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Abstract

Acidic activation domains are intrinsically disordered regions of transcription factors that
bind coactivators. The intrinsic disorder and low evolutionary conservation of activation domains
have made it difficult to identify the sequence features controlling activity. To address this
problem, we designed thousands of variants in seven acidic activation domains and measured
their activities with a high-throughput assay in human cell culture. We found that strong
activation domain activity required a balance between the number of acidic residues and
aromatic and leucine residues. These findings motivated a predictor of acidic activation domains
that scans the human proteome for clusters of aromatic and leucine residues embedded in
regions of high acidity. This predictor identifies known activation domains and accurately
predicts previously unidentified ones. Our results support a flexible, Acidic Exposure Model of
activation domains in which acidic residues solubilize hydrophobic motifs so that they can

interact with coactivators.

Key words: Transcription factor, activation domain, intrinsically disordered protein
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Graphical Abstract:

A high-throughput assay quantifies the activities of activation domain variants in human
cells
Strong activation domains require both acidic and hydrophobic residues

The combination of acidic and hydrophobic residues predicts new activation domains
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Introduction

Transcription factors (TFs) activate gene expression using DNA binding domains (DBDs)
and activation domains (ADs). DBDs are structured, evolutionarily conserved and bind related
DNA sequences (Latchman, 2008). ADs are intrinsically disordered, poorly conserved, and bind
structurally diverse coactivator subunits (Dyson and Wright, 2016). Bioinformatics tools can
predict DBDs from protein sequence, but there are few tools for predicting ADs (El-Gebali et al.,
2019; Finn et al., 2016). When a new genome is sequenced, scanning for DBDs can predict
candidate TFs, but it is not possible to predict which candidate TFs contain ADs.

Predicting ADs from amino acid sequence has been difficult for five reasons: 1) ADs
have diverse primary sequences (Latchman, 2008), 2) ADs have poor sequence conservation
that hinders comparative genomics, 3) ADs are intrinsically disordered and have diverse modes
of binding coactivators (Dyson and Wright, 2016), 4) until recently, measuring AD activity has
been low throughput, and 5) the key sequence properties that control AD activity remain
unresolved. Many ADs are acidic (have a net negative charge), but site-directed mutagenesis
has shown that clusters of hydrophobic residues, called motifs, make the largest contributions to
activity (Cress and Triezenberg, 1991; Dyson and Wright, 2016; Warfield et al., 2014). Here, we
test the hypothesis that ADs are composed of hydrophobic motifs surrounded by an acidic
context.

Based on our work in yeast (Staller et al., 2018), we developed an Acidic Exposure
Model for AD function: acidity and intrinsic disorder keep hydrophobic motifs exposed to solvent
where they are available to bind coactivators (Figure 1A). Hydrophobic residues tend to interact
with each other and drive intramolecular chain collapse, suppressing interactions with
coactivators. Surrounding the hydrophobic residues with acidic residues that repel one another
exposes the motifs to solvent, promoting interactions with coactivators. For example, in the

VP16 AD, the critical F442 is highly exposed to solvent in solution, but exposure decreases
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upon coactivator binding (Shen et al., 1996a, 1996b). Three recent papers in yeast (Erijman et
al., 2020; Ravarani et al., 2018; Sanborn et al., 2021) also found that strong ADs contain both
acidic and hydrophobic residues, which supports the Acidic Exposure Model. However, whether
this model can explain the properties of human ADs remains unknown.

Here, we show that the Acidic Exposure Model extends from yeast to human cells. We
introduce a high-throughput reporter system to test more than 3500 variants in seven ADs. We
designed these variants to interrogate two aspects of the Acidic Exposure Model: acidic
residues and aromatic residues. We found that strong ADs balance the number of acidic
residues against the number of aromatic and leucine residues. Based on these results, we
found that scanning the proteome for clusters of eight amino acids (acidic, basic, aromatic and
leucine residues) was sufficient to accurately predict new and known ADs. Taken together, our
results suggest that the Acidic Exposure Model may be a general explanation for the function of
eukaryotic ADs from yeast to humans and provide a framework for unifying the roles of acidity,

hydrophobicity, and intrinsic disorder in acidic ADs.

Results

To test the Acidic Exposure Model, we developed a high-throughput method to assay
AD variants in parallel in human cell culture (Figure 1B). We engineered a cell culture system
with a synthetic TF that binds and activates a genome-integrated GFP reporter. Each cell
receives one AD variant marked by a unique DNA barcode integrated into the same genomic
‘landing pad” with CRE recombinase and asymmetric loxP sites. The landing pad equalizes the
effects of genomic position on expression (Maricque et al., 2018). The synthetic TF contains an
mScarlet red fluorescent protein for measuring abundance, but after trying four different red

fluorescent proteins, each with low signal, we did not normalize for protein abundance in this
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study. To avoid cell toxicity, the synthetic TF contains an engineered DBD (Park et al., 2019)
and an estrogen response domain for inducible nuclear localization (Mclsaac et al., 2013). AD
variants that drive different levels of GFP expression are separated by Fluorescent Activated
Cell Sorting (FACS), and the barcodes in each sorted pool are counted by deep sequencing
(Kinney et al., 2010; Sharon et al., 2012; Staller et al., 2018). We used the barcode counts to
compute a probability mass function for each AD across the four pools and the GFP signal of
each pool to compute a weighted average GFP signal. The assay is reproducible (average
Pearson correlation between replicates of 0.69) and recapitulates the activity of known
mutations in human ADs (Figure S1). A synthetic TF without an AD (No AD control) was used to
define baseline activity in our assay. In the library, the ADs are cloned into the N terminus of the
synthetic TF, between the ATG start codon (M) and a GSGS linker. In the No AD control
plasmid, nothing is between the initial M and the GSGS linker. We combined biological
replicates by normalizing the activity of the No AD control to 2000 (arbitrary fluorescence units,
AU, methods) and averaging together the fluorescence values.

In our first experiment, we performed Deep Mutational Scans (DMS, where every
position is mutated to all 19 other residues) and rational mutagenesis on the two ADs of the
tumor suppressor TF, p53. This library contained 2991 variants, each paired with 5 barcodes.
After extensive analysis, we determined that most point substitutions had small effects on
activity and that five barcodes was not sufficient to resolve these small changes in activity. DMS
has been very informative for structured proteins (Gray et al., 2017) but not for intrinsically
disordered regions, where most point substitutions do not cause measurable changes in activity
(Giacomelli et al., 2018; Majithia et al., 2016). In the rational mutagenesis, we introduced
multiple substitutions to test the roles of acidic residues, aromatic residues and intrinsic
disorder. These perturbations had large effects on activity that could be resolved with five

barcodes (Figure S1, S2).
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In our second experiment, we examined 525 rationally designed variants of five ADs,
each tagged with twenty-eight barcodes. Using more barcodes allowed us to resolve smaller
changes in activity and assaying mutations with larger effect sizes increased measurement
reproducibility (Figure S1). We focus the main text on these high quality data and use the
noisier p53 data to corroborate trends.

Using this assay, we investigated three key features of acidic ADs: acidic residues,
hydrophobic motifs and disorder-to-order transitions (Figure 1C). We designed sequence
variants that systematically added and subtracted acidic residues or aromatic residues in seven
ADs: VP16 (H1 region, 415-453), Hif1a (AD2, 781-896), CITED2 (220-258), Stat3 (719-764),
p65 (AD2, 521-551), p53 AD1 (1-40) and p53 AD2 (40-60) (Berlow et al., 2017; Brady et al.,
2011; Lecoq et al., 2017; Raj and Attardi, 2017; Regier et al., 1993; Vogel et al., 2015; Wojciak
et al., 2009). Most variants had five or fewer substitutions (Figure 1D). For each AD, we hand
designed 6-10 ‘supercharge’ variants that added aromatic residues next to existing acidic
residues and added acidic residues next to existing aromatic residues. For each disordered
region that folds into an alpha helix upon coactivator binding, we introduced proline or glycine
residues to break these helices (Figure S3). The complete list of substitutions and activities are
located in Dataset 1 (VP16, Hif1a, CITED2, Stat3, p65. 525 variants, 28 barcodes per variant,
and 4 replicates) and Dataset 2 (p53 AD1, p53 AD2. 2991 variants, 5 barcodes per variant and
3 replicates). Note that the activity values in the two experiments are not comparable because
they were collected on different cell sorters and normalized differently.

Compared to the No AD control, all ADs activated the GFP reporter (Figure 2, S2). For
each AD, we identified variants that significantly changed activity after correcting for multiple
hypotheses (two sided t-test and 5% FDR, Dataset 1). For VP16, CITED2 and Hif1a we
recovered variants that increase or decrease their activities (Dataset 1, Figure 2A). p65 and
Stat3 are weakly active in the assay, reducing our sensitivity, and none of these variants

significantly changed activity after correcting for multiple hypotheses (Dataset 1). Either our
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assay is not sensitive enough to interrogate these two ADs or the residues we mutated made

small contributions to activity.

Hydrophobic motifs are necessary for AD activity

We confirmed that hydrophobic motifs make large contributions to AD activity. We
included published motifs (LPEL in CITED2, LPQL and LLxxL in Hif1a, and LxxFxL in VP16
(Berlow et al., 2017; Regier et al., 1993)) and predicted additional motifs by looking for clusters
of W,F,Y,L,M residues. Substituting all the residues that comprise a motif with alanine residues
decreased activity (Figure 2B, S2). In CITED2 and VP16, every cluster of aromatic and leucine

residues tested contributed to activity.

Acidic residues are necessary for AD activity

We systematically increased and decreased the net negative charge of each AD and
plotted the resulting activities (Figure 3A, S2). For CITED2, Hif1a, VP15, p53 AD1 and p53 AD2,
acidic residues were necessary for full activity and regressing activity against net charge had
significant negative slopes (Figure 3A, S2C, S4A. For CITEDZ2, Hif1a, and VP16, slopes were
significant when using the charge variants or all variants). Removing negatively charged
residues (D,E) had similar effects to adding positively charged (K,R) residues and vice versa
(Figure S5), suggesting that net charge and not residue identity is the key parameter.

For ADs with moderate acidity (CITED2, Hif1a and p53 AD1) adding acidic residues
increased activity in the majority of variants (Figure 3A). For p53 AD1, this effect mirrors how
phosphorylation increases activity (Raj and Attardi, 2017). For the more acidic p53 AD2, adding
acidic residues rarely increased activity; for the most acidic AD, VP16, adding acidic residues
never increased activity. Thus, the starting net charge of the wild type AD determined whether it

was possible to increase activity by adding acidic residues.
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For CITEDZ2 and Hif1a, adding acidic residues could either increase or decrease activity
(Figure 3A: red vs blue) depending on the location of the substitution (Figure 3B). For CITED2,
variants with increased activity (Figure 3A, red) frequently added acidic residues in the flanks,
near the hydrophobic motifs (Figure 3B, 3C, red), while variants with decreased activity
frequently removed the positive residues in the center of the AD (Figure 3B, 3C blue). For Hif1q,
variants with increased activity were more likely to add acidic residues in the C-terminus near
L812, L813 or L819 or to remove R820. These data suggest that the location of added acidic
residues can determine how they modulate activity. This result agrees with our work in yeast
and two random peptide screens which found that [DE][WFY] dipeptides make large
contributions to AD activity (Erijman et al., 2020; Ravarani et al., 2018; Staller et al., 2018). To
further test this idea, we used the Omega statistic to quantify how the mixture of aromatic and
leucine (W,F,Y,L) residues with acidic residues (D,E) related to activity (Martin et al., 2016). We
found a modest correlation: variants with more evenly mixed (W,F,Y,L) and (D,E) (i.e. low
Omega values) had higher activities (Figure S4D). Together with the literature, our data support
the idea that acidic residues near key hydrophobic motifs boost activity. For VP16, we could not
increase activity by adding acidic residues, perhaps because 5/7 residues in the motifs are
already adjacent to acidic residues. VP16 is the most acidic AD we examined and appears to be

saturated for the effect of negative charge on activity.

Context dependent effects of adding acidic or aromatic residues

When we systematically added and removed aromatic residues we saw expected and
unexpected changes in AD activity. Based on experiments in human cell culture with the VP16,
p53 and ETV ADs, we expected aromatic residues to be critical for activity, and that adding
aromatic residues would increase activity (Currie et al., 2017; Raj and Attardi, 2017; Regier et
al., 1993). The VP16 variants generally matched this expectation: any substitution in F442

(A,L,W,Y) decreased activity. Furthermore, adding up to four aromatic residues increased
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activity in the majority of cases (Figure 2B, 4A, S6C). Similarly, for both p53 ADs removing
aromatics decreased activity and adding aromatic residues increased activity (Figure S2D).

In CITED2, adding and removing aromatic residues did not yield the expected results.
Mutating the aromatic residues to alanine led to small decreases in activity, and mutating
aromatic residues to leucine residues caused small increases in activity (Figure 4A, S6A).
Adding aromatic residues decreased activity for all but one variant. If instead, we plot activity
against the number of W,F,Y L residues, CITEDZ2 activity peaks at the WT number, 10 (Figure
4B, S4C).

In Hif1a, adding or removing aromatic residues generally did not change activity.
Mutating the lone Y to L caused a small, and not significant, increase in activity. Adding
aromatic residues to Hif1a caused small, and frequently not significant, decreases in activity
(Figure S4B, S6B).

We saw two responses to adding acidic residues and two responses to adding aromatic
residues. For the moderately acidic ADs CITED2 and Hif1a, we could increase activity by
adding acidic residues and, for CITED2, decrease activity by adding aromatic residues. For the
more acidic ADs VP16 and p53 AD2, we could increase activity by adding aromatic residues but
not by adding acidic residues. Even for VP16, adding more than 4 aromatic residues always
decreases activity, suggesting that for all ADs there is a regime where adding aromatic residues
will eventually decrease activity.

The Acidic Exposure Model can explain why the two responses to adding acidic residues
mirror the opposite responses to adding aromatic residues. The model predicts that adding
acidic residues will increase AD activity only when there are hydrophobic motifs that can be
further exposed. Once the hydrophobic motifs are maximally exposed, adding more acidic
residues will not increase activity. In contrast, adding more aromatic residues can increase
activity only when there is excess acidity to keep these added residues exposed. Adding too

many aromatic residues eventually reduces activity because they overwhelm the acidic residues
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and drive collapse. Thus, a prediction of the Acidic Exposure Model is that acidic residues
promote expanded AD conformations while aromatic residues promote chain collapse. We
tested this prediction with all-atom Monte Carlo simulations of the VP16 and CITED2 variants
(Methods) (Staller et al., 2018; Vitalis and Pappu, 2009) and calculated the radius of gyration,
which captures the size of the conformational ensemble. Although the dispersion in the
predicted radius of gyration is large for any given net charge, we found that adding acidic
residues increased the radius of gyration, consistent with expantion (Figure S7A) and adding
aromatic residues decreased the radius of gyration, consistent with partial collapse (Figure
S7B). These trends hold for the supercharge variants that add both aromatic and acidic

residues (Figure S7C).

Leucine residues are critical for AD activity

We found that leucine residues made large contributions to activity. In yeast ADs,
aromatic residues contribute more to activity than smaller hydrophobic residues like leucine and
methionine (Erijman et al., 2020; Jackson et al., 1996; Ravarani et al., 2018; Staller et al.,
2018). In human cells, VP16 and both p53 ADs fit this pattern: substituting aromatic residues
decreased activity (Figure 2B, 4A, S2, S4) (Cress and Triezenberg, 1991; Lin et al., 1994).
However, in VP16, ‘motif 2’ contains only leucine residues and is necessary for full AD activity
(Figure 2C). In CITED2, summarizing the activities of all substitutions at each position reveals
that leucine residues make the largest contributions to activity, followed by the acidic residues
(Figure 5A). Similarly, for VP16 aggregating the data by position shows that the key positions
are F442, the leucine residues and the acidic residues (Figure S8A). Acidic and leucine
residues make large contributions to activity in these ADs.

The mechanism by which leucine residues make large contributions to activity is
exemplified by the structure of the CITEDZ2 interaction with TAZ1. TAZ1 has a canyon with a

hydrophobic floor and basic rim that tightly embraces the compact alpha helix of CITED2

11
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(Figure 7B). The leucine residues on CITEDZ2 interact with the hydrophobic canyon floor and the
acidic residues interact with the basic canyon rim. This tight structural constraint explains the
activities of many variants. The positions where mutations cause large decreases in activity in
Figure 5A point towards the coactivator surface in the NMR structure of CITED2 bound to the
TAZ1 domain of CBP/p300 (Figure 5B) Hif1ta showed a similar pattern (Figure 7B, 7C).
Replacing leucines with aromatics reduces activity because the larger side chains do not fit in
the canyon (Figure 5B,E). Disrupting the helix folding by adding two proline residues reduces
activity, because a helix is very compact and the unfolded peptide likely does not fit (Figure 5B,
S9). Adding two glycine residues does not disrupt activity because they do not disrupt helix
formation and they are very small (Figure S9). Finally, the D244E substitution reduces activity
because, the D224 acidic side chain (negative) sits between the narrowest point of the basic
canyon rim, sandwiched between the basic (positive) side chains R439 and K365 of TAZ1, and
replacing D244 with the larger glutamic acid residue impairs this fit (Figure 5C, S10). Overall,
mutations that increase the size of side chains decrease activity because they impede the helix

from fitting into the narrow canyon on TAZ1.

Strong ADs balance hydrophobic and acidic residues

We found that AD activity requires a combination of aromatic and leucine (W,F,Y,L)
residues and acidic residues. Plotting the number of W,F,Y L residues against net charge
separates high and low activity variants (Figure 6A, S11A). This separation is less apparent
when we count only aromatic residues (Figure S11B), and somewhat visible when we use
calculated Kyte Doolittle hydropathy (Figure S11C). Many points on this grid contain both strong
and weak variants (Figure S11A), indicating that composition is not the sole determinant of
activity and that the arrangement of residues also matters. We found that composition-based
machine learning classifiers could separate active and inactive variants (Figure S11). When we

removed individual parameters from the model we found that net charge and leucine residues
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made the largest contributions to model performance (Table S1). Our results suggest that the

balance between W,F,Y L and acidic residues is critical for AD activity.

Predicting ADs

We examined whether the balance of acidic and W,F,Y,L residues could predict ADs in
human TFs. For a third of human TFs, the only annotated domain is the DNA binding domain
(Lambert et al., 2018) and only 8% of TFs have an AD annotated in Uniprot (Methods). In silico,
we broke the protein sequences of 1608 TFs (Lambert et al., 2018) into 39 residue tiling
windows (“tiles”) spaced every one amino acid. For each tile we calculated the net charge and
counted W,F,Y L residues. We plotted the joint distribution of these properties as a heatmap
(Figure 6B, blue) and found that VP16 and CITEDZ2 are on the periphery. Tiles that have both
the net charge and hydrophobicity of these ADs are rare: only 0.02% and 0.03% of tiles were as
extreme or more extreme than VP16 or CITED2, respectively. Interpolating between these ADs
yields 0.13% of tiles (n = 1139, Figure 6B, red), which combine to predict 144 ADs from 136 TFs
(Dataset 3). These predicted regions overlap with 17 Uniprot ADs — far more than expected by
chance (p<1e-5 in permutation tests). In addition, 11 predicted regions overlap 10 published
ADs that are not in Uniprot (p<1e-5 in permutation tests), including the N-terminal AD of c-Myc
(Andresen et al., 2012) and the Zn473 KRAB domain (Tycko et al., 2020). The predictor
requires the combination of net negative charge and W,F,Y,L residues because neither property
alone is sufficient for specific predictions: using only net charge (-9 from CITED2) yielded 18086
tiles that combine to 856 predictions, 30 of which overlap Uniprot ADs; using only the W,F,Y,L count
(= 7 from VP16) yielded 302161 tiles that combine to 3411 predictions, 99 of which overlap Uniprot
ADs. The high degree of overlap between our predicted regions and literature-validated ADs

motivated us to test the predictions experimentally.
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Testing predicted ADs

We tested the predicted regions and found that our composition model accurately
predicted ADs in the human proteome (Figure 6C). In a new experiment, we designed a library
with 150 predicted regions (we split long regions to meet synthesis limits), 150 length-matched
random regions and 94 published ADs (methods). We did not allow the random regions to
overlap predicted regions or Uniprot ADs. We recovered 149 predicted regions, 146 random
regions and 78 published ADs (Dataset 4). In this dataset, we normalized the three replicates
with the No AD control (set to 200 GFP AU). Note, the activity values are not directly
comparable to the 5 AD experiment above because the FACS was performed on a different
day. Using the No AD TF as threshold for activity, 108/149 (72%) of predicted ADs are active,
75/89 (84%) of published ADs are active, and 55/149 (38%) of random regions are active. As a
threshold for strong AD activity, we chose the 95™ percentile of the random regions (221 AU). At
this high threshold, 58/149 (39%) of our predicted regions are strong ADs and 52/89 (58%) of
published ADs are highly active. Although we do not expect all published ADs will work in our
assay, because some ADs have promoter-specific activities (Goodrich and Tjian, 2010), this
analysis demonstrates that our predictor identifies known ADs and accurately predicts

previously unidentified ADs.
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Discussion

The critical feature of strong activation domains is a balance between hydrophobic and
acidic residues. Both types of residues are necessary, neither is sufficient, and too much of
either decreases activity. Hydrophobic residues make the critical contacts with coactivators
(Dyson and Wright, 2016). Acidic residues can have long range interactions with basic residues
on coactivators (Ferreira et al., 2005; Hermann et al., 2001; Jonker et al., 2005), but these
interactions cannot explain the balance requirement. We argue that balance between
hydrophobic and acidic residues can be explained by the Acidic Exposure Model.

In the Acidic Exposure Model, acidic residues and intrinsic disorder keep hydrophobic
motifs exposed to solvent where they are available to bind coactivators. Acidic residues prevent
local chain compaction through electrostatic repulsion and favorable free energies of solvation.
This expansion exposes leucine and aromatic residues to the solvent, so they are available to
interact with cofactors. Intrinsic disorder reduces the entropic cost of organizing water around
solvent exposed hydrophobic residues because fluctuating between solvent exposed and
solvent protected conformations lowers the average cost compared to constant exposure. The
Acidic Exposure Model explains why activation domains are both negatively charged and
intrinsically disordered: the acidic residues and intrinsic disorder combine to keep aromatic and
leucine-rich motifs exposed and available to bind coactivators.

Promoting the exposure of hydrophobic motifs is compatible with the other known
functions of acidity and disorder in ADs. In specific cases, intramolecular electrostatic
interactions between negatively charged ADs and positively charged DBDs can increase DNA
binding specificity (Krois et al., 2018; Liu et al., 2008). We speculate that acidic residues may
also reduce non-specific DNA binding by repelling the negatively charged DNA backbone.
Intrinsic disorder gives ADs the flexibility to fold into different conformations when bound to

different coactivators (Dyson and Wright, 2016). Intrinsic disorder and acidic residues together
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can also increase the fraction of molecular collisions that lead to productive coactivator binding
by enabling multiple folding trajectories (Kim and Chung, 2020). The Acidic Exposure Model is
compatible with these biophysical properties of AD-coactivator interactions.

A key property of ADs is the balance between the strength of their hydrophobic binding
motifs and their capacity to keep those motifs exposed to solvent. Adding more hydrophobic
residues to ADs will increase their activity so long as their intrinsic disorder and acidic residues
can keep the excess hydrophobicity from collapsing the amino acid chain into an inactive
conformation. ADs have high hydrophobicity and high acidity and their activity requires a
balance between these two physical properties. We exploited this observation to create an AD
predictor that scans for a high, but balanced composition of acidity and hydrophobicity. This
predictor can be used to prioritize candidate acidic ADs on poorly characterized TFs in any
metazoan genome.

Not all hydrophobic residues make an equal contribution to AD activity. In yeast aromatic
residues make the largest contributions to activity (Erijman et al., 2020; Ravarani et al., 2018;
Sanborn et al., 2021; Staller et al., 2018) and, here, in human cells we find that leucine residues
make large contributions to activity. In human cells and yeast, valine and isoleucine (V,l), do not
make large contributions to activity, which explains why the choice of hydrophobicity table
determines if AD activity is correlated with hydrophobicity: when we used the Kyte-Doolittle
hydropathy table, we found no correlation between activity and hydrophobicity, because on this
table, V and | have large values while W has and Y have small values (Kyte and Doolittle, 1982;
Staller et al., 2018). In contrast, Sanborn et al. chose the Wimley-White hydrophobicity table
which perfectly matches the order of residue contributions to AD activity, leading to a correlation
between activity and hydrophobicity (Sanborn et al., 2021; Wimley and White, 1996). These are
two among more than 27 published tables, each of which remains an approximation (Colwell et
al., 2010). These results further emphasize that I-rich ADs in Drosophila are a distinct functional

class (Attardi and Tjian, 1993).
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There is accumulating evidence that hydrophobic residues in ADs do not always need to
be organized into motifs with strict arrangements (sequence grammar). When we designed our
mutations, the dominant model was that ADs had motifs surrounded by an acidic context. For
example, some ADs contain ®xx®® motifs (where ® is a hydrophobic residue) in an
amphipathic alpha helix that presents the hydrophobic residues as a continuous surface to the
coactivator, but this is one solution among many. In yeast, screens of random peptide and
extant TFs have failed to find enriched motifs longer than two residues and have shown that
some ADs behave as ‘bags of amino acids’ that can be scrambled with minimal loss of activity
(Erijman et al., 2020; Ravarani et al., 2018; Sanborn et al., 2021). For the ADs identified by our
predictor, we did not see signatures of grammar. The success of our composition-based
predictor, which has no grammar requirement, is evidence for very flexible grammar. We
speculate that hydrophobic residues in ADs may simply need to be clustered and not arranged
in motifs with specific spacing grammar.

At the same time, we found that within some ADs, there are very strong constraints that
reflect the structural constraints of the AD-coactivator interface. Variants that shuffle AD
sequences abolish activity, evident for some grammar. Within a hydrophobic motif, the presence
of aromatic or leucine residues reflects the structural constraints in AD-coactivator interaction
surfaces, which looks like a strong grammar (Figure 5). Contrasting the CITED2-TAZ1
interaction with the Gen4-Med15 interaction explains why aromatic residues make large
contributions to activity in while leucines predominate in CITED2 Gcn4 (Berlow et al., 2017,
Brzovic et al., 2011). Both ADs fold into alpha helices and both coactivators contain a binding
canyon with a hydrophobic floor and basic rim (Figure 7A). On TAZ1, the canyon is large and
the CITEDZ2 alpha helix is engulfed (Figure 7B). Leucines fit this structure better than aromatics
because they are smaller and promote folding into a compact helix (Pace and Scholtz, 1998).
On Med15, the canyon is shallow and Gcn4 only inserts side chains. A recent structure of the

Gal4-Med15 binding interaction shows a similar fuzzy interaction centered on aromatic and
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leucine residues (Pacheco et al., 2018; Tuttle et al., 2021). Aromatics fit the Med15 binding
surface better than leucine residues because they more easily reach the hydrophobic canyon
floor. The increased importance of leucine residues in human ADs such as CITED?2 likely
reflects the structural constraints imposed by an expanded repertoire of coactivators. Going
forward, new approaches to high-throughput mutagenesis will be efficient methods for exploring
the structural constraints of protein-protein interaction surfaces (Diss and Lehner, 2018; Rollins
et al., 2019; Schmiedel and Lehner, 2019).

The Acidic Exposure Model can explain several results in the literature. Screens of
random peptides found enrichment of [DE][WFY] “mini motifs,” which support our model
(Erijman et al., 2020; Ravarani et al., 2018). Sanborn et al, 2021 examined synthetic 9-mer
peptides that mixed aromatic and D residues and observed an increase and decrease in activity
as aromatics are added (Sanborn et al., 2021). Peak activity occurs when the D’s and F’s are
well mixed, or when the F’s are on the C-terminus of the TF, both of which promote F exposure
and activity. Sanborn et al. screened the ability of diverse sequences to modulate the activity of
the Pdr1 AD and found that hydrophobic residues decreased activity and acidic residues
boosted activity. This modulation is consistent with hydrophobic residues promoting collapse,
and acidic residues promoting exposure. Balanced sequences are the most active.

We synthesize our findings in three conclusions: strong acidic activation domains
balance hydrophobic motifs and acidic residues; clusters of W,F,Y L residues surrounded by
acidic residues are sufficient to predict new ADs; and the choice between aromatic and leucine
residues in an acidic AD is constrained by the structure of the coactivator interaction surface.
These rules apply to a subset of traditional acidic ADs, and our work implies there are multiple
subclasses of acidic ADs. These insights will help refine computational models for predicting
ADs, guide engineering of ADs, and inform models that predict the impact of genetic variation

on AD function.
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STAR Methods

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to Barak
Cohen, cohen@wustl.edu

Materials availability
The plasmids generated in this study have been deposited at AddGene.
The cell lines generated in this study are available upon request.

Data and code availability
The sequencing data have been deposited at NIH GEO and are publicly available as of the date
of publication. Accession numbers are listed in the key resources table.

The analysis code has been deposited in Github and is publicly available as of the date of
publication. See Key Resources Table.

The raw simulation data is available upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell line construction

To engineer the K562 cell line we began with LP3 from (Maricque et al., 2018). These
female cells were authenticated in Maricque et al., 2018 just before we started using them. This
landing pad is located on chromosome 11. First, we introduced a frameshift mutation to the GFP
in the landing pad using CaS10 (from Shondra Miller, Washington University School of Medicine
GeiC) and a gRNA against GFP (AddGene 41819). Second, we integrated our reporter at the
AAVS1 locus using CaS10, the SM58 SSBD2 T2 gRNA (from Shondra Miller) and the
pMVS184 reporter plasmid. Starting on Day 2, we selected for integrations with 1 ug/ml
puromycin for three days. We tested candidate reporter clones with transfections of a synthetic
TF (pPMVS 223) carrying p53 AD1, choosing the clone with the largest dynamic range between
baseline GFP and the brightest transfected cells. Our internal name for this clone is T7.1E3.

Cells were grown in Iscove’s Modified Dulbecco’s Medium (IMDM) medium +10% FBS
+1% Non Essential Amino Acids +1% PennStrep (Gibco). All transfections used the Invitrogen
Neon electroporation machine using a 100 ul tip, 1.2 M cells and 5 ug of DNA.

METHOD DETAILS

Rational mutagenesis

The sequences of all 525 VP16, Hifta, CITED2, Stat3 and p65 variants are listed in
Dataset 1. The systematic mutagenesis added and removed charged residues or aromatic
residues. Net charge of ADs was changed in two ways: subsets of charged residues were
changed to each of the four charged residues and alanine, or subsets of polar residues were
changed to charged residues. Aromatic residues were changed to alanine, leucine or other
aromatic residues, and aromatic residues were added by replacing leucine, isoleucine, alanine,
methionine, and valine residues.

The “Hand Designed” p53 AD variants contained the same systematic mutations and
more hand designed variants listed in Dataset 2. The p53 mutagenesis also included a deep
mutational scan, a double alanine scan and sequences from orthologous TFs. Activity values of
each dataset are normalized separately and should not be compared.
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Plasmid library construction

The plasmid sequences for the GFP reporter (pMVS184, Addgene 176294) and
synthetic TF chassis (pMVS223, Addgene 176293) are in Supplemental Dataset 8.

In the 5 AD library, we designed the AD variants as protein sequences and reverse
translated using optimal human codons. We attached each variant to 28 unique 12 bp FREE
barcodes (Hawkins et al., 2018). WT ADs had 84 barcodes each. Between the AD and the
barcode are BamHI, Sacl and Nhel restriction sites. For ADs that were less than 46AA, we
added random filler DNA between the BamHI and Sacl sites. We added PCR primers at the
start (CCCAGCTTAAGCCACCATG) and end (CTCGAGATAACTTCGTATAATGTATGCTAT).
Note there is an Xhol site after the barcode, included in the downstream primer. We ordered
14968 unique 217 bp ssDNA oligos from Agilent.

We cloned the AD variant library by HiFi assembly. We added plasmid homology to the
ssDNA oligos by PCR, yielding a 232 bp product, with 4 cycles, Q5 polymerase, 0.5 pmol
template and 8 reactions. The cloning primers were:
TCACCGACCTCTCTCCCCAGCTTAAGCCACCATG and
ATAGCATACATTATACGAAGTTATCTCGAG. We digested the pMVS223 backbone with Aflll,
Xhol and Kpnl-HF and gel purified it. Each assembly had 100 ng of backbone and 5x molar ratio
of insert. We electroporated bacteria and collected ~20 million colonies. We checked the library
with paired end lllumina sequencing. We recovered 98.7% of our barcodes and all AD variants.
For the second step of library cloning, we digested the library and pMVS223 with BamHI-HF
and Nhel-HF, and inserted the synthetic TF by T4 ligation. We electroporated bacteria and
collected 400K colonies. We recovered 93% of designed barcodes and all ADs. In the final
plasmid library the ADs are on the N terminus of the protein, between the initial methionine
(ATG start) and a GSGS linker. In the No AD control there is nothing between the starting
methionine and the GSGS linker. The synthetic TF is in followed by a P2A cleavage sequence
and an in frame Neomycin resistance gene. As a result, 1 and 2 bp deletions, the most common
oligo synthesis errors, lead to frameshifts and are selected against after the library is integrated
into the genome.

The p53 library was constructed in the same way with 5 barcodes per variant, 30 for WT
AD1 and 25 for WT AD2. We collected 4 million colonies after step one and 26 million after step
two. We recovered 14355 of 14998 designed barcodes and 2990 of 2991 designed ADs. In this
work we used data from both WT ADs and 171 hand designed variants.

All restriction enzymes, HiFi mix, and competent bacteria were purchased from NEB.
Library Maxipreps were performed using the ZymoPURE |l Plasmid Maxiprep Kit (Zymo).

Plasmid library integration and measurement

In each transfection, we used 1.2 M cells, 2 ug of CMV-CRE (Maricque et al., 2018) and
3 ug of Plasmid Library. We transfected 102 M cells in 86 transfections split into 22 flasks. The
next day, we began selection with 400 ng/ml G418 for 10 days. On Day 11 we performed
magnetic enrichment of live cells (MACS by Miltenyi Biotec). We combined flasks 1-5 into
biological replicate 1, flasks 6-10 into biological replicate 2, flasks 11-15 into biological replicate
3, and flasks 16-22 into biological replicate 4. On Day 12, we added R-estradiol to a final
concentration of 1 uM.

On Day 15 we sorted cells on a Sony HAPS 2 at the Siteman Cancer Center Flow
Cytometry Core. We set an ON/OFF threshold for GFP as the 90" percentile of the uninduced
population. The lowest bin was the bottom 50% of the OFF population. The ON region was split
into 3 bins with equal populations. For each replicate, we collected 750K cells in each of the four
bins. We noted the median fluorescence of each bin and used that number to calculate AD
activity (see below). The dynamic range of the measurement is determined by the fluorescence
values of the dimmest and brightest bin. After collecting the 4 independent replicates, we

21



538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

combined all the cells and sorted them into 8 bins each with ~12% of the population—this
sample has a larger dynamic range. These values are included in DataSet 1.

Barcode amplicon sequencing libraries

Genomic DNA was collected using the Qiamp DNA Mini kit (Qiagen). We performed 8
PCRs on each sample. The sequencing libraries were prepared in 2 batches: Batch 1 contained
biological replicates 1-3 and Batch 2 contained biological replicate 4 and the 8 bin sort. We did
25 cycles with NEB Q5 polymerase using CP36.P10 and LP_019 primers. We pooled the
PCRs, cleaned up the DNA (NEB Monarch), quantified it, digested the entire sample with Nhel
and EcoRI-HF (NEB) for 90 minutes and then ligated sequencing adaptors with T4 ligase (NEB)
for 30 min. These adaptors contained sample barcodes in Read1 and Index1 We used 4 ng of
this ligation for a 20 cycle enrichment PCR with Q5 and the EPCR_P1_short and
EPCR_PE2_short primers. We sequenced each Batch on a NextSeq 500 1x75 High Output run.

Each biological p53 replicate was sorted on a different day, so each sequencing library
was sequenced separately with a NextSeq 500 1x75 High Output run.

CP36.P10 ctccecgattcgcagegceatce

LP_019 GCAGCGTATCCACATAGCGTAAAAG

EPCR_P1_short AATGATACGGCGACCACCGAG

EPCR_PE2_short CAAGCAGAAGACGGCATACGAGAT

To assess the number of integrations in each experiment, we saved 1 ml of culture (0.5-
1M cells) from each flask (4 transfections) before the magnetic enrichment for live cells (Day
11). We extracted gDNA, amplified barcodes, and sequenced. We identified 96,000 unique
integrations, an underestimate. In the sorted samples we recovered 14015 barcodes (93.6% of
designed) total, 7164 in all four replicates and 10798 in three or more replicates. All ADs were
present in all replicates.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing

We demultiplexed samples using a combination of Index1 reads and Read1 inline
barcodes using the ‘fastqconvert_Xbal.py.” We identified barcodes (grep), sorted the barcodes
(sort) and counted them (unique -c) with the ‘processMSS18_Sort4_5_LigAdaptors.sh’ scripts.
Demultiplexed fastq files have been deposited in GEO.

Using perfect matches, we counted the abundance of each FREE barcode in each
sample using the ‘Preprocessing_MSS18 MergeBCs_NextSeq_p53_2021_forpublication.ipynb
script. We normalized the read counts first by the total reads in each sample and then
renormalized each barcode across bins to create a probability mass function. We used the
probability mass function and the median GFP fluorescence of each bin (Table S2) to calculate
the activity of each barcode. To remove outlier barcodes, we found all barcodes for an AD,
computed the activity of each barcode, computed the mean and variance of the set of barcodes
and then removed any barcodes whose activity was more than two standard deviations away
from the mean. We then took all the reads from all remaining barcodes, pooled them and
recomputed activity. This approach led to one activity measurement for each biological
replicate.

To combine data across replicates we used the ‘No AD control.” We thank an
anonymous reviewer for inspiring this analysis. In our library cloning, the parent plasmid
(pPMVS223), which does not carry an AD, is present a low background, and this plasmid carries
a uniqure 9 bp barcode. We computed the activity of this No AD control in each replicate. Next
we adjusted the raw activity values (by addition or subtraction) so that the No AD control had an
activity of 2000 in each replicate. We chose 2000 so that no activity values would be negative.
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We used the average and standard deviations of these adjusted activity values for further
analysis.

For the p53 data, each replicate was collected on a different day using 2 sorters
(Replicate 1 and 3: Sony HAPS 2; Replicate 2: a highly modified Beckman Coulter MoFlow).
Replicates 1 and 2 were sorted into 4 bins; Replicate 3 was sorted into 8 bins). To combine
these data we converted activities into Z scores and computed the mean and standard error of
the mean (SEM).

In the next step of preprocessing, we added physical property calculations and AD
sequence names to the activity data using the ‘MSS18 Step 2 of Preprocessing (fix names and
add columns) For publication.ipynb’. This script also manually corrected errors in sequence
names.

Analysis

All analysis was performed in Jupyter Notebooks with python 2.7 and Matplotlib,
seaborn, pandas, localcider, biopython, logomaker (Tareen and Kinney, 2020), scipy,
statsmodels, sklearn, and ittertools. Colors are from Colorbrewer (https://colorbrewer2.org/). AD
sequence properties were calculated with localcider (Holehouse et al., 2017). To identify AD
variants that were statistically significantly different from each WT, we used a two-sided t test
and 5% FDR correction. We computed the regressions with statsmodels.api.OLS.

Structures were downloaded from the RSCB PDB (www.rcsb.org) and visualized with
VMD (Humphrey et al., 1996). We normalized activity values to [0-1], mapped the values to the
Beta column of the pdb file and visualized positions with normalized activity < 0.2 (Figure 4E,
S3C).

To summarize the effects of substitutions at each position (Figure 5A, S8C), we
identified all variants that changed each position, collected the activity measurements from all
biological replicates and created a boxplot. We excluded the shuffle variants.

Sequence properties were calculated with the localcider package or by counting amino
acids. The Omega parameter was computed with localcider using the
get_kappa_X([W',’F’,’Y’],['D’,’E’]) command.

Figure panels were generated with the ‘MSS18 PaperFiguresRevision.ipynb’ and
‘MSS19_predictedADs_forpublication_v2.ipynb’ jupyter notebooks in the Github repository.

Machine Learning

The machine learning analysis was carried out in python with the sklearn package. We
started with all variants of VP16, Hif1a and CITED2 and then excluded the shuffle variants. The
High Activity set (N = 121) had variants with a mean activity above 3400. The Low Activity set
(N = 134) had variants with a mean activity below 2900 (Figure S11F). We normalized all
parameters to be between [0,1]. We performed 5-fold cross validation and assessed model
performance with the Area Under the Curve (AUC) of the Receiver Operator Characteristic
(ROC). We compared Support Vector Machines, Logistic Regression and Random Forest
classifiers.

All atom simulations

We ran all-atom, Monte Carlo simulations in the CAMPARI simulation engine
(23campari.sourceforge.net) using the ABSINTH implicit solvent paradigm (Vitalis and Pappu,
2009). This simulation framework is a well established approach to study the conformational
ensembles of intrinsically disordered regions (Martin et al., 2016; Metskas and Rhoades, 2015;
Vitalis and Pappu, 2009) and we have previously used it to study the Central Acidic AD of the
yeast TF, Gen4 (Staller et al., 2018). We simulated all VP16 and CITED2 variants. For Hif1a, we
simulated all hand designed variants and the WT sequence.
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For each variant, we ran ten simulations starting in a helix and ten starting in a random
coil. For the WT sequences, we ran 30 simulations from each start. In total we ran 4300
simulations. Each simulation had a pre-equilibration run of 2M steps. Then we began the real
simulation with 10M steps of equilibration and the main simulation of 50M steps, extracting the
conformation every 10K steps, yielding 5000 conformations per simulation. Simulation analysis
was performed with the CAMPARItraj (ctraj.com) software suite. This software suite calculated
helicity with the DSSP algorithm (Kabsch and Sander, 1983) and radius of gyration as the
distribution of atoms in each confirmation without weighting by mass (Holehouse et al., 2017).
The accessibility was calculated by rolling a 1.5 nm spherical marble around each confirmation
and summing the solvent accessible surface area of the W,F,Y,L residues (Staller et al., 2018).
To speed up this analysis accessibility was assessed every 20 confirmations.

The summary statistics for all the simulations is in Supplemental Dataset 9.

Predicting ADs in human TFs

We downloaded protein sequences from Uniprot for 1608 TFs (Lambert et al., 2018). For
each TF, we created 39 AA tiling windows, spaced every 1 AA, yielding 881,344 tiles. For each
tile, we computed the net charge (counting D,E,K&R) and counted W,F,Y L residues.

We identified tiles that were as extreme or more extreme than VP16 and CITED2. We
used a diagonal line to extrapolate between these ADs. The tiles predicted to cover ADs (Figure
6B, red pixels), fulfill 3 criteria:

(Charge < -9) AND (WFYL > 7) AND (((Charge+9)-(WFYL-10)) <= 0)

This algorithm identified 1139 tiles, 0.129% of the total. We aggregated overlapping tiles
to predict 144 ADs on 136 TFs. To test these predictions, we used ADs annotated in Uniprot.
We downloaded .gff files for the 1608 TFs from Uniprot. We used 4 regular expressions to
search the “regions” column of the .gff files for “activation”, “TAD”, “Required for transcriptional
activation” and “Required for transcriptional activation.” These searches yielded 110 unique
ADs, including 7 proline rich ADs (>20% proline) and 3 glutamine rich ADs (>20% glutamine).

We used permutation tests to determine if our predictor was better than random. We
randomly selected 136 TFs, randomly selected 144 length matched regions and determined
how many overlapped the 110 known ADs. For the 4 TFs with 2 predicted ADs, we preserved
the coupling between these lengths. In 100K permutations, we never observed more than 11
overlaps. 17 of our predicted ADs overlapped the 110 Uniprot ADs.

Testing predicted ADs

We built a third plasmid library to test the predicted ADs. Due to DNA synthesis limits,
we split long predicted regions and tested 150 regions of 39-76 residues. To create an empirical
distribution for the prevalence of ADs on TFs, we included 150 length-matched regions
randomly drawn from TF sequences (Lambert et al., 2018). We required that these random
regions did not overlap our predicted ADs or Uniprot ADs. The 92 positive control ADs were
drawn from: 36 hand-curated ADs (RegionType=Hand_Curated_ADs), 35 ADs from a published
list (RegionType=Choi_2000_PMID_10821850) (Choi et al., 2000), 19 Uniprot domains that
overlapped our predictions (RegionType=Uniprot), and 2 published synthetic DW or DF runs
(RegionType=Controls) (Ravarani et al., 2018). We also included 3 KRAB domains from
Uniprot, 22 mutant ADs and 26 regions tiling the human TF, Crx. Due to human error, we did
not test the correct predicted region of AEBP1 (Q8IUX7) and tested 2 other regions instead. The
full list of sequences and activities is included in Dataset 4. The ‘Known ADs’ in Figure 6C are
flagged in the ‘Positive Controls’ column. The ‘Negative Controls’ column indicates mutant ADs.

The plasmid library was cloned in a similar manner as above. The oligos were ordered
as a oPool from IDT. Oligo length varied. For each AD, we included one 9 bp ‘AD barcode’
(Hawkins et al., 2018). During the second step of cloning, we added 6 Ns downstream of the
synthetic TF by PCR, which became the ‘integration barcode.’ In principle, a different integration
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barcode marks each plasmid integration event, analogous to a Unique Molecular Identifier in
single cell RNA-seq protocols. The resulting ‘composite barcode’ contained a 6 bp ‘integration
barcode’, the Nhel restriction site and the 9 bp ‘AD barcode.’ 76 transfections were split into 3
biological replicates. G418 selection began on Day 1, magnetic separation was performed on
Day 11, 3-estradiol induction began on Day 11 and cell sorting on Day 14. For each biological
replicate, we sorted into 4 bins . During the sequencing library preparation, we performed 24
PCRs for each gDNA sample. We added Index1 and Index2 barcodes by PCR.

After integrating the plasmid library into cells, we deeply sequenced the unsorted pool to
build a ‘composite barcode’ table (Check_Complexity MSS19 nextSeq.ipynb). This table
contained 44077 composite barcodes with at least 10 reads in one of the 3 biological replicates.
For all subsequent analysis, we matched reads to this table. We used perfect matches to
designed ‘AD barcodes’ and combined reads for all ‘integration barcodes’ attached to each ‘AD
barcode’ as described above: we first removed outliers and then combined read counts
(MSS19_preprocessing.ipynb). In this experiment, we found that the No AD Control TF had
(x,x,x) integration barcodes. We combined replicates by first setting the activity of the No AD
Control to 200 and then computing the mean and standard deviation. The biological replicates
contained 20850, 19758 and 21656 uniquely identifiable integrations. We designed 443 ADs,
detected 434 in the plasmid library, and detected 431 integrated into cells. We required 5 or
more unique integration barcodes in at least one replicate, yielding 428 ADs for downstream
analysis. In Figure 6C, the threshold for AD activity was 200, and the threshold for strong AD
activity was 223, the 95™ percentile of the random regions.

Data and code availability

o The AD activity data are included in Supplementary Datasets 1,2 and 4.

e The lllumina sequencing data have been deposited at GEO and are publicly available as
of the date of publication. Accession numbers are listed in the key resources table. The
plasmids have been deposited in AddGene.

¢ All simulation data and flow cytometry data reported in this paper will be shared by the
lead contact upon request.

e The analysis code has been deposited in a public Github repository with a Zenodo DOI
listed in the key resources table.

¢ Any additional information required to reanalyze the data reported in this paper is
available from the lead contact upon request.

o Data availability: All processed activity data is available in the attached Datasets.
Simulation data is freely available upon request. The raw sequencing data will be
available in the NIH GEO database. Our code is available on Github.

Supplemental item titles (Datasets)

Supplemental Dataset 1: All variants and activity measurements for the 5 AD library (VP16,
CITED2, Hif1a, Stat3 and p65).

Supplemental Dataset 2: All variants and activity measurements for the p53 ADs.
Supplemental Dataset 3: Predicted acidic ADs on human TFs.

Supplemental Dataset 4: Sequences and activity measurements from testing predicted acidic
ADs

Supplemental Dataset 5: AD sequences, DNA barcodes, and barcode counts for the 5 AD
library.

Supplemental Dataset 6: AD sequences, DNA barcodes, and barcode counts for the p53 AD
library.

Supplemental Dataset 7: AD sequences and DNA barcodes for the predicted AD library.
Supplemental Dataset 8: Plasmid sequences for pMVS184 and pMVS223.
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Supplemental Dataset 9: Table with features extracted from the all-atom simulations
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Figure 1. A high throughput assay for measuring the activities of AD variants in parallel.

(A) In the Acidic Exposure Model, ADs fluctuate between collapsed and exposed states.
Exposed ADs can bind coactivators and partially fold.

(B) The high-throughput AD assay uses a synthetic DNA binding domain (DBD), an estrogen
response domain (ERD), a GFP reporter, FACS and barcode sequencing. The reporter is
integrated at the AAVS1 locus.

(C) We designed mutations that varied net charge or the number of aromatic residues. We
designed a small set of supercharge variants to vary both properties.

(D) Histograms of the number of mutations in each variant. Most variants had 5 or fewer
substitutions.
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Figure 2. Rationally designed variants increase and decrease activation domain activity
(A) Histograms of the activities of all variants (n = 525, blue) and variants of each AD (orange).
On the X-axis, Activity is the calculated GFP fluorescence (Arbitrary Units). On the Y-axis,
density is the normalized counts of variants in each bin of activity. Biological replicates were
normalized so that the No AD control had an activity of 2000 and then averaged together. The
vertical black line indicates the activity of the No AD control. For each WT AD, the mean and
standard deviation across the four replicates are shown.

(B) The effects of mutating hydrophobic motifs to alanine or glycine residues. For VP16, the
effects of substituting aromatic residues with alanine or leucine. For each panel, the thick line is
the mean activity of the WT AD and the shaded box is the standard deviation. Colors match
panel A. *, p<0.05, 2-sided t-test with 5% FDR correction.

(C) Motif locations and alpha helices (arrows).

32



909
910

911
912
913
914
915
916
917
918
919
920
921
922

Activity

O

Fraction of variants

CITED2 Hif1a VP16 H1
7000
Slope =-142 Slope =-57 Slope =-63
p =8.53e-11 p =0.000398 p=0.001293
P n=53 n=53 n=231
®
4 00
50004 ¢y é
B } gi“ )
o %% S
08 o0 4%0 o
[} GO
3000 *
B B -
(] 0+0
1000 T T T T T T T T T
-10 0 10 -10 0 10 -10 0 10
Net charge Net charge Net charge
Al D DI ) PTDVSLGDELHLDGEDVAMAHADALDDFDLDMLGDGDSP
E E EE E E E E D
EIE ELLE EVE DDVD
DD B E E E
ATA Al A EDVE E
E E E El E E; EDVE
EE E EEVDFEGLIEEE EAPECERELLE EVE DDVD D
D D DD D DLID( DD
EE E E E E ELLE EVE
D D D Al Al Al
D D ) D
E E DD E EE El
E RLLGOSMDESGLPQLTSYDCEVNAPTQGSRNLLQGEELLRALDQVN
TDFIDEEVLMSLVIEMGLDRIKELPELWLGQNEFDFMTD DMDEDS DD DI
E D DD D!
E D DIDD D: DCDI
D El E EE El
D D! D DAPTDGSEDLID DVD
DID D DAPID!
A E ELEE E ECEI
DD D DIDD D. DCDEDLIDS DVD
o 0.8 9 More negative and more active
5 More negative and less active -0 —
< 0.6
3}
£
) 04 '
)]
s
5 0.2
500 F L L LILWL FFM LL LLY LL LLL L LL LFL L
c— B T T T T T T T T T
2 220 240 780 800 820 420 430 440 450
Position Position Position

Figure 3: Introducing acidic residues near hydrophobic motifs increases activity

(A) For variants designed to perturb net charge, the mean activities (AU) are plotted along with
a linear regression (ordinary least squares). Gray error bars are the standard deviation. Variants
with lower net charge and increased activity are colored red; variants with lower net charge and
decreased activity are colored blue. The black line is the WT mean and the gray box is the WT
standard deviation.
(B) The sequences of the red and blue points in A, with substitutions highlighted. The WT
sequence is in black.
(C) For the red and blue sets of variants, the fraction of variants with a substitution at each
position is plotted (normalized sum of the columns in B). For CITEDZ2, adding acidic residues in
the flanks increased activity. For Hif1a, the red variants frequently removed R820, or add acidic
residues near L812, L813 or L819. For Hif1a, adding E’s was more likely increase activity. We
could not increase the activity VP16 by adding acidic residues.
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924  Figure 4: Adding aromatics has context dependent effects on AD activity

925  (A) For variants that add or remove aromatic residues, the mean and standard deviation are
926  plotted. Activity is plotted against the number of aromatic (W,F,Y) residues. WT activity, black
927  dot and line; WT standard deviation, gray box.

928 (B) Variants that add or remove aromatic residues, with activity plotted against the number of
929  W,F,Y.L residues.
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Figure 5. Rational mutagenesis reveals the structural constraints of an AD-coactivator
interaction interface

(A) For each position in CITED2, all variants that change that residue are summarized as a
boxplot (Activity, AU). Note that each position has different substitutions and variants with
multiple substitutions are included in multiple columns. Acidic (red) and leucine (green)
residues. Medians, black lines. Whiskers are 1.5 times the interquaretile range. Outliers, gray
dots. WT mean and standard, black line and gray box. This analysis excludes the shuffle
variants.

(B) For all the positions in panel A with a median less than 3000 AU, we visualized these
residues (orange) on the NMR structure of CITED2 bound to the TAZ1 coactivator (1R8U).
CITEDZ2 backbone, purple; visualized residues, orange; TAZ1, white. The residues that have
large decreases in activity when mutated point towards the coactivator surface.

(C) D224 (red) of CITEDZ2 is sandwiched between the narrowest point of the basic rim (blue) of
the binding canyon of TAZ1. See Figure S10 for snapshots of all 20 structures in 1R8U.
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Figure 6. Strong activation domains are acidic and contain many W,F,Y,L residues.

(A) For each point, the x position indicates the net charge and y position the number of W,F,Y,L
residues. Color (AU) indicates the median activity of all variants with each combination (See
Figure S11 for all individual variants). All variants of VP16, CITED2 and Hif1a are included. The
No AD control is 2000 AU. N = 302.

(B) A heatmap of all 39AA tiles from human TFs (log scale). The pixel location indicates the net
charge and W,F,Y,L count, and the blue intensity indicates the number of tiles with that
combination. Only 0.13% of tiles (red, rescaled heatmap) are as extreme or more extreme than
VP16 (x) and CITED2 (*). The red tiles peak at CITEDZ2.

(C) TF regions spanned by the red tiles (red, n = 149) are more likely to have AD activity than
random regions (blue, n=146). Most, but not all, published ADs (orange, n = 78) have high
activity in this assay. In this experiment the No AD control was normalized to 200 AU. The
boxplot shows the quartiles and whiskers are drawn at 1.5 times the interquartile range.
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Figure 7: The structure of the coactivator AD-binding canyon constrains AD sequence.
(A) The CITED2 AD is inside the Taz1 canyon, a structural constraint that favors leucine
residues. The yeast Gen4 AD is outside the Med15/Gal11 canyon, enabling a fuzzy interaction
that favors aromatic residues.

(B) The deep canyon of Taz1 embraces CITED2 (orange, 1R8U).

(C) The binding canyon of Gal11 (Med15) is shallow and the Gcn4 central acidic AD inserts
aromatic side chains (2LPB). Colors in B and C are: red, acidic (negative); blue, basic (positive);
green, hydrophobic; purple, aromatic; other, white.
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