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Abstract
We consider a regularization problem whose objective function consists of a
convex fidelity term and a regularization term determined by the ℓ1 norm com-
posed with a linear transform. Empirical results show that the regularization
with the ℓ1 norm can promote sparsity of a regularized solution. The goal of this
paper is to understand theoretically the effect of the regularization parameter
on the sparsity of the regularized solutions. We establish a characterization of
the sparsity under the transform matrix of the solution. When the objective
function is block-separable or an error bound of the regularized solution to a
known function is available, the resulting characterization can be taken as a
regularization parameter choice strategy with which the regularization problem
has a solution having a sparsity of a certain level. When the objective function
is not block-separable, we propose an iterative algorithm which simultaneously
determines the regularization parameter and its corresponding solution with
a prescribed sparsity level. Moreover, we study choices of the regularization
parameter so that the regularization term can alleviate the ill-posedness and
promote sparsity of the resulting regularized solution. Numerical experiments
demonstrate that the proposed algorithm is effective and efficient, and the
choices of the regularization parameters can balance the sparsity of the regu-
larized solution and its approximation to the minimizer of the fidelity function.

∗
Dedicated to Professor Charles A Micchelli on the occasion of his 80th birthday with friendship and esteem.

∗∗
Author to whom any correspondence should be addressed.

1361-6420/23/025004+34$33.00 © 2023 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-6420/acad22
https://orcid.org/0000-0003-2982-7864
mailto:y1xu@odu.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/acad22&domain=pdf&date_stamp=2023-1-3


Inverse Problems 39 (2023) 025004 Q Liu et al

Supplementary material for this article is available online

Keywords: parameter choice strategy, regularization, sparsity

(Some figures may appear in colour only in the online journal)

1. Introduction

Many practical problems may be modeled as learning a function from a finite number of
observed data points. Learning a function from a finite number of observed data is an ill-posed
problem. Such a problem cannot be solved directly as its solution is strongly sensitive to input
data which are inevitably corrupted with noise. The ill-posedness was treated by the classical
Tikhonov regularization which adds a regularization term to a data fidelity term constructed
from the original ill-posed problem such that the resulting optimization problem is much less
sensitive to disturbances. The added regularization term composes of a Hilbert space norm of
the solution and a positive regularization parameter λ which balances the noise suppression
and the approximation error of the regularized solution. An estimate for the classical Tikhonov
regularization expresses the regularization error in terms of a sum of the two terms: the approx-
imation error proportional to λ plus the error (caused by noise) proportional to the reciprocal
of λ. The parameter λ is then chosen to minimize the regularization error. For choices of the
optimal regularization parameter, the readers are referred to [5, 46, 65].

Motivated by the big data nature of recent practical applications, sparse regularization in
Banach spaces has attracted much attention in various fields, since a sparse representation for
a learned function is essential to ease the computational burden for operations of the function
as the amount of data increases. As a popular approach to achieve this, regularization in a
Banach space with a sparsity promoting norm, such as the ℓ1 norm, is widely used in statistics,
machine learning, signal processing, image processing and medical imaging. In statistics, the
lasso and its extensions [1, 61–63] apply an ℓ1 penalty to linear regression. The lasso is also
known in signal processing as basis pursuit [15] which aims at decomposing a signal into an
optimal superposition of dictionary elements in the sense that the resulting representation has
the smallest ℓ1 norm of coefficients among all such decompositions. For the purpose of solving
nonlinear ill-posed problems, regularization with a one-homogeneous and convex constraint,
which take the ℓ1 norm as a typical example, was proposed in [48]. Image restoration using
the total variation (TV) norm for regularization [35, 43, 49] leads to searching an optimization
solution in the Euclidean space with the ℓ1 norm. Sparse learning models with the ℓ1 norm,
such as ℓ1 Support vector machine (SVM) classification [38, 51, 55] and ℓ1 SVM regression
[7, 37, 55], have received increasing attention in machine learning. Motivated by the need
of sparse learning algorithms, the notion of reproducing kernel Banach spaces (RKBSs) was
introduced in [76] and further developed in [40, 56, 57, 72]. RKBSs with the ℓ1 norm [40, 56,
57] have been proven successful in promoting sparsity in representations for learned functions.

There were two crucial issues related to the choice of the regularization parameter in a
regularization problem in a Banach space. The first one involves the error analysis to which
considerable amount of work (for example, [26, 41, 52]) has been devoted. In particular, for
the regularization problem with a special fidelity term and the ℓp norm regularizer, a conver-
gence rate of the regularized solutions has been derived in [26, 41] according to a noise level
and a choice the regularization parameter. The second issue concerns how a choice of the reg-
ularization parameter balances the sparsity of the regularized solution and its approximation
accuracy. Empirical results [37, 49, 57, 61, 74] showed that one can obtain a solution having
sparsity of certain level under a given transform of the regularization problem by choosing
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appropriate regularization parameter. There also exist some theoretical results [4, 33, 54, 64,
77] for choices of the parameters in some special cases. For several specific application mod-
els, there were attempts to understand how one can choose the regularization parameter so that
the resulting learned function has sparsity of certain levels. For example, sparsity of the solu-
tion of the lasso regularized model was studied in [4], where the relation between the sparsity
of the regularized solution and the regularization parameter was characterized. Recent stud-
ies on the degrees of freedom of the lasso regularized model [64, 77] provided an objectively
guided choice of the regularization parameter in such a regularization problem through Stein’s
unbiased risk estimation (SURE) framework. For the ℓ1 regularized logistic regression prob-
lem, the regularization parameter is given in [33] to ensure that the regularized solution has
all components zero. A sufficient condition for vanishing of a coefficient in a solution repres-
entation of a regularized learning method with an ℓ1 regularizer was presented in [54]. These
theoretical results on the regularization parameter all depend on the learned solution and no
practical choice strategy of the parameter was provided in these studies.

It remains to be understood from the theoretical viewpoint for a regularized learning prob-
lemwith a general convex fidelity term how the choice of the regularization parameter balances
sparsity of the learned solution and its approximation error. The aim of this paper is to reveal
theoretically how the choice of the regularization parameter can alleviate the ill-posedness
and promoting sparsity of a regularized solution. To this end, we need to first study the rela-
tion between the choice of the regularization parameter and the sparsity of the regularized
solutions in a Banach space with the ℓ1 norm. This issue has been considered in [71] for the
case when the regularization term is the ℓ0 ‘norm’ composed with a linear transform. Since
the regularization problem with the ℓ0 ‘norm’ has nice geometric interpretation even though
it is non-convex, it leads to a geometric approach to understand the issue. Since the ℓ1 norm
regularization problem has less clear geometric meaning, the geometric approach introduced
in [71] does not seem to be applicable directly. However, it provides us with useful insights
of sparse solutions. Due to the convexity of the ℓ1 norm, we instead approach this problem by
appealing to tools available in convex analysis.

In the regularization problem to be studied in this paper, the objective function consists of
a convex fidelity term and a regularization term determined by the ℓ1 norm composed with a
transform matrix. We first discuss the choices of the regularization parameters when the trans-
formmatrix that appears in the regularization term reduces to the identity matrix. We have paid
special attention to the cases when fidelity terms have special structures such as additive separ-
ability or block separability. In such cases, we have established a complete characterization
of the sparsity of the solution, which show how we can choose the regularization parameter
so that the solution has certain levels of sparsity. For the case that the fidelity term is a gen-
eral convex function, we also give a sparsity characterization of the solution. Although in this
characterization the regularization parameter depends on the solution, we still observe from
it how the choice of the regularization parameter influences the sparsity of the solution. We
then consider the case when the transform matrix is not the identity and has an arbitrary rank.
In such a case, by making use of the singular value decomposition (SVD) of the transform
matrix, we transform the original minimization problem to an equivalent constrained optim-
ization problem having a simple transform matrix which is a two block diagonal matrix with
the diagonal blocks being an identity and a zero matrix. The equivalent constrained optimiza-
tion problem is further reformulated as an unconstrained minimization problem by employing
the indicator function of the constraint set. In this manner, we obtain a characterization of
the sparsity under the transform of the regularized solution. Results obtained in this paper are
applied to several practical examples. Moreover, we conduct numerical experiments, to test
the obtained theoretical results, which show that the parameter choices provided by this study
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can balance the sparsity of the solution of the regularization problem and its approximation
accuracy.

Choosing a regularization parameter to balance the sparsity of the regularized solution and
its approximation accuracy in a Banach space setting is a challenging issue. Unlike the coun-
terpart in a Hilbert space setting where the parameter was chosen to balance two error terms
(the approximation error and the error caused by noise) which have the same base quantity
(dimension) [16, 23, 59, 60], the sparsity measure and the accuracy measure in a Banach space
setting are not the same base quantity. This raises technical difficulties in balancing them from
a theoretical standpoint. We attempt in this paper to understand theoretically the effect of the
regularization parameter to the sparsity of the regularized solution and as well as to approx-
imation errors caused by noise. We demonstrate our idea by considering the lasso regularized
model. An error estimate for a solution of the model can be obtained by a general argument
established in [26]. By combining the sparsity characterization of the regularized solution and
the error estimate, we obtain a choice strategy of the regularization parameter that yields a
sparse regularized solution with an error bound.

Major contributions made in this paper are that we provide an implementable regularization
parameter choice strategy, which balances the sparsity of the corresponding regularized solu-
tion and its approximation error bound, for the regularization problem with a block separable
fidelity term. Moreover, for the case that the fidelity term is not block separable, we present
a characterization of the regularization parameter which leads to a sparse regularized solution
of a prescribed level. Based on such a characterization, we develop an iterative scheme for
determining simultaneously the parameter and the associated regularized solution with a pre-
scribed sparsity level, which also leads to an implementable regularization parameter choice
strategy that produces a sparse regularized solution with an approximation error bound.

We organize this paper in seven sections and an appendix. In section 2, we describe the reg-
ularization problem to be considered and review several examples of practical importance. We
characterize in section 3 the relation between the regularization parameter and the sparsity level
of the regularized solution in the case that the transform matrix is the identity. The resulting
characterizations provide regularization parameter choice strategies ensuring that the regular-
ized solutionwith this parameter has sparsity of a desired level. Section 4 is devoted to studying
choices of the regularization parameter that guarantee desired sparsity levels under a transform
of the regularized solution and an iterative scheme that determines simultaneously the para-
meter and the associated regularized solution with a prescribed sparsity level. In section 5,
we discuss how the regularization parameter λ can be chosen to alleviate the ill-posedness
and promoting sparsity of the regularized solutions by considering a lasso regularized model.
In section 6, we present numerical experiments to demonstrate the effectiveness of the reg-
ularization parameter choice strategy and the iterative algorithm established in this paper. In
section 7, we make conclusive remarks. In appendix, we include proofs of several technical
lemmas.

2. Regularization with the ℓ1 norm

In this section, we describe the regularization problem to be considered in this paper, and
identify several optimization models of practical importance which can be formulated in this
general form.

We begin with describing the regularization problem. For each d ∈ N, letNd := {1,2, . . . ,d}
and set N0 := ∅. For x := [xj : j ∈ Nd] ∈ Rd, we define its ℓ1 norm by ∥x∥1 :=

∑
j∈Nd

|xj|. For
m,n ∈ N, suppose that ψ : Rn → R+ := [0,+∞) is a convex function and B is an m× n real
matrix. We consider the regularization problem
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min{ψ(u)+λ∥Bu∥1 : u ∈ Rn} , (1)

where λ is a positive regularization parameter. The regularization problem (1) covers many
application problems. We present several examples below.

The generalized lasso regularized model [1, 63] is a special case of the regularization prob-
lem (1). Specifically, let p ∈ N and ∥ · ∥2 denote the standard Euclidean norm on Rp. Suppose
that x ∈ Rp is a response vector, A ∈ Rp×n is a predictor matrix and B is an m× n real matrix.
When the fidelity term ψ is chosen as

ψ(u) :=
1
2
∥Au− x∥22, u ∈ Rn, (2)

the regularization problem (1) reduces to the generalized lasso regularized model

min
{1
2
∥Au− x∥22 +λ∥Bu∥1 : u ∈ Rn

}
. (3)

The regularization problem (3) covers many important areas where different choices of
matricesA andB are taken. As a special case, the lasso regularized model [61] has the form (3)
with B being the identity matrix In of order n.

In signal or image denoising processes, the two positive integers p and n are equal and the
matrix A is chosen as the identity matrix of order n. The transform matrix B is often chosen
to reflect some believed structure or geometry in the signal or the image. For example, if B is
chosen as the (n− 1)× n first order difference matrixD(1) := [dij : i ∈ Nn−1, j ∈ Nn]with dii =
−1, di,i+1 = 1 for i ∈ Nn−1 and 0 otherwise, then problem (3) describes the one-dimensional
fused lasso model [62], which is also called the one-dimensional total-variation denoising
model [18]. If B is chosen as the two-dimensional difference matrix giving both the horizontal
and vertical differences between pixels, then problem (3) coincides with the two-dimensional
fused lasso model [62] or the Rudin-Osher-Fatemi (ROF) total-variation denoising model
[35, 43, 49].

Another example that concerns the polynomial trend filtering is described below. For each
k ∈ N, let D(1,k) denote the (n− k− 1)× (n− k) first order difference matrix. The difference
matrix of order k+ 1 is defined recursively by D(k+1) := D(1,k)D(k), k ∈ N. The polynomial
trend filtering of order k has the form (3) with A := In and B := D(k+1). In the special case
that k= 1, problem (3) reduces to the linear trend filtering [31, 70]. The transform matrix B
may also be chosen as a discrete wavelet transform [14, 20, 22, 44, 66], a framelet transform
[36, 39], a discrete cosine transform [28, 58] or a discrete Fourier transform [24, 42, 73],
depending on specific applications in signal or imaging processing. The resulting regularized
model aims at representing a signal or an image as a sparse linear combination of certain basis
functions.

Data in many applications often carry a group structure where they are partitioned into dis-
joint pieces. Structured sparsity approaches recently received considerable attention in statist-
ics, machine learning and signal processing. A natural extension of the lasso regularized model
is the group lasso regularized model [10, 11, 29, 74]. We now briefly review this model. For
d,n ∈ N with d⩽ n, we suppose that S := {S1,S2, . . . ,Sd} is a partition of Nn in the sense that
Sj ̸= ∅, for all j ∈ Nd, Sj ∩ Sk = ∅ if j ̸= k, and∪j∈NdSj = Nn. For each j ∈ Nd we denote by nj the
cardinality of Sj and regard Sj as an ordered set in the natural order of the elements in Nn. That
is, Sj := {i( j)1, . . . , i( j)nj}, with i( j)l ∈ Nn, l ∈ Nnj and i( j)1 < .. . < i( j)nj . Associated with S ,
we decompose u := [uk : k ∈ Nn] ∈ Rn into d sub-vectors by setting uj := [ui( j)1 , . . . ,ui( j)nj

] ∈
Rnj , j ∈ Nd. The group lasso regularized model is described as
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min
{1
2
∥Au− x∥22 +λ

∑
j∈Nd

√
nj∥uj∥2 : u ∈ Rn

}
. (4)

The regularizer in problem (4) could be viewed as a group-wise ℓ1 norm. If the partition S :=
{S1,S2, . . . ,Sn} is chosen with Sj := {j}, j ∈ Nn, then model (4) reduces to the lasso regularized
model. It is known [30, 74] that model (4) performs better than the lasso regularized model
when the optimal variable has the group structure.

SVMs for both classification and regression with the ℓ1 norm can be reformulated in the
form (1). We first present the ℓ1 SVM classification model [51, 55]. Given training data
D := {(xj,yj) : j ∈ Nn} composed of input points X := {xj : j ∈ Nn} ⊂ Rd and output values
Y := {yj : j ∈ Nn} ⊂ {1,−1}. A hyperplane determined byα ∈ Rn and b ∈ R is constructed to
separate D into two groups for yj = 1 and yj =−1 separately. By introducing a loss function
LD : Rn×R→ R+, α,b are obtained by the ℓ1 SVM classification model

min{LD(α,b)+λ∥α∥1 :α ∈ Rn,b ∈ R} . (5)

Let K : Rd×Rd → R be a given reproducing kernel. A commonly used loss function LD in
model (5) is the hinge loss function defined by

LD(α,b) :=
∑
j∈Nn

max
{
1− yj

(∑
k∈Nn

αkK(xk,xj)+ b
)
,0
}
, α ∈ Rn,b ∈ R.

We next rewrite model (5) in the form (1). We let u :=
[
α

b

]
∈ Rn+1, define the kernel matrix

K := [K(xj,xk) : j,k ∈ Nn] and augment it toK ′ := [K 1n]with 1n := [1, . . . ,1]⊤ ∈ Rn. We also
define Y := diag(yj : j ∈ Nn) and ϕ(z) :=

∑
j∈Nn

max{1− zj,0}, for all z := [zj : j ∈ Nn] ∈ Rn.
Then by introducing the fidelity termψ(u) := ϕ(YK ′u), u ∈ Rn+1 and choosingB := [In 0] ∈
Rn×(n+1), the ℓ1 SVM classification model (5) can be rewritten in the form of (1).

Another popular choice of the loss function LD in the ℓ1 SVM classification model (5) is
the squared loss function defined by

LD(α,b) :=
1
2

∑
j∈Nn

(∑
k∈Nn

αkK(xk,xj)+ b− yj
)2
. (6)

By setting y := [yj : j ∈ Nn], the ℓ1 SVM classification model (5) with the squared loss func-
tion (6) can be identified as the form (1) with ψ(u) := 1

2∥K
′u− y∥22, u ∈ Rn+1, and B :=

[In 0] ∈ Rn×(n+1).We note that this model can also be identified in the form of the generalized
lasso model (3) with x := y, A :=K ′ and B := [In 0].

When LD in the ℓ1 SVM classification model (5) is chosen as the average logistic loss
function LD(α,b) := 1

n

∑
j∈Nn

ln
(
1+ exp

(
−yj

(
α⊤xj+ b

)))
, for α ∈ Rd and b ∈ R, it is the

ℓ1 regularized logistic regression model. It can be written in the form (1) with the fidelity term

ψ(u) := ϕ(YX ′u), u :=
[
α

b

]
∈ Rd+1, and matrix B := [Id 0] ∈ Rd×(d+1), where X := [xj : j ∈

Nn]
⊤, X ′ := [X 1n] and ϕ(z) := 1

n

∑
j∈Nn

ln(1+ exp(−zj)), for all z := [zj : j ∈ Nn] ∈ Rn.
We now turn to describing the ℓ1 SVM regression model [7, 55] which aims at learning a

function from the observed data D := {(xj,yj) : j ∈ Nn} ⊂ Rd×R. Specifically, the ℓ1 SVM
regression model has the same form as for the classification model (5), with a different loss
function LD. A popular choice of LD is the ϵ-insensitive loss function [68] in the form

LD(α,b) :=
∑
j∈Nn

max
{∣∣∣∑

k∈Nn

αkK(xk,xj)+ b− yj
∣∣∣− ϵ,0

}
, (7)
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where ϵ is a positive parameter and K is a given reproducing kernel on Rd. We may rewrite
the ℓ1 SVM regression model in the form of (1). To this end, we define the vector u, the
kernel matrix K and its augmented matrix K ′ as in the classification model. Associated with
the output data values y := [yj : j ∈ Nn] ∈ Rn and ϵ> 0, we introduce the function ϕy,ϵ(z) :=∑
j∈Nn

max{|zj− yj| − ϵ,0}, for all z := [zj : j ∈ Nn] ∈ Rn. In this notation, the ℓ1 SVM regression

model with the ϵ-insensitive loss function (7) can be rewritten in the form (1) with the fidelity
termψ(u) := ϕy,ϵ(K

′u), u ∈ Rn+1, and matrixB := [In 0] ∈ Rn×(n+1). The squared loss func-
tion LD defined by (6) with y := [yj : j ∈ Nn] ∈ Rn is often used in the ℓ1 SVM regressionmodel.
In this case, the ℓ1 SVM regression model is equivalent to the regularization problem (1) com-
posed of the fidelity term ψ(u) := 1

2∥K
′u− y∥22, u ∈ Rn+1, with y := [yj : j ∈ Nn] ∈ Rn and

the transform matrix B := [In 0] ∈ Rn×(n+1).
The regularization problem (1) also appears in regularized learning in RKBSs. In such

spaces, the regularized learning problem is usually an infinite dimensional optimization prob-
lem. The remarkable representer theorem [19, 32, 50, 67, 69] reduces the solutions to finding
coefficients of a finite number of elements in the space. In particular, the regularized learning
model in the RKBS with the ℓ1 norm [56, 57] can be formulated in the form (1). Specifically,
suppose that {(xj,yj) : j ∈ Nn} ⊂ Rd×R are given with y := [yj : j ∈ Nn], K : Rd×Rd → R
is a given reproducing kernel and K := [K(xj,xk) : j,k ∈ Nn] is the resulting kernel matrix.
The regularized learning model in the RKBS with the ℓ1 norm has the form of (1) with
ψ(u) := ∥Ku− y∥22 and B := In.

3. Parameter choices for sparsity of the regularized solutions

In this section and the one followed, we discuss choices of the regularization parameter so
that a solution of the resulting regularization problem (1) has sparsity of a prescribed level.
In this section we first consider the special case when m= n and B := In. In this case, the
regularization problem (1) has the special form

min{ψ(u)+λ∥u∥1 : u ∈ Rn} . (8)

We postpone the general case to the next section.
As a preparation, we recall the definition of the level of sparsity for a vector inRn. For each

n ∈ N, we set Zn := {0,1, . . . ,n− 1}. A vector x ∈ Rn is said to have sparsity of level l ∈ Zn+1

if it has exactly l nonzero components. To further characterize sparsity of vectors in Rn, we
make use of the sparsity partition ofRn, introduced initially in [71]. For each j ∈ Nn, we denote
by ej the unit vector with 1 for the jth component and 0 otherwise. The vectors ej, j ∈ Nn, form
the canonical basis for Rn. Using these vectors, we define n+ 1 numbers of subsets of Rn by
Ω0 := {0 ∈ Rn} and Ωl :=

{∑
j∈Nl

ukjekj : ukj ∈ R \ {0}, for 1⩽ k1 < k2 < · · ·< kl ⩽ n
}
, for

l ∈ Nn. It was shown in [71] that the setsΩl, l ∈ Zn+1, are mutually disjoint and form a partition
for Rn, that is, Rn =

⋃
l∈Zn+1

Ωl. For each l ∈ Zn+1, Ωl is the set of all vectors in Rn having
sparsity of level l. Our goal is to relate the choice of the regularization parameter λ with the
set Ωl to which a solution u of the regularization problem (8) belongs.

We will employ the notion of the subdifferential of a convex function on Rn for this
study. The subdifferential of a real-valued convex function f : Rn → R at x ∈ Rn is defined
by ∂f(x) := {y ∈ Rn : f(z)⩾ f(x)+ ⟨y,z− x⟩, for all z ∈ Rn}. Suppose that f and g are two
real-valued convex functions on Rn. It is known [75] that if g is continuous on Rn then
∂( f+ g)(x) = ∂f(x)+ ∂g(x), for all x ∈ Rn.

We are now ready to characterize the sparsity of a solution of the regularization prob-
lem (8). We start with the case that the fidelity term ψ is block separable. For this purpose,
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we let S := {S1,S2, . . . ,Sd} be a partition of Nn, where for each j ∈ Nd, we assume Sj :=
{i( j)1, i( j)2, . . . , i( j)nj}, with i( j)l ∈ Nn, l ∈ Nnj and i( j)1 < i( j)2 < .. . < i( j)nj . For each u ∈
Rn, set uj := [ui( j)1 ,ui( j)2 , . . . ,ui( j)nj

] for all j ∈ Nd. A function ψ : Rn → R is called S-block
separable if there exist functions ψj : Rnj → R, j ∈ Nd, such that

ψ(u) =
∑
j∈Nd

ψj(uj), for all u ∈ Rn. (9)

A high-dimensional optimization problem having a block separable objective function can be
reduced to several disjoint optimization problems with lower dimensionalities. By virtue of
the block separability of ψ and the norm function ∥ · ∥1, the regularization problem (8) can be
reduced to the following lower dimensional regularization problems

min
{
ψj(uj)+λ∥uj∥1 : uj ∈ Rnj

}
, j ∈ Nd. (10)

We define the level of block sparsity for a vector inRn. We say that a vector x ∈ Rn has S-block
sparsity of level l ∈ Zd+1 if x has exactly l number of nonzero sub-vectors.

We next give a choice of the parameter for the case when problem (8) has a most sparse
solution without assuming ψ being block separable.

Lemma 3.1. Suppose that ψ is a convex function on Rn. Then the regularization problem (8)
with λ> 0 has a solution u∗ = 0 if and only if λ⩾min{∥y∥∞ : y ∈ ∂ψ(0)}.

Proof. According to the Fermat rule [75], vector u∗ = 0 is a solution of problem (8) if and
only if 0 ∈ ∂(ψ+λ∥ · ∥1)(0), which by the continuity of the ℓ1 norm is equivalent to 0 ∈
∂ψ(0)+λ∂∥ · ∥1(0). Hence, there exists y ∈ ∂ψ(0) such that −y ∈ λ∂∥ · ∥1(0). Noting that
∂∥ · ∥1(0) = {y ∈ Rn : |yj|⩽ 1, j ∈ Nn}, we rewrite−y ∈ λ∂∥ · ∥1(0) asλ⩾ ∥y∥∞. Thus, u∗ =
0 is a solution of (8) if and only if there exists y ∈ ∂ψ(0) such that λ⩾ ∥y∥∞. It is clear that
the latter is equivalent to λ⩾min{∥y∥∞ : y ∈ ∂ψ(0)}.

With the help of lemma 3.1, we present a parameter choice so that a solution of problem (8),
with ψ having the form (9), has block sparsity of a prescribed level.

Theorem 3.2. Suppose that ψj, j ∈ Nd, are convex functions on Rnj and ψ is an S-block sep-
arable function having the form (9). Then the regularization problem (8) with λ> 0 has a
solution having the S-block sparsity of level l ′ ⩽ l for some l ∈ Zd+1 if and only if there exist
distinct ki ∈ Nd, i ∈ Nl, such that

λ⩾min
{
∥y∥∞ : y ∈ ∂ψj(0)

}
, for all j ∈ Nd \ {ki : i ∈ Nl}. (11)

In particular, if ψj, j ∈ Nd, are differentiable, then condition (11) reduces to

λ⩾ ∥∇ψj(0)∥∞, for all j ∈ Nd \ {ki : i ∈ Nl}. (12)

Proof. If l= 0, we give a choice of parameter λ so that problem (8) has the solution u∗ = 0.
Note that u∗ = 0 is a solution of (8) if and only if for each j ∈ Nd, u∗j = 0 is a solution of prob-
lem (10). Lemma 3.1 ensures that the latter holds if and only if λ⩾min

{
∥y∥∞ : y ∈ ∂ψj(0)

}
for all j ∈ Nd, which coincides with (11) with l= 0.

We next prove this theorem for the case that l ̸= 0. We suppose that u∗ as a solution of prob-
lem (8) has the S-block sparsity of level l ′ ⩽ l and u∗j , j ∈ Nd, are its sub-vectors. That is, there
exist distinct integers ki, i ∈ Nl ′ , in Nd such that u∗j = 0 for all j ∈ Nd \ {ki : i ∈ Nl ′}. Hence,
problem (10) with j ∈ Nd \ {ki : i ∈ Nl ′} has the trivial solution u∗j = 0. Again by lemma 3.1,
we obtain that λ⩾min

{
∥y∥∞ : y ∈ ∂ψj(0)

}
, for all j ∈ Nd \ {ki : i ∈ Nl ′}. By choosing dis-

tinct integers ki ∈ Nd \ {ki : i ∈ Nl ′}, i= l ′ + 1, . . . , l, we see that (11) follows. Conversely,
suppose that there exist distinct ki ∈ Nd, i ∈ Nl, such that (11) holds. By lemma 3.1, for each

8
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j ∈ Nd \ {ki : i ∈ Nl}, u∗j = 0 is a solution of problem (10). To construct a solution of prob-
lem (8), we choose for each i ∈ Nl a solution u∗ki of problem (10) with j := ki. Let u∗ be the
vector inRn with the sub-vectors uj, j ∈ Nd, being defined above. It is clear that u∗ is a solution
for problem (8) and its level of S-block sparsity is not more than l.

If ψj, j ∈ Nd, are differentiable, then their subdifferential at zero are the singleton∇ψj(0).
This together with inequalities (11) leads to the desired inequalities (12).

Theorem 3.2 reveals the relation between sparsity of a solution of problem (8) and a choice
of parameter λ, when ψ is block separable. The choice of the parameter depends on the sub-
differentials or the gradients of the functions ψj, j ∈ Nd.

As a special case, we consider problem (8) withψ being additively separable. That is, there
exist n univariate functions ψj, j ∈ Nn, on R such that

ψ(u) :=
∑
j∈Nn

ψj(uj), for all u := [uj : j ∈ Nn] ∈ Rn. (13)

It is clear that an additively separable functionψ with the form (13) is S-block separable with
S being the nature partition of Nn. That is, Sj := {j}. A parameter choice for this special case
can be obtained directly from theorem 3.2. It is known [75] that for a convex function ψ :
R→ R, both of its left derivative ψ ′

− and its right derivative ψ ′
+ exist at any u ∈ R. Moreover,

∂ψ(u) =
[
ψ ′
−(u),ψ

′
+(u)

]
, for all u ∈ R. For each j ∈ Nn, let ψ ′

j,− and ψ ′
j,+ denote the left and

right derivatives of ψj, respectively.

Corollary 3.3. Suppose that ψj, j ∈ Nn, are convex functions on R and ψ has the form (13).
Then problem (8) with λ> 0 has a solution having sparsity of level l ′ ⩽ l for some l ∈ Zn+1

if and only if there exist distinct ki ∈ Nn, i ∈ Nl, such that λ⩾max
{
0,ψ ′

j,−(0),−ψ ′
j,+(0)

}
,

for all j ∈ Nn \ {ki : i ∈ Nl}. If ψj, j ∈ Nn, are differentiable, then above condition reduces to
λ⩾ |ψ ′

j (0)|, for all j ∈ Nn \ {ki : i ∈ Nl}.

Proof. Note that ψ with the form (13) is S-block separable with S being the nature parti-
tion of Nn. Theorem 3.2 ensures that problem (8) with λ> 0 has a solution having sparsity of
level l ′ ⩽ l for some l ∈ Zn+1 if and only if there exist distinct ki ∈ Nn, i ∈ Nl, such that λ⩾
min{|y| : y ∈ ∂ψj(0)}, for all j ∈ Nn \ {ki : i ∈ Nl}. Noting that ∂ψj(0) = [ψ ′

j,−(0),ψ
′
j,+(0)],

for all j ∈ Nn, the latter is equivalent to λ⩾max
{
0,ψ ′

j,−(0),−ψ ′
j,+(0)

}
, for all j ∈ Nn \

{ki : i ∈ Nl}. If ψj, j ∈ Nn, are differentiable, then above inequalities reduces to λ⩾ |ψ ′
j (0)|,

for all j ∈ Nn \ {ki : i ∈ Nl}.

In the following, we consider the lasso regularized model and discuss when the fidelity
termψ defined by (2) is block separable. Throughout this paper, we denote the jth column of a
matrixM ∈ Rm×n byMj. Associated with the partition S , we decompose a matrixM ∈ Rm×n

into d sub-matrices by setting M( j) := [Mk : k ∈ Sj] ∈ Rm×nj for all j ∈ Nd. The next lemma
provides a sufficient and necessary condition ensuring the block separability of the fidelity
term ψ defined by (2).

Lemma 3.4. Suppose that x ∈ Rp andA ∈ Rp×n. Then the functionψ defined by (2) is S-block
separable if and only if there holds

(A( j))
⊤A(k) = 0, for all j,k ∈ Nd and j ̸= k. (14)

Proof. According to the definition (2) of ψ, we have that ψ(u) = 1
2u

⊤A⊤Au− x⊤Au+
1
2x

⊤x, for all u ∈ Rn. It follows from the decomposition of A and that of each vector u in

9
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Rn with respect to S that Au=
∑

j∈Nd
A( j)uj, for all u ∈ Rn. Substituting the above equation

into the representation of ψ, we obtain that

ψ(u) =
1
2

∑
j∈Nd

∑
k∈Nd

u⊤j (A( j))
⊤A(k)uk−

∑
j∈Nd

x⊤A( j)uj+
1
2
x⊤x, for all u ∈ Rn. (15)

Clearly, the last two terms in the right hand side of equation (15) are both S-block separable.
Hence, ψ is S-block separable if and only if the first term is S-block separable. The latter one
is equivalent to that condition (14) holds.

We now apply theorem 3.2 to the lasso regularized model when the matrix A satisfies
condition (14).

Corollary 3.5. Suppose that x ∈ Rp, A ∈ Rp×n and condition (14) holds. Then the lasso reg-
ularized model with λ> 0 has a solution having the S-block sparsity of level l ′ ⩽ l for some
l ∈ Zd+1 if and only if there exist distinct ki ∈ Nd, i ∈ Nl, such that λ⩾

∥∥(A( j))
⊤x

∥∥
∞, for all

j ∈ Nd \ {ki : i ∈ Nl}.

Proof. Since condition (14) holds, lemma 3.4 ensures that the fidelity term ψ involved in the
lasso regularized model is S-block separable. Substituting condition (14) into equation (15),
ψ can be represented in the form (9) with ψj, j ∈ Nd, being defined by

ψj(uj) :=
1
2
∥A( j)uj∥22 − x⊤A( j)uj+

1
2d

x⊤x, for all uj ∈ Rnj and all j ∈ Nd. (16)

Thus, we conclude by theorem 3.2 that the lasso regularized model has a solution having the
S-block sparsity of level l ′ ⩽ l for some l ∈ Zd+1 if and only if there exist distinct integers ki,
i ∈ Nl, in Nd such that inequality (12) holds. Substituting∇ψj(0) =−(A( j))

⊤x for all j ∈ Nd

into (12) leads directly to the desired inequalities.

In signal or imaging processing, the matrix A involved in the lasso regularized model is
often chosen as an orthogonal matrix, such as an orthogonal wavelet transform. We note that
an orthogonal matrix is a special matrix satisfying condition (14) for any partition S of the
index set Nn. Especially, condition (14) holds for the nature partition S of Nn. In this case,
corollary 3.5 ensures that the lasso regularized model with λ> 0 has a solution having sparsity
of level l ′ ⩽ l for some l ∈ Zn+1 if and only if there exist distinct ki ∈ Nn, i ∈ Nl, such that
λ⩾

∣∣(Aj)
⊤x

∣∣, for all j ∈ Nn \ {ki : i ∈ Nl}.
We next consider the group lasso regularized model (4) which is designed to obtain the

block sparsity of the solutions. To describe a choice of the parameter for this regularization
problem, we also assume that condition (14) holds. Then by lemma 3.4, the fidelity term in this
problem is S-block separable and has the form (9) with ψj, j ∈ Nd, being defined by (16). It is
obvious that the regularizer of the group lasso regularized model (4) is also S-block separable.
Therefore, it can be reduced to d lower dimensional regularization problems

min
{
ψj(uj)+λ

√
nj∥uj∥2 : uj ∈ Rnj

}
, j ∈ Nd. (17)

Through characterizing the sparsity of the solutions of problem (17), we obtain the following
parameter choice with which the group lasso regularized model (4) has a solution having block
sparsity of a prescribed level.

Theorem 3.6. Suppose that x ∈ Rp, A ∈ Rp×n and condition (14) holds. Then problem (4)
with λ> 0 has a solution having the S-block sparsity of level l ′ ⩽ l for some l ∈ Zd+1 if and
only if there exist distinct ki ∈ Nd, i ∈ Nl, such that λ⩾

∥∥(A( j))
⊤x

∥∥
2
/
√
nj, for all j ∈ Nd \

{ki : i ∈ Nl}.

10
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Proof. Condition (14) ensures that the fidelity term in problem (4) is S-block separable and
thus, u∗ is a solution of (4) if and only if for each j ∈ Nd, u∗j is a solution of (17). It suf-
fices to show that for each j ∈ Nd, problem (17) has a solution u∗j = 0 if and only if λ⩾
∥(A( j))

⊤x∥2/
√
nj. It follows from the Fermat rule and the differentiability of ψj that u

∗
j = 0

is a solution of (17) if and only if 0 ∈∇ψj(0)+λ
√
nj∂∥ · ∥2(0). Since∇ψj(0) =−(A( j))

⊤x
and ∂∥ · ∥2(0) = {y ∈ Rnj : ∥y∥2 ⩽ 1}, the above inclusion relation is equivalent to inequal-
ity λ⩾

∥∥(A( j))
⊤x

∥∥
2
/
√
nj. Consequently, we conclude that u∗j = 0 is a solution of (17) if and

only if the above inequality holds. By arguments similar to those used in the proof of theorem
3.2 and by employing inequality λ⩾

∥∥(A( j))
⊤x

∥∥
2
/
√
nj, we get the desired conclusion of this

theorem.

Many applications can be modeled as in the form (8) with ψ neither additively separable
nor block separable. The next theorem concerns a sparsity characterization of the solution of
problem (8) when ψ is a general convex on Rn. For each j ∈ Nn, we denote by ψ

′
j the partial

derivative of ψ with respect to the jth variable.

Theorem 3.7. Suppose that ψ is a convex function on Rn. Then problem (8) with λ> 0 has a
solution u∗ =

∑
i∈Nl

u∗kieki ∈ Ωl for some l ∈ Zn+1 if and only if there exists y := [yj : j ∈ Nn] ∈
∂ψ(u∗) such that

λ=−ykisign(u∗ki), i ∈ Nl and λ⩾ |yj|, j ∈ Nn \ {ki : i ∈ Nl}. (18)

In particular, if ψ is a differentiable, then condition (18) is equivalent to

λ=−ψ ′
ki(u

∗)sign(u∗ki), i ∈ Nl and λ⩾ |ψ ′
j (u

∗)|, j ∈ Nn \ {ki : i ∈ Nl}. (19)

Proof. By using the Fermat rule and the continuity of the ℓ1 norm, we conclude
that u∗ is a solution of problem (8) if and only if 0 ∈ ∂ψ(u∗)+λ∂∥ · ∥1(u∗). Equi-
valently, there exists y := [yj : j ∈ Nn] ∈ ∂ψ(u∗) such that −y ∈ λ∂∥ · ∥1(u∗). Not-
ing that u∗ =

∑
i∈Nl

u∗kieki with u∗ki ∈ R \ {0}, i ∈ Nl, we obtain that ∂∥ · ∥1(u∗) ={
z ∈ Rn : zki = sign(u∗ki), i ∈ Nl and |zj|⩽ 1, j ∈ Nn \ {ki : i ∈ Nl}

}
. By using the above

equation, we rewrite inclusion relation −y ∈ λ∂∥ · ∥1(u∗) as (18).
If ψ is differentiable, then the subdifferential of ψ at u∗ is the singleton ∇ψ(u∗). Substi-

tuting yj =ψ
′
j (u

∗), j ∈ Nn, into (18) leads directly to (19).

We now apply theorem 3.7 to the lasso regularized model. Here, the fidelity termψ defined
by (2) is differentiable but neither additively separable nor block separable.

Corollary 3.8. Suppose that x ∈ Rp andA ∈ Rp×n are given. Then the lasso regularized model
with λ> 0 has a solution u∗ =

∑
i∈Nl

u∗kieki ∈ Ωl for some l ∈ Zn+1 if and only if there hold
λ= (Aki)

⊤(x−Au∗)sign(u∗ki), for all i ∈ Nl and λ⩾
∣∣(Aj)

⊤(Au∗ − x)
∣∣, for all j ∈ Nn \ {ki :

i ∈ Nl}.

Proof. Note that the gradient of ψ at u∗ has the form ∇ψ(u∗) = A⊤(Au∗ − x). That is,
ψ ′
j (u

∗) = (Aj)
⊤(Au∗ − x), for all j ∈ Nn. Theorem 3.7 ensures that u∗ =

∑
i∈Nl

u∗kieki ∈ Ωl

is a solution of the lasso regularized model if and only if (19) holds. According to the repres-
entations of the partial derivatives of ψ, we conclude that the latter is equivalent to the desired
results of this corollary.

As a special case of corollary 3.8, the lasso regularized model has u∗ = 0 as a solution if
and only if there holds λ⩾

∥∥A⊤x
∥∥
∞.We remark that the special case of corollary 3.8 for the

lasso regularized model has been established in [4].

11
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When the fidelity term ψ has no special form such as (9) and (13), theorem 3.7 provides
a characterization of the regularization parameter with which problem (8) has a solution with
sparsity of a certain level. In fact, since condition (18) (or (19)) depends on the corresponding
solution, the characterization stated in theorem 3.7 can not be used directly as a parameter
choice strategy. Nevertheless, we can still observe from the characterization that the choice
of the regularization parameter can influence the sparsity of the solution. The equalities and
inequalities that the parameter λ needs to satisfy corresponds respectively the non-zero com-
ponents and the zero components of the solution. As the number of the inequalities increases,
the solution becomes more sparse. When the conditions only include the inequalities, the solu-
tion is the most sparse. This observation has motivated us to develop an iteration scheme for
parameter choices so that a solution of the resulting regularization problem has sparsity of a
prescribed level. We will present this algorithm in section 4 in the setting where B emerging
in problem (1) is a general matrix.

4. Parameter choices for sparsity of transformed solutions

In this section, we continue our investigation about what choices of the regularization para-
meter lead to sparsity under a general transform matrix B for the solutions of problem (1). We
first employ the SVD of matrix B to convert problem (1) to one with B being a degenerated
identity (an identity matrix augmented by zero matrices). Based on this result, we characterize
the regularization parameter for a sparse regularized solution of the resulting regularization
problem by using the approach used in section 3 for the case when B := I. We then present
special results for several specific learning models.

We now characterize the sparsity of a solution under a transform matrix B of problem (1).
If B is an invertible square matrix, then by a simple change of variables problem (1) can be
converted to problem (8). For a general matrix B, we appeal to its pseudoinverse (Moore–
Penrose inverse) [27]. To this end, we review the notion of the SVD of a matrix [27]. Suppose
that B is a real m× n matrix with the rank r satisfying 0< r⩽min{m,n}. It is well-known
that B has the SVD as B= UΛV⊤, where U is an m×m orthogonal matrix, Λ is an m× n
diagonal matrix with the singular values σ1 ⩾ · · ·⩾ σr > 0 on the diagonal, and V is an n× n
orthogonal matrix. A matrix, denoted byM†, is called the pseudoinverse of M if it satisfies the
four conditions: (a)MM†M=M, (b)M†MM† =M†, (c) (MM†)⊤ =MM†, (d) (M†M)⊤ =
M†M. The pseudoinverse is well-defined and unique for all matrices. It can be readily verified
that the pseudoinverse Λ† of the m× n diagonal matrix Λ is the n×m diagonal matrix with
the nonzero diagonal entries σ−1

1 , . . . ,σ−1
r . Thus, the pseudoinverseB† of B can be represented

by the SVD of B as B† = VΛ†U⊤.
In the next lemma, we consider inverting the linear system

Bu= z, for z ∈R(B). (20)

Here, R(B) denotes the range of B. Note that solutions of system (20) may not be unique
since if u ′ is a solution of (20), then u := u ′ + u0 is a solution of (20), for any u0 satisfying
Bu0 = 0. It is known from [8] that by choosing u ′ := B†z as a particular solution of (20),

the general solution of (20) has the form u= B†z+V
[
0
v

]
for 0 ∈ Rr and any v ∈ Rn−r. To

convert problem (1) to an equivalent one, we give in the next lemma an alternative form of
the general solution of (20), whose proof is included in appendix. Let Ũr ∈ Rm×r denote the
matrix composed of the first r columns of U. We introduce a diagonal matrix of order n by
Λ ′ := diag

(
σ−1
1 ,σ−1

2 , . . . ,σ−1
r ,1, . . . ,1

)
and an n× (m+ n− r) block diagonal matrix U ′ :=

12
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diag
(
Ũ⊤
r ,In−r

)
. Using these matrices, we define an n× (m+ n− r) matrix B ′ := VΛ ′U ′.

In the following presentations, we always assume that B is a real m× n matrix with the SVD
B= UΛV⊤.

Lemma 4.1. If z ∈R(B), then the general solution of system (20) has the form

u= B ′
[
z
v

]
, for any v ∈ Rn−r. (21)

Moreover, for each solution u, the vector v satisfying (21) is unique.

Lemma 4.1 allows us to introduce a mapping B from Rn to R(B)×Rn−r. Specifically,

for each u ∈ Rn, we define Bu :=
[
z
v

]
, where z := Bu and v ∈ Rn−r satisfies u= B ′

[
z
v

]
.

Lemma 4.1 ensures that B is well-defined and satisfies B ′Bu= u, for all u ∈ Rn. Next lemma
shows the bijectivity of B with a proof included in appendix.

Lemma 4.2. The mapping B defined as above is bijective from Rn ontoR(B)×Rn−r.

We now reformulate problem (1) as an equivalent constrained regularization problem with
B being a degenerated identity I ′ := [Im 0] ∈ Rm×(m+n−r), that is,

min
{
ψ ◦B ′(w)+λ∥I ′w∥1 : w ∈R(B)×Rn−r

}
. (22)

Note that the first m components of w is constrained to R(B). The proof of the following
proposition is also included in appendix.

Proposition 4.3. If B is defined as above, then u∗ is a solution of the regularization prob-
lem (1) if and only if Bu∗ is a solution of the regularization problem (22).

We reformulate problem (22) as an equivalent unconstrained problem for the purpose
of characterizing its sparse solutions. Set M :=R(B)×Rn−r and denote by M⊥ its ortho-
gonal complement. Let ιM : Rm+n−r → R∪{+∞} denote the indicator function ofM, that is,
ιM(x) = 0 if x ∈M, and +∞ otherwise. Using the indicator function, the constrained prob-
lem (22) is rewritten as the equivalent unconstrained problem

min
{
ψ ◦B ′(w)+ ιM(w)+λ∥I ′w∥1 : w ∈ Rm+n−r

}
. (23)

We present below a characterization of a solution of problem (23) having sparsity of a certain
level. Let N (A) denote the null space of matrix A. We suppose through out this section that
ψ is a convex function on Rn.

Proposition 4.4. The problem (23) with λ> 0 has a solution w∗ :=
[
z∗

v∗

]
with z∗ :=∑

i∈Nl
z∗kieki ∈ Ωl for some l ∈ Zm+1 and distinct ki ∈ Nn, i ∈ Nl if and only if there exist

a ∈ ∂ψ(B ′w∗) and b := [bj : j ∈ Nm] ∈N (B⊤) such that

(B ′
j )

⊤a= 0, j ∈ Nm+n−r \Nm, λ=−
(
(B ′

ki)
⊤a+ bki

)
sign(z∗ki), i ∈ Nl, (24)

λ⩾
∣∣(B ′

j )
⊤a+ bj

∣∣ , j ∈ Nm \ {ki : i ∈ Nl}. (25)

Proof. According to the Fermat rule and the chain rule of the subdifferential, we get that

w∗ :=
[
z∗

v∗

]
is a solution of (23) if and only if

0 ∈ (B ′)⊤∂ψ(B ′w∗)+ ∂ιM(w∗)+λ(I ′)⊤∂∥ · ∥1(z∗). (26)

It is known that ∂ιM(w) =M⊥ for all w ∈M, which together with M⊥ = (R(B))⊥ ×
(Rn−r)⊥ =N (B⊤)×{0} further leads to ∂ιM(w) =N (B⊤)×{0}, for all w ∈M. By
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employing the above equation and noting that w∗ ∈M, the inclusion relation (26) is equival-

ent to the existence of a ∈ ∂ψ(B ′w∗) and b ∈N (B⊤) satisfying−(B ′)⊤a−
[
b
0

]
∈ λ(I ′)⊤∂∥ ·

∥1(z∗). This inclusion relation together with

∂∥ · ∥1(z∗) =
{
x ∈ Rm : xki = sign(z∗ki), i ∈ Nl and |xj|⩽ 1, j ∈ Nm \ {ki : i ∈ Nl}

}
may be rewritten equivalently as (24) and (25). This proves the desired result.

Combining propositions 4.3 and 4.4, we characterize a solution of the regularization prob-
lem (1) having sparsity of a certain level under the transform B.

Theorem 4.5. The problem (1) with λ> 0 has a solution u∗ ∈ Rn with Bu∗ :=
∑

i∈Nl
z∗kieki ∈

Ωl for some l ∈ Zm+1 if and only if there exist a ∈ ∂ψ(u∗) and b ∈N (B⊤) such that (24)
and (25) hold. In particular, if rank(B) = m, then the conditions reduce to that there exists
a ∈ ∂ψ(u∗) such that

(B ′
j )

⊤a= 0, j ∈ Nn \Nm, λ=−(B ′
ki)

⊤asign(z∗ki), i ∈ Nl, (27)

λ⩾
∣∣(B ′

j )
⊤a

∣∣ , j ∈ Nm \ {ki : i ∈ Nl}. (28)

Proof. By proposition 4.3 we conclude that u∗ ∈ Rn is a solution of (1) and Bu∗ :=∑
i∈Nl

z∗kieki ∈ Ωl if and only if Bu∗ :=
[
z∗

v∗

]
with z∗ :=

∑
i∈Nl

z∗kieki ∈ Ωl is a solution of (23).

Proposition 4.4 ensures that the latter is equivalent to that there exist a ∈ ∂ψ(B ′Bu∗) and
b ∈N (B⊤) such that (24) and (25) hold. Note that B ′Bu∗ = u∗, from which the desired res-
ult is obtained. When rank(B) = m, there holds N (B⊤) = (R(B))⊥ = {0}. It follows that b
in (24) and (25) is the zero vector. Thus, (27) and (28) can be obtained directly.

For the most sparse solution u∗ under B (that is, Bu∗ = 0), conditions (24) and (25) reduce
to (B̃ ′

2)
⊤a= 0 and λ⩾

∥∥(B̃ ′
1)

⊤a+ b
∥∥
∞, where B̃ ′

1 and B̃ ′
2 denote the matrices composed of

the first m columns and the last n− r columns of B ′, respectively.
When ψ is differentiable, theorem 4.5 has the following simple form.

Corollary 4.6. Suppose that ψ is a differentiable and convex function on Rn. Then the reg-
ularization problem (1) with λ> 0 has a solution u∗ with Bu∗ :=

∑
i∈Nl

z∗kieki ∈ Ωl for some
l ∈ Zm+1 if and only if there exists b ∈N (B⊤) such that

(B′
j)
⊤∇ψ(u∗) = 0, j ∈ Nm+n−r \Nm, λ=−((B′

ki)
⊤∇ψ(u∗)+ bki)sign(z

∗
ki), i ∈ Nl,

λ⩾
∣∣(B′

j)
⊤∇ψ(u∗)+ bj

∣∣ , j ∈ Nm \ {ki : i ∈ Nl}.

In particular, if rank(B) = m, then the conditions reduce to

(B ′
j )

⊤∇ψ(u∗) = 0, j ∈ Nn \Nm, λ=−(B ′
ki)

⊤∇ψ(u∗)sign(z∗ki), i ∈ Nl, (29)

λ⩾
∣∣(B ′

j )
⊤∇ψ(u∗)

∣∣ , j ∈ Nm \ {ki : i ∈ Nl}. (30)

In the remaining part of this section, we apply theorem 4.5 or corollary 4.6 to several specific
models described in section 2.We first consider the ℓ1 SVMclassificationmodel with the hinge
loss function

min
{
ϕ(YK ′u)+λ∥Bu∥1 : u ∈ Rn+1

}
. (31)

By introducing a univariate function ϕ(x) :=max{1− x,0}, x ∈ R, we represent ϕ as ϕ(x) =∑
j∈Nn

ϕ(xj), for all x := [xj : j ∈ Nn] ∈ Rn.
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Corollary 4.7. The problem (31) with λ> 0 has a solution u∗ with Bu∗ :=
∑

i∈Nl
z∗kieki ∈ Ωl

for some l ∈ Zn+1 if and only if there exists c := [cj : j ∈ Nn] ∈ Rn with cj ∈ ∂ϕ((YK ′u∗)j),
j ∈ Nn, such that

y⊤c= 0,λ=−(YKki)
⊤csign(z∗ki), i ∈ Nl, λ⩾

∣∣(YKj)
⊤c

∣∣ , j ∈ Nn \ {ki : i ∈ Nl}. (32)

Proof. Clearly, the fidelity term ψ(u) := ϕ(YK ′u), u ∈ Rn+1 is convex on Rn+1 and the
matrix B := [In 0] has full row rank. By theorem 4.5, problem (31) has a solution u∗ with
Bu∗ :=

∑
i∈Nl

z∗kieki ∈ Ωl for some l ∈ Zn+1 if and only if there exists a ∈ ∂ψ(u∗) such that (27)
and (28) with m,n being replaced by n,n+ 1, respectively, hold.

It remains to verify that in this case (27) and (28) reduce to (32). We first describe the
subdifferential of ψ. By the chain rule of the subdifferential, we have for all u ∈ Rn+1

that ∂ψ(u) = (YK ′)⊤∂ϕ(YK ′u). It follows from the separable representation of ϕ that
∂ϕ(x) = {c := [cj : j ∈ Nn] ∈ Rn : cj ∈ ∂ϕ(xj), j ∈ Nn}, for all x := [xj : j ∈ Nn] ∈ Rn. Substi-
tuting the above equation with x := YK ′u into the subdifferential of ψ, we obtain that
∂ψ(u) = {(YK ′)⊤c : c := [cj : j ∈ Nn] ∈ Rn,cj ∈ ∂ϕ((YK ′u)j), j ∈ Nn}. We next represent
the matrix B ′. Note that B has the SVD B= UΛV⊤ with U := In, Λ := B and V := In+1.
It follows that B ′ = In+1. Substituting the representations of B ′ and ∂ψ into (27) and (28)
and noting that (B ′

j )
⊤(YK ′)⊤ = (YKj)

⊤ for all j ∈ Nn and (B ′
n+1)

⊤(YK ′)⊤ = y⊤, we get
the desired conditions (32).

We next consider the ℓ1 SVM regression model with the ϵ-insensitive loss function

min
{
ϕy,ϵ(K

′u)+λ∥Bu∥1 : u ∈ Rn+1
}
, (33)

The functionϕy,ϵ is additively separable with the formϕy,ϵ(x) =
∑

j∈Nn
ϕyj,ϵ(xj), x := [xj : j ∈

Nn] ∈ Rn, where ϕy,ϵ(t) :=max{|y− t| − ϵ,0}, t ∈ R. The following characterization may be
proved by theorem 4.5 and arguments similar to those used in the proof of corollary 4.7. We
omit the details of the proof.

Corollary 4.8. The regularization problem (33) with λ> 0 has a solution u∗ with Bu∗ :=∑
i∈Nl

z∗kieki ∈ Ωl for some l ∈ Zn+1 if and only if there exists c := [cj : j ∈ Nn] ∈ Rn with cj ∈
∂ϕyj,ϵ((K

′u∗)j), j ∈ Nn, such that

1⊤n c= 0, λ=−(Kki)
⊤csign(z∗ki), i ∈ Nl, λ⩾

∣∣(Kj)
⊤c

∣∣ , j ∈ Nn \ {ki : i ∈ Nl}. (34)

The following example concerns the total-variation signal denoising model

min

{
1
2
∥u− x∥22 +λ∥D(1)u∥1 : u ∈ Rn

}
. (35)

Suppose that D(1) has the SVD D(1) = UΛV⊤ and D(1) ′
:= VΛ ′U ′. It follows from [53] that

Vn =
√
n
n 1n, which together with the definition of D(1) ′

leads to D(1) ′

n =
√
n
n 1n.

Corollary 4.9. The regularization problem (35) with λ> 0 has a solution u∗ with D(1)u∗ :=∑
i∈Nl

z∗kieki ∈ Ωl for some l ∈ Zn if and only if

1⊤n (u
∗ − x) = 0, λ= (D(1)′

ki
)⊤(x− u∗)sign(z∗ki), i ∈ Nl,

λ⩾
∣∣(D(1) ′

j )⊤(u∗ − x)
∣∣, j ∈ Nn−1 \ {ki : i ∈ Nl}. (36)

Proof. Since the fidelity term ψ := 1
2∥u− x∥22 is differentiable and convex and the matrix

D(1) has full row rank, we may prove the results in this corollary by corollary 4.6. It is done

by substituting ∇ψ(u∗) = u∗ − x and D(1) ′

n =
√
n
n 1n into (29) and (30).
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A parameter choice strategy for the most sparse solution under the transform D(1) is
provided in following remark, whose proof is included in appendix. We denote by D̃(1) ′

the
matrix composed of the first n− 1 columns of D(1) ′

.

Remark 4.10. The regularization problem (35) with λ> 0 has a solution u∗ with D(1)u∗ = 0
if and only if λ⩾

∥∥(D̃(1) ′
)⊤x

∥∥
∞. Moreover, the solution u∗ with D(1)u∗ = 0 has the form

u∗ := 1
n1

⊤
n x1n.

We also consider the ℓ1 SVM models for classification/regression with the squared loss
function (6). As pointed out in section 2, these models can be formulated as

min

{
1
2
∥K ′u− y∥22 +λ∥Bu∥1 : u ∈ Rn+1

}
. (37)

By employing corollary 4.6 and arguments similar to those used in the proof of corollary 4.9,
we obtain the characterization as follows.

Corollary 4.11. The regularization problem (37) with λ> 0 has a solution u∗ with Bu∗ :=∑
i∈Nl

z∗kieki ∈ Ωl for some l ∈ Zn+1 if and only if there hold

1⊤n (K′u∗ − y) = 0, λ= (Kki)
⊤ (y−K′u∗)sign(z∗ki), i ∈ Nl,

λ⩾
∣∣(Kj)

⊤ (K′u∗ − y)
∣∣ , j ∈ Nn \ {ki : i ∈ Nl}.

When the solution has the most sparsity under the transform B, the characterization stated
in corollary 4.11 reduces to a simple form.

Remark 4.12. The regularization problem (37) with λ> 0 has a solution u∗ with Bu∗ = 0 if
and only if λ⩾

∥∥K⊤( 1
n1

⊤
n y1n− y

)∥∥
∞.Moreover, the solution u∗ with Bu∗ = 0 has the form

u∗ :=
[

0
1
n 1

⊤
n y

]
.

We finally consider the ℓ1 regularized logistic regression model

min
{
ϕ(YX ′u)+λ∥Bu∥1 : u ∈ Rd+1

}
. (38)

The proof of the following result is similar to that of corollary 4.9 and thus is omitted. For each
u ∈ Rd+1, we set cu := [(1+ exp((YX ′u)j))

−1
: j ∈ Nn] ∈ Rn.

Corollary 4.13. The regularization problem (38) with λ> 0 has a solution u∗ and Bu∗ :=∑
i∈Nl

z∗kieki ∈ Ωl for some l ∈ Zd+1 if and only if there hold y⊤cu∗ = 0 and

λ=
1
n
(YXki)

⊤cu∗sign(z∗ki), i ∈ Nl, λ⩾ 1
n

∣∣(YXj)
⊤cu∗

∣∣ , j ∈ Nd \ {ki : i ∈ Nl}.

When the most sparse solution under the transform B is desired, we have the parameter
choice strategy described in the next remark. We denote by n+ and n− the numbers of data
with output yj = 1 and yj =−1, respectively, and set c := [(1+(n+/n−)yj)

−1
: j ∈ Nn] ∈ Rn.

Remark 4.14. The regularization problem (38) with λ> 0 has a solution u∗ with Bu∗ = 0 if
and only if λ⩾ 1

n

∥∥(YX)⊤c∥∥∞ . Moreover, the solution u∗ with Bu∗ = 0 has the form u∗ :=[
0

ln(n+/n−)

]
.

We comment that the characterizations about sparsity of a solution of (38) under the trans-
form B, stated in corollary 4.13 and remark 4.14, were established in [33].

We return to the general case. Theorem 4.5 and corollary 4.6 can not be used directly as
a parameter choice strategy since the characterizations involve the unknown solution. In the
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rest of this section, we develop parameter choice strategies from the characterizations. Sup-
pose that ψ is differentiable and B has full row rank. We first consider the case when partial
information of the solution is known. The indices ki, i ∈ Nl, which appear in equalities (29) for
the parameter λ to satisfy, correspond to the non-zero components of the solution u∗, while
those which appear in inequalities (30) correspond to the zero components of the solution.
By enlarging the lower bounds of the inequalities, we can obtain a sufficient condition for the
solution to have sparsity of a certain level under the transform B, which gives us a way to
choose the parameter. Along this direction, we get the following result.

Proposition 4.15. Let ψ be a differentiable and convex function on Rn and B is a real
m× n matrix having full row rank. Suppose that for each j ∈ Nm, there exists Lj > 0 such
that

∣∣(B ′
j )

⊤(∇ψ(u)−∇ψ(w))
∣∣⩽ Lj∥u−w∥2, for all u, w ∈ Rn. Let u∗ ∈ Rn be a solution

of problem (1) with λ> 0 and v ∈ Rn satisfy ∥u∗ − v∥2 ⩽ ϵ for some ϵ> 0. If there exist distinct
ki ∈ Nm, i ∈ Nl, for some l ∈ Zm+1 such that

λ >
∣∣(B ′

j )
⊤∇ψ(v)

∣∣+ ϵLj, for all j ∈ Nm \ {ki : i ∈ Nl}, (39)

then the sparsity level of u∗ under the transform B is less than or equal to l.

Proof. It follows from the assumption that
∣∣(B ′

j )
⊤(∇ψ(u∗)−∇ψ(v))

∣∣⩽ Lj∥u∗ − v∥2, for all
j ∈ Nm, which together with ∥u∗ − v∥2 ⩽ ϵ leads to

∣∣(B ′
j )

⊤(∇ψ(u∗)−∇ψ(v))
∣∣⩽ ϵLj, for all

j ∈ Nm. Substituting these inequalities into inequality (39), we get that λ >
∣∣(B ′

j )
⊤∇ψ(v)

∣∣+∣∣(B ′
j )

⊤(∇ψ(u∗)−∇ψ(v))
∣∣, for all j ∈ Nm \ {ki : i ∈ Nl}. This further yields that λ >∣∣(B ′

j )
⊤∇ψ(u∗)

∣∣, for all j ∈ Nm \ {ki : i ∈ Nl}. Suppose that Bu∗ :=
∑

j∈Nm
z∗j ej. By corol-

lary 4.6, from the above inequality we conclude that z∗j = 0 for all j ∈ Nm \ {ki : i ∈ Nl}.
In fact, if there exists j0 ∈ Nm \ {ki : i ∈ Nl} such that z∗j0 ̸= 0, then corollary 4.6 ensures
that λ=−(B ′

j0)
⊤∇ψ(u∗)sign(z∗j0). That is, λ=

∣∣(B ′
j0)

⊤∇ψ(u∗)
∣∣, which contradicts to λ >∣∣(B ′

j0)
⊤∇ψ(u∗)

∣∣. Thus, we conclude that the sparsity level of u∗ under the transform B is less
than or equal to l.

We now develop an iterative scheme based on the characterization described in corollary 4.6
for choosing a parameter λ with which a solution of problem (1) has sparsity of a prescribed
level under the transform B. We need the following result derived from corollary 4.6.

Proposition 4.16. Suppose that u∗ is a solution of problem (1) with λ∗ > 0 having sparsity
of level l∗ ∈ Zm+1 under the transform B. Let aj(u∗) :=

∣∣(B ′
j )

⊤∇ψ(u∗)
∣∣, j ∈ Nm. If they are

rearranged in a nondecreasing order: aj1(u
∗)⩽ · · ·⩽ ajm(u

∗) with distinct ji ∈ Nm, i ∈ Nm,
then

aj1(u
∗)⩽ · · ·⩽ ajm−l∗ (u

∗)⩽ λ∗ = ajm−l∗+1
(u∗) = · · ·= ajm(u

∗). (40)

Proof. Since u∗ is a solution of problem (1) with λ∗ > 0 having sparsity of level l∗ ∈ Zm+1

under the transform B, there are l∗ distinct integers ki ∈ Nm, i ∈ Nl∗ , such that Bu∗ :=∑
i∈Nl∗

z∗kieki ∈ Ωl∗ . By corollary 4.6, we find that (29) and (30) hold. Because λ∗ > 0, the
second equality of (29) implies that λ∗ = aki(u

∗), for all i ∈ Nl∗ . Moreover, (30) gives λ∗ ⩾
aj(u∗), for all j ∈ Nm \ {ki : i ∈ Nl∗}. By rearranging the sequence aj(u∗), j ∈ Nm, in a non-
decreasing order, we get the desired result.

We next propose an iterative scheme which simultaneously determines parameter λ∗ and
solution u∗ having a prescribed sparsity level l∗ under the transform B. The iteration begins
with an initial λ that is large enough to ensure the sparsity level l under the transform B of
the solution u of model (1) with this λ does not exceed l∗. Proposition 4.16 which shows that
the desired λ∗ and its corresponding u∗ must satisfy (40) motivates us to update λ by taking
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Algorithm 1. Parameter choice for the regularization problem (1).

Input: ψ, B, l∗.
Initialize: choose an initial λ large enough that guarantees l⩽ l∗.
Repeat :

• Solve model (1) with λ for u and count the sparsity level l of Bu.
• If l> l∗, initialize s := 0.
Repeat :

• Update s := s+ l− l∗ and λ :=min
{
ajm−l∗+s

,a
}
.

• Solve model (1) with λ for u and count the sparsity level l of Bu.
Until l⩽ l∗.

• If l< l∗, do the following steps:
• Compute aj :=

∣∣(B ′
j )

⊤∇ψ(u)
∣∣, j ∈ Nm.

• Sort: aj1 ⩽ · · ·⩽ ajm with distinct ji ∈ Nm, i ∈ Nm.

• Compute a :=max
{
aj : aj < λ, j ∈ Nm

}
.

• Update λ :=min
{
ajm−l∗ ,a

}
.

Until l= l∗.
Output: λ∗ := λ, u∗ := u.

the (m− l∗)th element among the ordered sequence aji(u), i ∈ Nm. Suppose that at step k, we
have a λk and the corresponding solution uk with the sparsity level lk under the transform B,
satisfying

aj1(u
k)⩽ · · ·⩽ ajm−lk

(uk)⩽ λk = ajm−lk+1
(uk) = · · ·= ajm(u

k), (41)

according to proposition 4.16. If lk = l∗, the iteration terminates with the desired parameter
λ∗ and solution u∗ with sparsity level l∗ under the transform B. Otherwise, we continue the
iteration. If lk > l∗, this indicates that λk is too small and thus in our next step of iteration we
should choose λk+1 greater than λk. However, by (41) all elements in the sequence ajk(u

k),
k ∈ Nm, are less than or equal to λk. Thus, we cannot choose a desired parameter λ from the
sequence and we should go back to the sequence in step k− 1 to find an appropriate parameter.
If lk < l∗, this indicates that λk is too large and thus in our next step of iteration we should
choose λk+1 from one of aj1(u

k), . . . ,ajm−lk
(uk).

We summarize the iterative scheme in algorithm 1. Numerical examples presented in
section 6 show that algorithm 1 converges and converges fast. Theoretical analysis of algorithm
1 is postponed to a future occasion.

5. Parameter choices for alleviating the ill-posedness and promoting sparsity
of the regularized solutions

Aswe pointed out earlier, the purpose of imposing the ℓ1 regularization is two-folds: alleviating
the ill-posedness when given data are noisy and promoting sparsity of a regularized solution.
In this section, we demonstrate how the regularization parameter λ can be chosen to achieve
both of these by considering a lasso regularized model.

We aim at a prediction u ∈ Rn from a given response vector x ∈ Rp, via the equationAu= x.
We recover u from a noisy response xδ (instead of x) with ∥xδ − x∥2 ⩽ δ for a given noise level
δ by the lasso regularized model

min

{
1
2
∥Au− xδ∥22 +λ∥u∥1 : u ∈ Rn

}
. (42)
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Appropriate choice of the matrix A can enrich the representation of the solution uδλ and thus
help avoid underfitting. The regularization term is added not only to overcome overfitting [2, 9,
21, 45, 47] when data contaminates noise but also to impose sparsity of uδλ. We are interested
in choices of the parameter λ that balances the error of uδλ and its sparsity. Here, the error is
compared to the minimal norm solution

ũ := argmin{∥u∥1 : Au= x,u ∈ Rn} (43)

of the prediction problem. The minimal norm problem itself is a recent research topic of great
interest [12, 17, 25]. We assume that (43) has a unique solution ũ := [ũj : j ∈ Nn]. We briefly
review the uniqueness of ũ presented in [25]. Denote by J the support of ũ and let Jc := Nn \ J.
We let v := [sign(ũj) : j ∈ J], A ′ := [Aj : j ∈ J] and A ′ ′ := [Aj : j ∈ Jc]. It is known from [25]
that (43) has a unique solution ũ if and only ifAũ= x,A ′ has full column rank and there exists
y ∈ Rp such that (A ′)⊤y= v and ∥(A ′ ′)⊤y∥∞ < 1.

Below, we state an error estimate between uδλ and ũ obtained by specializing a general argu-
ment (proposition 8 and theorem 15 of [26]) to problem (42). The uniqueness of the solution
ũ ensures that there exists y ∈ Rp such that ∥(A ′ ′)⊤y∥∞ < 1. Using the vector y, constants β1

and β2 independent of δ and λ were introduced in [26]

β1 :=
1−∥(A′′)⊤y∥∞
1+ ∥(A′)†∥2∥A∥2

, β2 :=
∥(A′)†∥2(1−∥(A′′)⊤y∥∞)

1+ ∥(A′)†∥2∥A∥2
+ ∥y∥2.

Throughout this section, we assume that A ∈ Rp×n, the minimal norm problem (43) with x ∈
Rp has a unique solution ũ, and for δ > 0, xδ ∈ Rp satisfies ∥xδ − x∥2 ⩽ δ.

Lemma 5.1. If uδλ is a solution of the regularization problem (42), then for all δ,λ > 0

∥∥uδλ − ũ
∥∥
2
⩽ λβ2

2

β1
+

δ2

2λβ1
+
β2δ

β1
. (44)

We first consider the case that the predictor matrix A ∈ Rp×n is S-block separable, that is,
it satisfies condition (14) with respect to the partition S := {S1,S2, . . . ,Sd} of the set Nn. Let
aδj :=

∥∥(A( j))
⊤xδ

∥∥
∞, j ∈ Nd, rearranged in a nondecreasing order: aδk1 ⩽ aδk2 ⩽ · · ·⩽ aδkd with

distinct ki ∈ Nd, i ∈ Nd. We now present our results.

Theorem 5.2. (a) If λ := aδkd−l
for a given l ∈ Zd+1, then problem (42) has a sparse solution

uδλ with the S-block sparsity of level ⩽ l satisfying the error bound∥∥uδλ − ũ
∥∥
2
⩽
aδkd−l

β2
2

β1
+

δ2

2aδkd−l
β1

+
β2δ

β1
. (45)

(b) If λ := Cδ for a constant C> 0 such that aδkd−l
⩽ Cδ < aδkd−l+1

for some l ∈ Zd+1, then (42)

has a solution uδλ with the S-block sparsity of level l satisfying∥∥uδλ − ũ
∥∥
2
⩽ C ′δ, where C ′ := (2C2β2

2 + 2Cβ2 + 1)/(2Cβ1). (46)

Proof. Since A ∈ Rp×n is S-block separable, condition (14) is satisfied. We then prove this
theorem by employing corollary 3.5 with x being replaced by xδ . Moreover, since (43) has a
unique solution ũ, lemma 5.1 ensures that the error estimate (44) holds.

We first prove statement (a). Since the parameter is chosen as λ := aδkd−l
, according to the

order aδk1 ⩽ · · ·⩽ aδkd of the sequence akj , j ∈ Nd, we have that λ⩾ aδkj , for all j ∈ Nd−l. Appeal-

ing to corollary 3.5, we conclude that (42) with λ so chosen has a solution uδλ with the S-block
sparsity of level ⩽ l. The error bound (45) of uδλ is obtained by substituting λ= aδkd−l

into the
right hand side of estimate (44).
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Wenext show statement (b). Substitutingλ= Cδ into the right hand side of the estimate (44)
with straightforward computation leads to the error bound (46). In addition, since λ is chosen
so that aδkd−l

⩽ λ < aδkd−l+1
for an integer l, corollary 3.5 ensures that the corresponding solution

uδλ of (42) has the S-block sparsity of level l.

Theorem 5.2, which extends the classical posterior parameter choice strategies [5, 26, 41,
46, 52, 65] for noisy data, provides parameter choice strategies which balance sparsity of the
corresponding regularized solutions and their error bounds. Item (b) of theorem 5.2 shows that
the proposed parameter choice strategy generates a regularized solution to have the same error
bound as in [26] (overcoming overfitting that may be caused by noisy data) and sparsity of
a prescribed level. We can obtain a special result when A is an orthogonal matrix of order n,
where condition (14) holds for the nature partition S := {S1, . . . ,Sn} of Nn. It follows from
the invertability of A that (43) has a unique solution. Hence, the parameter choice strategies
follows directly from theorem 5.2 with the nature partition S of Nn and the sequence aδj :=∥∥(Aj)

⊤xδ
∥∥
∞, j ∈ Nn.

We next consider the case when A can not be partitioned to satisfy condition (14). In this
case, algorithm 1 provides a choice of the parameter with which problem (42) has a solu-
tion with a prescribed sparsity level. This together with corollary 3.8 and lemma 5.1 enables
us to obtain parameter choice strategies balancing sparsity of the regularized solutions and
their error bounds. For the solution uδλ of problem (42), we define the sequence aδj (u

δ
λ) :=∣∣(Aj)

⊤(Auδλ − xδ)
∣∣, j ∈ Nn, rearranged in a nondecreasing order: aδk1(u

δ
λ)⩽ · · ·⩽ aδkn(u

δ
λ)with

distinct ki ∈ Nn, i ∈ Nn. The proof of the following theorem is similar to that of theorem 5.2
and it is left to the interested readers.

Theorem 5.3. (a) If λ∗ is chosen by algorithm 1 for a given l∗ ∈ Zn+1, then the solution uδλ∗

of problem (42) has sparsity of level l∗ and satisfies the error bound∥∥uδλ∗ − ũ
∥∥
2
⩽ λ∗β2

2

β1
+

δ2

2λ∗β1
+
β2δ

β1
.

(b) If λ := Cδ for a constant C> 0, then the solution uδλ of problem (42) has sparsity of
level l ′ ⩽ l where l ∈ Zn+1 satisfies aδkn−l

(uδλ)< Cδ ⩽ aδkn−l+1
(uδλ), and satisfies the error

bound (46).

6. Numerical experiments

In this section, we present numerical results to validate the theory established in this paper.
We have three types of numerical examples: (a) In sections 6.1–6.4, we validate the parameter
choice strategy for a targeted sparsity level. (b) Examples in sections 6.5 and 6.6 confirm that
the parameter choices can balance sparsity of the regularized solution and its approximation
accuracy. (c) Those in sections 6.6 and 6.7 are designed to verify characterizations of the
solutions of the regularization problems presented in theorem 4.5 and proposition 4.15. All
the experiments are performed with Matlab R2018a on an Intel Core I9 (8-core) with 5.0GHz
and 32Gb RAM.

In our numerical computation, the regularization problems are solved by the fixed
point proximity algorithm (FPPA) developed in [3, 35, 43], which we review below.
Suppose that f : Rn → R := R∪{+∞} is a convex function, with dom( f) := {x ∈ Rn :
f(x)<+∞} ̸= ∅. The proximity operator proxf : Rn → Rn of f is defined by proxf(x) :=
argmin

{
1
2∥u− x∥22 + f(u) : u ∈ Rn

}
, for x ∈ Rn. Suppose that φ : Rn → R and ω : Rm → R

are two convex functions which may not be differentiable, and C ∈ Rm×n. The optimization
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Table 1. Parameter choices λ∗ for targeted sparsity levels l∗ for image denoising (total
number of wavelet coefficients n2 := 65536).

l∗ 40000 30000 20000 10000 5000 500 0
λ∗ 11.2188 16.5289 23.2754 34.3766 46.7302 205.5417 3707.6947
SL 40000 30000 20000 10000 5000 500 0
PSNR 25.5679 26.4841 26.8580 26.1921 25.0097 19.2129 5.5824

problem min{φ(u)+ω(Cu) : u ∈ Rn} can be solved by FPPA: For given positive constants
β, ρ and initial points u0, z0,{

uk+1 = proxβφ
(
uk−βC⊤zk

)
,

zk+1 = ρ
(
I − prox 1

ρω

)(
1
ρz

k+C
(
2uk+1 − uk

))
.

(47)

According to [35], iteration (47) converges if βρ < 1/∥C∥22. When the function φ is smooth,
one can use the fast iterative shrinkage-thresholding algorithm (FISTA) [6] to speedup the
convergence. In the numerical examples to be presented below, we obtain the solution u∗ after
iteration (47) converges. For convenience, we use ‘SL’ and ‘BSL’ to denote the sparsity level
and the block sparsity level, respectively, of u∗ (or Bu∗).

6.1. Image denoising by a wavelet transform

Given a noisy image x ∈ Rn2 and an orthogonal wavelet transformW ∈ Rn×n, we consider in
this experiment the image denoising model [22]

min

{
1
2
∥u− x∥22 +λ∥Bu∥1 : u ∈ Rn2

}
, (48)

where B :=W⊗W, with ⊗ denoting the Kronecker product. Note that the matrix B, as a
Kronecker product of two orthogonal matrices, is also orthogonal. By a change of variables
v= Bu, we identify (48) as the lasso regularized model with p= n, and n, A, u being replaced
by n2, B⊤, v, respectively, and with a separable fidelity term.

The experiment is conducted on gray scale test image ‘Cameraman’ with size 256×
256. We use f := [fj : j ∈ Nn2 ] with n := 256 for the original image, x := f+η for a noisy
image, with noise η iid N(0,σ2) being the Gaussian noise at level σ= 20 and W being
the Daubechies wavelet transform with the vanishing moments N= 4 and the coarsest res-
olution level L= 4. We set seven desired sparsity levels l∗ from Nn2 , which are l∗ :=
40000, 30000, 20000, 10000, 5000, 500, 0, and apply the parameter choice strategy described
in corollary 3.5 to select regularization parameters λ∗ such that the corresponding solutions
enjoy the targeted sparsity levels l∗. Specifically, we rearrange the set {bj : j ∈ Nn2} with bj :=∣∣((B⊤)j)

⊤x
∣∣, in a nondecreasing order: bk1 ⩽ bk2 ⩽ · · ·⩽ bkn2 with distinct ki ∈ Nn2 , i ∈ Nn2 .

For each of the targeted sparsity levels l∗, we choose the parameter as λ∗ := bkn2−l∗
and obtain

a solution v∗ by solving model (48) with u being replaced by B⊤v and get the sparsity level
SL of v∗.

We report in table 1 the targeted sparsity levels l∗, the selected values of λ∗, the actual
sparsity levels SL of the solutions v∗ and the PSNR values of the denoised images B⊤v∗,
where PSNR := 20log10

(
255× 256/∥f−B⊤v∗∥2

)
, and show in figure 1 the original image,

the noisy image, and the denoised image with λ∗ = 23.2754. Numerical results in table 1 show
that the sparsity levels SL of v∗ coincide with the targeted sparsity levels l∗.
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Figure 1. The ‘Cameraman’ image denoising: (a) the original image; (b) the noisy image
with Gaussian noise at level σ= 20; (c) the denoised image with λ= 23.2754 (SL =
20 000, PSNR= 26.8580).

Table 2. Parameter choices λ∗ for targeted S-block sparsity levels l∗ for signal denois-
ing (total groups d := 10).

l∗ 9 7 6 4 3 1 0
λ∗ 0.1312 0.1400 0.1541 0.3667 0.9135 3.1193 5.0126
BSL 9 7 6 4 3 1 0
MSE 0.0017 0.0018 0.0020 0.0056 0.0161 0.0563 0.0858

6.2. Signal denoising by the group lasso regularized model

In this experiment, we consider the group lasso regularized model (4) with A ∈ Rn×n whose
columns form an orthogonal wavelet basis. We recover the Doppler signal function

f(t) :=
√
t(1− t)sin((2.1π)/(t+ 0.05)) , t ∈ [0,1], (49)

from its noisy data by employing model (4). Let n := 4096. We generate sample points tj, j ∈
Nn, on a uniform grid in [0,1] with step size h := 1/(n− 1) and consider recovering the signal
f := [f(tj) : j ∈ Nn] from a noisy signal x := f+η, where η is an additive white Gaussian noise
with the signal-to-noise ratio SNR= 7. ThematrixA is the Daubechies wavelet transformwith
N := 6 and L := 3.We choose a partition S := {S1,S2, . . . ,S10} ofNn with the cardinality n1 =
23 and nj = 2j+1, j ∈ N10 \ {1}, and decompose A into ten sub-matrices A( j) := [Ak : k ∈ Sj] ∈
Rn×nj , j ∈ N10. We set seven targeted S-block sparsity levels l∗ := 9, 7, 6, 4, 3, 1, 0. According
to the parameter choice strategy stated in theorem 3.6, we select the parameter values λ∗ with
whichmodel (4) has solutions having the targetedS-block sparsity levels l∗. By rearranging the
set {aj : j ∈ N10}with aj :=

∥∥(A( j))
⊤x

∥∥
2
/
√
nj, in a nondecreasing order: ak1 ⩽ ak2 ⩽ · · ·⩽ ak10

with distinct ki ∈ N10, i ∈ N10, we choose λ∗ := ak10−l∗ . We solve model (4) with each selected
value of λ∗ for the corresponding solution u∗.

The targeted S-block sparsity levels l∗, the selected values of parameter λ∗, the actual S-
block sparsity levels BSL of u∗ and the MSE values of the denoised signals Au∗ are reported
in table 2, where MSE := 1

n∥f−Au∗∥22. Observing from the numerical results, the actual BSL
values of the solution u∗ match exactly with the targeted S-block sparsity levels l∗. Moreover,
the approximation errors of the solutions corresponding to the selected values of λ∗ exhibit
increase as the values of λ∗ become larger.
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Table 3. Parameter choices λ∗ for targeted sparsity levels l∗ for signal denoising (total
sparsity level n := 4095).

l∗ 1488 744 355 160 67 12 0
λ0 0.20 0.28 0.55 6.13 30.40 107.50 270.18
λ∗ 0.1 0.2 0.5004 6.1277 30.2662 107.3430 270.18
SL 1488 744 355 160 67 12 0
NUM 8 11 33 34 75 78 1
MSE 0.0042 0.0020 0.0012 0.0078 0.0298 0.0657 0.0835

Figure 2. The parameter choice for targeted sparsity levels: (a) l∗ = 355; (b) l∗ = 744.

6.3. Total-variation signal denoising

We consider the total-variation signal denoising model (35), which is neither separable nor
block separable. Again, we recover the Doppler signal function defined by (49) from its
noisy data. The original signal f and the noisy signal x are chosen in the same way as
in subsection 6.2. We set seven targeted sparsity levels l∗ under the transform D(1), that
is, l∗ = 1488, 744, 355, 160, 67, 12, 0. We apply algorithm 1 to find values of the para-
meter λ∗ and the corresponding solutions u∗ for the targeted sparsity levels l∗ under the
transform D(1).

We report in table 3 the targeted sparsity levels l∗, initial values of λ0, the selected values of
parameter λ∗, the actual sparsity levels SL of u∗ under the transform D(1), the numbers NUM
of updates for λ∗ and the MSE values of the denoised signals u∗, where MSE := 1

n∥f− u∗∥22.
Moreover, we show in figure 2 the convergence process of algorithm 1 for the two prescribed
sparsity levels l∗ = 355 and l∗ = 744. It demonstrates that algorithm 1 is convergent and
converges fast. Thus, the proposed algorithm is not only effective but also computationally
efficient.

6.4. ℓ1 SVM classification and regression with the squared loss function

In this subsection, we present numerical results for solving the ℓ1 SVM model (37) with the
squared loss function for both classification and regression.

First, we consider the ℓ1 SVM model (37) for classification. The dataset that we use for
this experiment is the handwriting digits from the modified national institute of standards and
technology (MNIST) database [34], which is composed of 60000 training samples and 10000
testing samples of the digits ‘0’ through ‘9’. We study the binary classification problem with
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Table 4. Parameter choices λ∗ for targeted sparsity levels l∗ for ℓ1 SVM classification
(total number of terms n := 8141).

l∗ 6000 4000 2000 1000 500 100
λ0 5 5 5 5 5 15
λ∗ 0.0399 0.0916 0.3519 0.8959 1.7495 11.4520
SL 6005 4003 2005 1004 505 96
NUM 13 16 26 29 23 31
TrA 99.88% 99.84% 99.57% 99.07% 98.34% 96.31%
TeA 99.17% 99.12% 98.92% 98.72% 98.38% 96.81%

Figure 3. The parameter choice for targeted sparsity level l∗: (a) l∗ = 4000; (b) l∗ =
500.

two digits ‘7’ and ‘9’, by taking 8141 training samples and 2037 testing samples of these two
digits from the database. The reason for which we choose these two particular digits is that it
has been recognized that their handwriting is not easy to distinguish. The kernel we use for
model (37) is the Gaussian kernel defined by

K(x,y) := exp
(
−∥x− y∥22/(2µ2)

)
, x,y ∈ Rd, (50)

with µ := 4.8 and d := 784. Let n := 8141 be the number of training samples and y ∈ {−1,1}n
be the given vector storing labels of training data in which −1 and 1 represent the digits ‘7’
and ‘9’ respectively. We set six targeted sparsity levels l∗ under the transform B, that is, l∗ =
6000, 4000, 2000, 1000, 500, 100, and apply algorithm 1 to find the value of parameter λ∗ and
the corresponding solution u∗ for each l∗. In this experiment, we relax the stopping criteria for
algorithm 1 to terminate if |l− l∗|⩽ 5 instead of l= l∗.

We report in table 4 the targeted sparsity levels l∗, the initial values of λ0, the selected values
of parameter λ∗, the actual sparsity levels SL of the solutions u∗ under the transform B, the
numbers NUM of updates for λ∗, the accuracy on the training datasets (TrA) and the accur-
acy on the testing datasets (TeA). Here, the accuracy is measured by labels that are correctly
predicted by the model. Moreover, we show in figure 3 the convergence process of algorithm
1 for the two prescribed sparsity levels l∗ = 4000 and l∗ = 500. It shows that algorithm 1 is
convergent and converges fast.

Secondly, we consider the ℓ1 SVM model (37) for regression. The benchmark dataset is
‘Mg’ [13] with 1385 instances and each instance has six features. We take 1000 instances as
training samples and 385 instances as testing samples. The kernel involved in model (37) is
chosen as the Gaussian kernel defined by (50) with µ := 1.07 and d := 6. Let n := 1000 be
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Table 5. Parameter choices λ∗ for targeted sparsity levels l∗ for ℓ1 SVM regression
(total number of terms n := 1000).

l∗ 600 500 400 300 200 100 50
λ0 0.03 0.03 0.03 0.03 0.03 0.03 0.05
λ∗ 0.0015 0.0020 0.0030 0.0052 0.0087 0.0238 0.0471
SL 601 502 402 301 197 100 47
NUM 12 10 10 9 12 6 3
TrMSE 0.0128 0.0129 0.0130 0.0132 0.0135 0.0140 0.0143
TeMSE 0.0146 0.0146 0.0147 0.0149 0.0150 0.0151 0.0151

Figure 4. The parameter choice for targeted sparsity levels: (a) l∗ = 500; (b) l∗ = 300.

the number of training samples and y ∈ Rn be the given labels. We set seven targeted sparsity
levels l∗ under the transformB, which are l∗ = 600,500,400,300,200,100,50. For each l∗, we
use algorithm 1 to get the parameter λ∗ and the corresponding solution u∗. In this experiment,
we relax the stopping criteria for algorithm 1 to terminate if |l− l∗|⩽ 3 instead of l= l∗. The
MSE value of the prediction ỹ :=K ′u∗ is defined by MSE := 1

n∥y− ỹ∥22, and the MSE on the
training dataset and the testing dataset are denoted by TrMSE and TeMSE, respectively.

We report in table 5 the targeted sparsity levels l∗, the initial values of λ0, the selected values
of parameter λ∗, the actual sparsity levels SL of the solutions u∗ under the transform B, the
numbers NUM of updates for λ∗, the TrMSE values and the TeMSE values. Moreover, we
illustrate in figure 4 the convergence process of algorithm 1 for the two prescribed sparsity
levels l∗ := 500 and l∗ := 300.

6.5. Parameter choices balancing sparsity and accuracy: a separable case

The goal of this subsection is to validate the two parameter choice strategies proposed in
theorem 5.2. We consider the signal denoising model (42) with matrix A ∈ Rn×n being the
Daubechies wavelet transform with N := 6 and L := 4. We again consider recovering the Dop-
pler signal function (49). As in subsection 6.2, we take n := 4096 and generate sample points
tj, j ∈ Nn, the original signal f, and noisy signal xδ := f+η, where η is the Gaussian noise with
noise level δ := ∥η∥2.

In the first case, we set seven targeted sparsity levels l∗ = 1819, 1258, 719, 616, 243, 165, 154.
We choose the parameter λ∗ according to the strategy stated in item (a) of theorem 5.2. We
choose the noise level to be δ= 0.0190. Let aδj :=

∥∥(A( j))
⊤xδ

∥∥
∞, j ∈ Nn, rearranged in a
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Table 6. Parameter choices λ∗ := aδkn−l∗
balancing sparsity level l∗ and accuracy ERR

for signal denoising (noise δ= 0.0190, total number of wavelet coefficients n := 4096).

l∗ 1819 1258 719 616 243 165 154
λ∗ 2.49× 10−4 3.29× 10−4 4.60× 10−4 4.94× 10−4 8.49× 10−4 5.28× 10−3 7.90× 10−3

SL 1819 1258 719 616 243 165 154
ERR 0.0103 0.0092 0.0090 0.0092 0.0135 0.0705 0.1022

Table 7. Parameter choices λ∗ := 1.2δ balancing sparsity level SL and accuracy ERR
for signal denoising (total number of wavelet coefficients n := 4096).

δ 1.90× 10−9 7.55× 10−6 1.90× 10−4 1.90× 10−2 6.00× 10−1 1.90×100 6.00× 100

SL 1049 434 274 119 29 15 0
ERR 7.59× 10−8 1.94× 10−4 3.92× 10−3 2.67× 10−1 4.73× 100 1.03× 101 1.88× 101

ERR/δ 40.0139 25.7405 20.6788 14.0885 7.8906 5.4288 3.1277

Table 8. Parameter choices λ∗ := Cδ balancing sparsity level SL and accuracy ERR for
signal denoising (total number of wavelet coefficients n := 4096).

δ 1.90× 10−9 1.90× 10−4

C 0.12 1.2 12 120 0.12 1.2 12 120
SL 1300 1049 833 662 385 274 187 118
ERR 8.50×

10−9
7.60×
10−8

6.74×
10−7

6.01×
10−6

4.61×
10−4

3.92×
10−3

3.24×
10−2

2.67×
10−1

nondecreasing order: aδk1 ⩽ · · ·⩽ aδkn with distinct ki ∈ Nn, i ∈ Nn. We choose λ∗ := aδkn−l∗
for

each l∗ and find the corresponding solution u∗ by solving the signal denoising model (42) and
determine the actual sparsity level SL of u∗.

We report in table 6 the targeted sparsity levels l∗, the selected values of parameter λ∗,
the actual sparsity levels SL of u∗ and the ERR values of u∗. Here and in the next subsec-
tion ERR := ∥u∗ −A−1f∥2. The SL values in table 6 match exactly with those of the targeted
sparsity levels l∗. Moreover, we observe that the ERR values of u∗ depending on λ∗ exhibit a
pattern like λ∗ + 1/λ∗, which is essentially described in item (a) of theorem 5.2 as an upper
bound of the approximation error.

In the second case, we choose the parameter according to the second strategy λ∗ := Cδ,
described in item (b) of theorem 5.2. We set seven different noise levels δ as shown in the first
row of table 7 and choose C := 1.2. Numerical results shown in table 7 confirm item (b) of
theorem 5.2 which ensures the regularized solution has sparsity of a prescribed level and an
approximation error with an upper bound C ′δ, where C ′ ≈ 40.0139.

We also validate the second parameter choice strategy λ∗ := Cδ, described in item (b) of
theorem 5.2 in a different way, by choosing two noise levels δ = 1.9× 10−9,1.9× 10−4, and
four constants C= 0.12,1.2,12,120. The numerical results reported in table 8 are consistent
with the theoretical estimate given in item (b) of theorem 5.2.

6.6. Parameter choices balancing sparsity and accuracy: a nonseparable case

The experiments presented in this subsection are to verify the parameter choice strategies
described in theorem 5.3. To this end, we consider the signal denoising model (42), where
A ∈ Rn×n is determined by the biorthogonal wavelet ‘bior2.2’ available in Matlab with the
decomposition levels L := 6. Here, ‘bior2.2’ denotes the two wavelets for decomposition and

26



Inverse Problems 39 (2023) 025004 Q Liu et al

Table 9. Parameter choices λ∗ balancing sparsity level l∗ and accuracy ERR for signal
denoising (noise δ= 0.0190, initial parameter λ0 = 3.9478 and total number of wavelet
coefficients n := 4096).

l∗ 600 1000 1600 2200 2800 3400 3600
λ∗ 1.02× 10−3 5.57× 10−4 3.62× 10−4 2.48× 10−4 1.58× 10−4 8.26× 10−5 5.90× 10−5

SL 600 1000 1600 2200 2800 3400 3600
NUM 6 5 8 5 6 5 8
ERR 0.0505 0.0319 0.0239 0.0198 0.0179 0.0180 0.0185

Table 10. Parameter choices λ∗ := 1.2δ balancing sparsity level SL and accuracy ERR
for signal denoising (total number of wavelet coefficients n := 4096).

δ 2.39× 10−5 1.90× 10−4 1.07× 10−3 1.90× 10−2 6.00× 10−1 1.90× 100 6.00× 100

SL 1626 920 531 167 51 24 0
ERR 2.45× 10−3 1.47× 10−2 6.05× 10−2 5.23× 10−1 7.06× 100 1.57× 101 1.96× 101

ERR/δ 102.4764 77.3039 56.7137 27.5954 11.7829 8.2608 3.2647

Table 11. Parameter choices λ∗ := Cδ balancing sparsity level SL and accuracy ERR
for signal denoising (total number of wavelet coefficients n := 4096).

δ 1.90× 10−4 1.90× 10−2

C 0.12 1.2 12 120 0.12 1.2 12 120
SL 1712 920 422 167 424 167 79 24
ERR 2.00×

10−3
1.47×
10−2

9.52×
10−2

5.23×
10−1

9.51×
10−2

5.23×
10−1

2.97×
100

1.57×
101

reconstruction respectively having the same order N := 2 of vanishing moments. In this case,
A is not separable. We again recover the Doppler signal function (49) from the noisy signal xδ

defined as in subsection 6.5.
We first set seven targeted sparsity levels l∗, which are l∗ = 600, 1000, 1600, 2200, 2800,

3400, 3600. According to item (a) of theorem 5.3, we choose the parameter λ∗ by employing

algorithm 1 withψ(u) := 1
2

∥∥Au− xδ
∥∥2
2
, B := In and B ′ = In. Numerically, we choose the ini-

tial parameter λ0 =
∥∥A⊤xδ

∥∥
∞ (≈3.9478). The targeted sparsity levels l∗, the selected values

of parameter λ∗ chosen by algorithm 1, the actual sparsity levels SL of the solutions u∗, the
numbers NUM of updates for λ∗ and the ERR values of the solutions u∗ are reported in table 9.
The ERR values of u∗ depending on λ∗ exhibit a pattern like λ∗ + 1/λ∗, which is essentially
described in item (a) of theorem 5.3 as an upper bound of the approximation error.

We next set seven different noise levels δ as shown in the first row of table 10 and choose
the values of the parameter λ∗ according to λ∗ := Cδ with C= 1.2. The numerical results for
this case are reported in table 10, where the noise levels δ, the actual sparsity levels SL of the
solutions u∗, the ERR values of u∗ and ERR/δ are listed.

For the parameter choice strategy λ∗ := Cδ proposed in item (b) of theorem 5.3, we con-
sider two values δ = 1.9× 10−4,1.9× 10−2, and four values C= 0.12,1.2,12,120. Numer-
ical results are reported in table 11. The numerical results in both tables 10 and 11 confirm the
theoretical results in item (b) of theorem 5.3.
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Table 12. ℓ1 SVM classification model with hinge loss (512 training dataset).

λ∗ 0.1 0.2 1 2 4 10 27.9851
γ 0.0543 0.1458 0.8785 1.9399 3.7844 9.6159 27.9850
SL 151 151 111 56 37 15 0
TrA 100% 100% 97.27% 95.51% 92.97% 81.45% 50.00%
TeA 96.71% 96.66% 95.68% 93.47% 91.36% 80.85% 50.47%

6.7. ℓ1 SVM classification with the hinge loss function and regression with the ϵ-insensitive
loss function

This example tests the result in theorem 4.5 by considering the ℓ1 SVM classification/regres-
sion models (31) and (33). Theorem 4.5 applied to these two models leads to corollary 4.7 and
corollary 4.8, respectively. Note that for these models, the choice of parameter λ∗ in Corollar-
ies 4.7 and 4.8 depends on the unknown solution u∗. Hence, we test the necessary condition
described by the inequalities in (32) of corollary 4.7 and the inequalities in (34) of corollary
4.8 for problems (31) and (33), respectively, having a solution u∗ with a prescribed sparsity
level under the transform B. Specifically, for a given parameter λ∗, by solving problems (31)
and (33), we find the corresponding solutions u∗, and then verify if the pair of the chosen
λ∗ value and the corresponding solution u∗ satisfy the inequalities in (32), and if the sparsity
level of Bu∗ matches the one described in corollary 4.7. Likewise, we conduct the same test
for corollary 4.8.

We first consider the ℓ1 SVM classification model (31) with the hinge loss function. The
dataset we use is MNIST database with digits ‘7’ and ‘9’ as mentioned in subsection 6.4. The
kernel we choose for (31) is the Gaussian kernel defined by (50) with µ := 4 and d := 784. Let
n be the number of training samples and y ∈ {−1,1}n the given vector storing the labels of
the training data, where−1 and 1 represent the digits ‘7’ and ‘9’ respectively. The experiment
uses 512 training samples and 2037 testing samples of these two digits from the database. We
choose seven different values of parameter λ∗ listed in the first row of table 12.

Associated with each solution u∗, we identify l distinct integers ki ∈ Nn, i ∈ Nl, so that
Bu∗ :=

∑
i∈Nl

z∗kieki , z
∗
ki ∈ R \ {0}, i ∈ Nl. That is,Bu∗ has l nonzero components. We compute

the number

γ :=max
{
min

{
|(YKj)

⊤c| : c ∈ ∂ϕ(YK′u∗)
}
: j ∈ Nn \ {ki : i ∈ Nl}

}
and verify indeed that λ∗ ⩾ γ. The values of γ, the actual sparsity levels SL of Bu∗, the TrA
values and the TeA values are reported in table 12. These numerical results confirm the inequal-
ity in (32) of corollary 4.7. Note that if λ∗ is sufficiently large, the vector Bu∗ has the sparsity
level 0. The value of the parameter λ∗ listed in the last column of table 12 produces a solution
that has most sparsity under the transform B.

We repeat the experiment described above with the same kernel by using 8141 training
samples and 2037 testing samples. The selected values of parameter λ∗, the actual sparsity
levels SL of Bu∗, the TrA values and the TeA values are reported in table 13. Observing form
table 13, we get that the sparsity level of Bu∗ is smaller as the value of parameter λ∗ increases,
the corresponding TrA and TeA values become lower.

Secondly, we consider the ℓ1 SVM regression model (33) with the ϵ-insensitive loss func-
tion. The dataset we use is ‘Mg’ as mentioned in subsection 6.4. The kernel used is the Gaus-
sian kernel (50) with µ := 1.5 and d := 6. Let n := 1000 and y ∈ Rn be the given labels of
the training data. The parameter ϵ involved in the ϵ-insensitive loss for model (33) is chosen
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Table 13. ℓ1 SVM classification model with hinge loss (8141 training dataset).

λ∗ 0.1 0.2 1 2 4 10 435.0694
SL 552 481 167 92 56 34 0
TrA 99.99% 99.99% 99.08% 98.17% 97.53% 96.30% 50.67%
TeA 98.72% 98.77% 98.38% 98.09% 97.45% 96.27% 50.47%

Table 14. ℓ1 SVM regression model with ϵ-insensitive loss (1000 training dataset).

λ∗ 0.01 0.4 1 2 4 18.00 135.8091
γ 0.005 0.1045 0.8980 1.7528 3.2839 17.8510 135.8091
SL 305 33 19 11 7 5 0
TrMSE 0.0145 0.0165 0.0177 0.0185 0.0200 0.0207 0.0530
TeMSE 0.0157 0.0162 0.0170 0.0177 0.0193 0.0202 0.0530

Table 15. Total-variation signal denoising model (total sparsity level n := 4095).

λ∗ 0.1 0.2 0.5 6 30 107 270.1717
SL 1488 744 355 160 67 12 0
l 1513 759 361 164 67 12 1
MSE 0.0042 0.0020 0.0012 0.0076 0.0297 0.0656 0.0835

as ϵ := 10−4. We choose seven different values of parameter λ∗ as shown in the first row of
table 14.

For each solution u∗, we identify l distinct integers ki ∈ Nn, i ∈ Nl, so that Bu∗ :=∑
i∈Nl

z∗kieki , z
∗
ki ∈ R \ {0}, i ∈ Nl. That is, Bu∗ has l nonzero components. We compute the

number γ :=max
{
min

{∣∣(Kj)
⊤c

∣∣ : c ∈ ∂ϕy,ϵ(K
′u∗)

}
: j ∈ Nn \ {ki : i ∈ Nl}

}
. The selected

values of parameter λ∗, the values of γ, the actual sparsity levels SL of Bu∗, the TrMSE val-
ues and the TeMSE values are reported in table 14. The numerical results reported in table 14
confirm the inequalities in (34) of corollary 4.8.

6.8. Total-variation signal denoising

In this experiment, we verify the result in proposition 4.15. We again consider recovering
the Doppler signal function defined by (49) from its noisy data by the total-variation signal
denoising model (35). The original signal f and the noisy signal x are chosen in the same way

as in subsection 6.2. Note that the fidelity term ψ(u) := 1
2

∥∥u− x
∥∥2
2
, u ∈ Rn, is differentiable

and the transformmatrixB := D(1), anm× nmatrix, has full row rank. In this case,m= n− 1.
According to remark 4.10, when λ⩾ λmax :=

∥∥(D̃(1) ′
)⊤x

∥∥
∞ (≈270.1717), the corresponding

regularized solution is the zero vector under the transform D(1). For this reason, we choose
seven different values of the parameter λ∗ in the interval (0,λmax]. For each selected value
of λ∗, we find the corresponding solution u∗ by solving model (35) using FPPA and count
the actual sparsity level of D(1)u∗. To verify the result in proposition 4.15, we choose ϵ :=
5× 10−5 and v := u∗ + ϵv0/∥v0∥2, where v0 ∈ [0,1]n is a uniformly distributed random vector.
We then use the vector v that satisfies ∥u∗ − v∥2 ⩽ ϵ to define the sequence vϵj :=

∣∣(B ′
j )

⊤(v−
x)
∣∣+ ϵLj with Lj := ∥B ′

j ∥2, j ∈ Nm. We rearrange the sequence in a nondecreasing order: vϵk1 ⩽
· · ·⩽ vϵkm with distinct ki ∈ Nm, for i ∈ Nm, which allows us to identify the integer l ∈ Zm+1

such that vϵk1 ⩽ · · ·⩽ vϵkm−l
< λ∗ ⩽ vϵkm−l+1

⩽ · · ·⩽ vϵkm , that is, condition (39) is satisfied.
We report in table 15 the selected values of parameter λ∗, the actual sparsity levels SL

of D(1)u∗, the integer l determined by proposition 4.15 and the MSE values of the denoised
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signals u∗, where the MSE is defined as in subsection 6.3. These numerical results confirm
that the actual sparsity level of D(1)u∗, which corresponds to each selected value of λ∗, does
not exceed l determined by inequality (39).

To close this section, we remark that both the proposed parameter choice strategy and the
iterative algorithm perform well in overcoming overfitting when data are contaminated with
noise, while producing solutions with desired sparsity levels.

7. Conclusion

We have studied choice strategies of the regularization parameter for various regularization
problems with an ℓ1 norm regularization. The strategies are proposed to balance sparsity of a
regularized solution and its approximation accuracy compared to the corresponding minimal
norm solution. The ingredient used in developing the strategies is the connection of the choice
of the parameter with the sparsity level of the regularized solution and with the approximation
error. Much effort of this paper is given to understanding the connection between the choice
of the parameter and the sparsity level of the regularized solution. We have also demonstrated
how such understanding is combined with an error bound of the regularized solution to obtain
a strategy for choices of the parameter to balance its sparsity and approximation accuracy.
We have conducted substantial numerical experiments to test the proposed strategies. Numer-
ical results of various application models confirm our theoretical estimates. More extensive
applications of the proposed strategies and convergence analysis of the proposed algorithm
for choosing the parameter will be our future research projects.
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Appendix

Proof of lemma 4.1

Substituting B† = VΛ†U⊤ into the representation of the general solution u of (20), we have

that u= V
(
Λ†U⊤z+

[
0
v

])
for any v ∈ Rn−r. In terms of Λ ′ and U ′, the above equation can

be rewritten as u= VΛ ′U ′
[
z
v

]
. By using B ′, the above equation can be represented as the

desired form (21).
It remains to verify that for each solution u of (20), the vector v appearing in (21) is

unique. Suppose that v1,v2 ∈ Rn−r both satisfy (21).We then obtain thatB ′
[

0
v1 − v2

]
= 0,which
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together with the definition ofB ′ implies thatV
[

0
v1 − v2

]
= 0. The invertibility of V ensures that

v1 = v2, proving the desired result.

Proof of lemma 4.2

It suffices to show that B is surjective and injective. We first verify the surjectivity of B. For
any z ∈R(B) and any v ∈ Rn−r, we define a vector u ∈ Rn through (21). Lemma 4.1 guar-

antees that Bu= z, which together with the definition of B implies that Bu=
[
z
v

]
. Hence, B

is surjective. To prove the injectivity of B, we suppose that u1,u2 ∈ Rn satisfy Bu1 = Bu2.
It follows from B ′Bu1 = u1 and B ′Bu2 = u2 that u1 = B ′Bu1 = B ′Bu2 = u2. That is, B is
injective.

Proof of proposition 4.3

Note that the mapping B provides a bijective correspondence between Rn and R(B)×Rn−r.
It suffices to verify that for all u ∈ Rn there holdsψ(u)+λ∥Bu∥1 =ψ ◦B ′(Bu)+λ∥I ′Bu∥1.
By the definition of B, we have that I ′Bu= Bu. This together with B ′Bu= u confirms the
validity of the equation above.

Proof of remark 4.10

It follows from corollary 4.9 with l= 0 that the total-variation signal denoising model has a
solution u∗ satisfying D(1)u∗ = 0 if and only if there hold

λ⩾
∥∥∥(D̃(1) ′

)⊤(u∗ − x)
∥∥∥
∞

and 1⊤n (u
∗ − x) = 0. (51)

Suppose that D(1)u∗ = 0. We obtain u∗ by solving two equations D(1)u∗ = 0 and 1⊤n (u
∗ −

x) = 0. By lemma 4.1, the vector u∗ satisfying the first equation can be represented as

u∗ = D(1) ′
[

0
v∗

]
for some v∗ ∈ R, which together with D(1) ′

n =
√
n
n 1n, leads to u∗ = v∗

√
n

n 1n.

Substituting this representation into the second equation yields that v∗ =
√
n
n 1⊤n x, which fur-

ther leads to u∗ = 1
n (1

⊤
n x)1n. This allows us to rewrite the inequality in condition (51) as

λ⩾
∥∥∥ 1
n (1

⊤
n x)(D̃

(1) ′
)⊤1n− (D̃(1) ′

)⊤x
∥∥∥
∞
. It suffices to show (D̃(1) ′

)⊤1n = 0. By the defini-

tion ofD(1) ′
, we have (D(1) ′

)⊤Vn = (U ′)⊤Λ ′V⊤Vn. SubstitutingV⊤Vn =
[
0
1

]
into the above

equation, we get (D(1) ′
)⊤Vn = (U ′)⊤Λ ′

[
0
1

]
, which further yields (D(1) ′

)⊤Vn =
[
0
1

]
. That is,

(D̃(1) ′
)⊤Vn = 0.NotingVn =

√
n
n 1n, we obtain (D̃(1) ′

)⊤1n = 0. Thus, we rewrite the inequal-

ity in condition (51) as λ⩾
∥∥∥(D̃(1) ′

)⊤x
∥∥∥
∞
. Conversely, suppose that λ⩾

∥∥∥(D̃(1) ′
)⊤x

∥∥∥
∞
. By

setting u∗ := 1
n (1

⊤
n x)1n, we conclude that condition (51) holds. That is, u

∗ is a solution of the
total-variation signal denoising model with D(1)u∗ = 0.
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