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Abstract 22 

Acidic activation domains are intrinsically disordered regions of transcription factors that 23 

bind coactivators. The intrinsic disorder and low evolutionary conservation of activation domains 24 

have made it difficult to identify the sequence features controlling activity. To address this 25 

problem, we designed thousands of variants in seven acidic activation domains and measured 26 

their activities with a high-throughput assay in human cell culture. We found that strong 27 

activation domain activity required a balance between the number of acidic residues and 28 

aromatic and leucine residues. These findings motivated a predictor of acidic activation domains 29 

that scans the human proteome for clusters of aromatic and leucine residues embedded in 30 

regions of high acidity. This predictor identifies known activation domains and accurately 31 

predicts previously unidentified ones. Our results support a flexible, Acidic Exposure Model of 32 

activation domains in which acidic residues solubilize hydrophobic motifs so that they can 33 

interact with coactivators.  34 

 35 
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 37 

Graphical Abstract: 38 

● A high-throughput assay quantifies the activities of activation domain variants in human 39 

cells 40 

● Strong activation domains require both acidic and hydrophobic residues 41 

● The combination of acidic and hydrophobic residues predicts new activation domains  42 
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Introduction 43 

Transcription factors (TFs) activate gene expression using DNA binding domains (DBDs) 44 

and activation domains (ADs). DBDs are structured, evolutionarily conserved and bind related 45 

DNA sequences (Latchman, 2008). ADs are intrinsically disordered, poorly conserved, and bind 46 

structurally diverse coactivator subunits (Dyson and Wright, 2016). Bioinformatics tools can 47 

predict DBDs from protein sequence, but there are few tools for predicting ADs (El-Gebali et al., 48 

2019; Finn et al., 2016). When a new genome is sequenced, scanning for DBDs can predict 49 

candidate TFs, but it is not possible to predict which candidate TFs contain ADs. 50 

Predicting ADs from amino acid sequence has been difficult for five reasons: 1) ADs 51 

have diverse primary sequences (Latchman, 2008), 2) ADs have poor sequence conservation 52 

that hinders comparative genomics, 3) ADs are intrinsically disordered and have diverse modes 53 

of binding coactivators (Dyson and Wright, 2016), 4) until recently, measuring AD activity has 54 

been low throughput, and 5) the key sequence properties that control AD activity remain 55 

unresolved. Many ADs are acidic (have a net negative charge), but site-directed mutagenesis 56 

has shown that clusters of hydrophobic residues, called motifs, make the largest contributions to 57 

activity (Cress and Triezenberg, 1991; Dyson and Wright, 2016; Warfield et al., 2014). Here, we 58 

test the hypothesis that ADs are composed of hydrophobic motifs surrounded by an acidic 59 

context. 60 

Based on our work in yeast (Staller et al., 2018), we developed an Acidic Exposure 61 

Model for AD function: acidity and intrinsic disorder keep hydrophobic motifs exposed to solvent 62 

where they are available to bind coactivators (Figure 1A). Hydrophobic residues tend to interact 63 

with each other and drive intramolecular chain collapse, suppressing interactions with 64 

coactivators. Surrounding the hydrophobic residues with acidic residues that repel one another 65 

exposes the motifs to solvent, promoting interactions with coactivators. For example, in the 66 

VP16 AD, the critical F442 is highly exposed to solvent in solution, but exposure decreases 67 
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upon coactivator binding (Shen et al., 1996a, 1996b). Three recent papers in yeast (Erijman et 68 

al., 2020; Ravarani et al., 2018; Sanborn et al., 2021) also found that strong ADs contain both 69 

acidic and hydrophobic residues, which supports the Acidic Exposure Model. However, whether 70 

this model can explain the properties of human ADs remains unknown.  71 

Here, we show that the Acidic Exposure Model extends from yeast to human cells. We 72 

introduce a high-throughput reporter system to test more than 3500 variants in seven ADs. We 73 

designed these variants to interrogate two aspects of the Acidic Exposure Model: acidic 74 

residues and aromatic residues. We found that strong ADs balance the number of acidic 75 

residues against the number of aromatic and leucine residues. Based on these results, we 76 

found that scanning the proteome for clusters of eight amino acids (acidic, basic, aromatic and 77 

leucine residues) was sufficient to accurately predict new and known ADs. Taken together, our 78 

results suggest that the Acidic Exposure Model may be a general explanation for the function of 79 

eukaryotic ADs from yeast to humans and provide a framework for unifying the roles of acidity, 80 

hydrophobicity, and intrinsic disorder in acidic ADs. 81 

 82 

Results 83 

To test the Acidic Exposure Model, we developed a high-throughput method to assay 84 

AD variants in parallel in human cell culture (Figure 1B). We engineered a cell culture system 85 

with a synthetic TF that binds and activates a genome-integrated GFP reporter. Each cell 86 

receives one AD variant marked by a unique DNA barcode integrated into the same genomic 87 

“landing pad” with CRE recombinase and asymmetric loxP sites. The landing pad equalizes the 88 

effects of genomic position on expression (Maricque et al., 2018). The synthetic TF contains an 89 

mScarlet red fluorescent protein for measuring abundance, but after trying four different red 90 

fluorescent proteins, each with low signal, we did not normalize for protein abundance in this 91 
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study. To avoid cell toxicity, the synthetic TF contains an engineered DBD (Park et al., 2019) 92 

and an estrogen response domain for inducible nuclear localization (McIsaac et al., 2013). AD 93 

variants that drive different levels of GFP expression are separated by Fluorescent Activated 94 

Cell Sorting (FACS), and the barcodes in each sorted pool are counted by deep sequencing 95 

(Kinney et al., 2010; Sharon et al., 2012; Staller et al., 2018). We used the barcode counts to 96 

compute a probability mass function for each AD across the four pools and the GFP signal of 97 

each pool to compute a weighted average GFP signal. The assay is reproducible (average 98 

Pearson correlation between replicates of 0.69) and recapitulates the activity of known 99 

mutations in human ADs (Figure S1). A synthetic TF without an AD (No AD control) was used to 100 

define baseline activity in our assay. In the library, the ADs are cloned into the N terminus of the 101 

synthetic TF, between the ATG start codon (M) and a GSGS linker. In the No AD control 102 

plasmid, nothing is between the initial M and the GSGS linker. We combined biological 103 

replicates by normalizing the activity of the No AD control to 2000 (arbitrary fluorescence units, 104 

AU, methods) and averaging together the fluorescence values.  105 

In our first experiment, we performed Deep Mutational Scans (DMS, where every 106 

position is mutated to all 19 other residues) and rational mutagenesis on the two ADs of the 107 

tumor suppressor TF, p53. This library contained 2991 variants, each paired with 5 barcodes. 108 

After extensive analysis, we determined that most point substitutions had small effects on 109 

activity and that five barcodes was not sufficient to resolve these small changes in activity. DMS 110 

has been very informative for structured proteins (Gray et al., 2017) but not for intrinsically 111 

disordered regions, where most point substitutions do not cause measurable changes in activity 112 

(Giacomelli et al., 2018; Majithia et al., 2016). In the rational mutagenesis, we introduced 113 

multiple substitutions to test the roles of acidic residues, aromatic residues and intrinsic 114 

disorder. These perturbations had large effects on activity that could be resolved with five 115 

barcodes (Figure S1, S2).  116 
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In our second experiment, we examined 525 rationally designed variants of five ADs, 117 

each tagged with twenty-eight barcodes. Using more barcodes allowed us to resolve smaller 118 

changes in activity and assaying mutations with larger effect sizes increased measurement 119 

reproducibility (Figure S1). We focus the main text on these high quality data and use the 120 

noisier p53 data to corroborate trends. 121 

Using this assay, we investigated three key features of acidic ADs: acidic residues, 122 

hydrophobic motifs and disorder-to-order transitions (Figure 1C). We designed sequence 123 

variants that systematically added and subtracted acidic residues or aromatic residues in seven 124 

ADs: VP16 (H1 region, 415-453), Hif1ɑ (AD2, 781-896), CITED2 (220-258), Stat3 (719-764), 125 

p65 (AD2, 521-551), p53 AD1 (1-40) and p53 AD2 (40-60) (Berlow et al., 2017; Brady et al., 126 

2011; Lecoq et al., 2017; Raj and Attardi, 2017; Regier et al., 1993; Vogel et al., 2015; Wojciak 127 

et al., 2009). Most variants had five or fewer substitutions (Figure 1D). For each AD, we hand 128 

designed 6-10 ‘supercharge’ variants that added aromatic residues next to existing acidic 129 

residues and added acidic residues next to existing aromatic residues. For each disordered 130 

region that folds into an alpha helix upon coactivator binding, we introduced proline or glycine 131 

residues to break these helices (Figure S3). The complete list of substitutions and activities are 132 

located in Dataset 1 (VP16, Hif1ɑ, CITED2, Stat3, p65. 525 variants, 28 barcodes per variant, 133 

and 4 replicates) and Dataset 2 (p53 AD1, p53 AD2. 2991 variants, 5 barcodes per variant and 134 

3 replicates). Note that the activity values in the two experiments are not comparable because 135 

they were collected on different cell sorters and normalized differently.  136 

Compared to the No AD control, all ADs activated the GFP reporter (Figure 2, S2). For 137 

each AD, we identified variants that significantly changed activity after correcting for multiple 138 

hypotheses (two sided t-test and 5% FDR, Dataset 1). For VP16, CITED2 and Hif1ɑ we 139 

recovered variants that increase or decrease their activities (Dataset 1, Figure 2A). p65 and 140 

Stat3 are weakly active in the assay, reducing our sensitivity, and none of these variants 141 

significantly changed activity after correcting for multiple hypotheses (Dataset 1). Either our 142 
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assay is not sensitive enough to interrogate these two ADs or the residues we mutated made 143 

small contributions to activity.  144 

 145 

Hydrophobic motifs are necessary for AD activity 146 

We confirmed that hydrophobic motifs make large contributions to AD activity. We 147 

included published motifs (LPEL in CITED2, LPQL and LLxxL in Hif1ɑ, and LxxFxL in VP16 148 

(Berlow et al., 2017; Regier et al., 1993)) and predicted additional motifs by looking for clusters 149 

of W,F,Y,L,M residues. Substituting all the residues that comprise a motif with alanine residues 150 

decreased activity (Figure 2B, S2). In CITED2 and VP16, every cluster of aromatic and leucine 151 

residues tested contributed to activity.  152 

 153 

Acidic residues are necessary for AD activity 154 

We systematically increased and decreased the net negative charge of each AD and 155 

plotted the resulting activities (Figure 3A, S2). For CITED2, Hif1ɑ, VP15, p53 AD1 and p53 AD2, 156 

acidic residues were necessary for full activity and regressing activity against net charge had 157 

significant negative slopes (Figure 3A, S2C, S4A. For CITED2, Hif1ɑ, and VP16, slopes were 158 

significant when using the charge variants or all variants). Removing negatively charged 159 

residues (D,E) had similar effects to adding positively charged (K,R) residues and vice versa 160 

(Figure S5), suggesting that net charge and not residue identity is the key parameter.  161 

For ADs with moderate acidity (CITED2, Hif1ɑ and p53 AD1) adding acidic residues 162 

increased activity in the majority of variants (Figure 3A). For p53 AD1, this effect mirrors how 163 

phosphorylation increases activity (Raj and Attardi, 2017). For the more acidic p53 AD2, adding 164 

acidic residues rarely increased activity; for the most acidic AD, VP16, adding acidic residues 165 

never increased activity. Thus, the starting net charge of the wild type AD determined whether it 166 

was possible to increase activity by adding acidic residues. 167 
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For CITED2 and Hif1ɑ, adding acidic residues could either increase or decrease activity 168 

(Figure 3A: red vs blue) depending on the location of the substitution (Figure 3B). For CITED2, 169 

variants with increased activity (Figure 3A, red) frequently added acidic residues in the flanks, 170 

near the hydrophobic motifs (Figure 3B, 3C, red), while variants with decreased activity 171 

frequently removed the positive residues in the center of the AD (Figure 3B, 3C blue). For Hif1ɑ, 172 

variants with increased activity were more likely to add acidic residues in the C-terminus near 173 

L812, L813 or L819 or to remove R820. These data suggest that the location of added acidic 174 

residues can determine how they modulate activity. This result agrees with our work in yeast 175 

and two random peptide screens which found that [DE][WFY] dipeptides make large 176 

contributions to AD activity (Erijman et al., 2020; Ravarani et al., 2018; Staller et al., 2018). To 177 

further test this idea, we used the Omega statistic to quantify how the mixture of aromatic and 178 

leucine (W,F,Y,L) residues with acidic residues (D,E) related to activity (Martin et al., 2016). We 179 

found a modest correlation: variants with more evenly mixed (W,F,Y,L) and (D,E) (i.e. low 180 

Omega values) had higher activities (Figure S4D). Together with the literature, our data support 181 

the idea that acidic residues near key hydrophobic motifs boost activity. For VP16, we could not 182 

increase activity by adding acidic residues, perhaps because 5/7 residues in the motifs are 183 

already adjacent to acidic residues. VP16 is the most acidic AD we examined and appears to be 184 

saturated for the effect of negative charge on activity. 185 

 186 

Context dependent effects of adding acidic or aromatic residues 187 

When we systematically added and removed aromatic residues we saw expected and 188 

unexpected changes in AD activity. Based on experiments in human cell culture with the VP16, 189 

p53 and ETV ADs, we expected aromatic residues to be critical for activity, and that adding 190 

aromatic residues would increase activity (Currie et al., 2017; Raj and Attardi, 2017; Regier et 191 

al., 1993). The VP16 variants generally matched this expectation: any substitution in F442 192 

(A,L,W,Y) decreased activity. Furthermore, adding up to four aromatic residues increased 193 
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activity in the majority of cases (Figure 2B, 4A, S6C). Similarly, for both p53 ADs removing 194 

aromatics decreased activity and adding aromatic residues increased activity (Figure S2D).  195 

In CITED2, adding and removing aromatic residues did not yield the expected results. 196 

Mutating the aromatic residues to alanine led to small decreases in activity, and mutating 197 

aromatic residues to leucine residues caused small increases in activity (Figure 4A, S6A). 198 

Adding aromatic residues decreased activity for all but one variant. If instead, we plot activity 199 

against the number of W,F,Y,L residues, CITED2 activity peaks at the WT number, 10 (Figure 200 

4B, S4C). 201 

In Hif1ɑ, adding or removing aromatic residues generally did not change activity. 202 

Mutating the lone Y to L caused a small, and not significant, increase in activity. Adding 203 

aromatic residues to Hif1ɑ caused small, and frequently not significant, decreases in activity 204 

(Figure S4B, S6B). 205 

We saw two responses to adding acidic residues and two responses to adding aromatic 206 

residues. For the moderately acidic ADs CITED2 and Hif1ɑ, we could increase activity by 207 

adding acidic residues and, for CITED2, decrease activity by adding aromatic residues. For the 208 

more acidic ADs VP16 and p53 AD2, we could increase activity by adding aromatic residues but 209 

not by adding acidic residues. Even for VP16, adding more than 4 aromatic residues always 210 

decreases activity, suggesting that for all ADs there is a regime where adding aromatic residues 211 

will eventually decrease activity. 212 

The Acidic Exposure Model can explain why the two responses to adding acidic residues 213 

mirror the opposite responses to adding aromatic residues. The model predicts that adding 214 

acidic residues will increase AD activity only when there are hydrophobic motifs that can be 215 

further exposed. Once the hydrophobic motifs are maximally exposed, adding more acidic 216 

residues will not increase activity. In contrast, adding more aromatic residues can increase 217 

activity only when there is excess acidity to keep these added residues exposed. Adding too 218 

many aromatic residues eventually reduces activity because they overwhelm the acidic residues 219 
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and drive collapse. Thus, a prediction of the Acidic Exposure Model is that acidic residues 220 

promote expanded AD conformations while aromatic residues promote chain collapse. We 221 

tested this prediction with all-atom Monte Carlo simulations of the VP16 and CITED2 variants 222 

(Methods) (Staller et al., 2018; Vitalis and Pappu, 2009) and calculated the radius of gyration, 223 

which captures the size of the conformational ensemble. Although the dispersion in the 224 

predicted radius of gyration is large for any given net charge, we found that adding acidic 225 

residues increased the radius of gyration, consistent with expantion (Figure S7A) and adding 226 

aromatic residues decreased the radius of gyration, consistent with partial collapse (Figure 227 

S7B). These trends hold for the supercharge variants that add both aromatic and acidic 228 

residues (Figure S7C). 229 

 230 

Leucine residues are critical for AD activity 231 

We found that leucine residues made large contributions to activity. In yeast ADs, 232 

aromatic residues contribute more to activity than smaller hydrophobic residues like leucine and 233 

methionine (Erijman et al., 2020; Jackson et al., 1996; Ravarani et al., 2018; Staller et al., 234 

2018). In human cells, VP16 and both p53 ADs fit this pattern: substituting aromatic residues 235 

decreased activity (Figure 2B, 4A, S2, S4) (Cress and Triezenberg, 1991; Lin et al., 1994). 236 

However, in VP16, ‘motif 2’ contains only leucine residues and is necessary for full AD activity 237 

(Figure 2C). In CITED2, summarizing the activities of all substitutions at each position reveals 238 

that leucine residues make the largest contributions to activity, followed by the acidic residues 239 

(Figure 5A). Similarly, for VP16 aggregating the data by position shows that the key positions 240 

are F442, the leucine residues and the acidic residues (Figure S8A). Acidic and leucine 241 

residues make large contributions to activity in these ADs.  242 

The mechanism by which leucine residues make large contributions to activity is 243 

exemplified by the structure of the CITED2 interaction with TAZ1. TAZ1 has a canyon with a 244 

hydrophobic floor and basic rim that tightly embraces the compact alpha helix of CITED2 245 
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(Figure 7B). The leucine residues on CITED2 interact with the hydrophobic canyon floor and the 246 

acidic residues interact with the basic canyon rim. This tight structural constraint explains the 247 

activities of many variants. The positions where mutations cause large decreases in activity in 248 

Figure 5A point towards the coactivator surface in the NMR structure of CITED2 bound to the 249 

TAZ1 domain of CBP/p300 (Figure 5B) Hif1ɑ showed a similar pattern (Figure 7B, 7C). 250 

Replacing leucines with aromatics reduces activity because the larger side chains do not fit in 251 

the canyon (Figure 5B,E). Disrupting the helix folding by adding two proline residues reduces 252 

activity, because a helix is very compact and the unfolded peptide likely does not fit (Figure 5B, 253 

S9). Adding two glycine residues does not disrupt activity because they do not disrupt helix 254 

formation and they are very small (Figure S9). Finally, the D244E substitution reduces activity 255 

because, the D224 acidic side chain (negative) sits between the narrowest point of the basic 256 

canyon rim, sandwiched between the basic (positive) side chains R439 and K365 of TAZ1, and 257 

replacing D244 with the larger glutamic acid residue impairs this fit (Figure 5C, S10). Overall, 258 

mutations that increase the size of side chains decrease activity because they impede the helix 259 

from fitting into the narrow canyon on TAZ1. 260 

 261 

Strong ADs balance hydrophobic and acidic residues 262 

We found that AD activity requires a combination of aromatic and leucine (W,F,Y,L) 263 

residues and acidic residues. Plotting the number of W,F,Y,L residues against net charge 264 

separates high and low activity variants (Figure 6A, S11A). This separation is less apparent 265 

when we count only aromatic residues (Figure S11B), and somewhat visible when we use 266 

calculated Kyte Doolittle hydropathy (Figure S11C). Many points on this grid contain both strong 267 

and weak variants (Figure S11A), indicating that composition is not the sole determinant of 268 

activity and that the arrangement of residues also matters. We found that composition-based 269 

machine learning classifiers could separate active and inactive variants (Figure S11). When we 270 

removed individual parameters from the model we found that net charge and leucine residues 271 
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made the largest contributions to model performance (Table S1). Our results suggest that the 272 

balance between W,F,Y,L and acidic residues is critical for AD activity. 273 

 274 

Predicting ADs 275 

We examined whether the balance of acidic and W,F,Y,L residues could predict ADs in 276 

human TFs. For a third of human TFs, the only annotated domain is the DNA binding domain 277 

(Lambert et al., 2018) and only 8% of TFs have an AD annotated in Uniprot (Methods). In silico, 278 

we broke the protein sequences of 1608 TFs (Lambert et al., 2018) into 39 residue tiling 279 

windows (“tiles”) spaced every one amino acid. For each tile we calculated the net charge and 280 

counted W,F,Y,L residues. We plotted the joint distribution of these properties as a heatmap 281 

(Figure 6B, blue) and found that VP16 and CITED2 are on the periphery. Tiles that have both 282 

the net charge and hydrophobicity of these ADs are rare: only 0.02% and 0.03% of tiles were as 283 

extreme or more extreme than VP16 or CITED2, respectively. Interpolating between these ADs 284 

yields 0.13% of tiles (n = 1139, Figure 6B, red), which combine to predict 144 ADs from 136 TFs 285 

(Dataset 3). These predicted regions overlap with 17 Uniprot ADs – far more than expected by 286 

chance (p<1e-5 in permutation tests). In addition, 11 predicted regions overlap 10 published 287 

ADs that are not in Uniprot (p<1e-5 in permutation tests), including the N-terminal AD of c-Myc 288 

(Andresen et al., 2012) and the Zn473 KRAB domain (Tycko et al., 2020). The predictor 289 

requires the combination of net negative charge and W,F,Y,L residues because neither property 290 

alone is sufficient for specific predictions: using only net charge (≤-9 from CITED2) yielded 18086 291 

tiles that combine to 856 predictions, 30 of which overlap Uniprot ADs; using only the W,F,Y,L count 292 

(≥ 7 from VP16) yielded 302161 tiles that combine to 3411 predictions, 99 of which overlap Uniprot 293 

ADs. The high degree of overlap between our predicted regions and literature-validated ADs 294 

motivated us to test the predictions experimentally. 295 

 296 

 297 
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Testing predicted ADs 298 

We tested the predicted regions and found that our composition model accurately 299 

predicted ADs in the human proteome (Figure 6C). In a new experiment, we designed a library 300 

with 150 predicted regions (we split long regions to meet synthesis limits), 150 length-matched 301 

random regions and 94 published ADs (methods). We did not allow the random regions to 302 

overlap predicted regions or Uniprot ADs. We recovered 149 predicted regions, 146 random 303 

regions and 78 published ADs (Dataset 4). In this dataset, we normalized the three replicates 304 

with the No AD control (set to 200 GFP AU). Note, the activity values are not directly 305 

comparable to the 5 AD experiment above because the FACS was performed on a different 306 

day. Using the No AD TF as threshold for activity, 108/149 (72%) of predicted ADs are active, 307 

75/89 (84%) of published ADs are active, and 55/149 (38%) of random regions are active. As a 308 

threshold for strong AD activity, we chose the 95th percentile of the random regions (221 AU). At 309 

this high threshold, 58/149 (39%) of our predicted regions are strong ADs and 52/89 (58%) of 310 

published ADs are highly active. Although we do not expect all published ADs will work in our 311 

assay, because some ADs have promoter-specific activities (Goodrich and Tjian, 2010), this 312 

analysis demonstrates that our predictor identifies known ADs and accurately predicts 313 

previously unidentified ADs.  314 
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Discussion 315 

The critical feature of strong activation domains is a balance between hydrophobic and 316 

acidic residues. Both types of residues are necessary, neither is sufficient, and too much of 317 

either decreases activity. Hydrophobic residues make the critical contacts with coactivators 318 

(Dyson and Wright, 2016). Acidic residues can have long range interactions with basic residues 319 

on coactivators (Ferreira et al., 2005; Hermann et al., 2001; Jonker et al., 2005), but these 320 

interactions cannot explain the balance requirement. We argue that balance between 321 

hydrophobic and acidic residues can be explained by the Acidic Exposure Model. 322 

In the Acidic Exposure Model, acidic residues and intrinsic disorder keep hydrophobic 323 

motifs exposed to solvent where they are available to bind coactivators. Acidic residues prevent 324 

local chain compaction through electrostatic repulsion and favorable free energies of solvation. 325 

This expansion exposes leucine and aromatic residues to the solvent, so they are available to 326 

interact with cofactors. Intrinsic disorder reduces the entropic cost of organizing water around 327 

solvent exposed hydrophobic residues because fluctuating between solvent exposed and 328 

solvent protected conformations lowers the average cost compared to constant exposure. The 329 

Acidic Exposure Model explains why activation domains are both negatively charged and 330 

intrinsically disordered: the acidic residues and intrinsic disorder combine to keep aromatic and 331 

leucine-rich motifs exposed and available to bind coactivators. 332 

Promoting the exposure of hydrophobic motifs is compatible with the other known 333 

functions of acidity and disorder in ADs. In specific cases, intramolecular electrostatic 334 

interactions between negatively charged ADs and positively charged DBDs can increase DNA 335 

binding specificity (Krois et al., 2018; Liu et al., 2008). We speculate that acidic residues may 336 

also reduce non-specific DNA binding by repelling the negatively charged DNA backbone. 337 

Intrinsic disorder gives ADs the flexibility to fold into different conformations when bound to 338 

different coactivators (Dyson and Wright, 2016). Intrinsic disorder and acidic residues together 339 
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can also increase the fraction of molecular collisions that lead to productive coactivator binding 340 

by enabling multiple folding trajectories (Kim and Chung, 2020). The Acidic Exposure Model is 341 

compatible with these biophysical properties of AD-coactivator interactions. 342 

A key property of ADs is the balance between the strength of their hydrophobic binding 343 

motifs and their capacity to keep those motifs exposed to solvent. Adding more hydrophobic 344 

residues to ADs will increase their activity so long as their intrinsic disorder and acidic residues 345 

can keep the excess hydrophobicity from collapsing the amino acid chain into an inactive 346 

conformation. ADs have high hydrophobicity and high acidity and their activity requires a 347 

balance between these two physical properties. We exploited this observation to create an AD 348 

predictor that scans for a high, but balanced composition of acidity and hydrophobicity. This 349 

predictor can be used to prioritize candidate acidic ADs on poorly characterized TFs in any 350 

metazoan genome. 351 

Not all hydrophobic residues make an equal contribution to AD activity. In yeast aromatic 352 

residues make the largest contributions to activity (Erijman et al., 2020; Ravarani et al., 2018; 353 

Sanborn et al., 2021; Staller et al., 2018) and, here, in human cells we find that leucine residues 354 

make large contributions to activity. In human cells and yeast, valine and isoleucine (V,I), do not 355 

make large contributions to activity, which explains why the choice of hydrophobicity table 356 

determines if AD activity is correlated with hydrophobicity: when we used the Kyte-Doolittle 357 

hydropathy table, we found no correlation between activity and hydrophobicity, because on this 358 

table, V and I have large values while W has and Y have small values (Kyte and Doolittle, 1982; 359 

Staller et al., 2018). In contrast, Sanborn et al. chose the Wimley-White hydrophobicity table 360 

which perfectly matches the order of residue contributions to AD activity, leading to a correlation 361 

between activity and hydrophobicity (Sanborn et al., 2021; Wimley and White, 1996). These are 362 

two among more than 27 published tables, each of which remains an approximation (Colwell et 363 

al., 2010). These results further emphasize that I-rich ADs in Drosophila are a distinct functional 364 

class (Attardi and Tjian, 1993).  365 
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There is accumulating evidence that hydrophobic residues in ADs do not always need to 366 

be organized into motifs with strict arrangements (sequence grammar). When we designed our 367 

mutations, the dominant model was that ADs had motifs surrounded by an acidic context. For 368 

example, some ADs contain ΦxxΦΦ motifs (where Φ is a hydrophobic residue) in an 369 

amphipathic alpha helix that presents the hydrophobic residues as a continuous surface to the 370 

coactivator, but this is one solution among many. In yeast, screens of random peptide and 371 

extant TFs have failed to find enriched motifs longer than two residues and have shown that 372 

some ADs behave as ‘bags of amino acids’ that can be scrambled with minimal loss of activity 373 

(Erijman et al., 2020; Ravarani et al., 2018; Sanborn et al., 2021). For the ADs identified by our 374 

predictor, we did not see signatures of grammar. The success of our composition-based 375 

predictor, which has no grammar requirement, is evidence for very flexible grammar. We 376 

speculate that hydrophobic residues in ADs may simply need to be clustered and not arranged 377 

in motifs with specific spacing grammar. 378 

At the same time, we found that within some ADs, there are very strong constraints that 379 

reflect the structural constraints of the AD-coactivator interface. Variants that shuffle AD 380 

sequences abolish activity, evident for some grammar. Within a hydrophobic motif, the presence 381 

of aromatic or leucine residues reflects the structural constraints in AD-coactivator interaction 382 

surfaces, which looks like a strong grammar (Figure 5). Contrasting the CITED2-TAZ1 383 

interaction with the Gcn4-Med15 interaction explains why aromatic residues make large 384 

contributions to activity in while leucines predominate in CITED2 Gcn4 (Berlow et al., 2017; 385 

Brzovic et al., 2011). Both ADs fold into alpha helices and both coactivators contain a binding 386 

canyon with a hydrophobic floor and basic rim (Figure 7A). On TAZ1, the canyon is large and 387 

the CITED2 alpha helix is engulfed (Figure 7B). Leucines fit this structure better than aromatics 388 

because they are smaller and promote folding into a compact helix (Pace and Scholtz, 1998). 389 

On Med15, the canyon is shallow and Gcn4 only inserts side chains. A recent structure of the 390 

Gal4-Med15 binding interaction shows a similar fuzzy interaction centered on aromatic and 391 
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leucine residues (Pacheco et al., 2018; Tuttle et al., 2021). Aromatics fit the Med15 binding 392 

surface better than leucine residues because they more easily reach the hydrophobic canyon 393 

floor. The increased importance of leucine residues in human ADs such as CITED2 likely 394 

reflects the structural constraints imposed by an expanded repertoire of coactivators. Going 395 

forward, new approaches to high-throughput mutagenesis will be efficient methods for exploring 396 

the structural constraints of protein-protein interaction surfaces (Diss and Lehner, 2018; Rollins 397 

et al., 2019; Schmiedel and Lehner, 2019).  398 

The Acidic Exposure Model can explain several results in the literature. Screens of 399 

random peptides found enrichment of [DE][WFY] “mini motifs,” which support our model 400 

(Erijman et al., 2020; Ravarani et al., 2018). Sanborn et al, 2021 examined synthetic 9-mer 401 

peptides that mixed aromatic and D residues and observed an increase and decrease in activity 402 

as aromatics are added (Sanborn et al., 2021). Peak activity occurs when the D’s and F’s are 403 

well mixed, or when the F’s are on the C-terminus of the TF, both of which promote F exposure 404 

and activity. Sanborn et al. screened the ability of diverse sequences to modulate the activity of 405 

the Pdr1 AD and found that hydrophobic residues decreased activity and acidic residues 406 

boosted activity. This modulation is consistent with hydrophobic residues promoting collapse, 407 

and acidic residues promoting exposure. Balanced sequences are the most active. 408 

We synthesize our findings in three conclusions: strong acidic activation domains 409 

balance hydrophobic motifs and acidic residues; clusters of W,F,Y,L residues surrounded by 410 

acidic residues are sufficient to predict new ADs; and the choice between aromatic and leucine 411 

residues in an acidic AD is constrained by the structure of the coactivator interaction surface. 412 

These rules apply to a subset of traditional acidic ADs, and our work implies there are multiple 413 

subclasses of acidic ADs. These insights will help refine computational models for predicting 414 

ADs, guide engineering of ADs, and inform models that predict the impact of genetic variation 415 

on AD function.  416 

 417 
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STAR Methods 437 
RESOURCE AVAILABILITY 438 
Lead contact 439 
Further information and requests for resources and reagents should be directed to Barak 440 
Cohen, cohen@wustl.edu 441 
 442 
Materials availability 443 
The plasmids generated in this study have been deposited at AddGene. 444 
The cell lines generated in this study are available upon request.  445 
 446 
Data and code availability 447 
The sequencing data have been deposited at NIH GEO and are publicly available as of the date 448 
of publication. Accession numbers are listed in the key resources table.  449 
 450 
The analysis code has been deposited in Github and is publicly available as of the date of 451 
publication. See Key Resources Table. 452 
 453 
The raw simulation data is available upon request. 454 
 455 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 456 
 457 
Cell line construction 458 
 To engineer the K562 cell line we began with LP3 from (Maricque et al., 2018). These 459 
female cells were authenticated in Maricque et al., 2018 just before we started using them. This 460 
landing pad is located on chromosome 11. First, we introduced a frameshift mutation to the GFP 461 
in the landing pad using CaS10 (from Shondra Miller, Washington University School of Medicine 462 
GeiC) and a gRNA against GFP (AddGene 41819). Second, we integrated our reporter at the 463 
AAVS1 locus using CaS10, the SM58 SSBD2 T2 gRNA (from Shondra Miller) and the 464 
pMVS184 reporter plasmid. Starting on Day 2, we selected for integrations with 1 ug/ml 465 
puromycin for three days. We tested candidate reporter clones with transfections of a synthetic 466 
TF (pMVS 223) carrying p53 AD1, choosing the clone with the largest dynamic range between 467 
baseline GFP and the brightest transfected cells. Our internal name for this clone is T7.1E3.  468 

Cells were grown in Iscove’s Modified Dulbecco’s Medium (IMDM) medium +10% FBS 469 
+1% Non Essential Amino Acids +1% PennStrep (Gibco). All transfections used the Invitrogen 470 
Neon electroporation machine using a 100 ul tip, 1.2 M cells and 5 ug of DNA.  471 
 472 
METHOD DETAILS 473 
 474 
Rational mutagenesis 475 

The sequences of all 525 VP16, Hif1ɑ, CITED2, Stat3 and p65 variants are listed in 476 
Dataset 1. The systematic mutagenesis added and removed charged residues or aromatic 477 
residues. Net charge of ADs was changed in two ways: subsets of charged residues were 478 
changed to each of the four charged residues and alanine, or subsets of polar residues were 479 
changed to charged residues. Aromatic residues were changed to alanine, leucine or other 480 
aromatic residues, and aromatic residues were added by replacing leucine, isoleucine, alanine, 481 
methionine, and valine residues. 482 

The “Hand Designed” p53 AD variants contained the same systematic mutations and 483 
more hand designed variants listed in Dataset 2. The p53 mutagenesis also included a deep 484 
mutational scan, a double alanine scan and sequences from orthologous TFs. Activity values of 485 
each dataset are normalized separately and should not be compared. 486 

mailto:cohen@wustl.edu
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 487 
Plasmid library construction 488 

The plasmid sequences for the GFP reporter (pMVS184, Addgene 176294) and 489 
synthetic TF chassis (pMVS223, Addgene 176293) are in Supplemental Dataset 8. 490 

In the 5 AD library, we designed the AD variants as protein sequences and reverse 491 
translated using optimal human codons. We attached each variant to 28 unique 12 bp FREE 492 
barcodes (Hawkins et al., 2018). WT ADs had 84 barcodes each. Between the AD and the 493 
barcode are BamHI, SacI and NheI restriction sites. For ADs that were less than 46AA, we 494 
added random filler DNA between the BamHI and SacI sites. We added PCR primers at the 495 
start (CCCAGCTTAAGCCACCATG) and end (CTCGAGATAACTTCGTATAATGTATGCTAT). 496 
Note there is an XhoI site after the barcode, included in the downstream primer. We ordered 497 
14968 unique 217 bp ssDNA oligos from Agilent.  498 

We cloned the AD variant library by HiFi assembly. We added plasmid homology to the 499 
ssDNA oligos by PCR, yielding a 232 bp product, with 4 cycles, Q5 polymerase, 0.5 pmol 500 
template and 8 reactions. The cloning primers were: 501 
TCACCGACCTCTCTCCCCAGCTTAAGCCACCATG and 502 
ATAGCATACATTATACGAAGTTATCTCGAG. We digested the pMVS223 backbone with AflII, 503 
XhoI and KpnI-HF and gel purified it. Each assembly had 100 ng of backbone and 5x molar ratio 504 
of insert. We electroporated bacteria and collected ~20 million colonies. We checked the library 505 
with paired end Illumina sequencing. We recovered 98.7% of our barcodes and all AD variants. 506 
For the second step of library cloning, we digested the library and pMVS223 with BamHI-HF 507 
and NheI-HF, and inserted the synthetic TF by T4 ligation. We electroporated bacteria and 508 
collected 400K colonies. We recovered 93% of designed barcodes and all ADs. In the final 509 
plasmid library the ADs are on the N terminus of the protein, between the initial methionine 510 
(ATG start) and a GSGS linker. In the No AD control there is nothing between the starting 511 
methionine and the GSGS linker. The synthetic TF is in followed by a P2A cleavage sequence 512 
and an in frame Neomycin resistance gene. As a result, 1 and 2 bp deletions, the most common 513 
oligo synthesis errors, lead to frameshifts and are selected against after the library is integrated 514 
into the genome.  515 

The p53 library was constructed in the same way with 5 barcodes per variant, 30 for WT 516 
AD1 and 25 for WT AD2. We collected 4 million colonies after step one and 26 million after step 517 
two. We recovered 14355 of 14998 designed barcodes and 2990 of 2991 designed ADs. In this 518 
work we used data from both WT ADs and 171 hand designed variants.  519 

All restriction enzymes, HiFi mix, and competent bacteria were purchased from NEB. 520 
Library Maxipreps were performed using the ZymoPURE II Plasmid Maxiprep Kit (Zymo). 521 
 522 
Plasmid library integration and measurement 523 

In each transfection, we used 1.2 M cells, 2 ug of CMV-CRE (Maricque et al., 2018) and 524 
3 ug of Plasmid Library. We transfected 102 M cells in 86 transfections split into 22 flasks. The 525 
next day, we began selection with 400 ng/ml G418 for 10 days. On Day 11 we performed 526 
magnetic enrichment of live cells (MACS by Miltenyi Biotec). We combined flasks 1-5 into 527 
biological replicate 1, flasks 6-10 into biological replicate 2, flasks 11-15 into biological replicate 528 
3, and flasks 16-22 into biological replicate 4. On Day 12, we added ß-estradiol to a final 529 
concentration of 1 uM.  530 

On Day 15 we sorted cells on a Sony HAPS 2 at the Siteman Cancer Center Flow 531 
Cytometry Core. We set an ON/OFF threshold for GFP as the 90th percentile of the uninduced 532 
population. The lowest bin was the bottom 50% of the OFF population. The ON region was split 533 
into 3 bins with equal populations. For each replicate, we collected 750K cells in each of the four 534 
bins. We noted the median fluorescence of each bin and used that number to calculate AD 535 
activity (see below). The dynamic range of the measurement is determined by the fluorescence 536 
values of the dimmest and brightest bin. After collecting the 4 independent replicates, we 537 
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combined all the cells and sorted them into 8 bins each with ~12% of the population—this 538 
sample has a larger dynamic range. These values are included in DataSet 1. 539 
 540 
Barcode amplicon sequencing libraries  541 

Genomic DNA was collected using the Qiamp DNA Mini kit (Qiagen). We performed 8 542 
PCRs on each sample. The sequencing libraries were prepared in 2 batches: Batch 1 contained 543 
biological replicates 1-3 and Batch 2 contained biological replicate 4 and the 8 bin sort. We did 544 
25 cycles with NEB Q5 polymerase using CP36.P10 and LP_019 primers. We pooled the 545 
PCRs, cleaned up the DNA (NEB Monarch), quantified it, digested the entire sample with NheI 546 
and EcoRI-HF (NEB) for 90 minutes and then ligated sequencing adaptors with T4 ligase (NEB) 547 
for 30 min. These adaptors contained sample barcodes in Read1 and Index1 We used 4 ng of 548 
this ligation for a 20 cycle enrichment PCR with Q5 and the EPCR_P1_short and 549 
EPCR_PE2_short primers. We sequenced each Batch on a NextSeq 500 1x75 High Output run.  550 

Each biological p53 replicate was sorted on a different day, so each sequencing library 551 
was sequenced separately with a NextSeq 500 1x75 High Output run.  552 

CP36.P10  ctcccgattcgcagcgcatc 553 
LP_019  GCAGCGTATCCACATAGCGTAAAAG 554 
EPCR_P1_short AATGATACGGCGACCACCGAG 555 
EPCR_PE2_short CAAGCAGAAGACGGCATACGAGAT  556 
To assess the number of integrations in each experiment, we saved 1 ml of culture (0.5-557 

1M cells) from each flask (4 transfections) before the magnetic enrichment for live cells (Day 558 
11). We extracted gDNA, amplified barcodes, and sequenced. We identified 96,000 unique 559 
integrations, an underestimate. In the sorted samples we recovered 14015 barcodes (93.6% of 560 
designed) total, 7164 in all four replicates and 10798 in three or more replicates. All ADs were 561 
present in all replicates. 562 
 563 
QUANTIFICATION AND STATISTICAL ANALYSIS 564 
 565 
Data processing  566 

We demultiplexed samples using a combination of Index1 reads and Read1 inline 567 
barcodes using the ‘fastqconvert_XbaI.py.’ We identified barcodes (grep), sorted the barcodes 568 
(sort) and counted them (unique -c) with the ‘processMSS18_Sort4_5_LigAdaptors.sh’ scripts. 569 
Demultiplexed fastq files have been deposited in GEO. 570 

Using perfect matches, we counted the abundance of each FREE barcode in each 571 
sample using the ‘Preprocessing_MSS18_MergeBCs_NextSeq_p53_2021_forpublication.ipynb’ 572 
script. We normalized the read counts first by the total reads in each sample and then 573 
renormalized each barcode across bins to create a probability mass function. We used the 574 
probability mass function and the median GFP fluorescence of each bin (Table S2) to calculate 575 
the activity of each barcode. To remove outlier barcodes, we found all barcodes for an AD, 576 
computed the activity of each barcode, computed the mean and variance of the set of barcodes 577 
and then removed any barcodes whose activity was more than two standard deviations away 578 
from the mean. We then took all the reads from all remaining barcodes, pooled them and 579 
recomputed activity. This approach led to one activity measurement for each biological 580 
replicate.  581 

To combine data across replicates we used the ‘No AD control.’ We thank an 582 
anonymous reviewer for inspiring this analysis. In our library cloning, the parent plasmid 583 
(pMVS223), which does not carry an AD, is present a low background, and this plasmid carries 584 
a uniqure 9 bp barcode. We computed the activity of this No AD control in each replicate. Next 585 
we adjusted the raw activity values (by addition or subtraction) so that the No AD control had an 586 
activity of 2000 in each replicate. We chose 2000 so that no activity values would be negative. 587 
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We used the average and standard deviations of these adjusted activity values for further 588 
analysis. 589 

For the p53 data, each replicate was collected on a different day using 2 sorters 590 
(Replicate 1 and 3: Sony HAPS 2; Replicate 2: a highly modified Beckman Coulter MoFlow). 591 
Replicates 1 and 2 were sorted into 4 bins; Replicate 3 was sorted into 8 bins). To combine 592 
these data we converted activities into Z scores and computed the mean and standard error of 593 
the mean (SEM). 594 

In the next step of preprocessing, we added physical property calculations and AD 595 
sequence names to the activity data using the ‘MSS18 Step 2 of Preprocessing (fix names and 596 
add columns) For publication.ipynb’. This script also manually corrected errors in sequence 597 
names. 598 
 599 
Analysis 600 

All analysis was performed in Jupyter Notebooks with python 2.7 and Matplotlib, 601 
seaborn, pandas, localcider, biopython, logomaker (Tareen and Kinney, 2020), scipy, 602 
statsmodels, sklearn, and ittertools. Colors are from Colorbrewer (https://colorbrewer2.org/). AD 603 
sequence properties were calculated with localcider (Holehouse et al., 2017). To identify AD 604 
variants that were statistically significantly different from each WT, we used a two-sided t test 605 
and 5% FDR correction. We computed the regressions with statsmodels.api.OLS. 606 

Structures were downloaded from the RSCB PDB (www.rcsb.org) and visualized with 607 
VMD (Humphrey et al., 1996). We normalized activity values to [0-1], mapped the values to the 608 
Beta column of the pdb file and visualized positions with normalized activity < 0.2 (Figure 4E, 609 
S3C).  610 

To summarize the effects of substitutions at each position (Figure 5A, S8C), we 611 
identified all variants that changed each position, collected the activity measurements from all 612 
biological replicates and created a boxplot. We excluded the shuffle variants. 613 

Sequence properties were calculated with the localcider package or by counting amino 614 
acids. The Omega parameter was computed with localcider using the 615 
get_kappa_X([‘W’,’F’,’Y’],[‘D’,’E’]) command. 616 

Figure panels were generated with the ‘MSS18 PaperFiguresRevision.ipynb’ and 617 
‘MSS19_predictedADs_forpublication_v2.ipynb’ jupyter notebooks in the Github repository. 618 

 619 
Machine Learning 620 

The machine learning analysis was carried out in python with the sklearn package. We 621 
started with all variants of VP16, Hif1ɑ and CITED2 and then excluded the shuffle variants. The 622 
High Activity set (N = 121) had variants with a mean activity above 3400. The Low Activity set 623 
(N = 134) had variants with a mean activity below 2900 (Figure S11F). We normalized all 624 
parameters to be between [0,1]. We performed 5-fold cross validation and assessed model 625 
performance with the Area Under the Curve (AUC) of the Receiver Operator Characteristic 626 
(ROC). We compared Support Vector Machines, Logistic Regression and Random Forest 627 
classifiers. 628 

 629 
All atom simulations 630 

We ran all-atom, Monte Carlo simulations in the CAMPARI simulation engine 631 
(23campari.sourceforge.net) using the ABSINTH implicit solvent paradigm (Vitalis and Pappu, 632 
2009). This simulation framework is a well established approach to study the conformational 633 
ensembles of intrinsically disordered regions (Martin et al., 2016; Metskas and Rhoades, 2015; 634 
Vitalis and Pappu, 2009) and we have previously used it to study the Central Acidic AD of the 635 
yeast TF, Gcn4 (Staller et al., 2018). We simulated all VP16 and CITED2 variants. For Hif1ɑ, we 636 
simulated all hand designed variants and the WT sequence.  637 
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For each variant, we ran ten simulations starting in a helix and ten starting in a random 638 
coil. For the WT sequences, we ran 30 simulations from each start. In total we ran 4300 639 
simulations. Each simulation had a pre-equilibration run of 2M steps. Then we began the real 640 
simulation with 10M steps of equilibration and the main simulation of 50M steps, extracting the 641 
conformation every 10K steps, yielding 5000 conformations per simulation. Simulation analysis 642 
was performed with the CAMPARItraj (ctraj.com) software suite. This software suite calculated 643 
helicity with the DSSP algorithm (Kabsch and Sander, 1983) and radius of gyration as the 644 
distribution of atoms in each confirmation without weighting by mass (Holehouse et al., 2017). 645 
The accessibility was calculated by rolling a 1.5 nm spherical marble around each confirmation 646 
and summing the solvent accessible surface area of the W,F,Y,L residues (Staller et al., 2018). 647 
To speed up this analysis accessibility was assessed every 20 confirmations.  648 

The summary statistics for all the simulations is in Supplemental Dataset 9. 649 
 650 
Predicting ADs in human TFs 651 

We downloaded protein sequences from Uniprot for 1608 TFs (Lambert et al., 2018). For 652 
each TF, we created 39 AA tiling windows, spaced every 1 AA, yielding 881,344 tiles. For each 653 
tile, we computed the net charge (counting D,E,K&R) and counted W,F,Y,L residues.  654 

We identified tiles that were as extreme or more extreme than VP16 and CITED2. We 655 
used a diagonal line to extrapolate between these ADs. The tiles predicted to cover ADs (Figure 656 
6B, red pixels), fulfill 3 criteria: 657 

(Charge < -9) AND (WFYL > 7) AND (((Charge+9)-(WFYL-10)) <= 0) 658 
This algorithm identified 1139 tiles, 0.129% of the total. We aggregated overlapping tiles 659 

to predict 144 ADs on 136 TFs. To test these predictions, we used ADs annotated in Uniprot. 660 
We downloaded .gff files for the 1608 TFs from Uniprot. We used 4 regular expressions to 661 
search the “regions” column of the .gff files for “activation”, “TAD”, “Required for transcriptional 662 
activation” and “Required for transcriptional activation.” These searches yielded 110 unique 663 
ADs, including 7 proline rich ADs (>20% proline) and 3 glutamine rich ADs (>20% glutamine).  664 

We used permutation tests to determine if our predictor was better than random. We 665 
randomly selected 136 TFs, randomly selected 144 length matched regions and determined 666 
how many overlapped the 110 known ADs. For the 4 TFs with 2 predicted ADs, we preserved 667 
the coupling between these lengths. In 100K permutations, we never observed more than 11 668 
overlaps. 17 of our predicted ADs overlapped the 110 Uniprot ADs. 669 

 670 
Testing predicted ADs 671 

We built a third plasmid library to test the predicted ADs. Due to DNA synthesis limits, 672 
we split long predicted regions and tested 150 regions of 39-76 residues. To create an empirical 673 
distribution for the prevalence of ADs on TFs, we included 150 length-matched regions 674 
randomly drawn from TF sequences (Lambert et al., 2018). We required that these random 675 
regions did not overlap our predicted ADs or Uniprot ADs. The 92 positive control ADs were 676 
drawn from: 36 hand-curated ADs (RegionType=Hand_Curated_ADs), 35 ADs from a published 677 
list (RegionType=Choi_2000_PMID_10821850) (Choi et al., 2000), 19 Uniprot domains that 678 
overlapped our predictions (RegionType=Uniprot), and 2 published  synthetic DW or DF runs 679 
(RegionType=Controls) (Ravarani et al., 2018). We also included 3 KRAB domains from 680 
Uniprot, 22 mutant ADs and 26 regions tiling the human TF, Crx. Due to human error, we did 681 
not test the correct predicted region of AEBP1 (Q8IUX7) and tested 2 other regions instead. The 682 
full list of sequences and activities is included in Dataset 4. The ‘Known ADs’ in Figure 6C are 683 
flagged in the ‘Positive Controls’ column. The ‘Negative Controls’ column indicates mutant ADs. 684 

The plasmid library was cloned in a similar manner as above. The oligos were ordered 685 
as a oPool from IDT. Oligo length varied. For each AD, we included one 9 bp ‘AD barcode’ 686 
(Hawkins et al., 2018). During the second step of cloning, we added 6 Ns downstream of the 687 
synthetic TF by PCR, which became the ‘integration barcode.’ In principle, a different integration 688 
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barcode marks each plasmid integration event, analogous to a Unique Molecular Identifier in 689 
single cell RNA-seq protocols. The resulting ‘composite barcode’ contained a 6 bp ‘integration 690 
barcode’, the NheI restriction site and the 9 bp ‘AD barcode.’ 76 transfections were split into 3 691 
biological replicates. G418 selection began on Day 1, magnetic separation was performed on 692 
Day 11, ß-estradiol induction began on Day 11 and cell sorting on Day 14. For each biological 693 
replicate, we sorted into 4 bins . During the sequencing library preparation, we performed 24 694 
PCRs for each gDNA sample. We added Index1 and Index2 barcodes by PCR.  695 

After integrating the plasmid library into cells, we deeply sequenced the unsorted pool to 696 
build a ‘composite barcode’ table (Check_Complexity_MSS19_nextSeq.ipynb). This table 697 
contained 44077 composite barcodes with at least 10 reads in one of the 3 biological replicates. 698 
For all subsequent analysis, we matched reads to this table. We used perfect matches to 699 
designed ‘AD barcodes’ and combined reads for all ‘integration barcodes’ attached to each ‘AD 700 
barcode’ as described above: we first removed outliers and then combined read counts 701 
(MSS19_preprocessing.ipynb). In this experiment, we found that the No AD Control TF had 702 
(x,x,x) integration barcodes. We combined replicates by first setting the activity of the No AD 703 
Control to 200 and then computing the mean and standard deviation. The biological replicates 704 
contained 20850, 19758 and 21656 uniquely identifiable integrations. We designed 443 ADs, 705 
detected 434 in the plasmid library, and detected 431 integrated into cells. We required 5 or 706 
more unique integration barcodes in at least one replicate, yielding 428 ADs for downstream 707 
analysis. In Figure 6C, the threshold for AD activity was 200, and the threshold for strong AD 708 
activity was 223, the 95th percentile of the random regions. 709 
 710 
Data and code availability 711 

• The AD activity data are included in Supplementary Datasets 1,2 and 4.  712 
• The Illumina sequencing data have been deposited at GEO and are publicly available as 713 

of the date of publication. Accession numbers are listed in the key resources table. The 714 
plasmids have been deposited in AddGene. 715 

• All simulation data and flow cytometry data reported in this paper will be shared by the 716 
lead contact upon request. 717 

• The analysis code has been deposited in a public Github repository with a Zenodo DOI 718 
listed in the key resources table. 719 

• Any additional information required to reanalyze the data reported in this paper is 720 
available from the lead contact upon request. 721 

• Data availability: All processed activity data is available in the attached Datasets. 722 
Simulation data is freely available upon request. The raw sequencing data will be 723 
available in the NIH GEO database. Our code is available on Github.  724 
 725 

Supplemental item titles (Datasets) 726 
Supplemental Dataset 1: All variants and activity measurements for the 5 AD library (VP16, 727 
CITED2, Hif1ɑ, Stat3 and p65).  728 
Supplemental Dataset 2: All variants and activity measurements for the p53 ADs. 729 
Supplemental Dataset 3: Predicted acidic ADs on human TFs.  730 
Supplemental Dataset 4: Sequences and activity measurements from testing predicted acidic 731 
ADs 732 
Supplemental Dataset 5: AD sequences, DNA barcodes, and barcode counts for the 5 AD 733 
library.  734 
Supplemental Dataset 6: AD sequences, DNA barcodes, and barcode counts for the p53 AD 735 
library.  736 
Supplemental Dataset 7: AD sequences and DNA barcodes for the predicted AD library.  737 
Supplemental Dataset 8: Plasmid sequences for pMVS184 and pMVS223. 738 
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Supplemental Dataset 9: Table with features extracted from the all-atom simulations  739 
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Figure legends 884 

 885 

Figure 1. A high throughput assay for measuring the activities of AD variants in parallel.  886 
(A) In the Acidic Exposure Model, ADs fluctuate between collapsed and exposed states. 887 
Exposed ADs can bind coactivators and partially fold.  888 
(B) The high-throughput AD assay uses a synthetic DNA binding domain (DBD), an estrogen 889 
response domain (ERD), a GFP reporter, FACS and barcode sequencing. The reporter is 890 
integrated at the AAVS1 locus.  891 
(C) We designed mutations that varied net charge or the number of aromatic residues. We 892 
designed a small set of supercharge variants to vary both properties.  893 
(D) Histograms of the number of mutations in each variant. Most variants had 5 or fewer 894 
substitutions.  895 
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 896 

Figure 2. Rationally designed variants increase and decrease activation domain activity 897 
(A) Histograms of the activities of all variants (n = 525, blue) and variants of each AD (orange). 898 
On the X-axis, Activity is the calculated GFP fluorescence (Arbitrary Units). On the Y-axis, 899 
density is the normalized counts of variants in each bin of activity. Biological replicates were 900 
normalized so that the No AD control had an activity of 2000 and then averaged together. The 901 
vertical black line indicates the activity of the No AD control. For each WT AD, the mean and 902 
standard deviation across the four replicates are shown.   903 
(B) The effects of mutating hydrophobic motifs to alanine or glycine residues. For VP16, the 904 
effects of substituting aromatic residues with alanine or leucine. For each panel, the thick line is 905 
the mean activity of the WT AD and the shaded box is the standard deviation. Colors match 906 
panel A. *, p<0.05, 2-sided t-test with 5% FDR correction.  907 
(C) Motif locations and alpha helices (arrows). 908 
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 909 
Figure 3: Introducing acidic residues near hydrophobic motifs increases activity 910 
(A) For variants designed to perturb net charge, the mean activities (AU) are plotted along with 911 
a linear regression (ordinary least squares). Gray error bars are the standard deviation. Variants 912 
with lower net charge and increased activity are colored red; variants with lower net charge and 913 
decreased activity are colored blue. The black line is the WT mean and the gray box is the WT 914 
standard deviation.  915 
(B) The sequences of the red and blue points in A, with substitutions highlighted. The WT 916 
sequence is in black.  917 
(C) For the red and blue sets of variants, the fraction of variants with a substitution at each 918 
position is plotted (normalized sum of the columns in B). For CITED2, adding acidic residues in 919 
the flanks increased activity. For Hif1ɑ, the red variants frequently removed R820, or add acidic 920 
residues near L812, L813 or L819. For Hif1ɑ, adding E’s was more likely increase activity. We 921 
could not increase the activity VP16 by adding acidic residues. 922 
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 923 
Figure 4: Adding aromatics has context dependent effects on AD activity 924 
(A) For variants that add or remove aromatic residues, the mean and standard deviation are 925 
plotted. Activity is plotted against the number of aromatic (W,F,Y) residues. WT activity, black 926 
dot and line; WT standard deviation, gray box.  927 
(B) Variants that add or remove aromatic residues, with activity plotted against the number of 928 
W,F,Y,L residues.  929 
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 930 

Figure 5. Rational mutagenesis reveals the structural constraints of an AD-coactivator 931 
interaction interface 932 
(A) For each position in CITED2, all variants that change that residue are summarized as a 933 
boxplot (Activity, AU). Note that each position has different substitutions and variants with 934 
multiple substitutions are included in multiple columns. Acidic (red) and leucine (green) 935 
residues. Medians, black lines. Whiskers are 1.5 times the interquaretile range. Outliers, gray 936 
dots. WT mean and standard, black line and gray box. This analysis excludes the shuffle 937 
variants.  938 
(B) For all the positions in panel A with a median less than 3000 AU, we visualized these 939 
residues (orange) on the NMR structure of CITED2 bound to the TAZ1 coactivator (1R8U). 940 
CITED2 backbone, purple; visualized residues, orange; TAZ1, white. The residues that have 941 
large decreases in activity when mutated point towards the coactivator surface.  942 
(C) D224 (red) of CITED2 is sandwiched between the narrowest point of the basic rim (blue) of 943 
the binding canyon of TAZ1. See Figure S10 for snapshots of all 20 structures in 1R8U.  944 
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 945 
Figure 6. Strong activation domains are acidic and contain many W,F,Y,L residues.  946 
(A) For each point, the x position indicates the net charge and y position the number of W,F,Y,L 947 
residues. Color (AU) indicates the median activity of all variants with each combination (See 948 
Figure S11 for all individual variants). All variants of VP16, CITED2 and Hif1ɑ are included. The 949 
No AD control is 2000 AU. N = 302.  950 
(B) A heatmap of all 39AA tiles from human TFs (log scale). The pixel location indicates the net 951 
charge and W,F,Y,L count, and the blue intensity indicates the number of tiles with that 952 
combination. Only 0.13% of tiles (red, rescaled heatmap) are as extreme or more extreme than 953 
VP16 (x) and CITED2 (*). The red tiles peak at CITED2.  954 
(C) TF regions spanned by the red tiles (red, n = 149) are more likely to have AD activity than 955 
random regions (blue, n=146). Most, but not all, published ADs (orange, n = 78) have high 956 
activity in this assay. In this experiment the No AD control was normalized to 200 AU. The 957 
boxplot shows the quartiles and whiskers are drawn at 1.5 times the interquartile range. 958 
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 959 
Figure 7: The structure of the coactivator AD-binding canyon constrains AD sequence.  960 
(A) The CITED2 AD is inside the Taz1 canyon, a structural constraint that favors leucine 961 
residues. The yeast Gcn4 AD is outside the Med15/Gal11 canyon, enabling a fuzzy interaction 962 
that favors aromatic residues.  963 
(B) The deep canyon of Taz1 embraces CITED2 (orange, 1R8U). 964 
(C) The binding canyon of Gal11 (Med15) is shallow and the Gcn4 central acidic AD inserts 965 
aromatic side chains (2LPB). Colors in B and C are: red, acidic (negative); blue, basic (positive); 966 
green, hydrophobic; purple, aromatic; other, white. 967 


	Abstract
	Introduction
	Results
	Hydrophobic motifs are necessary for AD activity
	Acidic residues are necessary for AD activity
	Leucine residues are critical for AD activity

	Discussion
	STAR Methods


