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Abstract. We estimate convergence rates for fixed-point iterations of a
class of nonlinear operators which are partially motivated by convex
optimization problems. We introduce the notion of the generalized av-
eraged nonexpansive (GAN) operator with a positive exponent, and
provide convergence rate analysis of the fixed-point iteration of the
GAN operator. The proposed generalized averaged nonexpansiveness
is weaker than averaged nonexpansiveness while stronger than nonex-
pansiveness. We show that the fixed-point iteration of a GAN operator
with a positive exponent converges to its fixed-point and estimate the
local convergence rate (the convergence rate in terms of the distance
between consecutive iterates) depending on the range of the exponent.
We prove that the fixed-point iteration of a GAN operator with a posi-
tive exponent strictly smaller than 1 can achieve an exponential global
convergence rate (the convergence rate in terms of the distance between
an iterate and the solution). Furthermore, we establish the global con-
vergence rate of the fixed-point iteration of a GAN operator, depending
on both the exponent of generalized averaged nonexpansiveness and the
exponent of the Hölder regularity, if the GAN operator is also Hölder
regular. We then apply the established theory to three types of convex
optimization problems that appear often in data science to design fixed-
point iterative algorithms for solving these optimization problems and
to analyze their convergence properties.
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1. Introduction

We consider in this paper the convergence rate analysis of fixed-point al-
gorithms. Fixed-point type algorithms have been popular in solving nondif-
ferentiable convex or nonconvex optimization problems such as image pro-
cessing [20,30,35,37,38,50], medical imaging [29,34,47,56], machine learning
[18,32,33,43], and compressed sensing [25,57]. Existing fixed-point type al-
gorithms for optimization include the gradient descent algorithm [10,48], the
proximal point algorithm [13,46], the proximal gradient algorithm [9,42], the
forward-backward splitting algorithm [19,54] and the fixed-point proximity
algorithm [30,34,37,38].

Traditionally, fixed-point algorithms were often developed by construct-
ing contractive operators or averaged nonexpansive operators [1,3,6,37,44].
Such constructions bring advantages for fixed-point algorithms, since they
make the corresponding algorithmic convergence analysis straightforward and
provides robust and monotonic convergence. That is, as the fixed-point itera-
tion proceeds, the distance between the iterate and the true solution is mono-
tonically decreasing. In addition, fixed-point algorithms are comparatively
simple and easy to implement. Most optimization problems in real-world
applications may be reformulated as fixed-point equations of averaged non-
expansive operators but usually not contractive operators. It is also known
[22] that the local convergence rate (the convergence rate in terms of the
distance between consecutive iterates) of the fixed-point iteration of an av-
eraged nonexpansive operator is o(k− 1

2 ), where k denotes the step of the
iteration. However, certain optimization problems cannot be reformulated as
fixed-point problems of averaged nonexpansive operators but operators with
weaker conditions. For analysis of such fixed-point iterations, the theory of
the averaged nonexpansive operator is not applicable. Therefore, there is a
need to extend the existing results.

We are interested in understanding the following two issues: Is there a
class of operators, satisfying a condition weaker than the averaged nonex-
pansiveness, whose fixed-point iterations still converge? Is there a subclass of
the averaged nonexpansive operators whose fixed-point iterations have con-
vergence rates higher than order o(k− 1

2 )? For the first issue, some classes
of operators were proposed, such as demicontractive operators [26,36] and
quasi-firmly nonexpansive operators [51,52]. However, these classes of opera-
tors do not ensure the closedness of the composition operation, which makes
them not applicable to a large range of real-world optimization problems. In
addition, their fixed-point iterations do not have a convergence rate higher
than that the averaged nonexpansive operators have.

To address these two issues, we introduce the notion of the generalized
averaged nonexpansive (GAN) operator with a positive exponent γ, establish
the convergence property of the fixed-point iterations of GAN operators and
prove their convergence rates higher than the known result for a range of the
exponent γ. Specifically, this notion generalizes the averaged nonexpansive
operators in two aspects. First, the generalized averaged nonexpansiveness



Convergence rate analysis for FP iterations of GAN operators Page 3 of 32    61 

with exponent γ of an operator for γ > 2 is weaker than the averaged nonex-
pansiveness which corresponds to γ = 2, but it still guarantees convergence
of its fixed-point iterations. Second, the exponent γ allows us to refine the
local convergence rates of the resulting fixed-point iterations, leading to a
local convergence rate higher than that the averaged nonexpansive operator
has.

We organize this paper in six sections. In Sect. 2, we describe fixed-point
formulations for three convex optimization models, which motivate the class
of operators investigated in this paper. We introduce in Sect. 3 the notion
of the GAN operator and study its connection with nonexpansive, averaged
nonexpansive and contractive operators. Several basic properties of GAN
operators are also provided. Section 4 is devoted to local and global conver-
gence rate analysis of fixed-point iterations of GAN operators. In Sect. 5,
we employ the convergence rate results developed in Sect. 4 to analyze the
convergence rate of the fixed-point algorithms for three convex optimization
models described in Sect. 2. Section 6 offers a conclusion.

2. Fixed-point formulations for optimization

Solutions of optimization problems are often formulated as fixed-points of
nonlinear operators. Such formulations have great advantages for algorithm
development and convergence analysis. We describe in this section fixed-point
formulations for convex optimization problems.

By Γ0(Rn) we denote the class of all proper lower semicontinuous convex
functions from R

n to R ∪ {+∞}. We assume that Ψ ∈ Γ0(Rn) and consider
the convex optimization problem

argmin
x∈Rn

Ψ(x). (2.1)

Throughout this paper, we assume that the objective function Ψ has at least
one minimizer without further mentioning. Solutions of problem (2.1) may be
reformulated as fixed-points of certain operators, depending on the smooth-
ness of the objective function Ψ. To this end, we first recall the notions of the
proximity operator and subdifferential of a convex function. Let H ∈ R

n×n

be a symmetric positive definite matrix. For x ∈ R
n and y ∈ R

n, we define
the H-weighted inner product by 〈x, y〉H := x�Hy and the corresponding H-

weighted norm by ‖x‖H := 〈x, x〉
1
2
H . Then the �2 inner product and �2 norm

are given by 〈x, y〉2 := 〈x, y〉I and ‖x‖2 := ‖x‖I respectively, where I ∈ R
n×n

denotes the identity matrix. For ψ ∈ Γ0(Rn), the proximity operator of ψ at
x ∈ R

n is defined by

proxψ(x) := argmin
u∈Rn

{
1
2
‖u − x‖22 + ψ(u)

}
,

and the subdifferential of ψ at x ∈ R
n is defined by

∂ψ(x) := {y ∈ R
n : ψ(z) ≥ ψ(x) + 〈y, z − x〉2 for all z ∈ R

n}.

Below, we list examples of the operators derived from problem (2.1) for
different types of objective functions. In the following three cases, we assume



   61 Page 4 of 32 Y. Lin, Y. Xu

that function f ∈ Γ0(Rn) is differentiable with an L-Lipschitz continuous
gradient with respect to ‖ · ‖2. We let R+ denote the set of all positive real
numbers throughout the paper.

Case 1. Ψ := f . In this case, a minimizer of (2.1) is identified as a
fixed-point of operator

T1 := I − β∇f, where β ∈ R+. (2.2)

We will call T1 a gradient descent operator. This type of optimization prob-
lems has important applications in machine learning (e.g. smoothed SVM,
ridge regression) [55] and medical imaging [2,23].

Case 2. Ψ := f + g, where g ∈ Γ0(Rn) may not be differentiable, but
its proximity operator has a closed form or can be easily computed. By using
Fermat’s rule (Theorem 16.3 of [6]) and a relation between the subdifferential
and the proximity operator (Proposition 2.6 of [37]), a minimizer of (2.1) is
identified as a fixed-point of operator

T2 := proxβg ◦ (I − β∇f), where β ∈ R+. (2.3)

Obviously, T2 = proxβg ◦T1. Optimization models of this type are raised from
machine learning (e.g. �1-SVM, LASSO regression) [33], compressed sensing
[25] and image processing [7,24].

Case 3. Ψ = f+g◦B+h, where g ∈ Γ0(Rm), h ∈ Γ0(Rn), and B ∈ R
m×n

is a matrix. We also assume that the proximity operators of both g and h
have closed forms or can be easily computed. Let g∗ denote the conjugate
function of g, that is,

g∗(z) := sup
y∈Rm

{〈z, y〉2 − g(y)}, for z ∈ R
m.

By using Fermat’s rule, the chain rule of subdifferential, a relation between
the subdifferential and the proximity operator, and introducing a dual vari-
able, a minimizer of (2.1) in this case can be identified as a fixed-point of

a more complicated operator. Specifically, we let v :=
(

x
y

)
, for x ∈ R

n,

y ∈ R
m, and introduce r : R

n+m → R by r(v) := f(x), T̃ : R
n+m → R

n+m

by T̃ (v) :=
(

proxβh(x)
proxηg∗(y)

)
, where β and η are two positive parameters. Let

E :=
(

In −βB�

ηB Im

)
, G :=

(
In −βB�

−ηB Im

)
, W :=

( 1
β In −B�

−B 1
η Im

)
.

We then define the operators

TG : u →
{

v : (u, v) satisfies that v = T̃ ((E − G)v + Gu)
}

and

T3 := TG ◦ (I − W−1∇r), where β, η ∈ R+. (2.4)

It can be verified that if v ∈ R
n+m is a fixed-point of T3, then the correspond-

ing x ∈ R
n is a minimizer of (2.1). One can refer to [31,34] for more details

of the derivation of operator T3. The model in this case has applications
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in image processing [15,17,49], machine learning [53] and medical imaging
[28,29,31,34].

3. Generalized averaged nonexpansive operators

In this section, we introduce the notion of the generalized averaged nonex-
pansive (GAN) operator and study its connection with the nonexpansive,
averaged nonexpansive and contractive operators. Several basic properties of
GAN operators are also provided.

We first describe the definition of GAN operator. Let I denote the
identity operator and ‖ · ‖ a norm on R

n.

Definition 3.1. An operator T : R
n → R

n is said to be generalized averaged
nonexpansive if there exist γ, μ ∈ R+ such that

‖Tx − Ty‖γ + μ‖(I − T )x − (I − T )y‖γ ≤ ‖x − y‖γ , for all x, y ∈ R
n.

(3.1)

Specifically, we say that T is μ-generalized averaged nonexpansive (μ-GAN)
with exponent γ with respect to ‖ · ‖.

The norm ‖ · ‖ used in Definition 3.1 can be any norm including the
norm induced by an inner product, weighted inner product and the �1 norm.
According to Definition 3.1, for μ1 > μ2 > 0, if T is μ1-GAN with exponent
γ ∈ R+, then it is also μ2-GAN with exponent γ.

Let Fix(T ) denote the set of all fixed-points of operator T and

Λ := {T : R
n → R

n| Fix(T ) 
= ∅}.

Throughout this paper, we will assume that T ∈ Λ without further mention-
ing. It follows from Definition 3.1 that if T is GAN, then

‖Tx − x̂‖γ + μ‖Tx − x‖γ ≤ ‖x − x̂‖γ , for all x ∈ R
n, x̂ ∈ Fix(T ).

(3.2)

We next discuss connections of the GAN operators with the nonexpan-
sive, averaged nonexpansive, firmly nonexpansive and contractive operators.
For notational simplicity, throughout the remaining part of this paper, we
use 〈·, ·〉 and ‖ · ‖ to represent a weighted inner product and the correspond-
ing weighted norm with respect to a symmetric positive definite matrix, re-
spectively, unless there is a need to specify the weight matrix. An operator
T : R

n → R
n is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ R
n,

and is called firmly nonexpansive if

‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉, for all x, y ∈ R
n.

If there exists a nonexpansive operator N : R
n → R

n and α ∈ (0, 1) such
that T = (1−α)I +αN , we say that T is α-averaged nonexpansive [3,27,45].
If there exists ρ ∈ (0, 1) such that

‖Tx − Ty‖ ≤ ρ‖x − y‖, for all x, y ∈ R
n, (3.3)
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we say that T is contractive (ρ-contractive). From Definition 3.1, we can
immediately see that GAN operators are nonexpansive.

To see the connection of the generalized averaged nonexpansiveness with
the averaged nonexpansiveness, we recall a known result (Proposition 4.35 of
[6]).

Proposition 3.2. Let α ∈ (0, 1). Operator T : R
n → R

n is α-averaged nonex-
pansive if and only if

‖Tx − Ty‖2 +
1 − α

α
‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2, for all x, y ∈ R

n.

Proposition 3.2 implies that the α-averaged nonexpansiveness is equiv-
alent to the 1−α

α -generalized averaged nonexpansiveness with exponent 2. In
particular, the firm nonexpansiveness is equivalent to the 1-generalized av-
eraged nonexpansiveness with exponent 2, since it is also equivalent to the
1
2 -averaged nonexpansiveness (see Remark 4.34 of [6]). We will show later
in this section that for any given γ ∈ R+, a contractive operator must be
GAN with exponent γ. The generalization from averaged nonexpansiveness
to generalized averaged nonexpansiveness will lead to higher order conver-
gence rate for fixed-point algorithm defined by a GAN operator with an
exponent smaller than 2. We will discuss this point in a later section.

We now study the relation among the GAN operators with different
exponents and the relation among the generalized averaged nonexpansive-
ness, contractivity and FP-contractivity (which we will define later). We first
present a technical lemma whose proof is straightforward and thus is omitted.

Lemma 3.3. Let a, b and c be three nonnegative real numbers, γ, γ′ ∈ R+. If
γ′ > γ and aγ + bγ ≤ cγ , then aγ′

+ bγ′ ≤ cγ′
.

We establish the inclusion relation of the class of GAN operators with
different exponents in the following proposition.

Proposition 3.4. Suppose that 0 < γ1 < γ2. If operator T : R
n → R

n is GAN
with exponent γ1, then T is GAN with exponent γ2. In particular, if T is
μ-GAN with exponent γ1 for μ ≥ 1, then T is μ-GAN with exponent γ2.

Proof. Since T is GAN with exponent γ1, there exists μ ∈ R+ such that

‖Tx − Ty‖γ1 + μ‖(I − T )x − (I − T )y‖γ1 ≤ ‖x − y‖γ1 , for all x, y ∈ R
n.

Applying Lemma 3.3 with a := ‖Tx − Ty‖, b := μ
1

γ1 ‖(I − T )x − (I − T )y‖,
c := ‖x − y‖, γ := γ1 and γ′ := γ2, we obtain that

‖Tx − Ty‖γ2 + μ
γ2
γ1 ‖(I − T )x − (I − T )y‖γ2 ≤ ‖x − y‖γ2 , (3.4)

which implies that T is GAN with exponent γ2. In particular, if μ ≥ 1, then
it follows from (3.4) and the fact γ2

γ1
≥ 1 that

‖Tx − Ty‖γ2 + μ‖(I − T )x − (I − T )y‖γ2 ≤ ‖x − y‖γ2 ,

which implies that T is μ-GAN with exponent γ2. �
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We next show that contractivity implies generalized averaged nonex-
pansiveness.

Proposition 3.5. If an operator T : R
n → R

n is ρ-contractive for some ρ ∈
(0, 1), then it is ρ̂-GAN with exponent γ, where γ ∈ R+ is an arbitrarily fixed
number and ρ̂ := 1−ργ

(1+ρ)γ .

Proof. Since T is ρ-contractive, for any fixed γ ∈ R+, we have that

‖Tx − Ty‖γ ≤ ργ‖x − y‖γ , for all x, y ∈ R
n. (3.5)

We choose ρ̂ := 1−ργ

(1+ρ)γ and observe that ργ = 1 − ρ̂(1 + ρ)γ . We thus obtain
that

ργ‖x − y‖γ = ‖x − y‖γ − ρ̂(‖x − y‖ + ρ‖x − y‖)γ .

By the definition (3.3) of the contractive operator and the triangle inequality,
we find that

‖x − y‖ + ρ‖x − y‖ ≥ ‖x − y‖ + ‖Tx − Ty‖ ≥ ‖(I − T )x − (I − T )y‖.

Substituting this inequality into the right hand side of the above equation
and then combining with (3.5), we get that

‖Tx − Ty‖γ ≤ ‖x − y‖γ − ρ̂‖(I − T )x − (I − T )y‖γ ,

which proves the desired result. �
Proposition 3.5 provides the inclusion of the class of contractive op-

erators in the class of GAN operators with exponent γ for any γ ∈ R+.
Moreover, the class of contractive operators is a proper subset of the class of
GAN operators (see, Example 3.9 to be presented later).

We next investigate the inclusion relation of the class of FP-contractive
operators and the class of GAN operators with exponent γ ∈ (0, 1). We now
define the FP-contractive operator. For T ∈ Λ, if there exists ρ ∈ (0, 1) such
that

‖Tx − x̂‖ ≤ ρ‖x − x̂‖, for all x ∈ R
n\Fix(T ), x̂ ∈ Fix(T ), (3.6)

then we say that T is ρ-contractive with respect to its fixed-point set (or
FP-ρ-contractive). From the definition of the FP-contractivity, contractive
operators must be FP-contractive. However, an FP-contractive operator may
not be contractive. For example, the identity operator I is FP-contractive
but not contractive. In addition, the fixed-point of a FP-contractive operator
may not be unique.

We need a technical lemma on the monotonicity of the function ψ de-
fined for γ ∈ R+ by

ψ(α) :=
1 − αγ

(1 − α)γ
, α ∈ [0, 1). (3.7)

The following lemma can be easily proved by considering the signs of ψ′ and
using L’Hospital’s Rule.

Lemma 3.6. Let ψ : [0, 1) → R be defined by (3.7). If γ < 1, then ψ is strictly
decreasing on (0, 1) and limα→1− ψ(α) = 0. If γ > 1, then ψ is strictly
increasing on (0, 1) and limα→1− ψ(α) = +∞.
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Proposition 3.7. If T ∈ Λ is GAN with exponent γ for some γ ∈ (0, 1), then
it is FP-ρ-contractive for some ρ ∈ (0, 1).

Proof. We prove this proposition by contradiction. Assume to the contrary
that T is not FP-ρ-contractive for any ρ ∈ (0, 1). That is, for any ρ ∈ (0, 1),
there exist x ∈ R

n\Fix(T ) and x̂ ∈ Fix(T ) such that ‖Tx−x̂‖ > ρ‖x−x̂‖. We
next prove this implies that T is not GAN with exponent γ for any γ ∈ (0, 1),
that is, for any γ ∈ (0, 1) and any μ ∈ R+, there exist x ∈ R

n\Fix(T ) and
x̂ ∈ Fix(T ) such that

‖Tx − x̂‖γ + μ‖Tx − x‖γ > ‖x − x̂‖γ . (3.8)

By Lemma 3.6, for any γ ∈ (0, 1), ψ defined by (3.7) is continuous and
strictly decreasing on (0, 1), and limα→1− ψ(α) = 0. This ensures that for any
μ > 0, there exists ρμ,γ ∈ (0, 1) such that μ > ψ(ρμ,γ). By the contradiction
hypothesis, for this ρμ,γ , there exist some x ∈ R

n\Fix(T ) and x̂ ∈ Fix(T )
such that ‖Tx − x̂‖ > ρμ,γ‖x − x̂‖. We next prove that (3.8) holds.

Since x ∈ R
n\Fix(T ), we know that ‖Tx − x‖ > 0. If ‖Tx − x̂‖ ≥

‖x − x̂‖, it is clear that (3.8) holds. If ‖Tx − x̂‖ < ‖x − x̂‖, we choose
ρ′

μ,γ := ‖Tx− x̂‖/‖x− x̂‖. We then observe that ρ′
μ,γ ∈ (ρμ,γ , 1) and satisfies

‖Tx − x̂‖ = ρ′
μ,γ‖x − x̂‖, (3.9)

and μ > ψ(ρ′
μ,γ), due to the decreasing monotonicity of ψ on (0, 1). This

inequality together with ‖Tx − x‖ > 0 and the definition of ψ implies that

μ‖Tx − x‖γ > ψ(ρ′
μ,γ)‖Tx − x‖γ =

1 − ρ′
μ,γ

γ

(1 − ρ′
μ,γ)γ

‖Tx − x‖γ .

This inequality combined with the triangle inequality ‖x − x̂‖ ≤ ‖Tx − x‖ +
‖Tx − x̂‖ and (3.9) yields that

μ‖Tx − x‖γ >
1 − ρ′

μ,γ
γ

(1 − ρ′
μ,γ)γ

(‖x − x̂‖ − ‖Tx − x̂‖)γ =
(
1 − ρ′

μ,γ
γ)

‖x − x̂‖γ .

Combining the above inequality and (3.9) leads to

‖Tx − x̂‖γ + μ‖Tx − x‖γ > (ρ′
μ,γ‖x − x̂‖)γ +

(
1 − ρ′

μ,γ
γ)

‖x − x̂‖γ = ‖x − x̂‖γ .

This is (3.8), a contradiction to the generalized averaged nonexpansiveness
of T with exponent γ for some γ ∈ (0, 1). Therefore, we conclude that T is
FP-ρ-contractive for some ρ ∈ (0, 1). �

We next demonstrate by a one-dimensional example that the class of
contractive operators is a proper subset of the class of GAN operators with
exponent 1. To this end, we first establish a technical lemma. We mention
here that a one-dimensional operator T : R → R is said to be monotonically
increasing if Tx ≥ Ty for any x, y ∈ R satisfying that x > y.

Lemma 3.8. If an operator T : R → R is nonexpansive and monotonically
increasing, then it is GAN with exponent 1.
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Proof. It suffices to prove that for all t1, t2 ∈ R,

|T (t1) − T (t2)| + |(t1 − t2) − (T (t1) − T (t2))| ≤ |t1 − t2|. (3.10)

If t1 = t2, (3.10) clearly holds. Without loss of generality, we prove that (3.10)
holds for the case t1 > t2. In this case, we know that T (t1) ≥ T (t2) since T
is monotonically increasing. Furthermore, the nonexpansiveness of T implies
that T (t1) − T (t2) ≤ t1 − t2. Therefore,

|T (t1) − T (t2)| + |(t1 − t2) − (T (t1) − T (t2))| = |t1 − t2|,
which completes the proof. �

Example 3.9. Let T := proxλ|·|, where λ ∈ R+. Then T is GAN with ex-
ponent 1, but it is not GAN with exponent γ for any γ ∈ (0, 1) and nor
contractive.

Proof. Note that T is firmly nonexpansive [21], and hence it is nonexpansive.
It follows from Example 2.3 in [37] that

proxλ|·|(t) =

⎧⎪⎨
⎪⎩

t − λ, if t > λ,

0, if − λ ≤ t ≤ λ,

t + λ, if t < −λ,

(3.11)

which is monotonically increasing. Then we conclude from Lemma 3.8 that
T is GAN with exponent 1.

We next show that T is not GAN with exponent γ for all γ ∈ (0, 1).
Suppose that there exists some γ ∈ (0, 1) such that T is GAN with exponent
γ. Since Fix(T ) = {0}, there exists μ ∈ R+ such that

|Tx − 0|γ + μ|Tx − x|γ ≤ |x − 0|γ , for all x ∈ R,

that is,

μ|Tx − x|γ ≤ |x|γ − |Tx|γ , for all x ∈ R. (3.12)

Since Tx = x − λ for x > λ, we have |Tx − x|γ = λγ . Then (3.12) implies
that

μ ≤ λ−γ [xγ − (x − λ)γ ] , for all x ∈ (λ,+∞). (3.13)

Let ϕ(x) := xγ − (x − λ)γ , x ∈ (λ,+∞). It is obvious that ϕ is continuous
on (λ,+∞). Moreover, by letting x = 1

t and using L’Hospital’s rule, we have
that

lim
x→∞ ϕ(x) = lim

t→0

1 − (1 − λt)γ

tγ
= lim

t→0

λ(1 − λt)γ−1

tγ−1
= λ lim

t→0

(
1
t

− λ

)γ−1

= 0

for γ ∈ (0, 1). This implies that for any μ > 0, there exists sufficiently large
x ∈ R+ such that μ > λ−γϕ(x), which contradicts (3.13). Thus T is not
GAN with exponent γ. According to Proposition 3.5, we know that T is not
contractive either. �

We mention here that the projection operator onto a closed convex set
E ⊂ R

n defined by

PE,‖·‖2(x) := argmin
y∈E

‖x − y‖2, x ∈ R
n
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may not be GAN with exponent 1 with respect to the �2 norm. In addition,
neither the proximity operator of the �1 norm nor the proximity operator of
the �2 norm is GAN with exponent 1 with respect to the �2 norm, when the
dimension is greater than or equal to 2. The �1 norm is defined by ‖x‖1 :=∑n

i=1 |xi|, for x ∈ R
n.

Example 3.10. Let E := {p ∈ R
2 : p1 ∈ [0, 1], p2 = 0}, operator T1 := PE,‖·‖2 ,

and define operator T2 : R
2 → R

2 by T2 := proxλ‖·‖1
and T3 : R

2 → R
2 by

T3 := proxλ‖·‖2
, where λ ∈ R+. Then none of T1, T2 and T3 is GAN with

exponent 1 with respect to ‖ · ‖2.

Proof. By the definition of generalized averaged nonexpansiveness with ex-
ponent 1, to prove the desired result, it suffices to show that for any μ ∈ R+,
there exist x(i) and y(i) such that ‖(I − Ti)x(i) − (I − Ti)y(i)‖2 
= 0 and

pi < μ, (3.14)

where

pi :=
‖x(i) − y(i)‖2 − ‖Tix

(i) − Tiy
(i)‖2

‖(I − Ti)x(i) − (I − Ti)y(i)‖2
, i = 1, 2, 3. (3.15)

We first consider the case i = 1. For any μ ∈ R+, it is clear that√
4μ2 + 1 − 1

2μ
< μ. (3.16)

Let x(1) = (0, 0)� and y(1) = (1, 2μ)�. Substituting x(1) and y(1) into the
definition of p1 in (3.15) and then using (3.16) yield that p1 < μ.

We next consider the case i = 2. We know from Example 2.4 of [37]
that

T2x = (proxλ|·|(x1),proxλ|·|(x2))�, x ∈ R
2,

where the closed form of proxλ|·| is given by (3.11). For any μ ∈ R+, we let

x(2) =
(

λ
2 , λ

)�
and y(2) =

(
λ, λ

(
1
4μ + 1

))�
. Substituting x(2) and y(2) into

the definition of p2 in (3.15) and then using (3.16) yield that

p2 =

√
1
4λ2 + λ2

16μ2 − λ
4μ

1
2λ

=

√
4μ2 + 1 − 1

2μ
< μ.

Last, we consider the case i = 3. From Example 2.5 of [37], we know
that

T3(x) = proxλ|·|(‖x‖2)
x

‖x‖2
, x ∈ R

2.

For any μ ∈ R+, we let r := λ
2 min{μ2, 1}, x(3) =

(√
λ2 − (λ − r)2, λ − r

)�

and y(3) = (0, 2λ)�. Then ‖x(3)‖2 = λ and ‖y(3)‖2 = 2λ, and hence T3x
(3) =

(0, 0)�, T3y
(3) = (0, λ)�. Substituting x(3) and y(3) into the definition of p3
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in (3.15) and simplifying, we get that p3 =
√

λ2+4λr−λ√
2λr

. Then rationalizing

the numerator and using the fact
√

λ2 + 4λr > λ give that

p3 =
4λr√

2λr(
√

λ2 + 4λr + λ)
<

√
2
λ

√
r. (3.17)

By the definition of r, we know that
√

r ≤
√

λ
2μ, which together with (3.17)

yields that p3 < μ.
We conclude that (3.14) holds for i = 1, 2, 3, which implies the desired

result. �

We next provide a theorem showing that there exists a class of GAN
operators with exponent 1 for a high-dimensional case. An example satisfies
this theorem will be given later in Corollary 5.6.

Theorem 3.11. Let T : R
n → R

n be a firmly nonexpansive operator. If there
exists α ∈ (0, 1] such that

‖Tx − Ty‖ ≥ α‖x − y‖, for all x, y ∈ R
n, (3.18)

then for β ∈ (0, 2), I − βT is GAN with exponent 1.

Proof. To prove the desired result, it suffices to show that there exists μ ∈ R+

such that for all x, y ∈ R
n,

‖(x − y) − β (Tx − Ty)‖ + μ ‖β(Tx − Ty)‖ ≤ ‖x − y‖. (3.19)

Let w := x − y and v := Tx − Ty. Then (3.19) can be rewritten by

‖w − βv‖ ≤ ‖w‖ − μ‖βv‖. (3.20)

To prove (3.20), it suffices to show that

μ‖βv‖ ≤ ‖w‖ and ‖w − βv‖2 ≤ (‖w‖ − μ‖βv‖)2, (3.21)

where the second inequality is equivalent to

(1 − μ2)β‖v‖2 + 2μ‖w‖‖v‖ ≤ 2〈w, v〉. (3.22)

To prove the first inequality in (3.21) and inequality (3.22), we let

μ := min
{

1
β

, α

(
1 − β

2

)}
.

Then μ ∈ (0, 1). The firm nonexpansiveness of T implies that it is nonexpan-
sive. Since μ ≤ 1

β , the first inequality in (3.21) follows from the nonexpan-
siveness of T immediately. We next show the validity of (3.22). To this end,
we show that

2μ

2 − (1 − μ2)β
∈ (0, α). (3.23)

Since μ ∈ (0, 1) and β ∈ (0, 2), it is obvious that 2 − (1 − μ2)β > 2 − β > 0,
which together with the fact μ ≤ α

(
1 − β

2

)
yields that 2μ

2−(1−μ2)β < 2μ
2−β ≤ α.

Hence (3.23) holds. Combining (3.23) and (3.18), we obtain that

‖v‖ ≥ 2μ

2 − (1 − μ2)β
‖w‖.
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Multiplying [2− (1−μ2)β]‖v‖ on both sides of the above inequality leads to

(1 − μ2)β‖v‖2 + 2μ‖w‖‖v‖ ≤ 2‖v‖2. (3.24)

The firm nonexpansiveness of T gives that ‖v‖2 ≤ 〈w, v〉, which together with
(3.24) implies (3.22). This completes the proof. �

Note that the identity operator is a trivial GAN operator with exponent
γ for any γ ∈ R+. In the following proposition, we identify ranges of μ for
the non-triviality of GAN operators for different ranges of γ. To simplify the
notation, throughout the remaining part of this paper, we define

Ωγ
μ := {T ∈ Λ : T is μ − GAN with exponent γ}. (3.25)

Proposition 3.12. Let γ, μ ∈ R+.
(i) For any γ ≤ 1,

Ωγ
μ\{I} 
= ∅ if and only if μ ≤ 1.

(ii) For any γ > 1 and μ ∈ R+, Ωγ
μ\{I} 
= ∅.

Proof. We first establish (i). Suppose that μ ≤ 1 and show that Ωγ
μ\{I} 
= ∅.

It suffices to find some operator T 
= I such that T ∈ Ωγ
μ for any γ ∈ (0, 1].

To this end, we define T : R
n → R

n by T (x) := z for all x ∈ R
n, where

z ∈ R
n is a constant vector. It is obvious that Fix(T ) = {z}. Since μ ≤ 1, for

any γ ∈ R+ and for all x, y ∈ R
n, we have that

‖Tx − Ty‖γ + μ‖(I − T )x − (I − T )y‖γ = μ‖x − y‖γ ≤ ‖x − y‖γ .

Hence T ∈ Ωγ
μ\{I} for any γ ∈ (0, 1].

Conversely, for any γ ∈ (0, 1], if Ωγ
μ\{I} 
= ∅, then there exists T ∈ Ωγ

μ

such that for some x ∈ R
n, Tx 
= x. Since T ∈ Ωγ

μ, for any given x̂ ∈ Fix(T ),
we have that

‖Tx − x̂‖γ + μ‖Tx − x‖γ ≤ ‖x − x̂‖γ . (3.26)

We next prove that the validity of (3.26) implies μ ≤ 1. By (3.26) and the
fact that ‖Tx − x‖ > 0, we know that ‖Tx − x̂‖ < ‖x − x̂‖. Let α := ‖Tx−x̂‖

‖x−x̂‖ .
Then α ∈ [0, 1) and

‖Tx − x̂‖ = α‖x − x̂‖. (3.27)

Hence

‖x − x̂‖γ − ‖Tx − x̂‖γ = (1 − αγ)‖x − x̂‖γ (3.28)

and, by the triangle inequality,

‖Tx − x‖γ ≥ (‖x − x̂‖ − ‖Tx − x̂‖)γ = (1 − α)γ‖x − x̂‖γ . (3.29)

By combining (3.26), (3.28) and (3.29), we obtain that

μ ≤ ‖x − x̂‖γ − ‖Tx − x̂‖γ

‖Tx − x‖γ
≤ 1 − αγ

(1 − α)γ
= ψ(α), α ∈ [0, 1), (3.30)

where ψ is defined by (3.7). We know from Lemma 3.6 that for any γ ∈ (0, 1),

max
α∈[0,1)

{ψ(α)} = 1. (3.31)
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Obviously, (3.31) also holds for γ = 1. That is, (3.31) holds for any γ ∈ (0, 1],
which together with (3.30) implies that μ ≤ 1.

Now we prove (ii). For any γ > 1, if μ ≤ 1, we have shown in (i) that
there exists a constant operator T such that T ∈ Ωγ

μ. If μ > 1, we let ψ be
defined by (3.7). Since γ > 1, by Lemma 3.6, there exists α ∈ (0, 1) such that
ψ(α) ≥ μ, that is,

αγ + μ(1 − α)γ ≤ 1. (3.32)

We next verify that αI ∈ Ωγ
μ. By using (3.32), for all x, y ∈ R

n, we have
that

‖αx − αy‖γ + μ‖(1 − α)x − (1 − α)y‖γ = (αγ + μ(1 − α)γ) ‖x − y‖γ

≤ ‖x − y‖γ .

Thus, αI ∈ Ωγ
μ\{I}. �

We know that the classes of contractive operators, nonexpansive opera-
tors and averaged nonexpansive operators are closed under the composition
operation as well as the convex combination (see [5,6,8,14,16]). These prop-
erties are important for their applications in convex optimization. In the
next proposition, we prove the closedness of the class of GAN operators with
exponent γ ≥ 1 under the composition operation as well as the convex com-
bination. To establish these results, we recall Example 8.23 of [6] as a lemma.

Lemma 3.13. If γ ∈ [1,+∞), then ‖ · ‖γ is convex and

‖x + y‖γ ≤ 2γ−1 (‖x‖γ + ‖y‖γ) , for all x, y ∈ R
n.

Proposition 3.14. Let γ ∈ [1,+∞) and μ1, μ2 ∈ R+, α ∈ (0, 1). If T1 : R
n →

R
n is μ1-GAN with exponent γ and T2 : R

n → R
n is μ2-GAN with exponent

γ, then the following statements hold:
(i) T1 ◦ T2 is μ-GAN with exponent γ, where μ := 21−γ min{μ1, μ2}.
(ii) (1 − α)T1 + αT2 is μ′-GAN with exponent γ, where μ′ := min{μ1, μ2}.

Proof. We first prove item (i). For any x, y ∈ R
n, we define

p := (I − T2)x − (I − T2)y, q := (I − T1)(T2x) − (I − T1)(T2y).

Then

p + q = (I − T1 ◦ T2)x − (I − T1 ◦ T2)y. (3.33)

From Lemma 3.13, we know that

‖p + q‖γ ≤ 2γ−1 (‖p‖γ + ‖q‖γ) . (3.34)

Let μ := 21−γ min{μ1, μ2}. It follows from (3.33) and (3.34) that

μ‖(I − T1 ◦ T2)x − (I − T1 ◦ T2)y‖γ ≤ μ2‖p‖γ + μ1‖q‖γ . (3.35)

The μ1-generalized averaged nonexpansiveness of T1 and μ2-generalized av-
eraged nonexpansiveness of T2 (with exponent γ) give that

μ1‖q‖γ ≤ ‖T2x − T2y‖γ − ‖(T1 ◦ T2)x − (T1 ◦ T2)y‖γ (3.36)
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and

μ2‖p‖γ ≤ ‖x − y‖γ − ‖T2x − T2y‖γ , (3.37)

respectively. Adding inequalities (3.36) and (3.37) together yields

μ2‖p‖γ + μ1‖q‖γ ≤ ‖x − y‖γ − ‖(T1 ◦ T2)x − (T1 ◦ T2)y‖γ . (3.38)

Now combining (3.35) and (3.38), we conclude that

μ‖(I − T1 ◦ T2)x − (I − T1 ◦ T2)y‖γ ≤ ‖x − y‖γ − ‖(T1 ◦ T2)x − (T1 ◦ T2)y‖γ ,

that is, T1 ◦ T2 is μ-GAN with exponent γ, which proves item (i).
We next prove item (ii). For α ∈ (0, 1) and x, y ∈ R

n, we define T := (1−
α)T1+αT2, w := x−y, v := T x−T y, v(1) := T1x−T1y and v(2) := T2x−T2y.
To prove item (ii), it suffices to show that

‖v‖γ + μ′‖w − v‖γ ≤ ‖w‖γ , (3.39)

where μ′ := min{μ1, μ2}. It is easy to see that w − v = (1 − α)(w − v(1)) +
α(w−v(2)), which together with the convexity of ‖ ·‖γ (see Lemma 3.13) and
the definition of μ′ yields that

μ′‖w − v‖γ ≤ (1 − α)μ1‖w − v(1)‖γ + αμ2‖w − v(2)‖γ . (3.40)

The generalized averaged nonexpansiveness of T1 and T2 yields that

μ1‖w − v(1)‖γ ≤ ‖w‖γ − ‖v(1)‖γ and μ2‖w − v(2)‖γ ≤ ‖w‖γ − ‖v(2)‖γ .

(3.41)

Combining (3.40) and (3.41), then using the convexity of ‖ · ‖γ , we obtain
that

μ′‖w − v‖γ ≤ ‖w‖γ −
[
(1 − α)‖v(1)‖γ + α‖v(2)‖γ

]

≤ ‖w‖γ − ‖(1 − α)v(1) + αv(2)‖γ = ‖w‖γ − ‖v‖γ ,

that is, (3.39) holds. This completes the proof. �

Before closing this section, we illustrate certain geometric properties of
nonexpansive, firmly nonexpansive, averaged nonexpansive and contractive
operators, and the proposed GAN operators with different exponents. Such
geometric properties are useful in guiding us for the convergence analysis of
the Picard sequences of these operators. For x ∈ R

n, r ∈ R+, we define the
ball with center x and radius r by

B(x, r) := {y ∈ R
n| ‖y − x‖ ≤ r}.

Let T ∈ Λ and x̂ be an arbitrary fixed-point of T . According to the definitions
of nonexpansive, contractive, firmly nonexpansive and averaged nonexpansive
operators, for any given x ∈ R

n, ranges of Tx can be illustrated by balls with
distinct centers and radii if T is one of these types of operators. We show the
ranges of Tx for different types of T in Fig. 1. The case that T is GAN with
exponent 3 is also included.

Figure 1 illustrates that the nonexpansiveness of operator T is not suf-
ficient to guarantee convergence of its fixed-point iteration. For example,
when T is nonexpansive without additional hypothesis, for a given point x,
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Figure 1. The range of Tx for a given x ∈ R
2 when T

is nonexpansive, contractive, firmly nonexpansive, averaged
nonexpansive or GAN with exponent 3 with respect to ‖·‖2:
inner region of the circles including the boundaries

Tx may stay on the boundary of B(x̂, ‖x− x̂‖) and not be equal to x, that is,
‖Tx− x̂‖ = ‖x− x̂‖ but Tx 
= x. For the same reason, for any positive integer
k, T kx may always stay on the boundary, which implies that the fixed-point
iteration of T does not converge. If T is contractive, the range of T kx will
shrink as k increases, which leads to the convergence of T kx to x̂. For the
case when T is averaged nonexpansive, the range of Tx is an inscribed ball
of B(x̂, ‖x − x̂‖) with tangent point x. One can refer to Theorem 2.2 of [14]
for convergence of the fixed-point iteration of T for this case.

In Fig. 2, we show the range of Tx for the cases that T is 1
2 -GAN

with exponent 1
2 , 1, 2 or 3. When the exponent γ is equal to 2, the range

of Tx is a ball the same as in the case of averaged nonexpansiveness. It
is of the egg shape for exponent 3 and the water-drop shape for exponent
1. We will show that the convergence rate of the fixed-point iteration of T
improves as γ decreases. Especially, when γ < 1, the range of T has some
kind of contractive property (the point x is included), which is called as the
FP-contractive property.

4. Convergence rate analysis for fixed-point iterations of GAN
operators

In this section, we establish convergence of the fixed-point iteration of a GAN
operator. The local convergence rate (the convergence rate of the distance be-
tween two consecutive iterates) and global convergence rate (the convergence
rate in terms of the distance between an iterate and a fixed-point) are pro-
vided.
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Figure 2. The range of Tx for a given x ∈ R
2 when T is

nonexpansive or 1
2 -GAN with exponent 1

2 , 1, 2 and 3 with
respect to ‖ · ‖2: inner region of the closed curves including
the boundaries

4.1. Local convergence rate analysis

We will show in this subsection that the local convergence rate of the fixed-
point iteration of a GAN operator with exponent γ is o(k− 1

γ ). The smaller
the exponent γ a GAN operator has, the higher local convergence rate its
fixed-point iteration results.

We first describe the fixed-point iteration of an operator. By N0 and N+

we denote the set of all nonnegative integers and the set of all positive inte-
gers, respectively. Given an initial vector x0 ∈ R

n, the fixed-point iteration
of T : R

n → R
n is given by

xk+1 = Txk, k ∈ N0.

We call the sequence {xk} generated by the fixed-point iteration of T a Picard
sequence of operator T .

We begin with stating the main theorem of this section. For sequences
{ak} ⊂ R+ ∪ {0} and {bk} ⊂ R+, both tending to zero, if limk→∞ ak

bk
= 0,

we write ak = o(bk). If there exist constants c > 0 and K ∈ N0 such that
ak ≤ cbk for all k ≥ K, we write ak = O(bk).

Theorem 4.1. If T ∈ Λ is GAN with exponent γ ∈ R+, then for any initial
vector x0 ∈ R

n, the Picard sequence {xk} of operator T converges to some
x∗ ∈ Fix(T ), and

‖xk+1 − xk‖ = o
(
k− 1

γ

)
. (4.1)

We now proceed to prove Theorem 4.1. To this end, we recall Theorem
1 of [41] as a lemma.
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Lemma 4.2. Let T ∈ Λ be a nonexpansive operator. For any initial vector
x0 ∈ R

n, if the Picard sequence {xk} of T satisfies limk→∞ ‖xk+1 − xk‖ = 0,
then {xk} converges to a fixed-point of T .

We also need Lemma 3 of [22], which we state below.

Lemma 4.3. Suppose that {ak} and {bk} are two nonnegative sequences in
R. If

∑∞
k=0 akbk < +∞, {bk} is monotonically decreasing, and there exists

ε > 0 such that ak ≥ ε for all k ∈ N0, then bk = o
(
1
k

)
.

Proof of Theorem 4.1. We first show convergence of the sequence {xk}. Since
T is GAN with exponent γ, we know that it is nonexpansive and there exists
μ ∈ R+ such that for any x̂ ∈ Fix(T ),

‖xk+1 − x̂‖γ + μ‖xk+1 − xk‖γ ≤ ‖xk − x̂‖γ . (4.2)

For any positive integer K, summing both sides of the inequality (4.2) for
k = 0, 1, . . . , K yields that

K∑
k=0

μ‖xk+1 − xk‖γ ≤ ‖x0 − x̂‖γ − ‖xK+1 − x̂‖γ ≤ ‖x0 − x̂‖γ . (4.3)

Inequality (4.3) ensures that series
∞∑

k=0

μ‖xk+1 − xk‖γ < +∞. (4.4)

Result (4.4) implies that limk→∞ ‖xk+1 − xk‖ = 0. By Lemma 4.2, we con-
clude that {xk}k∈N0 converges to some x∗ ∈ Fix(T ).

We next employ Lemma 4.3 to show that (4.1) holds. Applying Lemma
4.3 to the sequences ak := μ and bk := ‖xk+1 − xk‖γ , k ∈ N0, it suffices to
show that {‖xk+1 − xk‖} is monotonically decreasing. This follows from the
nonexpansiveness of T since it implies that

‖xk+2 − xk+1‖ = ‖Txk+1 − Txk‖ ≤ ‖xk+1 − xk‖
for all k ∈ N0. Therefore, by Lemma 4.3, (4.1) holds. �

Since an averaged nonexpansive operator is GAN with exponent γ = 2,
Theorem 4.1 covers the well-known result that the local convergence rate of
the fixed-point iteration of an averaged nonexpansive operator is o(k− 1

2 ), see
[22]. Moreover, it ensures that the local convergence rate of the fixed-point
iteration of a GAN operator with exponent γ < 2 is higher than that of an
averaged nonexpansive operator.

4.2. Global convergence rate analysis

We consider in this subsection the global convergence rate of the fixed-point
iteration of a GAN operator and investigate the relation between the local
convergence rate and the global convergence rate. We will show that the
fixed-point iteration of a GAN operator with exponent γ ∈ (0, 1) can achieve
an exponential global convergence rate. Moreover, if a GAN operator is also
Hölder regular, the global convergence rate of its fixed-point iteration will
depend on both the exponent of generalized averaged nonexpansiveness and
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the exponent of Hölder regularity. The definition of Hölder regularity will be
given later in this subsection.

We first establish a relation between the local convergence rate and the
global convergence rate.

Theorem 4.4. If T ∈ Ω1
μ for μ ∈ (0, 1], then for any initial vector x0 ∈ R

n,
the Picard sequence {xk} of T converges to some x∗ ∈ Fix(T ), and there
holds the equivalence relation for all positive integers k,

μ

∞∑
j=k

‖xj+1 − xj‖ ≤ ‖xk − x∗‖ ≤
∞∑

j=k

‖xj+1 − xj‖. (4.5)

Proof. Convergence of {xk} to some x∗ ∈ Fix(T ) follows from Theorem 4.1.
It remains to establish the equivalence relation (4.5). Since T ∈ Ω1

μ, by the
definition of generalized averaged nonexpansiveness, we have that

μ‖xj+1 − xj‖ ≤ ‖xj − x∗‖ − ‖xj+1 − x∗‖, j ∈ N0.

For any N > k, summing the above inequality for j = k, k + 1, . . . , N yields
that

μ

N∑
j=k

‖xj+1 − xj‖ ≤ ‖xk − x∗‖ − ‖xN+1 − x∗‖ ≤ ‖xk − x∗‖. (4.6)

In the inequality above, we let N → ∞ and get the left inequality of (4.5).
To establish the right inequality of (4.5), for any N > k, we repeatedly

use the triangle inequality and obtain that

‖xk − x∗‖ ≤
N∑

j=k

‖xj − xj+1‖ + ‖xN+1 − x∗‖. (4.7)

Inequality (4.6) implies that
∑∞

j=k ‖xj+1 − xj‖ < +∞. Moreover, the first
part of this theorem ensures that limN→∞ ‖xN+1 − x∗‖ = 0. Hence, letting
N → ∞ in inequality (4.7) yields the right inequality of (4.5). �

Theorem 4.4 indicates that when the operator T is GAN with exponent
1, the global convergence rate of its Picard sequence is equivalent to the con-
vergence rate of

∑∞
j=k ‖xj+1−xj‖. We next show how Theorem 4.4 provides a

way to estimate the global convergence rate. We first show a technical result.

Proposition 4.5. If {ak} ⊂ R is a nonnegative sequence with ak = o (k−α),
then

∑∞
j=k aj = o

(
k−(α−1)

)
.

Proof. Since ak = o (k−α), for any ε > 0, there is K ∈ N0 such that aj < ε
jα

for all j ≥ K. Summing this inequality for j = k, k + 1, . . . , with k ≥ K, we
obtain that

∞∑
j=k

aj < ε

∞∑
j=k

1
jα

≤ ε

∫ ∞

k−1

1
tα

dt =
ε

(α − 1)(k − 1)α−1
.

This establishes the desired estimate. �
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Theorem 4.4 together with Propositions 3.4 and 4.5 leads to the follow-
ing theorem.

Theorem 4.6. If T ∈ Λ is GAN with exponent γ ∈ (0, 1), then for any initial
vector x0 ∈ R

n, the Picard sequence {xk} of T converges to some x∗ ∈ Fix(T ),
and ‖xk − x∗‖ = o

(
k− 1−γ

γ

)
.

Proof. It follows from Theorem 4.1 that {xk} converges to some x∗ ∈ Fix(T )
and ‖xk+1 − xk‖ = o

(
k− 1

γ

)
. Applying Proposition 4.5 with ak := ‖xk+1 −

xk‖, we obtain that
∞∑

j=k

‖xj+1 − xj‖ = o
(
k− 1−γ

γ

)
.

Moreover, by Proposition 3.4, we see that T is GAN with exponent 1. Thus,
the desired result of this theorem follows from Theorem 4.4. �

In fact, according to Proposition 3.7, we know that GAN operator with
exponent γ ∈ (0, 1) is FP-ρ-contractive for some ρ ∈ (0, 1), which leads to
higher order global convergence rate of its Picard sequence than the result
shown in Theorem 4.6. To this end, we first show that the Picard sequence
of a FP-contractive operator has an exponential global convergence rate.

Theorem 4.7. If operator T ∈ Λ is FP-contractive, then for any initial vector
x0 ∈ R

n, the Picard sequence {xk} of T either converges to some x∗ ∈ Fix(T )
within a finite number of iterations or there exists ρ ∈ (0, 1) such that

‖xk − x∗‖ ≤ ρk‖x0 − x∗‖, for all k ∈ N0. (4.8)

Proof. If there exists an integer K ∈ N0 such that xK ∈ Fix(T ), then xk = xK

for all k > K, and hence limk→∞ xk = xK . Otherwise, xk /∈ Fix(T ) for all
k ∈ N0. In this case, by the definition of the FP-contractive operator, there
exist x∗ ∈ Fix(T ) and ρ ∈ (0, 1) such that

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖, for all k ∈ N0.

Repeatedly using this inequality, we obtain the desired estimate (4.8). �

The next corollary improves the global convergence rate given in The-
orem 4.6.

Corollary 4.8. If operator T ∈ Λ is GAN with exponent γ ∈ (0, 1), then for
any initial vector x0 ∈ R

n, the Picard sequence {xk} of T either converges to
some x∗ ∈ Fix(T ) within finite iterations or there exists some ρ ∈ (0, 1) such
that estimate (4.8) holds.

Proof. By Proposition 3.7, a GAN operator T ∈ Λ with exponent γ ∈ (0, 1) is
FP-contractive. Then the desired result of this corollary follows from Theorem
4.7. �
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To obtain global convergence rates for the case with the exponent γ ≥ 1,
we need an additional condition that establishes a relation between the local
convergence rate and the global convergence rate. In view of this, we recall
the definition of Hölder regular operators introduced in [11]. For a set E ⊂ R

n

and x ∈ R
n, we define

d(x,E) := inf
y∈E

‖x − y‖.

Definition 4.9. Let T ∈ Λ. We say that T is a Hölder regular (HR) operator
with exponent γ, if there exist γ ∈ R+ and μ ∈ R+ such that

d(x,Fix(T )) ≤ μ‖x − Tx‖γ , for all x ∈ R
n.

We verify below that for any ρ ∈ (0, 1), a FP-ρ-contractive operator
T ∈ Λ is HR with exponent 1. By the FP-contractivity of T and the triangle
inequality, for all x ∈ R

n and x̂ ∈ Fix(T ), we have that

‖Tx − x∗‖ ≤ ρ‖x − x∗‖ and ‖x − x∗‖ ≤ ‖Tx − x∗‖ + ‖x − Tx‖,

which imply that ‖x − x∗‖ ≤ 1
1−ρ‖x − Tx‖, and hence

d(x,Fix(T )) ≤ 1
1 − ρ

‖x − Tx‖, for all x ∈ R
n.

Thus, T is HR with exponent 1. We shall show in the next section that
the gradient descent operator is also HR with exponent 1 under appropriate
assumptions.

Now we state the main result on the global convergence rate of the
fixed-point iteration of GAN operators.

Theorem 4.10. If T ∈ Λ is GAN with exponent γ1 ∈ R+ and HR with expo-
nent γ2 ∈ R+, then for any initial vector x0 ∈ R

n, the Picard sequence {xk}
of T converges to some x∗ ∈ Fix(T ), and there exists ρ ∈ (0, 1) such that

‖xk − x∗‖ =

⎧⎨
⎩

O
(
k− γ2

γ1(1−γ2)

)
, 0 < γ2 < 1,

O
(
ρk

)
, γ2 ≥ 1.

(4.9)

To prove Theorem 4.10, we recall Lemma 4.1 of [12].

Lemma 4.11. Suppose that {ak} and {bk} be two sequences of nonnegative
numbers. For p > 0, if there exists K ∈ N0 such that

ak+1 ≤ ak(1 − bkap
k), for all k ≥ K,

then

ak ≤

⎛
⎝a−p

K + p

k−1∑
j=K

bj

⎞
⎠

− 1
p

, for all k > K.

For a closed convex set E ⊂ R
n, we define PE(x) := argmin

y∈E
{‖x − y‖}.

Note that Fix(T ) is closed and convex if T ∈ Λ is nonexpansive. Hence,
PFix(T )(x) is well-defined, which will be used in the proof of the next propo-
sition.
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Proposition 4.12. Suppose that T ∈ Λ is nonexpansive. For the Picard se-
quence {xk} of T with a given initial vector x0 ∈ R

n, let dk := d(xk,Fix(T )),
k ∈ N0. If there exist γ > 0, μ > 0, ϑ ≥ 1 and K ∈ N0 such that

dγ
k+1 ≤ dγ

k − μdγϑ
k , for all k ≥ K, (4.10)

then {xk} converges to some x∗ ∈ Fix(T ). Moreover, there exist C ∈ R+ and
ρ ∈ [0, 1) such that for k > K,

‖xk − x∗‖ ≤
{

Ck− 1
γ(ϑ−1) , ϑ > 1,

Cρk−K , ϑ = 1.

Proof. Let ak = dγ
k and p = ϑ − 1 ≥ 0. Then (4.10) becomes

ak+1 ≤ ak(1 − μap
k), for all k ≥ K. (4.11)

We consider two cases based on the value of ϑ.
Case 1: ϑ > 1. We first show that {xk} converges to some x∗ ∈ Fix(T ).

It follows from Lemma 4.11 with bk := μ that

ak ≤
(
a−p

K + pμ(k − K)
)− 1

ϑ−1 , for all k > K.

Hence, there exists C1 > 0 such that for k > K,

dk = a
1
γ

k ≤ C1k
− 1

γ(ϑ−1) → 0, as k → ∞.

By the nonexpansiveness of T , we know that {‖xk − x̂‖} is monotonically
decreasing for any x̂ ∈ Fix(T ). Then

‖xk+1 − xk‖ ≤ ‖xk+1 − PFix(T )(xk)‖ + ‖xk − PFix(T )(xk)‖
≤ 2‖xk − PFix(T )(xk)‖ = 2dk → 0.

We conclude from Lemma 4.2 that {xk} converges to some x∗ ∈ Fix(T ).
Using the monotonicity of {‖xk − x̂‖} for any x̂ ∈ Fix(T ) again, we have
that

‖xm − PFix(T )(xk)‖ ≤ ‖xm−1 − PFix(T )(xk)‖ ≤ · · · ≤ ‖xk − PFix(T )(xk)‖ = dk

for all m > k, k ∈ N0. Letting m tend to infinity, the above inequality
becomes

‖x∗ − PFix(T )(xk)‖ ≤ dk, for all k ∈ N0,

which together with the triangle inequality implies for all k > K that

‖xk − x∗‖ ≤ ‖xk − PFix(T )(xk)‖ + ‖x∗ − PFix(T )(xk)‖

≤ 2dk ≤ 2C1k
− 1

γ(ϑ−1) .

Case 2: Suppose that ϑ = 1. Then (4.10) becomes dγ
k+1 ≤ (1 − μ)dγ

k for

all k ≥ K. This implies that μ ∈ (0, 1] and for k > K, dk ≤ dK(1−μ)
k−K

γ → 0.
By the same argument as Case 1, there exists some x∗ ∈ Fix(T ) such that

‖xk − x∗‖ ≤ 2dk ≤ 2dK(1 − μ)
k−K

γ .

Therefore, the proof is completed by setting C := max{2C1, 2dK} and ρ :=
(1 − μ)

1
γ . �
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Note that the result in Proposition 3.1 of [11] is a special case of the
above proposition with γ = 2. The generalization for any γ ∈ R+ is neces-
sary for the global convergence rate analysis of the fixed-iteration of GAN
operator. We next employ Proposition 4.12 to prove Theorem 4.10.

Proof of Theorem 4.10. Since T is GAN with exponent γ1, by Theorem 4.1,
we know that {xk} converges to some x∗ ∈ Fix(T ) and limk→∞ ‖xk+1−xk‖ =
0. Moreover, there exists μ1 ∈ R+ such that for all k ∈ N0,

‖xk+1 − PFix(T )(xk)‖γ1 ≤ ‖xk − PFix(T )(xk)‖γ1 − μ1‖xk+1 − xk‖γ1 . (4.12)

Let dk := d(xk,Fix(T )), k ∈ N0. By the definition of dk+1 and (4.12), we
obtain that

dγ1
k+1 ≤ ‖xk+1 − PFix(T )(xk)‖γ1

≤ dγ1
k − μ1‖xk+1 − xk‖γ1 , for all k ∈ N0. (4.13)

It follows from the Hölder regularity of T that there exists μ2 ∈ R+ such
that

dk ≤ μ2‖xk+1 − xk‖γ2 , for all k ∈ N0. (4.14)

Since limk→∞ ‖xk+1 −xk‖ = 0, there exists K such that ‖xk+1 −xk‖ < 1 for
all k ≥ K, which together with (4.14) implies that for γ2 ≥ 1,

dk ≤ μ2‖xk+1 − xk‖, for all k ≥ K. (4.15)

Now combining (4.13) with (4.14) for 0 < γ2 < 1 gives that

dγ1
k+1 ≤ dγ1

k − μ1μ
− γ1

γ2
2 d

γ1
γ2
k , for all k ∈ N0. (4.16)

Combining (4.13) with (4.15) for γ2 ≥ 1 gives that

dγ1
k+1 ≤ dγ1

k − μ1μ
−γ1
2 dγ1

k , for all k ≥ K. (4.17)

Then we conclude from Proposition 4.12 that there exist C ∈ R+ and ρ ∈
[0, 1) such that for all k > K,

‖xk − x∗‖ ≤
{

Ck− γ2
γ1(1−γ2) , 0 < γ2 < 1,

Cρk−K , γ2 ≥ 1.
(4.18)

For 0 < γ2 < 1, ‖xk −x∗‖ = O
(
k− γ2

γ1(1−γ2)

)
follows from (4.18) immediately.

We next consider the case γ2 ≥ 1. In this case, if ρ = 0, then it is obvious
that ‖xk − x∗‖ = O

(
ρk

)
holds according to (4.18). If ρ ∈ (0, 1), then for all

k > K, ‖xk −x∗‖ ≤ C ′ρk, where C ′ = Cρ−K . Thus ‖xk −x∗‖ = O
(
ρk

)
. �

Theorem 4.10 extends the result given in [11] where operators that are
averaged nonexpansive (GAN with exponent γ1 = 2) and HR with exponent
γ2 ∈ (0, 1] were considered.

We close this section by listing convergence rates of the fixed-point it-
erations of GAN operators with different exponents in Table 1.
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Table 1. Convergence rates of the fixed-point iterations of
GAN operators

Case Conditions Convergence rate

1 GAN with exponent γ ∈ [1,+∞) Local: o
(
k− 1

γ

)
2 GAN with exponent γ ∈ (0, 1) Global: exponential
3 GAN with exponent γ1 ∈ [1,+∞) Global: O

(
k− γ2

γ1(1−γ2)

)
& HR with exponent γ2 ∈ (0, 1)

4 GAN with exponent γ1 ∈ [1,+∞) Global: exponential
& HR with exponent γ2 ∈ [1,+∞)

5. Convergence rate analysis for optimization

In this section, we first describe the fixed-point algorithms for the convex
optimization problems described in Sect. 2, and then employ the results in
Sect. 4 to analyze their convergence rates. The GAN operators provide a
unified framework for developing fixed-point iterative schemes for convex op-
timization problems and analyzing their convergence and convergence rates.

By the definition (2.2) of operator T1, its fixed-point iteration is the
gradient descent algorithm given as follows:

xk+1 = xk − β∇f(xk), where β ∈ R+. (5.1)

The fixed-point iteration (2.3) of T2 is given by

xk+1 = proxβg(x
k − β∇f(xk)), where β ∈ R+. (5.2)

We next derive the fixed-point iteration of T3 defined by (2.4). Note that

W = R−1G, where R :=
(

βIn

ηIm

)
. We can verify that the fixed-point

iteration vk+1 = T3(vk) is equivalent to

vk+1 = T̃
(
(E − G)vk+1 + (G − R∇r)(vk)

)
,

that is, {
xk+1 = proxβh

(
xk − β(∇f(xk) + B�yk)

)
,

yk+1 = proxηg∗
(
yk + ηB(2xk+1 − xk)

)
.

By using the well-known Moreau decomposition [34,39]

I = proxηg∗ + (ηI) ◦ prox 1
η g ◦ (η−1I),

we have the following fixed-point iteration of T3,{
xk+1 = proxβh

(
xk − β(∇f(xk) + B�yk)

)
,

yk+1 = η
(
I − prox 1

η g

)(
1
η yk + B(2xk+1 − xk)

)
,

where β, η ∈ R+.

(5.3)
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We next show the generalized averaged nonexpansiveness with exponent
2 of T1, T2 and T3, which offers o

(
k− 1

2

)
local convergence rate for algorithms

(5.1), (5.2) and (5.3). We then provide higher order convergence rates for the
fixed-point algorithms (5.1) and (5.2) under additional assumptions.

Proposition 5.1. Let T1, T2 and T3 be defined by (2.2), (2.3) and (2.4), re-
spectively. If β < 2

L for T1, T2 and T3, and μ < 2(2−βL)
4β‖B‖2

2+L(2−βL)
for T3, then

T1 and T2 are GAN with exponent 2 with respect to ‖ · ‖2, T3 is GAN with
exponent 2 with respect to ‖ · ‖W .

Proof. We first show the generalized averaged nonexpansiveness of T1 and
T2. It follows from the proof of Theorem 26.14 of [6] that T1 and T2 are both
averaged nonexpansive with respect to ‖ · ‖2. Hence they are both GAN with
exponent 2 with respect to ‖ · ‖2 by Proposition 3.2.

We now turn to considering operator T3. It follows from Lemma 7 of
[34] that T3 is averaged nonexpansive with respect to ‖ · ‖W if the minimum
eigenvalue of W is greater than L

2 , that is, W − L
2 I is positive definite. Let

B̃ := 1√
( 1

β − L
2 )( 1

μ − L
2 )

B. According to Lemma 6.2 of [30], W − L
2 I is positive

definite if and only if ‖B̃‖2 < 1, that is,(
1
β

− L

2

) (
1
μ

− L

2

)
> ‖B‖22. (5.4)

Since β ∈
(
0, 2

L

)
, η ∈

(
0, 2(2−βL)

4β‖B‖2
2+L(2−βL)

)
, it is easy to verify that (5.4)

holds, which implies that T3 is averaged nonexpansive with respect to ‖ · ‖W ,
and hence it is GAN with exponent 2 with respect to ‖ · ‖W . �

Proposition 5.2. Suppose that β < 2
L and μ < 2(2−βL)

4β‖B‖2
2+L(2−βL)

. Then for
arbitrary initial vectors x0 ∈ R

n and y0 ∈ R
m, the following statements hold:

(i) Sequence {xk} generated by Algorithm (5.1) converges to a minimizer
of the objective function f .

(ii) Sequence {xk} generated by Algorithm (5.2) converges to a minimizer
of the objective function f + g.

(iii) Sequences {xk} generated by Algorithm (5.3) with {yk} converges to a
minimizer of the objective function f + g ◦ B + h.

(iv) The local convergence rate of {xk} in any of the above three cases is
o
(
k− 1

2

)
.

Proof. By Proposition 5.1, we know that T1 and T2 are both GAN with
exponent 2 with respect to ‖ · ‖2, T3 is GAN with exponent 2 with respect to
‖ · ‖W . Then we conclude from Theorem 4.1 and the equivalence of all norms
on R

n that the fixed-point iterations of T1, T2 and T3 (or Algorithm (5.1),

(5.2) and (5.3)) converge to their fixed-points and (iv) holds. Let v∗ :=
(

x∗

y∗

)

be the fixed-point of T3 that the fixed-point iteration of T3 converges to, where
x∗ ∈ R

n, y∗ ∈ R
m. The proof is completed by noticing that the fixed-points
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of T1 and T2 are minimizers of f and f +g respectively, and x∗ is a minimizer
of f + g ◦ B + h. �

We comment that we have recovered the local convergence rate o
(
k− 1

2

)
of Algorithm (5.3) previously obtained in [31], by showing that T3 is the
generalized averaged nonexpansiveness with exponent 2.

Based on the convergence rate analysis in previous sections, we are able
to obtain further convergence rate results for the fixed-point algorithms (5.1)
and (5.2). We first consider the one-dimensional case for Algorithm (5.1).

Proposition 5.3. Suppose that function f ∈ Γ0(R) is differentiable with an
L-Lipschitz continuous derivative, where L ∈ R+. Then for β ∈

(
0, 2

L

)
, the

following hold:

(i) T1 is GAN with exponent 1.
(ii) For any initial vector x0 ∈ R

n, the sequence {xk} generated by Algo-
rithm (5.1) converges to a minimizer of f with an o

(
1
k

)
local conver-

gence rate.

Proof. We first prove (i). By the definition of generalized averaged nonex-
pansiveness with exponent 1 and the definition of T1, it suffices to show that
there exists μ ∈ R+ such that for all x, y ∈ R,

|(x − y) − β(f ′(x) − f ′(y))| + μ|β(f ′(x) − f ′(y))| ≤ |x − y|. (5.5)

Let w := x − y, v := β(f ′(x) − f ′(y)) and μ := min
{

1
2 , 2

βL − 1
}

. Then

μ ∈ (0, 1) and L ≤ 2
β(1+μ) . It follows from the L-Lipschitz continuity of f ′

that

|v| ≤ βL|w| ≤ 2
1 + μ

|w|. (5.6)

The convexity of f implies that f ′ is monotonically increasing, and hence
wv ≥ 0. Multiplying (1 − μ2)|v| on both sides of (5.6), we obtain that

(1 − μ2)v2 ≤ 2(1 − μ)wv,

which implies that

v2 − 2wv + w2 ≤ w2 − 2μwv + μ2v2,

that is,

(w − v)2 ≤ (|w| − μ|v|)2. (5.7)

By (5.6) and the fact that μ ∈ (0, 1), it is easy to see that μ|v| ≤ |w|. Hence
(5.7) is equivalent to |w − v| ≤ |w| − μ|v|, that is, (5.5) holds, and hence T1

is GAN with exponent 1.
Now we employ (i) and Theorem 4.1 to prove (ii). The convergence of

{xk} to a minimizer of f has been shown in Proposition 5.2 (i). Since T1

is GAN with exponent 1, the o
(
1
k

)
local convergence rate of its fixed-point

iteration follows from Theorem 4.1 immediately. �
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In Proposition 5.3, we have shown the generalized averaged nonexpan-
siveness with exponent 1 of T1 and the convergence rate of Algorithm (5.1)
in one-dimensional case. We next consider the higher-dimensional case.

In fact, we are able to show that T1 is both GAN with exponent 1
and HR with exponent 1 under appropriate assumptions, which leads to an
exponential global convergence rate for Algorithm (5.1) by Theorem 4.10. To
establish this result, we recall the Baillon–Haddad theorem [4].

Lemma 5.4. Suppose that ψ : R
n → R is a differentiable convex function.

Then ∇ψ is L-Lipschitz with respect to ‖ · ‖ for some L ∈ R+ if and only if

‖∇ψ(x) − ∇ψ(y)‖2 ≤ L〈x − y,∇ψ(x) − ∇ψ(y)〉, for all x, y ∈ R
n.

Theorem 5.5. Let f ∈ Γ0(Rn) be differentiable. If there exist L1 ≥ L2 > 0
such that

L2‖x − y‖ ≤ ‖∇f(x) − ∇f(y)‖ ≤ L1‖x − y‖, for all x, y ∈ R
n, (5.8)

then for β ∈
(
0, 2

L1

)
, the following hold:

(i) T1 is both GAN with exponent 1 and HR with exponent 1.
(ii) For any initial vector x0 ∈ R

n, the sequence {xk} generated by Algo-
rithm (5.1) converges to a minimizer of f with an exponential global
convergence rate.

Proof. We first prove the generalized averaged nonexpansiveness of T1 by em-
ploying Theorem 3.11. Let T := 1

L1
∇f . It follows from the second inequality

of (5.8) and Lemma 5.4 that

‖Tx − Ty‖2 ≤ 〈x − y, Tx − Ty〉, for all x, y ∈ R
n,

that is, T is firmly nonexpansive. By the first inequality of (5.8), we have

‖Tx − Ty‖ ≥ L2

L1
‖x − y‖,

where L2
L1

∈ (0, 1]. Since T1 = I − βL1T and βL1 ∈ (0, 2), the generalized
averaged nonexpansiveness with exponent 1 of T1 follows from Theorem 3.11
immediately.

We next show the Hölder regularity of T1. Let μ = 1
βL2

. Since f : R
n →

R is differentiable, by Fermat’s lemma [58], we know that ∇f(x̂) = 0 for any
x̂ ∈ Fix(T1). Using the first inequality of (5.8), for any x ∈ R

n, x̂ ∈ Fix(T1),

‖x − x̂‖ ≤ 1
L2

‖∇f(x) − ∇f(x̂)‖ = μ‖β∇f(x)‖ = μ‖x − T1x‖,

which implies that d(x,Fix(T1)) ≤ μ‖x−T1x‖. Thus, T1 is HR with exponent
1.

Now we employ (i) and Theorem 4.10 to prove (ii). The convergence
of {xk} to a minimizer of f has been shown in Proposition 5.2 (i). Since T1

is both GAN with exponent 1 and HR with exponent 1, (ii) follows from
Theorem 4.10 immediately. �
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It is known (Theorem 2.1.15 of [40]) that if the objective function f is
differentiable with a Lipschitz continuous gradient and strongly convex, then
item (ii) of Theorem 5.5 holds. In fact, according to inequality (2.1.17) of
Theorem 2.1.9 of [40] and the Cauchy–Schwarz inequality, for such a function
f , the strong convexity of f implies the first inequality of (5.8) for some
L2 ∈ R+.

We next provide an example whose objective function satisfies (5.8).

Corollary 5.6. Suppose function f : R
n → R is defined by f(x) := 1

2‖Ax−b‖22,
where A ∈ R

m×n is a full column rank matrix, b ∈ R
m. Then for any initial

vector x0 ∈ R
n, the sequence {xk} generated by Algorithm (5.1) converges to

the minimizer of f with an exponential global convergence rate for β ∈
(
0, 2

L

)
,

where L is the maximum eigenvalue of A�A.

Proof. It is easy to verify that f ∈ Γ0(Rn) and it is differentiable. The fact
that A has full column rank implies the positive definiteness of the Hessian
matrix H := A�A of f . Hence f is strictly convex and has a unique minimizer.
According to Theorem 5.5 , to prove this corollary, it suffices to show that
there exist L1 ≥ L2 > 0 such that (5.8) holds. By the definition of f ,

‖∇f(x) − ∇f(y)‖22 = z�H�Hz,

where z := x − y. Of course, H�H ∈ R
n×n is positive definite. Let 0 <

λ1 ≤ λ2 ≤ · · · ≤ λn be the n eigenvalues of H�H. Then H�H − λ1I and
λnI − H�H are both positive semi-definite, which implies that

λ1‖z‖22 ≤ ‖Hz‖22 ≤ λn‖z‖22,
that is, (5.8) holds by setting L2 =

√
λ1 and L1 =

√
λn. Therefore, the desired

result of this corollary follows from Theorem 5.5 (ii) immediately. �

To close this section, we present a local convergence rate for Algorithm
(5.2). Note that when the �2 norm in the definition of generalized averaged
nonexpansiveness is replaced by the �1 norm (generalized averaged nonex-
pansiveness with respect to �1 norm), Proposition 3.14 and Theorem 4.1 still
hold with the �2 norms in them is replaced by the �1 norms. Moreover, we
have the following theorem.

Theorem 5.7. Suppose that for i ∈ Nn, fi ∈ Γ0(R) is differentiable with an
Li-Lipschitz continuous derivative, for some Li ∈ R+. If f : R

n → R is given
by

f(x) := f1(x1) + f2(x2) + · · · + fn(xn),

g := λ‖ · ‖1, for λ ∈ [0,+∞) and β ∈
(
0, 2

maxi∈Nn {Li}
)
, then the following

hold:

(i) Operator T2 is GAN with exponent 1 with respect to ‖ · ‖1.
(ii) For any initial vector x0 ∈ R

n, the sequence {xk} generated by Algo-
rithm (5.2) converges to a minimizer of f + g with a local convergence
rate o

(
1
k

)
with respect to ‖ · ‖1.
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Proof. We first prove (i). By Example 3.9 and Proposition 5.3 (i), we know
that both proxβλ|·| and I − βf ′

i are GAN with exponent 1. This implies that
both proxβg and I − β∇f are GAN with exponent 1 with respect to the �1
norm. Then, by the �1 norm version of Proposition 3.14, T2 is GAN with
exponent 1 with respect to the �1 norm.

Now we conclude from (i) and the �1 norm version of Theorem 4.1 that
the fixed-point iteration of T2 converges to a minimizer of f + g with the
convergence rate o

(
1
k

)
in terms of ‖xk+1 − xk‖1, which completes the proof

of (ii). �

Theorem 5.7 establishes the local convergence rate o
(
1
k

)
with respect

to ‖ · ‖1 for Algorithm (5.2) by employing the generalized averaged nonex-
pansiveness with exponent 1 with respect to the �1 norm. The same local
convergence rate with respect to an inner product norm for Algorithm (5.2)
has been shown in Theorem 3 of [22].

6. Conclusions

We have introduced the notion of the generalized averaged nonexpansive
(GAN) operator, which allows us to study convergence and convergence rates
of fixed-point iterations of GAN operators not covered by the existing the-
ory of the averaged nonexpansive operators. The introduced notion provides
a unified approach for analyzing the convergence and convergence rates of
convex optimization algorithms. The convergence rate results of optimiza-
tion algorithms obtained from this approach cover existing understanding
and lead to new findings.
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