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Data-driven dynamics-based optimal filtering of acoustic noise at arbitrary 
location in atomic force microscope imaging 

Jiarong Chen, Qingze Zou * 

Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854, USA   

A R T I C L E  I N F O   

Keywords: 
Acoustic noise filtering 
Atomic force microscopy 
Coherence minimization 
Topography imaging 

A B S T R A C T   

This paper presents a post-filtering approach to eliminate distortions in atomic force microscope (AFM) images 
caused by acoustic noise from an unknown location. AFM operations are sensitive to external disturbances 
including acoustic noise, as disturbances to the probe-sample interaction directly results in distortions in the 
sample images obtained. Although conventional passive noise cancellation has been employed, limitation exists 
and residual noise still persists. Advanced online control techniques face difficulty in capturing the complex noise 
dynamic and limited system bandwidth imposed by robustness requirement. In this work, we propose a 
dynamics-based optimal filtering technique to remove the acoustic-caused distortions in AFM images. A 
dictionary-approach is integrated with time-delay measurement to localize the noise source and estimate the 
corresponding acoustic dynamics. Then a noise-to-image coherence minimization approach is proposed to 
minimize the acoustic-caused image distortion via a gradient-based optimization to seek an optimal modulator to 
the acoustic dynamics. Finally, the filter is obtained as the finite-impulse response of the optimized acoustic 
dynamics. Experimental implementation is presented and discussed to illustrate the proposed technique.   

1. Introduction 

In this paper, a data-driven dynamics-based post-filtering approach 
is proposed to eliminate acoustic-caused distortions in atomic force 
microscope (AFM) images. As an essential tool for nanoscale interro
gation and measurement [1–3], AFM is sensitive to external and internal 
disturbances including acoustic noise, as disturbances to the tip-sample 
interaction directly result in distortions in AFM images [4]. Although the 
external-disturbance-caused adverse effects can be alleviated via con
ventional passive methods [5–8] or active control technique [9], resid
ual noise distortion still persists, resulting in image distortion and loss of 
image quality. Thus, this work aims to develop a post-filtering approach 
to eliminate the acoustic noise distortions in AFM images. 

Maintaining the tip-sample interaction closely around the desired 
value is important in AFM applications, including imaging [1–3], 
nanomechanical measurement [10–12], and tip-based nanofabrication 
[13–15]. Extraneous tip vibration relative to the sample can be induced 
by disturbances including acoustic noise and seismic vibrations, or by 
internal excitement of the dynamics and hysteresis adverse effects of the 
nanopositioning systems (from the piezo actuator to the cantilever tip). 
In contrast to the efforts to tackle internal adverse effects through 

hardware improvement to increase the bandwidth of the nano
positioning system [16,17], and/or through software/algorithm in
novations of advanced control techniques [18,19]. Little has been done 
to compensation for the external disturbances [20] beyond the use of 
conventional passive vibration/noise isolation apparatus [5–8] such as 
vibration isolation table [21] and acoustic enclosure [22]. These passive 
noise/vibration isolation apparatus prevents the integration of other 
measurement instruments such as inverted optical microscope to the 
AFM platform [23], and residual noise distortion still exists [9]. 
Recently, inversion-based feedforward controllers [9,20] are introduced 
to compensate for the undesired piezo displacement. The performance of 
such an online active noise control can be hurdled by hardware con
straints (e.g., online computation power and data acquisition speed) and 
limited system bandwidth imposed by the robustness requirements. 
Thus, post-filtering techniques shall be developed to improve the AFM 
image quality affected by the acoustic noise. 

Challenges exist in filtering the acoustic-noise-caused distortions in 
AFM images. Conventional frequency-domain filtering approach (e.g., 
low-passor band-pass filtering) is ineffective as the acoustic-noise effect 
is largely random, broadband, and does not decay with frequency in
crease. As a result, sample topography can be significantly distorted or 
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removed along with the noise when these filters are used. While these 
limitations of conventional filtering might be alleviated via the filtered-x 
least-mean-square algorithms [24] and its modifications [25,26] to ac
count for the coupling between the noise and the sample topography, 
such techniques rely on acquiring accurate error of the residual noise 
effect, i.e., an acoustic-caused image is needed, whereas it is mixed and 
coupled with the “true” sample topography that is unknown in general. 
Alternatively, the acoustic-caused image distortion might be decoupled 
from the sample topography image by exploring a model-based 
approach along the Kalman-filtering framework [27]. However, it is 
challenging to capture the complicated acoustic noise dynamics of 
broadband nature in practices accurately and robustly. This difficulty 
becomes even more serious when the location of noise source is un
known a priori—due to the unknown noise source, the un-collated 
sensing results in large uncertainties in the acoustic dynamics model 
(used in the Kalman-filter design) and the noise signal acquired, as the 
acoustic noise dynamics heavily depends on the noise propagation path, 
and thereby, varies significantly when the relative position between the 
noise source and the sensor changes. Thus, for the post-filtering tech
nique to be effective, the complexity and the pronounced 
location-dependent variation of the acoustic noise dynamics must be 
accounted for. 

The main contribution of this paper is the development of a data- 
driven dynamic-based technique to eliminate the acoustic noise- 
caused distortion in AFM imaging. Specifically, the filter is designed 
directly as a finite-impulse-response (FIR) representation of the under
line primary acoustic dynamics (PAD) response. First, to account for the 
unknown noise location effect on the PAD, the unknown noise source is 
localized based on the time-delay measurement method [28]. Then, a 
dictionary-based approach is proposed to estimate the corresponding 
PAD based on the estimated noise location. Secondly, an 
acoustic-dynamics modulator is introduced to the estimated PAD to 
minimize the acoustic-caused image distortion via coherence minimi
zation. Particularly, the modulator is sought via the gradient-based 
iterative algorithm to minimize the coherence between the acoustic 
noise and the residual acoustic-caused image distortion iteratively. 
Although the notion of noise-and-signal coherence has been exploited 
previously [29,30] in speech signal filtering and enhancement, the 
proposed approach is fundamentally different in exploring a 
gradient-based approach to directly minimize the noise-and-signal 
coherence to optimize the filter (i.e., the acoustic dynamics model). 
The proposed filtering scheme is implemented on AFM image examples, 
and the experimental results show that the image distortion can be 
significantly reduced. 

2. Acoustic-caused AFM image distortion: challenges, & 
problem formulation 

2.1. Acoustic-Noise effect on atomic force microscope operation: Imaging 
example 

Eliminating external disturbances including acoustic noise is critical 
to AFM applications. The basic principle of AFM is to utilize a 
nanometer-size cantilever-tip attached to the AFM head (see Fig. 1) to 
interact with a sample [1–3], and manipulate the probe-sample inter
action with nanoscale precision—-to interrogate topography and ma
terial properties of the sample, or to modify the sample and/or generate 
patterns on the sample [31]. Thus, external disturbances like acoustic 
noise can result in extraneous perturbation to the probe-sample inter
action, and thereby, loss of precision and quality in AFM applications. 

More specifically, acoustic noise effect reduces the AFM imaging 
quality. For example, in tapping mode (TM) imaging, the cantilever tip is 
excited (usually using a small piezo stack actuator, called a dither piezo) 
and taps on the sample surface, when the tip is scanning across the 
surface, and the tapping amplitude is maintained around a pre-chosen 
constant level under feedback control. [31]. Then, a sample topog
raphy image is obtained from the (vertical) displacement of the canti
lever [2]. In the presence of environmental acoustic noise, however, the 
mechanical structure of the AFM (on which the cantilever is mounted, 
see Fig. 1) can be excited and vibrate, resulting in unwanted cantilever 
vibration with respect to the sample and thereby, image distortion. As an 
example, an image of a silicon wafer obtained under environmental 
acoustic noise (introduced by using the speaker in Fig. 1) is shown 
pronounced image distortion with respect to one obtained without the 
induced noise. (compare Fig. 2(a) and (b)) 

It is challenging to eliminate such acoustic-noise-caused distortions 
in AFM image. Conventional filtering techniques based on frequency- 
domain separation (e.g., low-pass, band-pass, or notch filter) are inef
fective as the noise-caused distortion is largely coupled with the sample 
topography in the image obtained—These techniques will filter out and 
smear the sample topography features. Further challenges arise as the 
acoustic-noise dynamics is largely random, broadband, and do not decay 
with the frequency increases (see Fig. 3 for an example). These char
acteristics of the acoustic noise effect also present challenges to the 
model-based approaches along the Kalman-filtering framework 
[27]—-it is challenging to capture such a complicated acoustic noise 
dynamics (See Fig. 3) via a parameterized model accurately and 
robustly. This difficulty becomes even more so when the location of the 
noise source is arbitrary and unknown a priori—The arbitrarily noise 
location results in un-collocated sensing (see Fig. 1) and thereby, un
certainties in the acoustic dynamics and the noise signal measured—the 
acoustic noise dynamics depends on the noise propagation path, and 
varies significantly as the distance and direction of the noise source and 
the sensor changes. Thus, the complexity and the pronounced 
location-dependent uncertainty of the acoustic noise dynamics must be 
accounted for. 

2.2. Filtering of acoustic-noise in AFM imaging: Problem formulation 

We consider the scenario where the noise comes from an arbitrary 
and unknown but fixed location behind the sensors (whose locations are 
fixed and known)—as illustrated in Fig. 1 and appears in many AFM 
applications. Without loss of generality, we assume that 

Assumption 1. The acoustic noise n[k] is a zero-mean, band-limited 
white noise, and the variation of the primary acoustic noise dynamics 
(PAD) is quasi static. 

The PAD is the dynamics from the noise signal (as the input) to the 
AFM image signal (as the output response), under the source-sensor 
collocated condition, i.e., the sensor (microphone) is placed at the 
noise source location, seeGN(z) in Fig. 3. Moreover, the PAD can be 

Fig. 1. An experimental setup for studying acoustic noise effect on AFM 
operation, where it is assumed that the location of the noise source (speakers) is 
unknown while the sensors (microphones) are placed at fixed and 
known locations. 
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modeled as a linear time-invariant dynamics(LTI) and the variation of 
the PAD is mainly caused by the change of the noise source location, i.e., 
the noise propagation route, and thereby, is largely unchanged during a 
given imaging process but can vary in day to day operation. 

As depicted in the block diagram in Fig. 4, in the presence of acoustic 
noise, the total AFM image signal z[k] becomes: 

z[k] = zT [k] + zn[k], for k = 1, …, NI , (1)  

wherezT[k] andzn[k] are thez-axis piezo displacement caused by the 
sample topography and that due to the acoustic noise, respectively, 
andNI is the total number of sampling data acquired in the given im
aging process. Asz[k] is used to plot the sample topography image, we 
call, in the following,z[k],zT[k], andzn[k] the raw image signal, the true 
image signal, and the image noise signal, respectively. The image 
noisezn[k] is related to the acoustic noisen[k] via 

zn[k] = n[k] ∗ gN [k], (2)  

wheregN[k] is the impulse response of the PAD (from the noise source to 

the AFM cantilever), and ’∗’ denotes the convolution operation, 
respectively. 

Thus, a filtered image signal,zF[⋅], can be obtained from the estimated 
image noise signalẑn[k] via 

zF[k] = z[k] − ẑn[k], for k = 1, …, NI (3)  

where ẑn[k] = n̂[k] ∗ ĝN [k] (4)  

withn̂[k] andĝN[k] the estimated acoustic noise and the estimated PAD 
(presented in the impulse response form), respectively. Thus, the 
filtering quality can be quantified by the residual image errorer[k]

er[k] = zF [k] − zT [k]. (5) 

By Assumption 1,ẑn[k] is also a wide stationary random process 
process [32], so arezF[k] ander[k]. Hence, by Eqs. (3), (4), the expectation 
of the residual image error,E(er[⋅]) = 0. 

Uncertainties exist in the estimated noise sourcen̂[k] and the 
PAD,ĝN[k]. Specifically, the noise and the sensor being un-collocated 
(due to the noise source location being arbitrary) implies that the 
measured noisenm[k] can be largely different from the “true” noise, and 
the PAD from the measured noise (acquired at the sensor location) to the 
image responsegN,m[k], is also different from the “true” PADgN[k]. This 
difference increases pronouncely as the distance between the sensor and 
the noise source location or the direction difference (i.e., the noise-to- 
AFM direction vs. the sensor-to-AFM direction) increases. Thus, cen
tral to the acoustic-noise filtering of AFM image is to estimaten̂[k]

andĝN[k] accurately from the measured noise and image response,nm[k]

andzn[k], such thatn̂[k]→n[k], andĝN[k]→g[k]. 
Data-driven Dynamics-based Optimal Filtering (DD-DOF) of 

Acoustic-Noise in AFM Image    Let Assumption 1 hold, and the noise 
source location be fixed, arbitrary, and unknown a priori, and let three 
sensors located at three fixed locations be used to acquire the noise 
signal along with the AFM image data during the noise-effected imaging 
process, then the problem of DD-DOF in AFM imaging is to: 

Fig. 2. Comparison of an AFM image of a silicon wafer sample obtained (a) with acoustic noise induced via the speakers in Fig. 1 to (b) that without the induced 
acoustic noise. 

Fig. 3. An exemplary frequency response (magnitude part) of a primary acoustic dynamics (PAD) for the AFM setup in Fig. 1.  

Fig. 4. Schematic block diagram of the AFM imaging process with acous
tic noise. 
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O − 1 
Directly estimate both the noise signal and the corresponding PAD from 
the measured data,   

O − 2 
Construct the filterĝN[k] by directly using the measured data, and 
minimize the following noise caused image distortion: 

minJr =
∑NI

k=1
E{er[k]}

2
=

∑NI

k=1
E{zF [k] − zT [k]}

2 (6)   

In contrast to parameterized-model-based methods [27,33] where a 
model of the PAD needs to be identified a priori, the proposed 
data-driven approach aims to avoid not only the modeling process and 
the related issues, but also the performance-robustness trade-off—the 
filter can be automatically updated along with the measured data, and 
thereby, maintain the performance in the presence of dynamics and 
signal variations. 

3. Data-driven acoustic filter optimization 

We proceed by achieving the two objectives in order. 

3.1. O − 1 data-driven estimation of noise dynamics with unknown 
source location 

First, the noise source is localized through a time-delay measure
ment, and then used to estimate the PAD and the noise via a data-driven, 
dictionary-based approach. 

3.1.1. Acoustic source localization 
In the planar noise source scenario, localizing the noise source is 

equivalent to determining the coordinate of an unknown locationn 
(noise source) with respect to other three known locationsa,b, andc 
(three sensors). The possible locations of the noise source must fall onto 
a hyperbola (the black lines in Fig. 5) with its foci ata andb, respectively, 
(as the distance differences between the unknown pointn and any two 
fixed points, e.g., betweenn anda vs betweenn andb,Δda−b,n =

⃒
⃒da,n −

db,n
⃒
⃒, is fixed). By choosing the frame with pointb as its origin and pointa 

at coordinate (1, 0) (see Fig. 5), this hyperbola is given by 

(x − 0.5)
2

(
Δda−b,n

/
2
)2 −

y2

0.52 −
(
Δda−b,n

/
2
)2 = 1. (7) 

Similarly, the possible location of noise sourcen also falls onto a 
hyperbola of foci at locationsb andc (the red line in Fig. 5), respectively, 

(x + 0.5)
2

(
Δdb−c,n

/
2
)2 −

y2

0.52 −
(
Δdb−c,n

/
2

)2 = 1, (8)  

where to simplify the expression, the third microphone location is at c 
(-1, 0), andΔdb−c,n =

⃒
⃒db,n − dc,n

⃒
⃒. Thus, the above Eqs. (7) and (8) im

plies that the noise source must be located at one of the intersections of 
these two hyperbolas (pointe or pointf in Fig. 5): The actual location is 
determined by which microphone picks up the noise signal first, e.g., in 
Fig. 5, the noise is at locatione(n) when the microphoneb received the 
noise signal ahead of the microphonec. 

Hence, the noise source location can be determined once the sensor- 
source distance differencesΔda−b,n andΔdb−c,n in Eqs. (7) and (8), 
respectively, are quantified, or equivalently, the time difference be
tween the noise signals captured by the three microphones ata,b, 
andc,τab, andτbc, respectively, are quantified. This time difference is 
measured/quantified through the following cross-correlation between 
these three acoustic signals, e.g., the time differenceτab is quantified 
through cross-correlationRab[j] [34] 

Rab[j] =
∑NI −1

k=0
na[k]nb[(k + j) mod NI ] j = 0, 1, 2, ..., NI − 1 (9)  

wheremod denotes the modulo operation. Then the time delayτab (for 
quantifying the distance difference,Δda−b,n) is obtained as the maximum 
value of the cross-correlation 

τab =
1
fs

argmax
j

(Rab[j]). (10)  

wherefs is the sampling frequency. The distance differenceΔdb−c,n is 
quantified in the same manner. Finally, the coordinates of the noise 

location, ℓ
→

n = (xn, yn), is obtained by solving the 2nd-order algebraic 
equations Eqs. (7) and (8) (numerically). 

To improve the localization accuracy, the above process can be 
repeated by considering combinatorial pairings of the three micro
phones (total of 3), and using all the pairs of distance difference obtained 
to estimate the noise source location via averaging. Further improve
ment can be sought by using more microphones and more advanced 
methods beyond averaging. 

3.1.2. Dictionary-based primary acoustic noise dynamic estimation 
The above identified noise location is then used to estimate the 

PADĝN[⋅] —The PAD from the noise source in the given imaging process 
to the image signal (under the sensor-noise collocation condition (SNC)). 
We propose a data-driven dictionary-based approach. Specifically, a 
dictionary of the PAD frequency responses measured at selected 
locations,DGn , is constructed, 

DGn =

{

Gn

(

ℓ
→

p,q, jωk

)⃒
⃒
⃒
⃒ ℓ
→

p,q ∈ ℜ2, ωk ∈ Sω,

p = 1, …, Nr, and q = 1, …, Nθ} (11)  

where Sω =

{
kωs

NI

⃒
⃒
⃒
⃒ k = 0, 1, …, NI − 1, and ωs = 2πfs

}

(12)  

is the set of the sampled discretized frequencies,Gn( ℓ
→

p,q, jωk) is the PAD 

from location ℓ
→

p,q ( ℓ
→

p,q = (rp, θq): the polar coordinate of position) to 
the AFM image signal measured under the noise-sensor collocated 
condition, andNθ andNr are the total number of PADs measured in the 
polar direction and radical direction, respectively (See Fig. 5), i.e., 

for ℓ
→

p,q = (rp, θq), 

rp =
rmax

Nr − i
, θq =

θmax

q
(13) 

Fig. 5. Schematic representation of the acoustic source localization using time 
delay measurement, where a, b, and c, denote the locations of three micro
phones, the black-line and red-line are the hyperbola curves on which the 
possible noise source locations are. and e and f denote the location of the noise 
source n, respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

J. Chen and Q. Zou                                                                                                                                                                                                                            



Ultramicroscopy 242 (2022) 113614

5

for 1 ≤ p ≤ Nr and 1 ≤ q ≤ Nθ (14)  

wherermax andθmax are the radius and angle (with respect to the AFM 
cantilever) corresponding to the maximum area of the noise effect 
considered, respectively. 

Thus, the PAD at an unknown location can be estimated by using the 
dictionaryDGn via, e.g., linear interpolation—More advanced estimation 
technique can be applied. Specifically, two constants,μr andμθ ∈ (0, 1), 
are introduced to account for the dependence of the PADs on the dis
tance (μr) and the direction (i.e., angle,μθ) with respect to the AFM 
cantilever, respectively. For example, to estimate the PAD at locationA 
in Fig. 6, first the smallest grid of the dictionaryDGn within which 
location A resides can be determined by using the estimated location of 
A (identified in Sec. III.A), i.e.,Ane,Anw,Ase, andAsw in Fig. 6 can be 
determined. Then the distance effect can be accounted for by using the 
DictionaryDGn to estimate the PAD at locations B and C (see 
Fig. 6),ĜN,B(jωk) andĜN,C(jωk), 

ĜN,B(jωk) = (1 − μθ)Gn

(

ℓ
→

Asw , jωk

)

+ μθGn

(

ℓ
→

Ase , jωk

)

(15)  

ĜN,C(jωk) = (1 − μθ)Gn

(

ℓ
→

Anw , jωk

)

+ μθGn

(

ℓ
→

Ane , jωk

)

(16)  

for∀ωk ∈ Sω whereGn( ℓ
→

Asw , jωk),Gn( ℓ
→

Ase , jωk),Gn( ℓ
→

Anw , jωk)

andGn( ℓ
→

Ane , jωk) ∈ DGn are the corresponding PADs at 
locationsAne,Anw,Ase, andAsw, respectively (see Fig. 6). Then the dynamic 
at locationA can be estimated via linear interpolation in the radical di
rection as 

ĜN,A(ωk) = (1 − μr)ĜN,B(jωk) + μr ĜN,C(jωk) (17) 

Alternatively,ĜN,A(ωk) can also be estimated by accounting for the 
distance effect first—by estimating the PAD at location D and E (See 
Fig. 6),ĜN,D(jωk) andĜN,E(jωk), respectively, then secondly, the direction 
effect by using the obtainedĜN,D(jωk) andĜN,E(jωk) via linear interpola
tion in the polar direction. The accuracy ofĜN,A(ωk) can be further 
improved via averaging. 

The above estimated PAD—in the non-parametric finite impulse 
response form—is used directly to quantify the noise-caused image 
distortion (i.e., the image noise signalẑn[k] in Eq.  (4)). Compared to 
parameterized-model based methods (e.g., the transfer function model), 
this data-driven approach is preferred as PAD is complicated with 
multiple poles and zeros, with no pronounced delaying as frequency 

increases (see Fig. 6 as an example)—parameterized-modeling ap
proaches will not only result in a high-order model, and thereby, the 
complexity in computation and potential robustness issue with respect 
to parameter variations, but also can induce in extraneous modeling 
error. 

3.1.3. Noise signals estimation using dictionary 
Similarly, the effect of unknown noise location on the noise mea

surement can also be accounted for via the data-driven, dictionary-based 
approach. A dictionary of the noise propagation dynamics (NPD),DGnp , is 
constructed a priori, 

DGnp =

{

Gnp

(

ℓ
→

p,q, jωk

)⃒
⃒
⃒
⃒ ℓ
→

p,q ∈ ℜ2, ωk ∈ Sω, i = 1, 2, …Nr , j = 1, 2, …Nθ

}

(18)  

whereGnp( ℓ
→

p,q, jωk) is the NPD measured with the noise source 
(speaker) at locationℓp,q = (ri, θj) and the sensor (microphone) located 
at the given fixed location, e.g., with the noise at locatione(n) and the 
sensor at the origin in Fig. 5. The location of the microphone is chosen 
the same as that during the targeted imaging process. 

Thus, the NPD at any unknown location A,ĜA(jωk), can be obtained 
as the average of the direction-first and the distance-first 
estimations,ĜA,ρ(jωk),ĜA,d(jωk), respectively, 

ĜA(jωk) =
1
2

ĜA,ρ(jωk) +
1
2

ĜA,d(jωk) (19)  

where as in the PAD estimation above, the direction-first 
estimationĜA,ρ(jωk) is obtained via 

ĜA,ρ(jωk) = (1 − μr)ĜB

(

ℓ
→

p,q, jωk

)

+ μr ĜC

(

ℓ
→

p,q, jωk

)

(20)  

withĜB(jωk),ĜC(jωk) the NPDs estimated at location-B and location-C, 
respectively, by using the dictionaryDGnp —similar to Eqs. (16)–(18), and 
the distance-first estimationĜA,d(jωk) is obtained via 

ĜA,d(jωk) = (1 − μρ)ĜD

(

ℓ
→

p,q, jωk

)

+ μρ ĜE

(

ℓ
→

p,q, jωk

)

(21)  

withĜD(jωk),ĜE(jωk) the estimated NPDs at location-D and location-E, 
respectively, using the dictionaryDGnp, similar to Eqs. (21) and (22). 

With the above estimated NPD, the noise at locationA during the 
targeted imaging process can be estimated from the measured 
noiseNA,m(jωk) as 

N̂ cl(jωk) =
NA,m(jωk)

ĜA(jωk)
, for ωk ∈ Sω (22)  

3.2. O − 2 data-driven acoustic-dynamics-based filtering 

3.2.1. Cross-coupling and imaging-dependent effect on PAD 
With the noise-sensor non-collocation issue addressed above, we 

next design the filterĝN[⋅] by assuming that the noise-sensor collocation 
condition holds. The issue is to account for the cross-axis coupling and 
the imaging process-dependent effect on the filter. Specifically, as the 
acoustic-noise-caused vibration of the AFM structure, in general, is three 
dimensional, the lateral vibration of the structure—due to the cross-axis 
coupling [35]—can also result in the tip disturbance in the vertical di
rection. This cross-coupling-caused tip disturbance becomes more pro
nounced and further amplified by the lateral scanning of the tip during 
the imaging process—-the cross-coupling effect depends on the lateral 
scanning speed and size. Such an imaging-dependent cross coupling 
dynamics effect is difficult to capture due to the mixture of the sample 
topography and the acoustic noise effects in the response signal. 

Fig. 6. Schematic illustration of the construction of the Dictionary of PADs, 
where the receiver (e.g., the AFM scanner in this work) is located at the origin, 
the black dots on the half-circle grids are the locations where the PADs in the 
dictionary have been measured, and blue dots at location point A, B, C, D and E 
denote the locations of PADs estimated by using the dictionary to estimate the 
PAD at location “A” (red-dot) where the unknown noise is,denote the interested 
noise locations, respectively. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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Although the topography effect on the cross dynamics measurement 
might be avoided by imaging an atomically-flat sample (at the given 
imaging condition) a priori, this method is time consuming and not 
practically feasible. Therefore, we proposed the following data-driven 
approach to account for the cross-axis coupling effect first, then its 
imaging-dependence via an adaptive optimization scheme. 

3.2.2. Modulator-based filter optimization via coherence minimization 
Cross-axis coupling compensation First, as a base to account for the 

cross-axis coupling effect, a coupling-free PAD,ĜN,nc(jωk), is obtained 
experimentally a priori by acquiring the image signal under a fixed- 
location acoustics excitationZWN(jωk) when the cantilever tip is 
engaged onto an atomically flat hard reference sample (e.g., a silicon 
wafer) without scanning, and a band-limited white noise acoustic 
noisenWN[k] is broadcasted to the environment (see the setup in Fig. 1), 

ĜN,nc(jωk) =
ZWN(jωk)

NWN(jωk)
, for ωk ∈ Sω (23)  

Comparing the above coupling-free PAD to those captured during the 
imaging process under different acoustic noise conditions in experi
ments showed that the cross-coupling effect mainly appears as a phase 
distortion in the PAD obtained, i.e., the phase variations of the PAD 
measured during the imaging process is different from the noise-free 
one, but closely follows that of the friction force in the lateral direc
tion. Thus, the phase ofĜN,nc(jωk),∠ϕN,nc(jωk), is replaced by the phase of 
the lateral torsional displacement of the cantilever tip measured during 
the imaging process,∠ϕN,f (jωk). 

Modulator-based Filter Optimization To account for the imaging- 
dependent effect on the filterĜN(jωk) and further improve the filtering 
quality, we propose to seek a dynamic modulatorα∗(jωk) ∈ C as in 
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Fig. 7. Comparison between the averaged, the upper bound, and the lower 
bound of (a) all the PADs in dictionary DGn . (b) those at the same distance but 
different angle, and (c) those at the same angle but different distance from the 
AFM cantilever, respectively. 
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Ĝ
∗

N(jωk, αi) = α∗(jωk)ĜN(jωk), ωk ∈ Sω, (24)  

such that the cost function Eq. (6) is minimized. The optimalα∗(jωk) is 
sought through the gradient descent search method, i.e., for any 
givenωk ∈ Sω, 

ĜN,i(jωk, αi) = αi(jωk)ĜN(jωk), with (25)  

αi(jωk) = αi−1(jωk) + λ
∂J r

∂ĜN,i−1(jωk)

= αi−1(jωk) + λ
∂J r

∂αi−1(jωk)

1
ĜN(jωk)

(26)  

fori ≥ 1, where initiallyα0 is chosen as one,λ ∈ (0, 1) is a pre-chosen 
constant to ensure the descendence of the coherence, andJ r is the 
frequency-domain representation of the cost functionJr in Eq. (7), 
respectively, i.e., 

J r =
∑NI

ωk=0
[ZF(jωk) − ZT (jωk)]

2
, (27)  

as by the Parseval’s Theorem [36],J r = Jr. 
The gradient in Eq. (28) is, in general, unknown—the true image 

signalzT [k] is unknown. Thus, next we convert the minimization of Eq. 
(29) to that of the coherence between the measured noise and the 
filtered image signalZF [k] (both are known), as the true sample 
image,zT[k], is independent to the random noisen[k], and therefore, the 
correlation between these two signal,Rnt [j], is zero 

Rnt[j] = E{n[k − j]zT [j]} = 0, j = 0, 1, 2, ..., NI − 1. (28) 

When the acoustic-noise caused distortion in the filtered image 

signal is completely removed, the filtered image sequencezF[k] shall also 
have a zero-correlation to the noise, i.e., when the noise is completely 
removed, 

Rnf [j] = E{n[k − j]zF [j]}→0 j = 0, 1, 2, ..., NI − 1. (29) 

Thus, minimizingJr inO − 2 is equivalent to minimizing the 
following cost functionJc of the correlation betweenzF[k] andn[k]: 

Jc =
∑NI

j=1
Rnf [j]2

=
∑NI

j=1
E{n[k − j]zF [j]}2 (30) 

By the Convolution Theorem of correlation [37], frequency domain 
representation of the above cost function is given by 

minJ c =
∑NF

k=1
E[N∗(jωk)ZF(jωk)]

2 (31)  

whereNF denotes the total number of effective frequency components in 
the noise sourcen[k] and the filtered image sequencezF [k], i.e.,ωNF is the 
lowest frequency at which the magnitude ofN̂(jωk) becomes negligible, 
e.g.,|N(jωk)| ≤ϵn for allωk ≥ NF andϵn is the chosen threshold value. 

To facilitate the computation, the above correlation minimization is 
converted to minimizing the corresponding coherence between these 
two signals,Cnf (jωk), by normalizingJc with the (estimated) power 
spectral density ofZF(jωk) andN(jωk)

minJ c =
∑NF

k=1

E[N∗(jωk)ZF(jωk)]
2

PN(jωk)PZF (jωk)
(32)  

≜
∑NF

k=1
Cnf (jωk) (33)  

Fig. 8. Comparison between the averaged, the upper bound, and the lower bound of (a) all the NPDs in dictionary DGn . (b) those at the same distance but different 
angle, and (c) those at the same angle but different distance from the AFM cantilever, respectively. 
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where thePN(jωk) andPZF (jωk) are power spectral densities ofN(jωk)

andZF(jωk), respectively. When the coherenceCnf (jωk)∈ (0, 1) is mini
mized, so isJ c. Thus, the gradient-based iteration in Eq. (31) is con
verted to 

αi(jωk) = αi−1(jωk) + λ
∂Cnf (jωk, αi−1)

∂ĜN,i−1(jωk)
(34)  

= αi−1(jωk) + λ
∂Cnf (jωk, αi−1)

∂αi−1(jωk)

1
GN(jωk)

(35)  

whereCnf (jωk, αi) is the coherence computed by modulator value ob
tained in theith iteration,αi(jωk), i.e., in Eq. (33), 

ZF(jωk) = ZF(jωk, αi) = Z(jωk) − N̂(jωk)ĜN,i(jωk)

= Z(jωk) − N̂(jωk)αi(jωk)ĜN(jωk), (36)  

and the partial derivative∂Cnf (jωk)/∂αi(jωk) is computed numerically via 
the first-order Euler formula 

∂Cnf (jωk, αi)

∂α(jωk)
≈

Cnf (jωk, αi + δα) − Cnf (jωk, αi)

δα (37) 

To improve the computation accuracy, the Welch’s Method [38] is 
employed to compute the coherence,Cnf (jωk, αi), as the average of the 
short-segment coherenceĈnf ,r(jωk, αi), i.e., for any givenα, 

Cnf (jωk, α) ≈ Ĉnf (jωk, α) =

∑Mc
r=1Cnf ,r(jωk, α)

Mc
(38)  

with Cnf ,r(jωk, α) =
|N∗

r (jωk)ZF,r(jωk, α)|
2

PN,r(jωk)PF,r(jωk, α)
(39)  

for i ≥ 1, whereNr(jωk) andZF,r(jωk, α) are the Fourier transform of 
therth segment of the estimated noise signaln̂[k] and the filtered image 
signalzα

F [k], respectively, obtained by partitioning the sequence ofn[k]

andzα
F [k] intoMc segments, respectively, 

n̂ = [n1 n2 … nr … nMc ] and (40)  

zα
F =

[
zα

F,1 zα
F,2 … zα

F,r … zα
F,Mc

]
, where (41)  

nr = [n((r − 1)L + 1), n((r − 1)L + 2, …, n(rL)] (42)  

zα
F,r =

[
zα

F,r[(r − 1)L + 1], zα
F,r[(r − 1)L + 2], …, zα

F,r(rL)
]
. (43)  

where the length of each segmentL is chosen such that the sampled 
frequency resolution of each segment is high enough to capture the 
frequencies where the peak of coherence occurs, i.e.,fs/L ≤ ϵf forϵf is the 
chosen frequency resolution. 

To ensure consistency in the above estimation, the minimization in 
Eq. (23) is modified as 

minJ c =
∑NF

k=1

{
Ĉnf (jωk) − Var

[
Ĉnf (jωk)

]}
(44)  

whereVar[Ĉnf (jωk)] is the variance of the estimatedĈnf (jωk), 

lim
NI →∞

Var
[
Ĉnf ,i(jωk)

]
= E

{[
Ĉnf ,i(jωk) − Cnf ,i(jωk)

]2}
(45) 

Fig. 9. (a) Comparison of the PAD estimated by using the proposed adaptive 
modulator optimization method to the accurately measured PAD (under the 
SNC condition) and the directly measured PAD without the SNC condition, 
respectively, and (b) comparison of the true noise measured under the SNC 
condition, noise estimated using the NPD, and the actual noise signal under the 
non-SNC condition, respectively. 

Fig. 10. (a) Comparison of the coherence between the acoustic noise n[k] and 
the raw image signal z[k], Cnr(jω), to that between n[k] and the directly filtered 
zF [k], Cnf (jω), and that between n[k] and optimal filtered z∗

F [k], C∗
nf (jω), and (b) 

change of the cost function Jr at the circled location in (a) during the adaptive 
modulator optimization process. 
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The proposed filtering technique is summarized in Algorithm 1. 

4. Experiment example 

The proposed approach was demonstrated through an AFM imaging 
experiment. The objective was to show that by using the proposed 
approach, the image distortion caused by acoustic noise from an arbi
trary location can be substantially reduced. 

The AFM imaging experiment was performed on a commercial AFM 
system (Dimension FastScan, Bruker Nano Inc.), where the acoustic 
noise was induced by a speaker (Logitech S150, Logitech, Inc.) placed 
near the AFM scanner head, and measured via a precision array 

microphone (BK 4958, Bruel Kjaer Inc.), (see Fig. 1 for the experiment 
setup). The noise signal was first pre-filtered and amplified using a 
homemade Op-Amp circuit, then measured via a data acquisition system 
(a Labview-FPGA system NI RIO, USB-7856R, National Instrument Inc.). 
All the filtering algorithms were designed and implemented in MATLAB. 

Implementation of the DD-DOF algorithm 

A dictionary of PADs and a dictionary of NPDs,DGn andDGnp , 
respectively, were constructed a priori first. A total of 15 

PADs,Gn( ℓ
→

i,j, jωk) were acquired in the dictionaryDGn , where each 

PADGn( ℓ
→

i,j, jωk) was measured by maintaining a stable probe-surface 
contact with a silicon sample at the chosen interaction force ampli
tude under a proportional-integral (PI) feedback control. Then a band- 
limited (20-1kHz) white noise acoustic sound with zero-mean and 
constant variance of 40 mV (generated via MATLAB) was broadcasted to 
the environment through the speaker for 10 s, and both the acoustic 
noise and the z-axis displacements signals were acquired simultaneously 
under the noise-sensor collocation condition. The 15 locations were 
chosen to cover an area in front of the AFM scanner head with the dis

tance from the AFM head at ℓ
→

i,j = (ρi, θj) withρi = {40cm, 80cm,

120cm} and θj = {30∘, 60∘, 90∘, 120∘, 150∘}. Then, the NPD 
dictionaryDGnp was constructed with the noise source placed at the same 
15 locations but the microphone was fixed at the origin in Fig. 5 instead. 

Next, the acoustic-noise-effected AFM images were acquired. Two 
different types of samples, a silicon wafer and a calibration sample 
(STR3-1800P), respectively, were imaged at the scan rate of 5 Hz under 
the tapping mode, when a band-limited (20-1kHz) white noise acoustic 
sound of zero-mean and constant variance of 40 mV was broadcasted to 
the environment through the speaker at an “unknown” position 

(at ℓ
→

n = (71.4cm, 135∘) from the AFM cantilever, i.e., the speaker 
location and the associated noise dynamics knowledge were not used in 
the following filtering). During the imaging process, the noise was ac
quired using the three microphones placed at locations at(0, 0∘), ( −

20cm, 0∘), and(20cm, 0∘), respectively. Both thez-axis piezo displace
ments and the friction force in the lateral direction were also captured 
simultaneously. The time delays between the acoustic signals and the 
three measured noise signals were used to estimate the noise location as 
described in Sec.III (B) above. Then the estimated noise location was 

Fig. 11. Comparison of the topography images (first row) of the silicon sample and (second row) of the calibration sample obtained at 5 Hz (a1,b1) with the induced 
acoustic noise, (a2,b2) with the induced acoustic noise filtered by data-driven dynamics-based filtering (DD-DF), (a3,b3) with the induced acoustic noise and by using 
the Data-driven dynamics-based optimal filtering (DD-DOF), and (a4,b4) without the induced acoustic noise, respectively. 

Fig. 12. Comparison of the filtered (using the DD-DOF method) cross-section 
topography profile (at the red-line in Fig. 11) to the un-filtered one and the 
reference (without induced acoustic noise) for (a1) the silicon sample, (b1) the 
calibration sample, and the comparison of the corresponding topography error 
with respect to the reference for (a1) the silicon sample and (b2) the calibration 
sample, respectively. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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used along with the dictionaryDGn to estimate the PAD at the noise 
location. The estimated PAD was first corrected by replacing its phase 
with the phase of the lateral friction force signal measured, then used as 
the initial value of the FIR filter (Eq. (26)) in the proposed gradient- 
based optimization of the dynamic modulatorα∗(jωk), by following Al
gorithm 1, whereα0 andλ are chosen as 1 and 0.1, respectively. The 
length of the segments in coherence calculationL was chosen at 41875 
sampling points. (Total: 8 segments) Finally, the acoustic-caused z-axis 
displacement was estimated via Eq. (3), and the filtered sample image 
was obtained via Eq. (4). For comparison, the images were also filtered 
by using the directly measured noise and directly measured FIR filter—i. 
e., both the noise and the PAD-based FIR filter were obtained under the 
SNC condition. Images of the same sample area without the induced 
acoustic noise were acquired as a reference. 

Experimental results and discussion 

First, the PADs and the NADs in DictionaryDGn and DictionaryDGnp 

are presented in Figs. 7 and 8, in terms of the averaged, the upper bound 
and the lower bound between the PADs and the NADs, respectively. The 
location of the ”unknown” noise source was estimated at(70.9cm,126∘), 
compared to the true location at(71.4, 135∘). The corresponding PAD 

estimated by using the proposed adaptive modulator optimization 
technique is compared to accurately measured one (measured under the 
SNC condition) in Fig. 9, along with the directly measured one (with the 
fixed-location microphone at(0, 0∘)). The coherence between the 
induced acoustic noise signaln[k] and the filtered image signalzF [k]

before and after the modulator optimization process are compared to the 
coherence betweenn[k] and the raw image signalz[k] in Fig. 10 (a), and 
the change of the cost functionJr during the iterative optimization pro
cess is shown in Fig. 10(b), respectively. The images of the silicon wafer 
sample and the calibration sample obtained with or without applying 
the proposed approach are compared in Fig. 11(a1, b1) and (a3, b3), 
along with the noise-free reference in Fig. 11(a), respectively. The cross 
section sample profile of these cases are compared in Fig. 12(a1, a2) and 
the corresponding differences (topography signal under noise with or 
without filtering vs. the noise-free one) are compared in Fig. (b1, b2) for 
the two samples, respectively. The filtering quality of the proposed 
technique was also qualified by the topography difference with respect 
to the noise-free image error in 2-norm and∞-norm over the entire 
image, normalized using the values for the unfiltered noise images, as 
compared in Fig. 13 along with the values for the bandstop filtering and 
directly filtering results, respectively. Finally, the filtered images ob
tained by using the proposed approach are compared to the bandstop 
results in Fig. 14 for the two samples, respectively. 

The experimental results clearly demonstrated the location- 
dependence of the PADs and NADs. As shown in Fig. 7, the PADs var
ied over 180% in 2-norm and 560% in infinity-norm, respectively, and 
the 2-norm variation was over 200% and 700% with respect to the 
distance and the angle/direction changes, respectively. Similar varia
tions were also observed in the NADs too (see Fig. 8). Due to such a large 
location-dependent variations of the PAD, the directly measured PAD 
with the unknown-location noise was largely different from the “true” 
one (measured under the SNC condition). As shown in Fig. 9, difference 
as large as 150% in 2-norm occurred in the lower frequency range from 
100 Hz to 220 Hz. Thus, it was evident that the effect of unknown noise 
location needed to be accounted for in the filtering process. 

The effectiveness of the proposed DD-DOF in accurately estimating 
the PAD of the unknown-location noise can be clearly seen from the 

Fig. 13. Comparison of the normalized image error (with respect to the raw image error) for (a) the silicon sample and (b) the calibration sample in (1) 2-norm and 
(2) ∞-norm, respectively. 

Fig. 14. The topography images of the silicon sample (a) and the calibration 
sample (b) obtained at 5 Hz filtered by conventional bandstop filtering tech
nique, respectively. 
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experimental results. First, by using the proposed localization method, 
the location of the unknown noise was accurately estimated. With the 
error around 16% and 8% in the distance and the angle estimation, 
respectively, the residual location-caused variation in the PAD was 
negligible. As such, the corresponding PADs of the noise source was 
accurately estimated. Shown in Fig. 9, the large error in the directly 
measured PAD was substantially reduced, with the 2-norm error of the 
PAD reduced by over 82% in the frequency range 100 Hz to 220 Hz, and 
over 33% in the entire measured frequency range. Such an improvement 
in PAD quantification was directly gained from the proposed gradient- 
based adaptive modulator optimization. As shown in Fig. 10, the 
noise-to-image coherence, i.e., the coherence between the acoustic 
noisen[k] and the raw image signalz[k],Cnr, was significantly larger than 
that between n[k] and the image signal without the induced acoustic 
noise,Cnt, indicating that the noise-to-image coherence was a good in
dicator of the noise effect on the image result. By using the PAD-based 
filter, the noise-to-image coherence was significantly reduced by more 
than 55% in 2-norm for frequenciesω in [20, 1000] Hz, indicating the 
removal of the acoustic noise from the image signal. However, it was still 
larger than the coherence without the induced acoustic noise,Cnt . 
Through the proposed gradient-based adaptive optimization process, 
the noise-to-image coherence was further reduced by 33%, as shown in 
Fig. 10(a). As a result, the cost function of the acoustic-noise-caused 
image errorJr was consistently reduced by 80% (see Fig. 10(b)). Thus, 
the experimental results demonstrated the effectiveness of the proposed 
DD-DOF technique in accurately capturing the PAD and the acoustic 
noise. 

Finally, the AFM image filtering results demonstrated that with the 
proposed DD-DOF technique, the acoustic-noise-caused image distor
tions were largely removed. The acoustic-noise-caused image distortion 
was pronounced in the images obtained (Fig. 11(a1,b1)), expressed as 
large ripple-like artifacts across the entire image—the acoustic-caused 
artificial topography fluctuation was over 59% and 66% for the silicon 
sample and the calibration sample, respectively. On the contrarily, by 
using the proposed filtering technique, such noise-caused artifacts were 
substantially reduced by 75% and 46% for the two samples (see Fig. 11 
(a2), (b2)), respectively, as also can be seen from the cross-section 
profile comparison in Fig. 12. Such a significant noise reduction was 
further enhanced by using the proposed adaptive coherence-based 
optimization method. As shown in Fig. 11(c1, c2), the DD-DOF images 
compared well to the noise-free ones, with the noise-caused topography 
variation further reduced—to a total reduction of 85% and 72% for the 
two samples, respectively (see Fig. 13). This noise reduction, however, 
was difficult (if not impossible) to be attained by using the conventional 
bandstop filtering technique. As shown in Fig. 14, when using the 
bandstop filter, the acoustic-caused image distortion was, although 
reduced, still persisted and pronounced, much larger than those using 
the proposed technique. The acoustic-caused distortion was still at 58% 
and 131% for the silicon and the calibration sample, respectively, two 
times and three times larger than that via the proposed technique, 
respectively. Thus, the experimental results clearly demonstrated that 
the proposed DD-DOF technique can effectively reduced acoustic-noise- 
caused distortion in AFM imaging. 

5. Conclusion 

A data-driven dynamic-based filtering approach was developed to 
eliminate AFM image distortion caused by acoustic noise from an un
known location. The location of the noise source was estimated based on 
the time-delay measurement method, and a dictionary of PADs and a 
dictionary of NADs at selected locations were constructed a priori, and 
used along with the noise source location identified to estimate the PAD 
and the noise signal. An acoustic-dynamics modulator was introduced to 
minimize the acoustic-caused image distortion by minimizing the 
coherence between the acoustic noise and the residual acoustic-caused 
image distortion through gradient-based optimization. The efficacy of 

the proposed approach was demonstrated by filtering experimentally 
measured AFM images of a silicon sample and a calibration sample. The 
filtering results showed that by using the proposed technique, the image 
distortion was substantially reduced. 
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