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This paper presents a post-filtering approach to eliminate distortions in atomic force microscope (AFM) images
caused by acoustic noise from an unknown location. AFM operations are sensitive to external disturbances
including acoustic noise, as disturbances to the probe-sample interaction directly results in distortions in the
sample images obtained. Although conventional passive noise cancellation has been employed, limitation exists
and residual noise still persists. Advanced online control techniques face difficulty in capturing the complex noise
dynamic and limited system bandwidth imposed by robustness requirement. In this work, we propose a
dynamics-based optimal filtering technique to remove the acoustic-caused distortions in AFM images. A
dictionary-approach is integrated with time-delay measurement to localize the noise source and estimate the
corresponding acoustic dynamics. Then a noise-to-image coherence minimization approach is proposed to
minimize the acoustic-caused image distortion via a gradient-based optimization to seek an optimal modulator to
the acoustic dynamics. Finally, the filter is obtained as the finite-impulse response of the optimized acoustic

dynamics. Experimental implementation is presented and discussed to illustrate the proposed technique.

1. Introduction

In this paper, a data-driven dynamics-based post-filtering approach
is proposed to eliminate acoustic-caused distortions in atomic force
microscope (AFM) images. As an essential tool for nanoscale interro-
gation and measurement [1-3], AFM is sensitive to external and internal
disturbances including acoustic noise, as disturbances to the tip-sample
interaction directly result in distortions in AFM images [4]. Although the
external-disturbance-caused adverse effects can be alleviated via con-
ventional passive methods [5-8] or active control technique [9], resid-
ual noise distortion still persists, resulting in image distortion and loss of
image quality. Thus, this work aims to develop a post-filtering approach
to eliminate the acoustic noise distortions in AFM images.

Maintaining the tip-sample interaction closely around the desired
value is important in AFM applications, including imaging [1-3],
nanomechanical measurement [10-12], and tip-based nanofabrication
[13-15]. Extraneous tip vibration relative to the sample can be induced
by disturbances including acoustic noise and seismic vibrations, or by
internal excitement of the dynamics and hysteresis adverse effects of the
nanopositioning systems (from the piezo actuator to the cantilever tip).
In contrast to the efforts to tackle internal adverse effects through
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hardware improvement to increase the bandwidth of the nano-
positioning system [16,17], and/or through software/algorithm in-
novations of advanced control techniques [18,19]. Little has been done
to compensation for the external disturbances [20] beyond the use of
conventional passive vibration/noise isolation apparatus [5-8] such as
vibration isolation table [21] and acoustic enclosure [22]. These passive
noise/vibration isolation apparatus prevents the integration of other
measurement instruments such as inverted optical microscope to the
AFM platform [23], and residual noise distortion still exists [9].
Recently, inversion-based feedforward controllers [9,20] are introduced
to compensate for the undesired piezo displacement. The performance of
such an online active noise control can be hurdled by hardware con-
straints (e.g., online computation power and data acquisition speed) and
limited system bandwidth imposed by the robustness requirements.
Thus, post-filtering techniques shall be developed to improve the AFM
image quality affected by the acoustic noise.

Challenges exist in filtering the acoustic-noise-caused distortions in
AFM images. Conventional frequency-domain filtering approach (e.g.,
low-passor band-pass filtering) is ineffective as the acoustic-noise effect
is largely random, broadband, and does not decay with frequency in-
crease. As a result, sample topography can be significantly distorted or
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Speakers

Fig. 1. An experimental setup for studying acoustic noise effect on AFM
operation, where it is assumed that the location of the noise source (speakers) is
unknown while the sensors (microphones) are placed at fixed and
known locations.

removed along with the noise when these filters are used. While these
limitations of conventional filtering might be alleviated via the filtered-x
least-mean-square algorithms [24] and its modifications [25,26] to ac-
count for the coupling between the noise and the sample topography,
such techniques rely on acquiring accurate error of the residual noise
effect, i.e., an acoustic-caused image is needed, whereas it is mixed and
coupled with the “true” sample topography that is unknown in general.
Alternatively, the acoustic-caused image distortion might be decoupled
from the sample topography image by exploring a model-based
approach along the Kalman-filtering framework [27]. However, it is
challenging to capture the complicated acoustic noise dynamics of
broadband nature in practices accurately and robustly. This difficulty
becomes even more serious when the location of noise source is un-
known a priori—due to the unknown noise source, the un-collated
sensing results in large uncertainties in the acoustic dynamics model
(used in the Kalman-filter design) and the noise signal acquired, as the
acoustic noise dynamics heavily depends on the noise propagation path,
and thereby, varies significantly when the relative position between the
noise source and the sensor changes. Thus, for the post-filtering tech-
nique to be effective, the complexity and the pronounced
location-dependent variation of the acoustic noise dynamics must be
accounted for.

The main contribution of this paper is the development of a data-
driven dynamic-based technique to eliminate the acoustic noise-
caused distortion in AFM imaging. Specifically, the filter is designed
directly as a finite-impulse-response (FIR) representation of the under-
line primary acoustic dynamics (PAD) response. First, to account for the
unknown noise location effect on the PAD, the unknown noise source is
localized based on the time-delay measurement method [28]. Then, a
dictionary-based approach is proposed to estimate the corresponding
PAD based on the estimated noise location. Secondly, an
acoustic-dynamics modulator is introduced to the estimated PAD to
minimize the acoustic-caused image distortion via coherence minimi-
zation. Particularly, the modulator is sought via the gradient-based
iterative algorithm to minimize the coherence between the acoustic
noise and the residual acoustic-caused image distortion iteratively.
Although the notion of noise-and-signal coherence has been exploited
previously [29,30] in speech signal filtering and enhancement, the
proposed approach is fundamentally different in exploring a
gradient-based approach to directly minimize the noise-and-signal
coherence to optimize the filter (i.e., the acoustic dynamics model).
The proposed filtering scheme is implemented on AFM image examples,
and the experimental results show that the image distortion can be
significantly reduced.

Ultramicroscopy 242 (2022) 113614

2. Acoustic-caused AFM image distortion: challenges, &
problem formulation

2.1. Acoustic-Noise effect on atomic force microscope operation: Imaging
example

Eliminating external disturbances including acoustic noise is critical
to AFM applications. The basic principle of AFM is to utilize a
nanometer-size cantilever-tip attached to the AFM head (see Fig. 1) to
interact with a sample [1-3], and manipulate the probe-sample inter-
action with nanoscale precision—-to interrogate topography and ma-
terial properties of the sample, or to modify the sample and/or generate
patterns on the sample [31]. Thus, external disturbances like acoustic
noise can result in extraneous perturbation to the probe-sample inter-
action, and thereby, loss of precision and quality in AFM applications.

More specifically, acoustic noise effect reduces the AFM imaging
quality. For example, in tapping mode (TM) imaging, the cantilever tip is
excited (usually using a small piezo stack actuator, called a dither piezo)
and taps on the sample surface, when the tip is scanning across the
surface, and the tapping amplitude is maintained around a pre-chosen
constant level under feedback control. [31]. Then, a sample topog-
raphy image is obtained from the (vertical) displacement of the canti-
lever [2]. In the presence of environmental acoustic noise, however, the
mechanical structure of the AFM (on which the cantilever is mounted,
see Fig. 1) can be excited and vibrate, resulting in unwanted cantilever
vibration with respect to the sample and thereby, image distortion. As an
example, an image of a silicon wafer obtained under environmental
acoustic noise (introduced by using the speaker in Fig. 1) is shown
pronounced image distortion with respect to one obtained without the
induced noise. (compare Fig. 2(a) and (b))

It is challenging to eliminate such acoustic-noise-caused distortions
in AFM image. Conventional filtering techniques based on frequency-
domain separation (e.g., low-pass, band-pass, or notch filter) are inef-
fective as the noise-caused distortion is largely coupled with the sample
topography in the image obtained—These techniques will filter out and
smear the sample topography features. Further challenges arise as the
acoustic-noise dynamics is largely random, broadband, and do not decay
with the frequency increases (see Fig. 3 for an example). These char-
acteristics of the acoustic noise effect also present challenges to the
model-based approaches along the Kalman-filtering framework
[27]—-it is challenging to capture such a complicated acoustic noise
dynamics (See Fig. 3) via a parameterized model accurately and
robustly. This difficulty becomes even more so when the location of the
noise source is arbitrary and unknown a priori—The arbitrarily noise
location results in un-collocated sensing (see Fig. 1) and thereby, un-
certainties in the acoustic dynamics and the noise signal measured—the
acoustic noise dynamics depends on the noise propagation path, and
varies significantly as the distance and direction of the noise source and
the sensor changes. Thus, the complexity and the pronounced
location-dependent uncertainty of the acoustic noise dynamics must be
accounted for.

2.2. Filtering of acoustic-noise in AFM imaging: Problem formulation

We consider the scenario where the noise comes from an arbitrary
and unknown but fixed location behind the sensors (whose locations are
fixed and known)—as illustrated in Fig. 1 and appears in many AFM
applications. Without loss of generality, we assume that

Assumption 1. The acoustic noise n[k] is a zero-mean, band-limited
white noise, and the variation of the primary acoustic noise dynamics
(PAD) is quasi static.

The PAD is the dynamics from the noise signal (as the input) to the
AFM image signal (as the output response), under the source-sensor
collocated condition, i.e., the sensor (microphone) is placed at the
noise source location, seeGy(z) in Fig. 3. Moreover, the PAD can be
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Fig. 2. Comparison of an AFM image of a silicon wafer sample obtained (a) with acoustic noise induced via the speakers in Fig. 1 to (b) that without the induced

acoustic noise.
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Fig. 3. An exemplary frequency response (magnitude part) of a primary acoustic dynamics (PAD) for the AFM setup in Fig. 1.
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Fig. 4. Schematic block diagram of the AFM imaging process with acous-
tic noise.

modeled as a linear time-invariant dynamics(LTI) and the variation of
the PAD is mainly caused by the change of the noise source location, i.e.,
the noise propagation route, and thereby, is largely unchanged during a
given imaging process but can vary in day to day operation.

As depicted in the block diagram in Fig. 4, in the presence of acoustic
noise, the total AFM image signal z[k] becomes:

z[k] = zr[k] + z,[k], for k=1,...,Np, (D
wherezr[k] andz,[k] are thez-axis piezo displacement caused by the
sample topography and that due to the acoustic noise, respectively,
andNj is the total number of sampling data acquired in the given im-
aging process. Asz[k] is used to plot the sample topography image, we
call, in the following,z[k],zr[k], andz,[k] the raw image signal, the true
image signal, and the image noise signal, respectively. The image

noisez, k] is related to the acoustic noisenk] via
2nlk] = nlk] * gn K], )

wheregy|k| is the impulse response of the PAD (from the noise source to

the AFM cantilever), and '+’ denotes the convolution operation,
respectively.

Thus, a filtered image signal,z¢[-], can be obtained from the estimated
image noise signalz,[k] via

ol = k] — 2K, for k=1,...,N, 3)

where Z,[k] = n[k] * gy k] “4)
withri[k] andgy[k] the estimated acoustic noise and the estimated PAD
(presented in the impulse response form), respectively. Thus, the
filtering quality can be quantified by the residual image errore; k]|

e/[k] = zp[k] — zr[k]. 6)

By Assumption 1,%,[k] is also a wide stationary random process
process [32], so arezy[k] ande, [k]. Hence, by Egs. (3), (4), the expectation
of the residual image error,E(e,[-]) = 0.

Uncertainties exist in the estimated noise sourcenk] and the
PAD,gy[k]. Specifically, the noise and the sensor being un-collocated
(due to the noise source location being arbitrary) implies that the
measured noiseny, k] can be largely different from the “true” noise, and
the PAD from the measured noise (acquired at the sensor location) to the
image responsegy m|k|, is also different from the “true” PADgy[k]|. This
difference increases pronouncely as the distance between the sensor and
the noise source location or the direction difference (i.e., the noise-to-
AFM direction vs. the sensor-to-AFM direction) increases. Thus, cen-
tral to the acoustic-noise filtering of AFM image is to estimatenk]
andgy[k] accurately from the measured noise and image response,ny, k]
andz, k], such thatn[k]-n[k], andgy[k]—>g[k].

Data-driven Dynamics-based Optimal Filtering (DD-DOF) of
Acoustic-Noise in AFM Image Let Assumption 1 hold, and the noise
source location be fixed, arbitrary, and unknown a priori, and let three
sensors located at three fixed locations be used to acquire the noise
signal along with the AFM image data during the noise-effected imaging
process, then the problem of DD-DOF in AFM imaging is to:
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Fig. 5. Schematic representation of the acoustic source localization using time
delay measurement, where a, b, and c, denote the locations of three micro-
phones, the black-line and red-line are the hyperbola curves on which the
possible noise source locations are. and e and f denote the location of the noise
source n, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

0-1
Directly estimate both the noise signal and the corresponding PAD from
the measured data,

0-2
Construct the filtergy[k] by directly using the measured data, and
minimize the following noise caused image distortion:

minJ, = Z E{e, K]}’ = Z E{zr[k] — z7[k]}> (6)

In contrast to parameterized-model-based methods [27,33] where a
model of the PAD needs to be identified a priori, the proposed
data-driven approach aims to avoid not only the modeling process and
the related issues, but also the performance-robustness trade-off—the
filter can be automatically updated along with the measured data, and
thereby, maintain the performance in the presence of dynamics and
signal variations.

3. Data-driven acoustic filter optimization

We proceed by achieving the two objectives in order.

3.1. O — 1 data-driven estimation of noise dynamics with unknown
source location

First, the noise source is localized through a time-delay measure-
ment, and then used to estimate the PAD and the noise via a data-driven,
dictionary-based approach.

3.1.1. Acoustic source localization

In the planar noise source scenario, localizing the noise source is
equivalent to determining the coordinate of an unknown locationn
(noise source) with respect to other three known locationsa,b, andc
(three sensors). The possible locations of the noise source must fall onto
a hyperbola (the black lines in Fig. 5) with its foci ata andb, respectively,
(as the distance differences between the unknown pointn and any two

fixed points, e.g., betweenn anda vs betweenn andb,Ad, , = |da‘,l —

dp |, is fixed). By choosing the frame with pointb as its origin and pointa
at coordinate (1, 0) (see Fig. 5), this hyperbola is given by

(x-05)° Y .
(Adusn/2)" 0.52 = (Adiyn/2)”

)

Similarly, the possible location of noise sourcen also falls onto a
hyperbola of foci at locationsb andc (the red line in Fig. 5), respectively,
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(x+0.5) 3 y? _ ®
(Ady/2)° 052 = (Ady(n/2)”

where to simplify the expression, the third microphone location is at ¢
(-1, 0), andAdy_cp = |dpn — dcp|- Thus, the above Egs. (7) and (8) im-
plies that the noise source must be located at one of the intersections of
these two hyperbolas (pointe or pointf in Fig. 5): The actual location is
determined by which microphone picks up the noise signal first, e.g., in
Fig. 5, the noise is at locatione(n) when the microphoneb received the
noise signal ahead of the microphonec.

Hence, the noise source location can be determined once the sensor-
source distance differencesAd,_p, andAd,_., in Egs. (7) and (8),
respectively, are quantified, or equivalently, the time difference be-
tween the noise signals captured by the three microphones ata,b,
andc,7q, andry., respectively, are quantified. This time difference is
measured/quantified through the following cross-correlation between
these three acoustic signals, e.g., the time differencery, is quantified
through cross-correlationRj] [34]

Ni—1

R[] =Y na[kny[(k+j) mod Nj] j=0,1,2,..,N; — 1 9

k=0

wheremod denotes the modulo operation. Then the time delayz,, (for
quantifying the distance difference,Ad, ) is obtained as the maximum
value of the cross-correlation

Tap = % argmfax(qu iD)- (10)

wheref; is the sampling frequency. The distance differenceAd;_., is
quantified in the same manner. Finally, the coordinates of the noise

location,7n = (Xn,Yn), is obtained by solving the 2nd-order algebraic
equations Egs. (7) and (8) (numerically).

To improve the localization accuracy, the above process can be
repeated by considering combinatorial pairings of the three micro-
phones (total of 3), and using all the pairs of distance difference obtained
to estimate the noise source location via averaging. Further improve-
ment can be sought by using more microphones and more advanced
methods beyond averaging.

3.1.2. Dictionary-based primary acoustic noise dynamic estimation

The above identified noise location is then used to estimate the
PADgy[] —The PAD from the noise source in the given imaging process
to the image signal (under the sensor-noise collocation condition (SNC)).
We propose a data-driven dictionary-based approach. Specifically, a
dictionary of the PAD frequency responses measured at selected
locations,Dg,, is constructed,

— . — 5
DGH =46, fﬁ.(ﬁ]wk fp.q e , W € S(I)?

p=1,.,N, andg=1,...,Ny} (1
kay
where S, = N k=0,1,...,N; —1,and o, =2xf; (12)
1
-

is the set of the sampled discretized frequencies,G,( ¢ p g, jwx) is the PAD
from location?m (71,4 = (rp,04): the polar coordinate of position) to
the AFM image signal measured under the noise-sensor collocated
condition, andNy andN;, are the total number of PADs measured in the
polar direction and radical direction, respectively (See Fig. 5), i.e.,

N
for£pq = (1,0q),

Fmax _ ‘gmax
T :ﬁ, 0, = 7 13)
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Fig. 6. Schematic illustration of the construction of the Dictionary of PADs,
where the receiver (e.g., the AFM scanner in this work) is located at the origin,
the black dots on the half-circle grids are the locations where the PADs in the
dictionary have been measured, and blue dots at location point A, B, C, D and E
denote the locations of PADs estimated by using the dictionary to estimate the
PAD at location “A” (red-dot) where the unknown noise is,denote the interested
noise locations, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

for 1<p<N, and 1<qg<N, 14
wherer,,x andé,,,x are the radius and angle (with respect to the AFM
cantilever) corresponding to the maximum area of the noise effect
considered, respectively.

Thus, the PAD at an unknown location can be estimated by using the
dictionaryDg, via, e.g., linear interpolation—More advanced estimation
technique can be applied. Specifically, two constants,y, andy, € (0, 1),
are introduced to account for the dependence of the PADs on the dis-
tance (u,) and the direction (i.e., angle,u,) with respect to the AFM
cantilever, respectively. For example, to estimate the PAD at locationA
in Fig. 6, first the smallest grid of the dictionaryDg, within which
location A resides can be determined by using the estimated location of
A (identified in Sec. IIL.A), i.e.,Ane,Anw,Ase, andAy, in Fig. 6 can be
determined. Then the distance effect can be accounted for by using the
DictionaryDg, to estimate the PAD at locations B and C (see

Fig. 6),(A?N7B (joox) andaN,chk),

Gualjor) = (1—py)G, <7A\M~7jwk> + uyG, (7A 7jwk) (15)
~ . — . — .

Gyc(jor) = (1 —y)Gy ( € A ,/wk> + 1yGo ( A, Jmk) (16)
forvay €S,  whereGo(Za,,  jor)Ga(Zay,  jk),Gal(Z apjor)

andGn(?)Ane, jox) € Dg, are the corresponding PADs  at
locationsAne,Anw,Ase, andAy,, respectively (see Fig. 6). Then the dynamic
at locationA can be estimated via linear interpolation in the radical di-
rection as

Gralon) = (1—p,)Gys(jor) + p,Gy.c(jor) an

Alternatively,Gy(wx) can also be estimated by accounting for the
distance effect first—by estimating the PAD at location D and E (See
Fig. 6),@1\,_,3 (jok) andaN_E(jmk), respectively, then secondly, the direction
effect by using the obtained(A?N,D(ja)k) andaN,E(jwk) via linear interpola-
tion in the polar direction. The accuracy ofGy,(w) can be further
improved via averaging.

The above estimated PAD—in the non-parametric finite impulse
response form—is used directly to quantify the noise-caused image
distortion (i.e., the image noise signalz,[k] in Eq. (4)). Compared to
parameterized-model based methods (e.g., the transfer function model),
this data-driven approach is preferred as PAD is complicated with
multiple poles and zeros, with no pronounced delaying as frequency
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increases (see Fig. 6 as an example)—parameterized-modeling ap-
proaches will not only result in a high-order model, and thereby, the
complexity in computation and potential robustness issue with respect
to parameter variations, but also can induce in extraneous modeling
error.

3.1.3. Noise signals estimation using dictionary

Similarly, the effect of unknown noise location on the noise mea-
surement can also be accounted for via the data-driven, dictionary-based
approach. A dictionary of the noise propagation dynamics (NPD), Dg,,, is
constructed a priori,

— — ,
De,, = {Gup| € pgrdr || € pg € R, 00 €Sy, i=1,2,..N,,j=1,2,...N,
18)

=
whereGp, (7 pq.jox) is the NPD measured with the noise source

(speaker) at location/), ; = (r;,6;) and the sensor (microphone) located
at the given fixed location, e.g., with the noise at locatione(n) and the
sensor at the origin in Fig. 5. The location of the microphone is chosen
the same as that during the targeted imaging process.

Thus, the NPD at any unknown location A,@A (jox ), can be obtained
as the average of the direction-first and the distance-first

estimations, G A (jok), G ad(jok), respectively,
~ 1~ 14
Galjor) = EG/\,p (joor) + EG/\.d (joor) (19)

where as in the PAD
estimation@A,/, (jo) is obtained via

estimation above, the direction-first

aA-ﬂ(jwk) = (1 _”r)aﬂ (71’-47jwk) + ”raC (7P=q’jwk> (20)

withGg (ja)k),ac(iwk) the NPDs estimated at location-B and location-C,
respectively, by using the dictionary Dg,,—similar to Egs. (16)-(18), and

the distance-first estimationaA_d (jox) is obtained via
Gaaljor) = (1 —p,)Gp | € pgrjan | +1,Ge( € pgrjor @1n

withGp (jwk),aE(iwk) the estimated NPDs at location-D and location-E,
respectively, using the dictionaryDg,p, similar to Egs. (21) and (22).

With the above estimated NPD, the noise at locationA during the
targeted imaging process can be estimated from the measured
noiseNa m (joi) as

NAm (iwk)

S . forw; €S, (22)
GA (/a)k)

ﬁcl(jwk) =

3.2. O — 2 data-driven acoustic-dynamics-based filtering

3.2.1. Cross-coupling and imaging-dependent effect on PAD

With the noise-sensor non-collocation issue addressed above, we
next design the filtergy[-] by assuming that the noise-sensor collocation
condition holds. The issue is to account for the cross-axis coupling and
the imaging process-dependent effect on the filter. Specifically, as the
acoustic-noise-caused vibration of the AFM structure, in general, is three
dimensional, the lateral vibration of the structure—due to the cross-axis
coupling [35]—can also result in the tip disturbance in the vertical di-
rection. This cross-coupling-caused tip disturbance becomes more pro-
nounced and further amplified by the lateral scanning of the tip during
the imaging process—-the cross-coupling effect depends on the lateral
scanning speed and size. Such an imaging-dependent cross coupling
dynamics effect is difficult to capture due to the mixture of the sample
topography and the acoustic noise effects in the response signal.
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: Measured total image signal, z[k], raw noise signals by three microphones, n,[k], n,[k] and n.[k], and cantilever

Input

lateral torsional signal f;,.[k]

Output: Filtered image zr[k]
1 Construct PAD and NPD dictionaries Dg, and Dg,, in Eq. (12) and Eq. (19) offline a priori.

2 Localize the noise source location via Eq. (7) and Eq. (8).

3 Estimate the PAD using the PAD dictionary D¢, in 1 using the estimated noise location and Eq. (18).

4 Estimate the noise signal using the NPD dictionary D¢

via Eq. (23).

np

5 Use the estimated PAD and the estimated noise signal to obtain the initial filtered image zz[k] via Eq. (3).

6 Optimize the filter gy [k] by using the adaptive coherence minimization:

A

7 while C,,1;(jwy) > Var[C,pi(jwr)] do

A

Compute and update the coherence C,,,;(jwy) using Eq. (26-27), Egs. (36-37) and Eqs. (39-44)

Update the filter and the filtered image signal using Egs. (36, 37).

8

10 end

A

11 Compute and update the coherence C,, s,;(jwy)

12 Obtain the filtered image.

Algorithm 1. Data-driven Optimal Filter of Acoustic Noise in AFM Image
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Fig. 7. Comparison between the averaged, the upper bound, and the lower
bound of (a) all the PADs in dictionary Dg,. (b) those at the same distance but
different angle, and (c) those at the same angle but different distance from the
AFM cantilever, respectively.

Although the topography effect on the cross dynamics measurement
might be avoided by imaging an atomically-flat sample (at the given
imaging condition) a priori, this method is time consuming and not
practically feasible. Therefore, we proposed the following data-driven
approach to account for the cross-axis coupling effect first, then its
imaging-dependence via an adaptive optimization scheme.

3.2.2. Modulator-based filter optimization via coherence minimization
Cross-axis coupling compensation First, as a base to account for the
cross-axis coupling effect, a coupling-free PAD,@N_nc(jcuk), is obtained
experimentally a priori by acquiring the image signal under a fixed-
location acoustics excitationZyy(jwx) when the cantilever tip is
engaged onto an atomically flat hard reference sample (e.g., a silicon
wafer) without scanning, and a band-limited white noise acoustic
noisenyy|k| is broadcasted to the environment (see the setup in Fig. 1),
Zyy (joor)

a}v‘m(]‘wk) = W, for wy € Sw (23)

Comparing the above coupling-free PAD to those captured during the
imaging process under different acoustic noise conditions in experi-
ments showed that the cross-coupling effect mainly appears as a phase
distortion in the PAD obtained, i.e., the phase variations of the PAD
measured during the imaging process is different from the noise-free
one, but closely follows that of the friction force in the lateral direc-
tion. Thus, the phase of Gy nc (jax) 2N nc (jox), is replaced by the phase of
the lateral torsional displacement of the cantilever tip measured during
the imaging process, 2¢y ¢ (jox).-

Modulator-based Filter Optimization To account for the imaging-
dependent effect on the filterGy(jowy) and further improve the filtering
quality, we propose to seek a dynamic modulatora*(jwy) € C as in
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Fig. 8. Comparison between the averaged, the upper bound, and the lower bound of (a) all the NPDs in dictionary Dg,. (b) those at the same distance but different
angle, and (c) those at the same angle but different distance from the AFM cantilever, respectively.

Gy ljog, @) = a (joy) Gy (jax), @ € S,, (24)

such that the cost function Eq. (6) is minimized. The optimala*(joy) is

sought through the gradient descent search method, i.e., for any
givenwy € S,,,
G,i(jon, @) = ai(jor) Gy (jay), with (25)
9,
a;(jor) = ai_1 (jor) +l#
0Gy i1 (jon)
s, 1
= a1 (jor) + V. (26)

aa, 0a; 1 (jo) G (joy)

fori > 1, where initiallya, is chosen as one,A € (0, 1) is a pre-chosen
constant to ensure the descendence of the coherence, and/, is the
frequency-domain representation of the cost functionJ, in Eq. (7),
respectively, i.e.,

7= 3" 2Zrtjon) - Z o) @)

=0

as by the Parseval’s Theorem [36],/, = J;.

The gradient in Eq. (28) is, in general, unknown—the true image
signalzr|k| is unknown. Thus, next we convert the minimization of Eq.
(29) to that of the coherence between the measured noise and the
filtered image signalZp[k] (both are known), as the true sample
image,zr[k], is independent to the random noisen[k|, and therefore, the
correlation between these two signal,Ry[j], is zero

Rnt[j] = E{I’l[k 7j]ZT[]']} =0,

When the acoustic-noise caused distortion in the filtered image

j=0,1,2,...,N,— L. (28)

signal is completely removed, the filtered image sequencez k] shall also
have a zero-correlation to the noise, i.e., when the noise is completely
removed,

R"fm = E{n[k 7]]ZF[]]}_’O Jj=0,12 .,

Thus, minimizingJ, inO — 2 is equivalent to minimizing the
following cost functionJ. of the correlation betweenz[k] andn[k]:

Ny
22
Jo=Y Ryl =
=

By the Convolution Theorem of correlation [37], frequency domain
representation of the above cost function is given by

N —1. (29)

z’: E{nlk — jlzr ]} (30)

Nk
min/, =Y E[N"(jo)Zr (jor ) (31
k=1

whereNr denotes the total number of effective frequency components in
the noise sourcen[k] and the filtered image sequencezr[k]|, i.e.,wy, is the
lowest frequency at which the magnitude of N (jwi) becomes negligible,
e.g.,|N(jox)| <en for allwy > Nr ande, is the chosen threshold value.

To facilitate the computation, the above correlation minimization is
converted to minimizing the corresponding coherence between these
two signals,Cps(jwk), by normalizingJ. with the (estimated) power
spectral density ofZg(jox) andN(jwy)

E[N (](u;‘ Zp(](l)k)]
min/, = Z—PN (o0 Py (o) (32)

Np
2% " Cyljon) (33)
k=1
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Fig. 9. (a) Comparison of the PAD estimated by using the proposed adaptive
modulator optimization method to the accurately measured PAD (under the
SNC condition) and the directly measured PAD without the SNC condition,
respectively, and (b) comparison of the true noise measured under the SNC
condition, noise estimated using the NPD, and the actual noise signal under the
non-SNC condition, respectively.

where thePy(jwx) andPy, (jwx) are power spectral densities ofN(joy)
andZr(jwy ), respectively. When the coherenceCys(jox)€ (0, 1) is mini-
mized, so is/ .. Thus, the gradient-based iteration in Eq. (31) is con-
verted to

j i aCnf (jor, 1)
ai(jon) = apy (joy) + 22T (34)
(joox) 1(jo) o )
= a1 (jox) + 2 9Cy (@, ai-1) 1 35)

6(1,-,1 (]wk) GN (]Cl)k)

whereC,y(jox, a;) is the coherence computed by modulator value ob-
tained in theith iteration,a;(jo), i.e., in Eq. (33),

Ze(jor) = Ze(jon, @) = Z(joy) — N (jeo) G (joor)
= Z(joy,) — N(jor)a;(jor) Gy (joor), (36)

and the partial derivativedCys(jo) /0 (jwk ) is computed numerically via
the first-order Euler formula

BC,lf(jwk,ai) - Cnf(ia)k, a; + 5(1) — C,lf(ja)k,ai)
da(jy) Sa

37

To improve the computation accuracy, the Welch’s Method [38] is
employed to compute the coherence,C(jox, a;), as the average of the

short-segment coherenceCy, (jo, o), i.e., for any givena,

)= S Cop. (o, @)

Cnf(jwky Ul) ~ Cnf(ijm a M,

(38)
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Fig. 10. (a) Comparison of the coherence between the acoustic noise nfk] and
the raw image signal z[k], C,(jo), to that between n[k] and the directly filtered
zp[k], Cyy(jw), and that between n[k] and optimal filtered z;[k], C;(jw), and (b)
change of the cost function J; at the circled location in (a) during the adaptive
modulator optimization process.

_ IV Goo)Zp, (o, @)

ith Cp,(jor, ) = - -
with Co o @) = 5 o Py, o, @)

(39

for i > 1, whereN,(jox) andZg,(jwk,a) are the Fourier transform of
therth segment of the estimated noise signaln[k] and the filtered image
signalzf k], respectively, obtained by partitioning the sequence ofn[k]
andz§ k] intoM. segments, respectively,

n=[mmn ..n ..ny] and (40)
§o [y et ] b )
n, = [n((r— )L+1), n((r—1)L+2, ...,n(rL)] 42)
Zp, = [Z?,[(r— DL+1], 2, [(r=1)L+2], ...,z;,(rL)]. 43)

where the length of each segmentL is chosen such that the sampled
frequency resolution of each segment is high enough to capture the
frequencies where the peak of coherence occurs, i.e.,f; /L < ¢f fores is the
chosen frequency resolution.

To ensure consistency in the above estimation, the minimization in
Eq. (23) is modified as

min/, = i{énf(jwk) — Var [(Alnf(jmk)] } (44)

whereVar[énf(iwk)] is the variance of the estimatedenf(iwk),

lim Var[énf,i(jwk)} = E{ [(’fnf,i(jwk) - Cnf‘i(ja)k)]z} (45)

Np—oco
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Fig. 11. Comparison of the topography images (first row) of the silicon sample and (second row) of the calibration sample obtained at 5 Hz (al,b1) with the induced
acoustic noise, (a2,b2) with the induced acoustic noise filtered by data-driven dynamics-based filtering (DD-DF), (a3,b3) with the induced acoustic noise and by using
the Data-driven dynamics-based optimal filtering (DD-DOF), and (a4,b4) without the induced acoustic noise, respectively.
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Fig. 12. Comparison of the filtered (using the DD-DOF method) cross-section
topography profile (at the red-line in Fig. 11) to the un-filtered one and the
reference (without induced acoustic noise) for (al) the silicon sample, (b1) the
calibration sample, and the comparison of the corresponding topography error
with respect to the reference for (al) the silicon sample and (b2) the calibration
sample, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The proposed filtering technique is summarized in Algorithm 1.
4. Experiment example

The proposed approach was demonstrated through an AFM imaging
experiment. The objective was to show that by using the proposed
approach, the image distortion caused by acoustic noise from an arbi-
trary location can be substantially reduced.

The AFM imaging experiment was performed on a commercial AFM
system (Dimension FastScan, Bruker Nano Inc.), where the acoustic
noise was induced by a speaker (Logitech S150, Logitech, Inc.) placed
near the AFM scanner head, and measured via a precision array

microphone (BK 4958, Bruel Kjaer Inc.), (see Fig. 1 for the experiment
setup). The noise signal was first pre-filtered and amplified using a
homemade Op-Amp circuit, then measured via a data acquisition system
(a Labview-FPGA system NI RIO, USB-7856R, National Instrument Inc.).
All the filtering algorithms were designed and implemented in MATLAB.

Implementation of the DD-DOF algorithm

A dictionary of PADs and a dictionary of NPDs,Dg, andDg,,,
respectively, were constructed a priori first. A total of 15

PADS,G,I(7U-7 jwi) were acquired in the dictionaryDg,, where each
PADGH(71- j»Jor) was measured by maintaining a stable probe-surface

contact with a silicon sample at the chosen interaction force ampli-
tude under a proportional-integral (PI) feedback control. Then a band-
limited (20-1kHz) white noise acoustic sound with zero-mean and
constant variance of 40 mV (generated via MATLAB) was broadcasted to
the environment through the speaker for 10 s, and both the acoustic
noise and the z-axis displacements signals were acquired simultaneously
under the noise-sensor collocation condition. The 15 locations were
chosen to cover an area in front of the AFM scanner head with the dis-

tance from the AFM head at?i i = (p;,0;) withp; = {40cm, 80cm,
120cm} and 6; = {30°, 60°, 90°, 120°, 150°}. Then, the NPD
dictionaryDg,, was constructed with the noise source placed at the same
15 locations but the microphone was fixed at the origin in Fig. 5 instead.

Next, the acoustic-noise-effected AFM images were acquired. Two
different types of samples, a silicon wafer and a calibration sample
(STR3-1800P), respectively, were imaged at the scan rate of 5 Hz under
the tapping mode, when a band-limited (20-1kHz) white noise acoustic
sound of zero-mean and constant variance of 40 mV was broadcasted to
the environment through the speaker at an “unknown” position

(at?n = (71.4cm, 135°) from the AFM cantilever, i.e., the speaker
location and the associated noise dynamics knowledge were not used in
the following filtering). During the imaging process, the noise was ac-
quired using the three microphones placed at locations at(0, 0°), (—

20cm, 0°), and(20cm, 0°), respectively. Both thez-axis piezo displace-
ments and the friction force in the lateral direction were also captured
simultaneously. The time delays between the acoustic signals and the
three measured noise signals were used to estimate the noise location as
described in Sec.III (B) above. Then the estimated noise location was
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Fig. 14. The topography images of the silicon sample (a) and the calibration
sample (b) obtained at 5 Hz filtered by conventional bandstop filtering tech-
nique, respectively.

used along with the dictionaryDg, to estimate the PAD at the noise
location. The estimated PAD was first corrected by replacing its phase
with the phase of the lateral friction force signal measured, then used as
the initial value of the FIR filter (Eq. (26)) in the proposed gradient-
based optimization of the dynamic modulatora*(jwy), by following Al-
gorithm 1, whereap andi are chosen as 1 and 0.1, respectively. The
length of the segments in coherence calculationL was chosen at 41875
sampling points. (Total: 8 segments) Finally, the acoustic-caused z-axis
displacement was estimated via Eq. (3), and the filtered sample image
was obtained via Eq. (4). For comparison, the images were also filtered
by using the directly measured noise and directly measured FIR filter—i.
e., both the noise and the PAD-based FIR filter were obtained under the
SNC condition. Images of the same sample area without the induced
acoustic noise were acquired as a reference.

Experimental results and discussion

First, the PADs and the NADs in DictionaryDg, and DictionaryDg,,
are presented in Figs. 7 and 8, in terms of the averaged, the upper bound
and the lower bound between the PADs and the NADs, respectively. The
location of the "unknown” noise source was estimated at(70.9cm,126-),
compared to the true location at(71.4,135¢). The corresponding PAD

estimated by using the proposed adaptive modulator optimization
technique is compared to accurately measured one (measured under the
SNC condition) in Fig. 9, along with the directly measured one (with the
fixed-location microphone at(0, 0-)). The coherence between the
induced acoustic noise signalnfk] and the filtered image signalzp[k]
before and after the modulator optimization process are compared to the
coherence betweenn[k| and the raw image signalz[k| in Fig. 10 (a), and
the change of the cost functionJ, during the iterative optimization pro-
cess is shown in Fig. 10(b), respectively. The images of the silicon wafer
sample and the calibration sample obtained with or without applying
the proposed approach are compared in Fig. 11(al, bl) and (a3, b3),
along with the noise-free reference in Fig. 11(a), respectively. The cross
section sample profile of these cases are compared in Fig. 12(al, a2) and
the corresponding differences (topography signal under noise with or
without filtering vs. the noise-free one) are compared in Fig. (b1, b2) for
the two samples, respectively. The filtering quality of the proposed
technique was also qualified by the topography difference with respect
to the noise-free image error in 2-norm andco-norm over the entire
image, normalized using the values for the unfiltered noise images, as
compared in Fig. 13 along with the values for the bandstop filtering and
directly filtering results, respectively. Finally, the filtered images ob-
tained by using the proposed approach are compared to the bandstop
results in Fig. 14 for the two samples, respectively.

The experimental results clearly demonstrated the location-
dependence of the PADs and NADs. As shown in Fig. 7, the PADs var-
ied over 180% in 2-norm and 560% in infinity-norm, respectively, and
the 2-norm variation was over 200% and 700% with respect to the
distance and the angle/direction changes, respectively. Similar varia-
tions were also observed in the NADs too (see Fig. 8). Due to such a large
location-dependent variations of the PAD, the directly measured PAD
with the unknown-location noise was largely different from the “true”
one (measured under the SNC condition). As shown in Fig. 9, difference
as large as 150% in 2-norm occurred in the lower frequency range from
100 Hz to 220 Hz. Thus, it was evident that the effect of unknown noise
location needed to be accounted for in the filtering process.

The effectiveness of the proposed DD-DOF in accurately estimating
the PAD of the unknown-location noise can be clearly seen from the
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experimental results. First, by using the proposed localization method,
the location of the unknown noise was accurately estimated. With the
error around 16% and 8% in the distance and the angle estimation,
respectively, the residual location-caused variation in the PAD was
negligible. As such, the corresponding PADs of the noise source was
accurately estimated. Shown in Fig. 9, the large error in the directly
measured PAD was substantially reduced, with the 2-norm error of the
PAD reduced by over 82% in the frequency range 100 Hz to 220 Hz, and
over 33% in the entire measured frequency range. Such an improvement
in PAD quantification was directly gained from the proposed gradient-
based adaptive modulator optimization. As shown in Fig. 10, the
noise-to-image coherence, i.e., the coherence between the acoustic
noisen[k] and the raw image signalz[k],Cyr, was significantly larger than
that between n[k] and the image signal without the induced acoustic
noise,Cy, indicating that the noise-to-image coherence was a good in-
dicator of the noise effect on the image result. By using the PAD-based
filter, the noise-to-image coherence was significantly reduced by more
than 55% in 2-norm for frequenciesw in [20, 1000] Hz, indicating the
removal of the acoustic noise from the image signal. However, it was still
larger than the coherence without the induced acoustic noise,Cp.
Through the proposed gradient-based adaptive optimization process,
the noise-to-image coherence was further reduced by 33%, as shown in
Fig. 10(a). As a result, the cost function of the acoustic-noise-caused
image errorJ, was consistently reduced by 80% (see Fig. 10(b)). Thus,
the experimental results demonstrated the effectiveness of the proposed
DD-DOF technique in accurately capturing the PAD and the acoustic
noise.

Finally, the AFM image filtering results demonstrated that with the
proposed DD-DOF technique, the acoustic-noise-caused image distor-
tions were largely removed. The acoustic-noise-caused image distortion
was pronounced in the images obtained (Fig. 11(al,bl)), expressed as
large ripple-like artifacts across the entire image—the acoustic-caused
artificial topography fluctuation was over 59% and 66% for the silicon
sample and the calibration sample, respectively. On the contrarily, by
using the proposed filtering technique, such noise-caused artifacts were
substantially reduced by 75% and 46% for the two samples (see Fig. 11
(a2), (b2)), respectively, as also can be seen from the cross-section
profile comparison in Fig. 12. Such a significant noise reduction was
further enhanced by using the proposed adaptive coherence-based
optimization method. As shown in Fig. 11(c1, c2), the DD-DOF images
compared well to the noise-free ones, with the noise-caused topography
variation further reduced—to a total reduction of 85% and 72% for the
two samples, respectively (see Fig. 13). This noise reduction, however,
was difficult (if not impossible) to be attained by using the conventional
bandstop filtering technique. As shown in Fig. 14, when using the
bandstop filter, the acoustic-caused image distortion was, although
reduced, still persisted and pronounced, much larger than those using
the proposed technique. The acoustic-caused distortion was still at 58%
and 131% for the silicon and the calibration sample, respectively, two
times and three times larger than that via the proposed technique,
respectively. Thus, the experimental results clearly demonstrated that
the proposed DD-DOF technique can effectively reduced acoustic-noise-
caused distortion in AFM imaging.

5. Conclusion

A data-driven dynamic-based filtering approach was developed to
eliminate AFM image distortion caused by acoustic noise from an un-
known location. The location of the noise source was estimated based on
the time-delay measurement method, and a dictionary of PADs and a
dictionary of NADs at selected locations were constructed a priori, and
used along with the noise source location identified to estimate the PAD
and the noise signal. An acoustic-dynamics modulator was introduced to
minimize the acoustic-caused image distortion by minimizing the
coherence between the acoustic noise and the residual acoustic-caused
image distortion through gradient-based optimization. The efficacy of
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the proposed approach was demonstrated by filtering experimentally
measured AFM images of a silicon sample and a calibration sample. The
filtering results showed that by using the proposed technique, the image
distortion was substantially reduced.
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