) ft (x, y′) +G(x, t)2h(x, y′) f (x, y′)

]
PX (dx)PY (dy′)

so that F ′(0) = 〈E[Y |X = x](2y−E[Y |X = x]),h〉P . The interest function I := E[Y |X](2Y −E[Y |X]) has
E[E[Y |X]2] and variance Var(E[Y |X](2Y −E[Y |X])). Hence it remains to apply the delta method to get
the final (minimal) variance

g

���

Var(I) Cov(I,Y ) Cov(I,Y2)
Cov(I,Y ) Var(Y ) Cov(Y,Y2)
Cov(I,Y2) Cov(Y,Y2) Var(Y2)

����g
where g := ∇Ψ(U), and by (42),

g =

(
1

Var(Y ) ,2E[Y ]
E[E[Y |X]2] − E[Y2]

Var(Y )2
,− SX

Var(Y )

)

=

1
Var(Y )

(
1,2E[Y ](SX − 1),−SX

)

.

Finally, one gets the minimal variance mentioned in Proposition 4.6.
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Remark C.1. This result can be also obtained making a LAN perturbation of the functional derivative
on the tangent space. In this setting and following the notation of [39, Chapitre 25], let us consider the
functional Φ defined by

Φ(P) :=
EP[EP[Y |X]] − EP[Y ]2

EP[Y2] − EP[Y ]2
.

Then, with the notation Pt for t ∈ (0,1) introduced in the above proof, one gets

d
dt
Φ(Pt )|t=0

=
1

Var(Y ) 〈E[Y |X](2Y − E[Y |X]) − 2E[Y ]Y − SX (Y2 − 2E[Y ]Y ),h〉P

leading to Φ̃ := 1
Var(Y)

(
2E[Y ]Y (1 − SX ) + SXY2 − E[Y |X](E[Y |X] − 2Y )

)
and the minimal variance is

given by σ2
min =Var(Φ̃) = 1

Var(Y)2 Var
(
2E[Y ](1 − SX )Y + SXY2 + E[Y |X](E[Y |X] − 2Y )

)
that coincides

with the expression obtained via the delta method in Proposition 4.6.
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