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Abstract—Cameras are increasingly being deployed in cities,
enterprises and roads world-wide to enable many applications
in public safety, intelligent transportation, retail, healthcare and
manufacturing. Often, after initial deployment of the cameras, the
environmental conditions and the scenes around these cameras
change, and our experiments show that these changes can
adversely impact the accuracy of insights from video analytics.
This is because the camera parameter settings, though optimal
at deployment time, are not the best settings for good-quality
video capture as the environmental conditions and scenes around
a camera change during operation. Capturing poor-quality video
adversely affects the accuracy of analytics. To mitigate the loss in
accuracy of insights, we propose a novel, reinforcement-learning
based system APT that dynamically, and remotely (over 5G
networks), tunes the camera parameters, to ensure a high-quality
video capture, which mitigates any loss in accuracy of video
analytics. As a result, such tuning restores the accuracy of
insights when environmental conditions or scene content change.
APT uses reinforcement learning, with no-reference perceptual
quality estimation as the reward function. We conducted extensive
real-world experiments, where we simultaneously deployed two
cameras side-by-side overlooking an enterprise parking lot (one
camera only has manufacturer-suggested default setting, while the
other camera is dynamically tuned by APT during operation). Our
experiments demonstrated that due to dynamic tuning by APT,
the analytics insights are consistently better at all times of the
day: the accuracy of object detection video analytics application
was improved on average by ∼ 42%. Since our reward function
is independent of any analytics task, APT can be readily used
for different video analytics tasks.

I. INTRODUCTION

The number of IoT sensors, especially video cameras
deployed around the world have proliferated tremendously.
It is estimated that their number will continue to grow further,
thanks to advances in computer vision, machine learning, etc.
and infrastructure support through 5G, edge computing, cloud
computing, etc. These video cameras are being used for a
variety of applications including video surveillance, intelligent
transportation, healthcare, retail, entertainment, safety and
security, and home and building automation. The global video
surveillance camera market, which was valued at US $28.02
billion in 2021, is estimated to reach US $45.54 billion in 2027.
Furthermore, the volume, which was 214.3 million units in
2021, is estimated to reach 524.75 million units in 2027 [27]. As

† Work mostly done as an intern at NEC Laboratories America, Inc.

Fig. 1: City-scale video analytics.

the video camera market grows, the video analytics market also
grows with it. The global video analytics market is estimated
to grow from $5 billion in 2020 to $21 billion by 2027, at a
CAGR of 22.70% [7].

A city-scale deployment of IoT cameras and video analytics
being performed on those cameras is shown in Figure 1. Here,
the video feed from cameras is streamed over 5G and the
analytics is being performed in the edge/cloud infrastructure.
Based on the results of the analytics, insights are generated and
appropriate actions are taken. As the environmental conditions
around the cameras (e.g. day or night, seasonal variations) and
the scene in front of the camera (e.g. number of people/cars)
change, the quality of video feed produced by the cameras
also changes. This is due to the manner in which cameras
capture, process, encode and transmit video frames before they
are delivered to Analytics Units (AUs) in a Video Analytics
Pipeline (VAP).

In this paper, we show that the accuracy of video analytics
application is impacted by variation in environmental conditions
or in the scene in front of the camera, and it may even degrade.
One of the reasons for this degradation is the poor quality
of frames being delivered to the AUs. Camera vendors often
expose a large number of camera parameter settings to end
users so that they can tune them according to their deployment
location. These camera parameters play a significant role in
the quality of frames being produced by the camera and
delivered to the AUs. We show that if we adjust these camera20
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parameter values, we can improve the quality of frames and
thereby mitigate the loss in analytics accuracy due to changes
in environment or video content. This adjustment in camera
parameter values however is non-trivial. We observe that the
desirable adjustment values vary according to the condition and
is very specific to the deployment location. There is not any
single adjustment setting that works across all conditions and
across all deployment locations. Therefore, we need a dynamic
adjustment technique that automatically adapts to the changing
conditions at the specific deployment location.

To mitigate the loss in analytics accuracy, we propose
to adaptively tune camera parameters in real time using
reinforcement learning. In particular, we propose to develop
a system that dynamically tunes four camera parameters, i.e.,
brightness, color, contrast and sharpness, which directly affect
the quality of image produced by the video camera. Such
dynamic tuning of camera parameters happens remotely over
5G and leads to better quality of the video feed, which directly
helps in improving the analytics accuracy.

In designing reinforcement learning, for the agent to learn
and adapt to the changes in conditions, we use perceptual
no-reference quality estimator as the reward function. We show
via experiments that such a reward function works well in
adjusting camera settings so that the loss in analytics accuracy is
mitigated. This technique is independent of the video analytics
being performed, and therefore is easy to design and deploy
in real-world settings.

There are different methods to calculate the perceptual
quality, but testing and comparing them to check which one
works the best for real-world setting is not straight forward.
First, if we test these methods one by one, then it is impossible
to repeat exact same environment and video content changes,
if the video analytics system (VAS) is deployed in the wild.
Such a setup will not lead to “apples to apples” comparison.
Second, if we test these methods at the same time, then it is
not practical to simultaneously deploy as many cameras as the
number of methods to calculate perceptual quality for each
method on each camera at the same time. These challenges
lead us to consider a mock experimental setup, which allows us
to repeat the environment and content changes in a controlled
setting, and objectively test and compare different perceptual
quality estimators one-by-one.

In summary, our key contributions are as follows:
• We empirically show that changes in environmental

conditions and video content can have adverse effect on
video analytics accuracy, and this loss in accuracy can be
mitigated by dynamically tuning camera settings.

• We propose novel Reinforcement Learning (RL) based
system called APT, which automatically and adaptively
tunes camera parameters remotely over 5G, in order to
produce good quality video feed, which directly helps in
improving analytics insights

• We use CNN-based state-of-the-art perceptual quality
estimator (i.e., RankIQA) as the reward function in RL,
thus making APT design independent of the analytics
being performed and feasible in absence of ground-truth.

• Our adaptive camera-parameter-tuning results in consistent
analytics accuracy improvement through different time
segments of the day and achieves an average improvement
of ∼ 42% when compared to the accuracy observed under
fixed, manufacturer-provided default setting.

The rest of the paper is organized as follows. We discuss
related works in Section II. Section III presents the negative
impact of environmental condition and content changes on
analytics accuracy and how it can be possibly mitigated
by adaptively tuning built-in camera parameters. The design
challenges of such adaptive camera-parameter-tuning system
and final APT design are shown in Section IV and Section
V, respectively. Extensive evaluation of APT on 3D mock-up
scene as well as real-world deployment is discussed in Section
VI. Finally, in Section VII we show how to possibly extend
APT design in the future and conclude in Section VIII.

II. RELATED WORKS

Several recent proposals have investigated the tuning of
parameters of vision algorithms to improve computing resource
usage of video analytics pipelines based on input video content.
Chameleon [11], Videostorm [36], and AWStream [35] tune
the after-capture video stream parameters like frame sampling
rate, frame resolution, type of detector to ensure efficient
resource usage while processing video analytics queries at
scale. However, they do not address directly tuning of camera
parameters to enhance video analytics accuracy.

A recent work [10] also reports the impact of environmental
condition changes on video analytics accuracy but it adapts
to such changes by using different AUs depending on specific
environmental condition, while keeping the camera settings
the same. Since environmental changes can take place due to
change of the sun’s movement throughout the day, different
weather conditions (e.g., rain, fog and snow), as well as for
different deployment sites (e.g., parking lot, shopping mall,
airport), it is infeasible to develop a separate AU specific to each
environment. Impact of environmental changes on AU accuracy
is also shown in [25], but they address it by re-training the
AU using transfer learning. In contrast, APT takes a different
approach where the AU is kept the same, but camera settings
are dynamically tuned in reaction to changes in environmental
conditions.

Several recent works like AMS [14] and Ekya [3] aim to
improve video analytics accuracy by periodically re-training
AI/ML models so that they work well for the specific deploy-
ment conditions. This technique however, requires additional
computational resources and it does not quickly adapt to the
changes in the environment or video content. APT, on the other
hand does not rely on continuous re-training, rather it improves
video analytics accuracy by dynamically tuning configurable
camera parameters, thereby quickly reacting to the changes in
environmental conditions or video content.

There is a considerable body of work to configure image
signal processing pipeline (ISP) in cameras to improve camera
capture quality. For example, VisionISP [33] modifies the ISP
pipeline to reduce the size of final image output by reducing
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the bit-depth and resolution. Others have proposed custom
optimizations of the ISP for specific computer-vision tasks [6],
[9], [16], [21], [28], [33], [37]. However, careful re-design
or optimization of ISP module for specific vision tasks is
time consuming. In our proposed approach APT, we do not
modify the ISP pipeline, rather we focus on dynamic tuning of
configurable camera parameters to consistently produce high-
quality video output, which enhances the quality of insights
from analytics tasks.

III. MOTIVATION

In this section, we show that environmental conditions and
video content variation can adversely impact analytics accuracy
and this loss in accuracy can be mitigated by adjusting camera
parameter values. To illustrate the impact of environment and
content variation on AU accuracy, we consider four popular
parameters that are exposed by almost all cameras: brightness,
contrast, color-saturation (also known as colorfulness), and
sharpness. We focused on these four parameters because they
are widely available in both PTZ and non-PTZ cameras and
these parameters are more challenging to tune due to their
large range of parameter values (for example between 1 and
100).

Methodology: Analyzing the impact of camera settings
on video analytics poses a significant challenge: it requires
applying different camera parameter settings to the same input
scene and measuring the difference in the resulting accuracy
of insights from an AU. The straight-forward approach is to
use multiple cameras with different camera parameter settings
to record the same input scene. However, such an approach is
impractical as there are thousands of different combinations of
even just the four camera parameters we consider. To overcome
the challenge, we proceed with two workarounds. First, we
will show the impact of camera settings on a stationary scene
with a real camera. Second, we apply post-capture image
transformation on pre-recorded video snippets from public
datasets to analyze the equivalent impact of different camera
settings on those video snippets, i.e., groups of frames.

A. Impact of environment variation on AU accuracy

To study the impact of environmental changes on AU
performance, we simulate DAY and NIGHT conditions in
our lab and evaluate the performance of the most accurate
face-recognition AU (Neoface-v3 [23]1. We use two sources of
light and keep one of them always ON, while the other light
is manually turned ON or OFF to emulate DAY and NIGHT
conditions, respectively.

We place face cutouts of 12 unique individuals in front of the
camera and first run the face recognition pipeline with the input
scene captured under “Default” camera setting (i.e., the default
values provided by the manufacturer) and also for different face
matching thresholds. Since this face-recognition AU has high
precision despite environment changes, we focus on measuring
Recall, i.e., true-positive rate. Figure 2a shows the Recall for

1This face-recognition AU is ranked first in the world in the most recent
face-recognition technology benchmarking by NIST.

(a) DAY (b) NIGHT

Fig. 2: Parameter tuning impact for Face-recognition AU.

the DAY condition for various thresholds and Figure 2b shows
the Recall for the NIGHT condition for various thresholds. We
see that under the “Default” settings, the Recall for the DAY
condition goes down at higher thresholds, indicating that some
faces were not recognized, whereas for the NIGHT condition,
the Recall remains constant at a low value for all thresholds,
indicating that some faces were not being recognized regardless
of the face matching thresholds. Thus, the performance of
face-recognition AU (i.e., recall vs matching threshold) under
“Default” camera setting varies for different environment while
capturing the same static scene. Next, we compare AU results
under the “Default” camera settings, and “Best” settings for
the four camera parameters. To find the “Best” settings, we
change the four camera parameters using the VAPIX API [4]
provided by the camera vendor to find the setting that gives
the highest Recall value. Specifically, we vary each parameter
from 0 to 100 in steps of 10 and capture the frame for each
camera setting. This gives us ≈14.6K (114) frames for each
condition. Changing one camera setting through the VAPIX
API takes about 200ms, and in total it took about 7 hours to
capture and process the frames for each condition.

In contrast, when we changed the camera parameters for
both conditions to the “Best” settings, the AU achieves the
highest Recall (100%), confirming that all the faces are correctly
recognized, also shown in Figure 2. These results show that it
is indeed possible to improve AU accuracy by adjusting the
four camera parameters.

B. Impact of video content variation on AU accuracy

We study the impact of video content variation on AU
accuracy by using pre-recorded videos with different video
content. The pre-recorded videos from public datasets are
already captured under certain camera parameter settings, and
hence we do not have the opportunity to change the real camera
parameters and observe their impact. As an approximation, we
apply different values of brightness, contrast, color-saturation
and sharpness to these pre-recorded videos using several
image transformation algorithms in the Python Imaging Library
(PIL) [1], and then observe the impact of such transformation
on accuracy of AU insights.

We consider 19 video snippets from the HMDB dataset [15]
and 11 video snippets from the Olympics dataset [20] that
capture different content under different environmental condi-
tions while using the default camera parameter. Using cvat-
tool [22], we manually annotated the face and person bounding
boxes to form our ground truth. Each video-snippet contains
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(a) Face detection
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(b) Person detection

Fig. 3: Distribution of best transformation tuple for two AUs
on HMDB video snippets.
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(a) Face detection
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(b) Person detection

Fig. 4: Distribution of best transformation tuple for two AUs
on Olympics video snippets.

no more than a few hundred frames, and the environmental
conditions vary across the video snippets due to change in video
capture locations. We determine a single best tuple of those
four transformations for each video, i.e., one that results in the
highest analytical quality for that video. Figure 3 and Figure 4
show the distribution of the best transformation tuples for the
videos in the two datasets, respectively. We see that with a few
exceptions, the best transformation tuples for different videos
(i.e., that capture different content under various environmental
condition) in a dataset do not cluster, suggesting that any
fixed real camera parameter settings will not be ideal for
different environmental conditions or input content as well
as it also varies for different analytics tasks. Table I shows
the maximum and average analytical quality improvement
achieved after transforming each video-snippet as per their
best transformation tuple. We observe up to 58% improvement
in accuracy of insights when appropriate transformations or
equivalent camera parameters are applied.

In summary, environmental changes and input content
variations can result in low-quality image acquisition, which
in turn result in poor analytics accuracy. Tuning the camera
parameter settings during capture can provide improvement
in accuracy of AUs, but such camera parameter tuning is

TABLE I: Accuracy improvement of best configuration.

Video-Dataset AU mAP
improvement
Max Mean

Olympics Person Detection 40.38 8.38
Face Detection 19.23 1.68

HMDB Person Detection 57.59 12.63
Face Detection 18.75 4.22

hard for a human to do manually because the best parameter
combination will vary with location of the camera, the type of
analytics units, and the environmental conditions. This calls for
developing methods that can automatically adapt the camera
parameters to improve the accuracy of AUs.

IV. CHALLENGES

In this paper, we propose to develop a camera tuning
framework that dynamically adapts the four parameter settings
of the video-capturing camera in a video analytics system
(VAS) to optimizes the accuracy of its AUs. Designing such
a framework faces two challenges. Below, we discuss these
two challenges and our approaches to addressing each one of
them.

Challenge 1: Identifying the best camera settings for a
particular scene. Identifying the best camera settings for a
given scene that gives the best AU accuracy is challenging
even during offline, as it requires comparing the impact of all
possible camera settings. Doing so in an online manner is even
more challenging.

Approach. To address this challenge, we propose to use an
online learning method. Particularly, we use Reinforcement
Learning (RL) [30], in which the agent learns the best camera
settings on-the-go. Using RL, we do not have to know apriori
the various scenes that the camera would observe. Instead, the
RL agent learns and identifies automatically the best camera
settings that give the highest AU accuracy for any particular
scene. Out of several recent RL algorithms, we choose the
SARSA [32] RL algorithm for identifying the best camera
settings.

While RL is a fairly standard technique, applying it to tuning
camera parameters in a real-time video analytics system in
turn raises one unique challenge as follows.

Challenge 2: No Ground truth in real time. Implementing
the online RL approach requires knowing the quality (i.e., either
reward or penalty) of every action taken during exploration
and exploitation. Measuring the quality of camera parameters’
change in absence of ground-truth is challenging.

Approach. We proposed to leverage state-of-the-art percep-
tual Image Quality Assessment (IQA) methods as a proxy of
the quality measure (i.e., the reward function). Specifically, we
experimentally evaluate a list of state-of-the-art IQA methods
and use the best-performing one as the reward function in the
RL engine.

V. DESIGN

Figure 5 shows the system-level architecture for APT, which
automatically and adaptively tunes the camera parameters to
optimize the analytics accuracy. APT incorporates two key
components: a perceptual no-reference quality estimator and a
Reinforcement Learning (RL) engine.

A. Perceptual No-reference Quality Estimator

Since it is not possible to obtain ground-truth in real-time to
measure the accuracy of video analytics applications, we rely
on a technique which won’t require ground truth, but still help
in improving the analytics accuracy. To this end, we leverage
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Fig. 5: APT system design.

SOTA perceptual no-reference quality estimator, which gives
an estimate of the quality of the frame produced by the video
camera. Better the quality of the frame, better will the analytics
be able to generate accurate insights. Therefore, in the design
on APT we employ such IQA method to help guide the system
in choosing appropriate camera settings. We discuss our choice
of IQA method in Section VI-A and how this IQA method is
used in RL engine within APT in Section V-B.

B. Reinforcement Learning (RL) Engine

RL engine is the heart of APT, as it is the one that
automatically chooses the best camera settings for a particular
scene. In designing the RL engine, we considered popular RL
algorithms such as Q-learning [31] and SARSA [32] which
are general techniques and highly effective in learning the best
action to take in order to maximize the reward. To choose
between the two options, we experimentally compared them
in the context of choosing the best camera settings and found
that training with SARSA achieves slightly faster convergence
than with Q-learning. Therefore, we decide to use the SARSA
RL algorithm in APT.

Like other RL algorithms, in SARSA, an agent continuously
interacts with the environment (state) it is operating in, by
taking different actions. As the agent takes an action, it moves
into a new state or environment. For each action, there is an
associated reward or penalty, depending on whether the new
state is more desirable or not. Over time, as the agent continues
taking actions and receiving rewards and penalties, it learns
to maximize the rewards by taking the right actions, which
ultimately lead the agent towards desirable states.

As with many other RL algorithms, SARSA does not require
any labeled data or pre-trained model, but it does require a
clear definition of the state, action and reward for the RL
agent. This combination of state, action and reward is unique
for each application and therefore needs to be carefully chosen,
which ensures that the agent learns exactly what is desired. In
our setup, we define them as follows:

State: A state is a tuple of two vectors, st =< Pt,Mt >,
where Pt consists of the current brightness, contrast, sharpness,
and color-saturation parameter values on the camera, and Mt

consists of the measured values of brightness, contrast, color-
saturation, and sharpness of the captured frame at time t,
measured as in [2], [5], [8], [26].

Action: The set of actions that the agent can take are (1) to
increase or decrease one of the brightness, contrast, sharpness

or color-saturation parameter value, or (2) not to change any
parameter values.

Reward: We use the best-performing (experimentally chosen
as described in Section VI-A) perceptual quality estimator as
the immediate reward function (r) for the SARSA algorithm.
Along with considering immediate reward, the agent also factors
in future reward that may accrue as a result of the current
actions. Based on this, a value, termed as Q-value (also denoted
as Q(st, at)) is calculated for taking an action at when in state
st using Equation 1.

Q(st, at)← Q(st, at) + α [r + γ ·Q(st+1, at+1)−Q(st, at)]
(1)

Here, α is learning rate (a constant between 0 and 1) used to
control how much importance is to be given to new information
obtained by the agent. A value of 1 will give high importance
to the new information while a value of 0 will stop the learning
phase for the agent.

Similar to α, γ (also known as the discount factor) is another
constant used to control the importance given by the agent
to any long term rewards. A value of 1 will give very high
importance to long term rewards while a value of 0 will make
the agent ignore any long term rewards and focus only on the
immediate rewards. If the conditions do not change frequently,
a higher value, e.g., 0.9, can be assigned to prioritize long
term rewards; if the environmental conditions change very
frequently, a lower value, e.g., 0.1, can be assigned to γ to
prioritize immediate rewards.

Exploration vs. Exploitation. We define a constant called ϵ
(between 0 and 1) to control the balance between exploration
vs. exploitation when the agent takes actions. In particular, at
each step, the agent generates a random number between 0
and 1; if the random number is greater than the set value of ϵ,
then a random action (exploration) is chosen, else it performs
exploitation.

VI. EVALUATION

We first evaluate several design choices for the perceptual
IQA method to be used as the reward function in the RL
engine in terms of their impact on analytics performance in a
controlled mock-up scene (Section VI-A), and pick the best-
performing choice for use in APT. We then extensively evaluate
the effectiveness of APT on the mock-up scene under different
initial parameter settings (Section VI-B) and in a real-world
deployment (Section VI-C).

A. Effect of using different IQA Methods

Throughout the last decade, several no-reference (blind)
IQA methods [13], [17]–[19], [29], [34] have been proposed
to improve the video/image capture quality based on human
perception. In this section, we evaluate the impact of three
different blind IQA methods that are designed to estimate the
quality of real-world distorted images for use as APT’s quality
evaluator. Since downstream analytics focus on low-level local
features (i.e., extracted via convolution layers) for deriving
insights from the input video stream, we choose three popular
perceptual IQA methods that employ convolution network.
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(a) capture under fixed setting (b) APT camera capture

Fig. 6: Sample camera captures.

CNN-IQA [13] is the first to use the spatial domain without
relying on hand-craft features used by previous IQA methods.
It combines feature learning and quality regression in one
optimization process which leads to a more effective quality
estimation model. Hyper-IQA [29] decouples the IQA proce-
dure into three stages: content understanding, perception rule
learning and finally quality prediction. Hyper-IQA estimates
image quality in a self-adaptive manner by adaptively running
different hyper-networks. Finally, Rank-IQA [17] addresses
the problem of limited size of the IQA dataset during training.
It uses a siamese network to rank images and then uses the
ranked images to train deeper and wider convolution networks
for absolute quality prediction.

To assess the impact of using different IQA estimators as
reward functions on the analytics performance under the same
environmental conditions, we use a mock-up scene with a
fixed number of objects (i.e., cars and persons). In this mock-
up scene, 3D slot cars are continuously moving along the
track and 3D human models are kept stationary. In doing
so, this experimentally controlled mock-up scene provides
controllability and replicability in experimental setup and
enables us to try out different reward functions under the
same environment and content.

We first train APT using each of these three quality estimator
output as the reward function for one hour on the mock-up
scene. During training, after every 2 minute interval, we change
the camera parameters to emulate different environmental
conditions. For evaluation, we placed two identical AXIS 3505
MK-II network cameras side-by-side in front of the mock-up
scene as shown in Figure 6. During evaluation, we used 5
different camera settings and observed how APT reacts to
those initial camera parameter settings.

Figure 7 shows how the three different IQA methods
effectively guide SARSA RL agent in APT, resulting in
higher true-positive object detections when compared to object
detector’s performance on the stream with fixed camera setting.
Table II presents the average improvement in true-positive
object detections observed throughout multiple 2-minute time-
intervals, and the average number of objects detected in
the steady state for the three different reward functions. We
observe that Rank-IQA guides SARSA-RL agent better under
environmental variations which in turn leads to more object
detections from the same scene. Thus, we use Rank-IQA as
our perceptual quality estimator for APT.
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(b) CNNIQA as reward
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Fig. 7: APT reaction to different initial camera settings under
different IQA metrics as reward function (Moving average of
per-frame object detection is computed over a window of last
100 frames, shown in Y axis.)

TABLE II: Comparing IQA methods as reward functions

IQA Improv. over fixed settings Objs detected
(Avg) % steady state (Avg)

Hyper-IQA 132.6 13.5
CNN-IQA 141.2 14.2
Rank-IQA 150.5 15.1

B. Effectiveness of APT in a Mock-up Scene

Here, we evaluate how quickly APT can react to any
initial setting and converge to a setting that can provide better
analytical outcome. We use the same controlled mock-up scene
described in Section VI-A. Both cameras start with same initial
setting (we use four different camera settings denoted as S1, S2,
S3 and S4, respectively) and stream at 10 FPS over a 2-minute
period, during which the four parameters of Camera 1 are kept
to the same initial values, while the parameters of Camera
2 are tuned dynamically by APT every 2 seconds. On every
frame streamed from the camera, we use Yolov5 [12] object
detector to detect objects and record the type of objects with
their bounding boxes 2. Figure 8 shows the moving average

2Manual inspection confirms there is no false-positive detection in the
2-minute period.
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(a) Fixed setting 1 (S1)
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(b) Fixed setting 2 (S2)
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(c) Fixed setting 3 (S3)
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(d) Fixed setting 4 (S4)

Fig. 8: APT reaction to different camera settings using Rank-
IQA reward (moving average of per-frame object detection is
computed over a window of past 100 frames, shown in the
Y-axis.)

of per-frame object detections (with a window size of 100
frames) in the Y axis (to clearly show the trend) of the two
cameras under four different initial settings. We observe there
is an initial gap between the performance of YOLOv5 between
the two camera streams which indicates that within the first
10 seconds, APT changes the camera parameters based on
human-perceptual quality estimator (i.e.,RANKIQA) output and
achieves better object detection. Furthermore, we observe that
APT gradually finds best-possible setting within one minute
that enables Yolov5 to detect more number of objects from
the captured scene (total 4-9 more object detections per frame
compared to detections on camera stream with fixed setting).

C. Effectiveness of APT in Real-world Deployment

To evaluate the effectiveness of camera parameter tuning
by APT in a real-world deployment, we use two co-located
AXIS Q3515 network cameras that continuously monitor an
enterprise parking lot. Here, one camera is set to manufacturer-
provided default settings, while the other camera parameters
are adaptively tuned by APT. Captured frames from each
camera are uploaded to a remote edge-server (equipped with
Intel-Xeon processor and NVIDIA Geforce GTX-2080 GPU)
running Yolo-v5 [12] object detector. The captured frames from
both cameras are sent for AU processing on the edge-server
over a 5G network with an average frame uploading latency
of 39.7 ms. While the first camera stream is sent just to the
object detector AU, the second camera stream is also sent to
APT which runs on a low-end IoT device (Intel NUC box
with a 2.6 GHz Intel i7-6770HQ CPU) in parallel to object
detector AU. We first perform in-situ training using the second
camera stream to populate the Q-table for SARSA RL agent
for 12 hours then we observe the performance of APT for
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(c) Day 3

Fig. 9: APT performance (with Rank-IQA reward function)
throughout the day in Parking lot (true-positive object detections
are accumulated for each 10-minute interval).

next consecutive days in the exploitation phase. In this setup,
APT adjusts the camera parameters every 30 seconds.

We ran both video analytics pipeline (VAP) for 9 continuous
peak hours in each day, i.e., during daylight. We also recorded
the videos captured by the cameras and the detections on those
camera stream to manually inspect and validate the detections
from both VAPs. Figure 9 shows the total true-positive object
detections (i.e., car and person) in each 10-minute interval from
9AM-6PM for three consecutive days. APT constantly provides
higher true-positive detection count than the default camera
stream during all segments of the day, as shown in Figure 9. We
also observe an improvement of 44.71%, 35.49% and 45.92%
(average ∼ 42 %) more true-positive object detections from the
camera stream tuned by APT when compared to the default
camera stream for first three days of evaluation, respectively.
Thus, APT is effective in adaptively tuning camera parameters
such that the video quality is improved, thereby resulting in
improvement in video analytics accuracy.
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VII. FUTURE WORKS

Our demonstration in this paper that adaptive camera
parameter tuning can improve video analytics accuracy opens
up several new research avenues. Here, we designed APT,
which adaptively tunes four image-appearance parameters based
on the perceptual quality metric. In future work, we plan
to study how other non-automated image and video-specific
camera parameters such as max shutter speed, maximum
gain, compression, bitrate, FPS, etc. can be adpatively tuned
to enhance video analytics accuracy. In addition to video
surveillance camera sensor, we also plan to extend APT design
to tune the parameters of other complex sensors such as depth
and thermal cameras.

For APT design, we borrowed the quality estimator from
SOTA perceptual no-reference IQA (i.e., Rank-IQA). Since
the captured content are consumed by downstream AUs, in
future work we plan to explore the scope of quality estimation
based on the downstream AU’s perception, similar to the work
presented in [24].

VIII. CONCLUSION

Video analytics applications heavily rely on good quality
of video input to produce accurate analytics results. In this
paper, we show that variation in environmental conditions
and video content can lead to degradation in input video
quality, leading to degradation of overall analytics insights.
To mitigate this loss in accuracy, we propose APT, which uses
reinforcement learning techniques to adaptively tune camera
parameters so as to improve video quality, thereby improving
accuracy of analytics. Through real-world experiments, we
show that APT consistently performs better than the fixed
manufacturer-provided default camera settings, and on average
improves the accuracy of object detection video analytics
application by ∼ 42%.
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