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• Coastal response to Holocene marine
transgression dictated by rate of SLR

• Analysis of NOAA tide gauge station data
reveals substantial recent acceleration.

• Recent rates of SLR are the same as those
associated with the early Holocene.

• The coastal zone was overstepped and
submerged during the early Holocene.

• Widespread coastal instability and sub-
mergence are expected by year 2050.
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Aggregation of paleo-environmental data derived from geological investigations conducted on the shoreface and inner
shelf of Florida's six coastal geomorphic sectors revealed a common and synchronous response to a decelerating rate of
Holocene sea level rise: (1) early Holocene overstep and submergence (∼10–5mm yr−1), (2) mid-Holocene erosional
shoreface retreat (∼2mmyr−1), and (3) late Holocene stabilization (<1mmyr−1). Linear best-fit analysis of sea level
data collected at 14 NOAA tide gauge stations distributed along the entire Florida coast indicates the rate of sea level
rise has accelerated from a historical average of 3.1 mm yr−1 (<1972–2022; range 2.2 to 4.2) to 5.9 mm yr−1

(1993–2022; range 4.8 to 6.9) and 8.2mmyr−1 during the 21st century (2003–2022; range 7.6 to 10.0). The 21st cen-
tury rates vary between stations, however all fall within the range of values documented during the early Holocene; a
timewhen Florida's coastline was rapidly transgressed. Recent studies have demonstrated that the destabilizing effects
of this acceleration on Florida's coastal geomorphology and ecology are already evident. Rates of rise are expected to
continue increasing and this will accelerate the pace and scale of landward translation and submergence of Florida's
coastal environment.

1. Introduction

Both the rate and magnitude of sea level rise (SLR) are increasing in re-
sponse to global climate change and current projections to year 2100 (c.f.,
Sweet et al., 2022) are likely to be exceeded in response to additional loss of

ice sheet mass, thermal expansion of seawater, and the ever-widening green-
house gas emissions deficit (Cozannet et al., 2019; Frederikse et al., 2020;
Siegert et al., 2020; DeConto et al., 2021; Noel et al., 2021; United Nations
Environmental Program, 2021; Box et al., 2022; Greene et al., 2022;
Horhold et al., 2023). Understanding how coastal environments will respond
to accelerating SLR is important because these systems provide substantial
ecosystem services including (a) attenuation of storm surge and saltwater en-
croachment, (b) habitat to threatened and endangered species, as well as
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recreational and commercialfisheries, and (c) esthetic landscapes that support
ecotourism and resident quality of life (Barbier et al., 2011; Arkema et al.,
2013;Geselbracht et al., 2015;Hughes et al., 2017). Previous studies reporting
the likely effects of SLRonFlorida's coastal environment have focusedona spe-
cific location (Wanless et al., 1994;Wanless andVlaswinkel, 2005), habitat type
(Parkinson et al., 1994; Geselbracht et al., 2011) or geomorphic feature
(e.g., estuaries; Geselbracht et al., 2015) based upon global projections
(Overpeck et al., 2006; Vermeer and Rahmstorf, 2009; Church et al., 2013).
Each conveyed the probability of substantial deleterious impacts on Florida's
coastal environment. However, as pointed out by Hamlington et al. (2020),
coastal vulnerability assessments should consider a site-specific sea level his-
tory whenever possible to account for the diverse set of processes that lead
to local variations in SLR relative global observations. While there have
been a few recent analyses of local and regional SLR trajectories along the Flor-
ida coast (Southeast Florida Climate Compact, 2020; Hamlington et al., 2022;
Sweet et al., 2022), none have translated those projections into coastal re-
sponse scenarios of geomorphic or ecologic change.

In this investigation, a novel application of the principle of uniformitarian-
ismwas used to constrain the likely response of Florida coastal zone (Fig. 1) to
accelerating SLR by 2050. This timeframewas chosen because it is compatible
with the renewal cycle of statuary planning frameworks, limits themagnitude
of model assumption uncertainties which increase over time, and is similar to
the typical design life and financing of urban buildings and infrastructure
(Parkinson, 2009; Lawrence et al., 2018; McAlpine and Porter, 2018).

2. Study area

2.1. Coastal geomorphology

The Florida coastal zone consists of two distinct geological provinces:
the peninsula and the panhandle. The Florida peninsula is the emergent
portion of a karstified, Tertiary carbonate platform (Hine et al., 2003). Silic-
iclastic (e.g., terrigenous) sediments are locally abundant and derived from
erosion of relict sea level high stand deposits (e.g., Atlantic Coastal and
Brooksville Ridge; Hine and Belknap, 1986) emplaced prior to the last gla-
cial maximum (Davis et al., 1992). Carbonate sediments increase in relative
abundance from north-to-south as a consequence of both the diminishing
availability of siliciclastic sediment and the increase in carbonate produc-
tion associated with the transition from a temperate to sub-tropical climate
(Parkinson andWhite, 1994). The coastal geomorphology and sediments of

the panhandle share some similarities to the peninsula (e.g., barrier
islands), but this province is more aptly characterized by the presence of in-
cised fluvial embayments and bays, bayhead deltas and large rivers
(e.g., Mobile, Escambia, Choctawhatchee, and Apalachicola) that deliver si-
liciclastic sediments to the coastal zone (Otvos, 1985; Donoghue and
Tanner, 1992). The Florida coastal zone is further divisible into six geomor-
phic sectors (Davis et al., 1992) (Fig. 1), each consisting of distinct coastal
landforms, depositional environments, and patterns of sedimentation
(Table 1). All were subject to the same submergence history during the Ho-
locene Epoch (Fig. 2). The unified conceptual model developed during this
investigation is based upon an analysis of each sector's paleo-environmental
response to the Holocene marine transgression.

2.2. Holocene sea level rise

Since the last glacial maximum, globally averaged eustatic sea level has
risen by at least 120 m, with the rate of SLR decelerating during the Holo-
cene Epoch (Lambeck et al., 2014). Records of SLR since the last glacial
maximum indicate the initial transgression was accompanied by several in-
tervals (e.g., melt water pulses; Fairbanks, 1989; Fairbanks et al., 1992) of
extremely rapid rise (e.g., >40 mm yr−1; Stanford et al., 2006; Bard et al.,
2010; Donoghue, 2011) until∼11 Kyr cal BP or the onset of the Holocene
Epoch. Thereafter, the long-term (i.e., centuries) average trend of SLR in the
study domain is typically illustrated as a relatively smooth curve with rates
of rise decelerating to the present (Bard et al., 1990; Brooks et al., 2003;
Toscano and Macintyre, 2003; Otvos, 2005; Donoghue, 2011; Khan et al.,
2022). While there are numerous processes that contribute to SLR in the
coastal zone (e.g., eustatic, glacio-isostatic, sediment compaction), it is
their net sum that determines the relative rate of rise to which the geomor-
phology and ecosystem are responding.

In this investigation,five submergence curveswere considered, each illus-
trating the elevation of sea level relative to present within the study domain
during the Holocene Epoch (Fig. 2, Table 2). All indicate an initial
(e.g., early Holocene) rapid rate of SLR (∼10–5 mm yr−1 depending on the
duration of record) to ∼7 Kyr ago. Thereafter and until ∼3.5 Kyr ago
(e.g.,mid-Holocene), itwas∼2mmyr−1, and since then (e.g., lateHolocene)
has averaged<1mm yr−1 (Donoghue, 1989;Wanless et al., 1994; Parkinson
et al., 2015). The late Holocene deceleration is depicted in some (e.g., Brooks
et al., 2003), but not all (e.g., Balsille and Donoghue, 2004) submergence
curves constructed from data collected in the Gulf of Mexico.

Fig. 1. Satellite image of Florida showing location of six geomorphic sectors described in study, NOAA tide gauge stations from which historical water level data was
collected, and geological transects constructed as representative of each sector.
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2.3. Susceptibility to sea-level rise

Florida's coastal environments are especially vulnerable to climate
change and concomitant RSL rise. Elevations in the coastal zone are low
(i.e., meters) and already subject to intermittent flooding during intense
rainfall events, exceptional tides, and storm surge (Kiflai et al., 2020;

Mahjabin and Abdul-Aziz, 2020; Sweet et al., 2021). The extensive barrier
chains and open ocean coastline are susceptible to erosion, overwash, and
breaching (Wang and Briggs, 2015). The surficial and near-surface geology
consists primarily of unconsolidated sand and porous limestone through
which water is easily transmitted, further exacerbating the magnitude
and extent of saltwater encroachment, as well as coastal and inland

Table 1
Summary of attributes associated with six geomorphic sectors of the Florida coast.
Sources: NWBC - Donoghue andWhite (1995); Donoghue (1989); Donoghue and Tanner (1992); Locker and Doyle (1992); Otvos (2005), BBM –Hine et al. (1988); Hine and
Belknap (1986),WCBC - Davis et al. (1992); Edwards et al. (2003); Finkl et al. (2007); Hine et al. (2003), MC - Davis and Klay (1989); Parkinson (1989); Roberts et al. (1977);
Scholl (1964); Shier (1969); Wanless et al. (1994); Wanless and Tagett (1989); Wingard and Lorenz (2014); Yao and Liu (2017), FK – Enos (1977); Hoffmeister et al. (1967);
Lidz et al. (2003), ECBC - Field and Duane (1974); Field and Meisburger (1975); Finkl and Andrews (2008); Lighty et al. (1978); Meisburger and Duane (1971); Miller et al.
(2014); Parkinson and White (1994); Stathakopoulos and Riegl (2015).

Geomorphic
sector

Location Physical oceanography Province Predominant coastal landform Predominant sediment type

Northwest
Barrier
Chain

Pensacola to Apalachicola
River Delta (300 km)

Low-to-moderate wave
climate, microtidal

Alabama-Florida
shelf

Narrow linear barrier islands with large
back-barrier estuaries and rivers

Siliciclastics derived from fluvial processes,
littoral drift, reworking of high stand deposits

Apalachicola
Embayment

Cuspate barrier islands

Big Bend
Marsh

Apalachicola River Delta
to Anclote Key (270 km)

Low wave climate,
microtidal

NA Exposed karstified limestone bedrock,
salt marsh and oyster reef

Salt marsh peat, oyster

West-Central
Barrier
Chain

Anclote Key to Cape
Romano (300 km)

Low-to-moderate wave
climate, microtidal

NA Narrow linear and drumstick barrier
islands with large back-barrier estuaries

Siliciclastics derived from littoral drift and the
reworking of high stand deposits

Mangrove
Coast

Cape Romano to Florida
Bay (120 km)

Low wave climate,
microtidal

Ten Thousand
Islands

Mangrove forest, oyster reef Mangrove peat, oyster

Everglades/Shark
River Slough

Mangrove forest Mangrove peat

Cape
Sable/Whitewater
Bay

Cuspate foreland, mangrove forest Mangrove peat, biogenic carbonate mud

Florida Bay Coastal embayment, mudbanks Biogenic carbonate mud, mangrove peat
Florida Keys Try Tortugas to Soldier

Key (350 km)
Low wave climate,
microtidal

NA Limestone island archipelago Coral reef debris, biogenic carbonate sand and
mud, mangrove peat

East Coast
Barrier
Chain

Soldier Key to Georgia
border (550 km)

Moderate-to-high
wave climate,
microtidal

NA Narrow linear barrier islands Siliciclastics derived from littoral drift and the
reworking of high stand deposits

Fig. 2. Left panel. Sea level trends constructed using data from the Gulf of Mexico (Balsille and Donoghue, 2004), Big Bend Marsh Coast (Wright et al., 2005), South Florida
(Khan et al., 2022), Florida Keys (Toscano andMacintyre, 2003), and Northeast Florida (Hawkes et al., 2016). Also shown are the age range and average rate of sea level rise
associated with the late, mid, and early Holocene. Center and right panels. Age-depth polygons corresponding to the predominant depositional events that occurred in each
geomorphic sector during the early, mid, and late Holocene. Polygon input data provided in Supplementary materials. 1 = Northwest Barrier Chain. 2 = Big Bend Marsh
Coast. 3 = West-Central Barrier Chain. 4 = Mangrove Coast. 5 = Florida Keys. 6 = East Coast Barrier Chain.
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flooding. Much of the Florida coastline is urbanized, which compromises
the resilience of natural landscapes by limiting their adaptive capacity
(e.g., migration; Geselbracht et al., 2011).

3. Methods

3.1. Response of Florida's coastal environment to Holocene sea level rise

Themethodological approach of this investigation is grounded in the pi-
oneeringwork of Curray (1964). Curray recognized the stratigraphic record
of marine transgression and regression was dictated by two fundamental
factors: (a) sea level change and (b) net sedimentation. For example, shore-
line transgression (i.e., landward migration or onlap) occurs when the rate
of SLR exceeds the rate of net sedimentation. During the Holocene marine
transgression of the Florida platform, the rate of SLR was not constant but
slowed over time. This decelerationwas accompanied by changing patterns
of sedimentation and stratigraphy as the coastal zone responded to newand
evolving environmental conditions. It follows, if changes in the rate of
Holocene SLR are synchronous with regionally significant shifts in the
paleo-environmental evolution of Florida's coastal zone, then these rates
or tipping points can be utilized to model the likely response of the modern
coastal zone to future conditions of accelerating SLR.

In this study, the quantification of relationships between the evolution
of Florida's coastal environment and contemporaneous Holocene SLR was
based upon the analysis of geological investigations that (a) were con-
ducted along the modern shoreface and/or inner continental shelf,
(b) targeted the Holocene stratigraphic succession, (c) included detailed de-
scriptions of the sedimentology, stratigraphy, and geochronology, and
(d) included paleo-environmental descriptions of coastal evolution in the
context of contemporaneous sea level change. A companion literature re-
view was also conducted seeking reports and publications describing re-
search specifically designed to reconstruct a detailed record of Holocene
sea level change in the eastern Gulf of Mexico, southeast Atlantic, and
wider Caribbean.

3.2. Sea level rise in the 20th and 21st centuries

Trends of sea level change along the Florida coast were calculated using
15 Florida tide gauge records included in the supplementary data files to
NOAA's 2022 sea level rise technical report (Sweet et al., 2022; https://
oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-data.html). We
used the NOAA mean sea level monthly data products (NOAA, 2021), in-
cluding monthly mean, lowest, and highest values. The two-stage records
acquired inMayport (near Jacksonville, FL) are nearby and complementary
to one another (Mayport, operated 1928–2001;Mayport Bar Pilots Port, op-
erated 1995–1996 and 2001–present). Thus, we concatenated the Mayport
records by minimizing the offset between the two records that were ac-
quired during a nine-month period between 1995/09/19 and 1996/06/
10. Thus, our dataset was reduced to a total of 14 stations (Fig. 1).

We first translated the sea level observations for each station from the
mean sea level datum to another local datum, mean sea level at year
2000, by calculating the mean sea level value for the year 2000 and
subtracting this value from all observations. We chose the mean sea level
at year 2000 local datum to be consistent with other studies that consider
future changes in sea level (e.g., Sweet et al., 2022). Trends of sea level
change were characterized using a multi-parameter linear least-square

estimator, which provides both best-fit parameters and their uncertainties.
The best-fit analyses were conducted using Python's scipy.optimize.
curve_fit function. The analyses included linear fit (two parameters: inter-
cept and slope) and linear with a periodic (sinusoidal) fit, which required
the use of two additional parameters (amplitude and phase) of the 18.61-
year lunar tide periodicity that can have a significant impact on mean and
highest sea level values (Peng et al., 2019). However, our results using
the linear+periodic analyses showed only minor deviations from the anal-
yses without the periodic signal. Thus, the paper focuses on the simpler lin-
ear analyses and results.

The variable length of the 14 sea level time series (28–125 years) signif-
icantly affects the trend estimation results calculated for each station. To
minimize the impact of the variable time series length, we conducted the
best-fit analyses using three series subsets, each defined using different
start dates but the same end date (end of 2022). The first subset used all
the observations; thus, the start date (tstart) varies between 1897
(Fernandina Beach) and 1973 (PanamaCity and Clearwater Beach). The re-
cords of two stations that started operation after 1993 (Virginia Key and
Trident Pier) were not considered. The second subset, 1993–2022, included
12 stations with 30 years of observation and two stations with 29 years. Fi-
nally, the third subset, 2003–2022, consisted of all 14 stations.

The accelerating trends in SLR along the US Atlantic and Gulf coasts
began toward the end of the 20th century (e.g., Ezer, 2013; Nerem et al.,
2018). Thus, by applying the linear fit to three time series lengths, tstart-
2022, 1993–2022, and 2003–2022, it was possible to detect changes in
the linear rate of SLR along the Florida coastline. Observational trends cal-
culated for the three time series subsetswere then extended to 2050 and the
elevations compared with NOAA's projected SLR for the same time period
(Sweet et al., 2022; https://oceanservice.noaa.gov/hazards/sealevelrise/
sealevelrise-data.html).

3.3. Unified conceptual model

The unified conceptual model is based upon the premise that the past is
the key to the future. Specifically, the likely geomorphic and ecologic re-
sponse of the modern coastal environment can be predicted by comparison
between (a) rate of Holocene SLR tipping points that induced a change in
the paleo-environmental trajectory of the coastal environment being
transgressed and (b) projected rates of future SLR derived from the NOAA
tide gauge data. The authors have successfully applied this methodology
in previous studies designed to identify the Holocene rate of SLR tipping
points (Parkinson, 1989; Turner et al., 2018) and construct predictive con-
ceptual models of environmental change (Parkinson andWdowinski, 2022;
Parkinson et al., 1994; Turner et al., 2018).

4. Results

4.1. Response of Florida's coastal environments to Holocene sea level rise

In the following sections, the Holocene paleo-environmental evolution
of Florida's six coastal geomorphic sectors is described with respect to sed-
imentology, stratigraphy, depositional framework, geochronology, and
contemporaneous rate of SLR. These descriptions are based on a review of
66 geological and 11 sea level publications conducted within the study do-
main. All radiocarbon ages used in this investigation are expressed in Kyrs
cal BP. Conventional dates were calibrated using the online IntCal20model

Table 2
Source and type of information used to constrain relative sea level rise during the Holocene Epoch in the study domain.

Reference Location Isotope Material analyzed Units

Balsille and Donoghue, 2004 Gulf of Mexico 14C Shells, wood, peat Cal yrs. BP
Wright et al., 2005 Big Bend Florida 14C Bulk samples, wood, oyster Cal yrs. BP
Khan et al., 2022 South Florida 14C, U-Th Previously published data Cal yrs. BP, yrs. BP
Toscano and Macintyre, 2003 Florida Keys 14C Previously published, coral, peat Cal yrs. BP
Hawkes et al., 2016 Northeast Florida 14C Plant matter Cal yrs. BP
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by OxCal (https://c14.arch.ox.ac.uk/oxcal/OxCal.html#) (Bronk Ramsey,
2008, 2009; Bronk Ramsey and Lee, 2013; Reimer et al., 2020). The re-
ported dates are relative to 1950 BP. The original data and the calibrated
estimates are provided in Supplementary materials Table 1. Generalized
geological cross-sections illustrating the regional sedimentologic, strati-
graphic, and geomorphic features in each sector are shown in Fig. 3. Tran-
sect locations are shown in Fig. 1. Associations between the duration and
elevation of the predominant paleo-environmental events observed in
each geomorphic segment and RSL are shown in Fig. 2 and Supplementary
materials Fig. 1.

4.1.1. Northwest Barrier Chain
Investigations conducted on the inner shelf of the Northwest Barrier

Chain have documented the presence of a transgressive sand layer. When
present, it consists of reworked, older (e.g., relict) Holocene, Pleistocene,
or Miocene deposits (Locker and Doyle, 1992). Based upon the data pro-
vided by Locker and Doyle (1992) and Donoghue and White (1995),

transgression over the inner shelf occurred ∼11 Kyr cal BP. At the inner
shelf/lower shoreface boundary, a transgressive facies sequence is present
(Houser, 2012) and interpreted to have formed by erosional shoreface re-
treat of a barrier island complex (see Swift, 1975). Age-depth associations
suggest this transition occurred ∼8 Kyr cal BP. The modern barrier island
system was established∼5.1 Kyr cal BP (Otvos, 1985, 2005).

4.1.2. Big Bend Marsh Coast
Most of the Big Bend Marsh Coast inner shelf and nearshore are re-

ported to consist of exposed karstified limestone and palimpsest beds that
were transgressed ∼8 Kyr cal BP (Hine and Belknap, 1986). Along the
coastline, oyster reefs and inter-reef muddy sands are common. Samples
collected from the reef base indicate formation initiated ∼4.5 Kyr cal BP
(Wright et al., 2005). The mainland is host to extensive coastal wetland
plant communities and radiocarbon dates indicate the modern coastal salt
marshes and associated shoreline stabilization occurred ∼2.4 Kyr cal BP
(Wright et al., 2005).

Fig. 3. Simplified geologic cross-sections for each of the six geomorphic sectors showing prominent stratigraphic units and corresponding paleo-environment of deposition:
1) Northwest Barrier Chain (Houser, 2012; Locker and Doyle, 1992; and URS Corporation, 2004), 2) Big Bend Marsh Coast (Hine and Belknap, 1986; Hine et al., 1988),
3) West-Central Barrier Chain (Brooks et al., 2003; Locker et al., 2003), 4) Mangrove Coast (Davis and Klay, 1989; Parkinson, 1987, 1989), 5) Florida Keys (Enos, 1977;
Lidz et al., 2003;, Macintyre, 2007; Robbin, 1984; Toth et al., 2022), and 6) East Coast Barrier Chain (Civil, 1990; Fluke, 1994; Mayhew and Parkinson, 2007; Meisburger
and Duane, 1971; Parkinson and White, 1994). Note horizontal scale and vertical exaggeration vary between segments. Location of each transect shown in Fig. 1.
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4.1.3. West-Central Barrier Chain
The inner shelf of West-Central Barrier Chain consists of exposed Neo-

gene and Pleistocene limestone with a thin and discontinuous layer of pa-
limpsest sediment (Brooks et al., 2003; Hine et al., 2003; Locker et al.,
2003; Finkl et al., 2007). Age-depth associations suggest this period of
shoreline transgression initiated ∼9 Kyr cal BP. The unconsolidated sedi-
ment sequence thickens landward into a transgressive facies sequence
interpreted to have formed during erosional shoreface retreat of the barrier
island complex between∼8 and 3 Kyr cal BP (Brooks et al., 2003). The ces-
sation of island retreat and concomitant shoreline stabilization is generally
reported at ∼5 Kyr cal BP; (Stapor et al., 1991; Davis et al., 1992; Brooks
et al., 2003; Donahue et al., 2003; Locker et al., 2003).

4.1.4. Mangrove Coast
Geological investigations of the inner shelf of the Mangrove Coast ap-

pear limited to the work of Davis and Klay (1989), who described the pres-
ence of exposed limestone at depths >8 m seaward of the Ten Thousand
Islands. In the Ten Thousand Islands, a transgressive facies sequence
consisting of mangrove peat overlain by estuarine sediments is present be-
neath the archipelago of mangrove capped vermetid and oyster reefs (Davis
and Klay, 1989; Parkinson, 1989). These investigators report the transgres-
sive sequence formed between ∼6.7 to 3.7 Kyr cal BP. Overlying the trans-
gressive interval in the island archipelago and along the mainland shoreline,
Parkinson (1989) reports the presence of a relatively thick (∼1 to 2m) regres-
sivemangrove peat sequence, interpreted to reflect a period of coastal stability
that began ∼3.8 Kyr cal BP. Shoreline sequences in the Everglades/Shark
River Slough province consist of a thick (∼4 m) interval of mangrove peat
over bedrock. Basal mangrove peat radiocarbon dates indicate the modern
coastline formed ∼3.8 Kyr cal BP (Yao and Liu, 2017). In the Cape Sable/
Whitewater Bay and Florida Bay provinces, exposed limestone is present on
the inner shelf, grading landward into a transgressive facies sequence
consisting of freshwater deposits (e.g., carbonate mud and peat) and/or ma-
rine peats (e.g., mangrove) (c.f., Wanless and Tagett, 1989). The transgressive
sequence is in turn locally overlain by a∼3m regressive sequence associated
with themodern coastline of Cape Sable (Spackman et al., 1969; Roberts et al.,
1977; Vlaswinkel and Wanless, 2009) and emergence of Florida Bay
mudbanks and islands (Enos, 1989; Parkinson and Meeder, 1991; Jones
et al., 2019). Geochronologies in both provinces suggest this period of regres-
sive sedimentation began about∼5 Kyr cal BP.

4.1.5. Florida Keys
Based upon U\\Th dates, the sustained presence of corals as the predom-

inant geomorphic feature in the FloridaKeys began∼8.6KyrBP,whenoutlier
and now relict reefs flourished on the shelf margin (Toscano and Lundberg,
1998). The modern reef system emerged between∼8.0 and 6.5 Kyr cal BP
(Toth et al., 2018), with evidence of backstepping occurring from ∼7.5 to
4.5 Kyr cal BP (Lidz et al., 2003). Beneath and around the modern reefs are
transgressive carbonate sands (Enos, 1977). Radiocarbon dates collected
from peat samples collected at the base of extant mangrove forests indicate
a sustained presence along the Florida Keys shoreline began∼5.5 Kyr cal BP
(Robbin, 1984).

4.1.6. East Coast Barrier Chain
Surveys conducted on the inner continental shelf of the East Coast Bar-

rier Chain indicate the seabed is a surface of non-deposition and erosion,
characterized by the presence exposed Pleistocene bedrock, overlain by a
thin and discontinuous layer of palimpsest sediments (Meisburger and
Duane, 1971; Field and Meisburger, 1975; Fluke, 1994). Meisburger and
Duane (1971) estimated the coastline was transgressed along this portion
of the Florida platform ∼8 Kyr ago. Sediments thicken landward into a
transgressive facies sequence that accumulated in response to the erosional
shoreface retreat of a barrier island chain (Field and Duane, 1977; Civil,
1990). In the central portion of this sector, radiocarbon samples obtained
from back-barrier lagoon sediments indicate the age of the modern island
chain is ∼4.9 Kyr cal BP (Mayhew and Parkinson, 2007). At Cape
Canaveral, Rodrigues et al. (2022) state the oldest beach ridge formed

∼5.8 Kyr cal BP. Near the Georgia boarder, radiocarbon dates collected
from extant salt marsh and mangrove plant communities indicate the age
of the barrier island is at least∼4.7 Kyr cal BP (Vaughn et al., 2020, 2021).

In the southern region of this sector (e.g., Palm Beach County to Miami-
Dade County), the continental shelf is narrow (<10 km wide) and consists of
a bathymetry dominated by antecedent topographic features associated with
the presence of drowned reef-like ridges (Duane and Meisburger, 1969),
more recently referenced as the continental reef tract to distinguish these fea-
tures from the Florida Key reef track (Stathakopoulos and Riegl, 2015). Coral
ages from the continental reef tract indicate they initiated∼10.8 Kyr cal BP
and terminated ∼8.0 Kyr cal BP (Lighty et al., 1978; Stathakopoulos and
Riegl, 2015).

4.2. Sea level rise in the 20th and 21st century

Observed sea level data obtained from the 14 NOAA tide gauge stations
(Fig. 4, Table 3) indicate the average rate of rise has accelerated to the pres-
ent. The mean rate of historical SLR, calculated using data sets with a dura-
tion >50 years relative to 2022, ranged from 2.2 ± 0.0 mm yr−1

(Fernandina Beach) to 4.2 ± 0.1 mm yr−1 (Vaca Key) and averaged
3.1 ± 0.2 mm yr−1. The mean rate of SLR since 1993 ranged from
4.7 ± 0.6 mm yr−1 (Mayport) to 6.9 ± 0.4 mm yr−1 (Pensacola) and av-
eraged 5.9 ± 0.2 mm yr−1. The mean rate of SLR during the 21st century
(2003−2022) ranged from 7.6 ± 0.9 mm yr−1 (St. Petersburg) to
10.0 ± 1.4 mm yr−1 (Pensacola) and averaged 8.2 ± 0.2 mm yr−1. The
calculated rates of SLR at each station vary as a function of the duration
of the record considered, with shorter data sets yielding faster rates. Be-
tween station differences in the rate of SLR are apparent and attributed to
variations in local and regional processes that contribute to relative SLR
as described previously (e.g., glacio-isostatic).

This study's observation-based extrapolations of sea level elevation
in 2050 are shown in Table 4. Extrapolations based upon the 21st
century (e.g., 2003–2022) data fall within the range of intermediate,
intermediate-high, and high scenario-based estimates calculated by
Sweet et al. (2022).

5. Discussion

5.1. Generalized response of the Florida coastal environment to Holocene sea
level rise

The aggregatedpaleo-environmental observations derived fromgeological
investigations conducted on Florida's inner shelf andmodern shoreface reveal
a common regional and synchronous response to changing rates of Holocene
SLR (Fig. 2, Supplementary materials Fig. 1). Between sector distinctions in
sedimentology, stratigraphy, and geochronology are evident and attributed
to differences in (a) isostacy and sediment compaction, (b) elevation and geol-
ogy (e.g., limestone, unconsolidated sand) of the antecedent topography
transgressed, (c) sediment supply (i.e., autochthonous, allochthonous),
(d) climate, (e) physical oceanography, and (f) data density. But these
differences did not mask evidence of a synchronous sequence of paleo-
environmental events that accompanied the Holocene marine transgression
of the Florida coastline.

The outer reaches of Florida's inner shelf typically consist of exposed
pre-Holocene formations locally overlain by palimpsest sediments and sub-
merged coral reefs. This period of coastal overstep occurred during the early
Holocene, when the rate of SLR exceeded 5 mm yr−1. In shallower inner
shelf waters of the barrier chain sectors, Holocene sediments thicken into
a transgressive facies sequence created during erosional shoreface retreat
of a barrier island chain (c.f., Swift, 1975). In the carbonate dominated Flor-
ida Keys sector, concurrent coral reef backstepping has been documented.
This interval of shoreline retreat and reef backstepping occurred during
the mid-Holocene, when the rate of SLR averaged∼2 mm yr−1. The mod-
ern shoreline (e.g., barrier island shoreface, coastal wetlands) and adjacent
reefs (e.g., coral, oyster) stabilized during the late Holocene, when sea level
was rising at a rate of <1 mm yr−1.
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Fig. 4.Observed sea level trends (solid blue line) at each of the 14NOAA tide gauge stations deployed along the Florida coast. Also shown is the average rate of rise calculated
as a function of record length (error= uncertainty). Observational-based (this study) and scenario-based (Sweet et al., 2022) extrapolations of sea level elevation in 2050 are
indicated using solid and dashed lines, respectively. Solid black line=historical average of 3.05mmyr−1 (<1972–2022). Solid red line=5.94mmyr−1 (1993–2022). Solid
purple line= 8.24 mm yr−1 (2003–2022). Dashed blue line = intermediate-high. Dashed green line= high. The shaded areas delineate the 17th–83rd percentile range of
uncertainty for each of the two scenario-based projections.
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5.2. Unified conceptual model

The observed rates of SLR during the 21st century along the Florida
coastline fall within the range of values that accompanied the early Holo-
cene marine transgression (e.g.,∼10 to 5 mm yr−1), at which time Florida
coastal environments were subject to overstep and submergence. It follows
the geomorphic and ecologic response of Florida's modern coastal zone to
the recent acceleration in the rate of SLR will be similar, e.g., toward
2050 and beyond it will become increasingly unstable. Manifestations

will include increasing rate and extent of (a) shoreline erosion, overwash,
and barrier island breaching, (b) saltwater encroachment and formation
of wetland inundation ponds, and (c) landward translation of the shoreline
and concomitant submergence of the coastal zone.

5.2.1. Evidence of recent change
There is abundant evidence of recent geomorphic and ecologic change

along the Florida coastline which investigators have attributed to an
acceleration in the rate of SLR or companion stressors (e.g., saltwater

Table 3
NOAA tide gauge station details and rate of sea level rise (mm yr−1) trends considered in this study. Error expressed as uncertainty level.

Location NOAA ID Latitude Longitude Observation period Trend tstart - 2022 Trend 1993–2022 Trend 2003–2022

Pensacola 8729840 30.40 −87.21 1923–2002 2.63 ± 0.01 6.93 ± 0.38 10.02 ± 1.36
Panama City 8729108 30.15 −85.67 1973–2002 2.97 ± 0.08 5.83 ± 0.36 8.02 ± 1.18
Apalachicola 8728690 29.73 −84.98 1967–2022 3.00 ± 0.05 5.69 ± 0.34 8.63 ± 1.13
Cedar Key 8727520 29.14 −83.03 1914–2022 2.30 ± 0.01 6.04 ± 0.38 9.69 ± 1.20
Clearwater Beach 8726724 27.98 −82.83 1973–2022 4.12 ± 0.06 7.49 ± 0.38 9.28 ± 0.98
St Petersburg 8726520 27.76 −82.63 1947–2002 3.06 ± 0.02 5.83 ± 0.27 7.60 ± 0.91
Fort Myers 8725520 26.65 −81.87 1965–2002 3.47 ± 0.04 6.01 ± 0.33 7.68 ± 1.03
Naples 8725110 26.13 −81.81 1965–2002 3.23 ± 0.04 5.52 ± 0.27 8.05 ± 0.92
Key West 8724580 24.56 −81.81 1913–2002 2.58 ± 0.01 5.50 ± 0.28 8.38 ± 0.94
Vaca Key 8723970 24.71 −81.11 1971–2002 4.22 ± 0.05 5.98 ± 0.26 8.05 ± 0.90
Virginia Key 8723214 25.73 −80.16 1994–2002 nd 6.36 ± 0.35 9.36 ± 1.05
Trident Pier 8721604 28.42 −80.59 1994–2002 nd 6.42 ± 0.58 9.59 ± 1.64
Mayport 8720218 30.67 −81.47 1928–2002 2.80 ± 0.02 4.69 ± 0.57 8.67 ± 1.87
Fernandina Beach 8720030 30.67 −81.47 1897–2002 2.23 ± 0.01 4.80 ± 0.57 8.24 ± 1.83

Average 3.05 ± 0.18 5.94 ± 0.20 8.24 ± 0.21

Table 4
Observation-based linear extrapolations (this study, left column) and scenario-basedmedian estimates with likely
ranges bracketed (i.e., 17th–83rd percentile, Sweet et al., 2022) of sea level elevation in 2050 relative to a
baseline of 2000. The observation-based extrapolations are derived from best-fit analysis of all data (black), three
decades: 1993–2022 (red), and 21st century: 2003–2022 (purple). The two scenarios that bound the observation-
based extrapolations are provided for each of the 14 Florida tide gauge stations and indicated by vertical dividing
lines using the same color scheme. At locations where the observation-based extrapolation is the same as a partic-
ular scenario, the scenario is indicated by red font. Scenario-based estimates obtained from supplementary data
files to NOAA's 2022 sea level rise technical report (Sweet et al., 2022; https://oceanservice.noaa.gov/hazards/
sealevelrise/sealevelrise-data.html).

Low Intermediate-
Low Intermediate Intermediate-

High High

Pensacola
181, 364, 471

230 
[180, 290]

280
[210, 340]

320
[250, 400]

380
[280, 520]

440
[320, 590]

Panama City
186, 300, 377

220
[160, 280]

260
[200, 300]

330
[230, 380]

360
[260, 500]

430
[300, 570]

Apalachicola
195, 303, 408

220
[170, 280]

270
[200, 330]

300
[230, 390]

360
[270, 510]

430
[310, 580]

Cedar Key
156, 318, 447

230
[180, 290]

27
[210, 340]

310
[240, 400]

370
[280, 520]

440
[320, 590]

Clearwater Beach
232, 362, 424

260
[200, 310]

300
[240, 360]

340
[270, 420]

400
[300, 550]

470
[350, 620]

St. Petersburg
175, 290, 353

260
[200, 310]

300
[240, 360]

340
[270, 420]

400
[300, 550]

470
[350, 620]

Fort Meyers
199, 302, 361

240
[190, 300]

280
[220, 340]

320
[250, 400]

380
[290, 530]

450
[330, 600]

Naples
170, 264, 354

240
[190, 300]

280
[220, 350]

320
[250, 410]

380
[280, 530]

450
[330, 600]

Key West
131, 257, 358

240
[190, 290]

280
[230, 340]

320
[250, 400]

380
[290, 530]

450
[330, 610]

Vaca Key
198, 268, 340

250
[200, 300]

290
[230, 350]

330
[260, 310]

390
[300, 540]

460
[340, 620]

Virginia Key
nd, 284, 388

240
[190, 290]

280
[220, 340]

320
[260, 400]

380
[290, 530]

450
[330, 600]

Trident Pier
nd, 292, 402

240
[180, 300]

280
[220, 340]

320
[260, 400]

390
[290, 530]

450
[330, 600]

Mayport
134, 220, 359

250
[200, 310]

300
[230, 360]

340
[270, 420]

400
[300, 540]

460
[360, 610]
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encroachment, increasing storminess). For example, in the Northwest
Barrier Chain, a historical landward translation of wetland plant com-
munities has occurred (Choi et al., 2001). In the Big Bend Marsh
Coast, SLR and saltwater encroachment have resulted in the loss of
marsh along the mainland shoreline and replacement of freshwater for-
ests by salt marsh (Williams et al., 1999; Desantis et al., 2007; Raabe and
Stumpf, 2016). Along the Mangrove Coast, Krauss et al. (2011) and
Andres et al. (2019) document the historical migration of mangrove for-
ests into marsh habitat, transgressive facies sequences, and the expan-
sion of wetland inundation ponds. Further inland, freshwater forest
and hammock plant species are being replaced by salt-tolerant plants
(Saha et al., 2011). In the Florida Keys, Ross et al. (1994) attributed
an historical reduction in the extent of upland pine forests to an acceler-
ation in the recent rate of SLR. In southeast Florida, the coastal
vegetation zones are migrating landward in response to saltwater en-
croachment (Gaiser et al., 2006). Meeder and Parkinson (2018) attri-
bute the formation and expansion of inundation ponds in the
mangrove scrub habitat of southeast Florida to an historical accelera-
tion in the rate of SLR.

The authors could find no descriptions of historic or recent geomor-
phologic changes to Florida's barrier chains that have been attributed to
SLR or climate change. However, this is not unexpected because there
are numerous other anthropogenic factors that complicate the ability
to detect change that can be confidently attributed to natural processes.
These include landscape urbanization, construction of shore protection
features (e.g., sea walls, bulkheads, and revetments), beach nourish-
ment, and inlet management (e.g., sand back- and by-passing) (c.f.,
Sankar, 2015). Roughly 50 % (e.g., ∼1110 km) of the Florida coastal
zone (e.g., shorelines in contact with the Atlantic Ocean or Gulf of
Mexico) is now urbanized. These anthropogenic alterations exacerbate
the vulnerability of Florida's coastal environments to SLR and other
climate change stressors. For example, changes in hydrology
(e.g., construction of roads, surface water diversion, levees) induce
stress and mortality in wetlands (Krauss et al., 2018; Radabaugh et al.,
2021). Water quality impairment from urban areas has caused coral
populations to decline and has reduced their capacity to maintain
elevation relative to SLR (Toth et al., 2018, 2022).

The intensity and destructiveness of tropical cyclones are expected to in-
crease as the climate warms (Emanuel, 2005; Elsner et al., 2008; Sobel
et al., 2016; Xi et al., 2023) and these events will further exacerbate the de-
mise of Florida's coastal environment because landfall generates extensive
shoreline erosion, elevates surface- and groundwater salinity, causes sub-
strate elevation deflation, and landscape-level plant community diebacks
(Swiadek, 1997; Radabaugh et al., 2019; Kiflai et al., 2020; Osland et al.,
2020; Lagomasino et al., 2021). The combination of faster rates SLR, in-
creasing storminess, and ongoing coastal urbanization is expected to ele-
vate the tempo and scale of geomorphic and ecologic change as has been
reported over the past two decades.

5.2.2. Likelihood of faster and more widespread changes to the coastal environ-
ment

It is now highly probable atmospheric temperatures will exceed +2 °C
by the end of this century even if current national climate commitments are
fully implemented (Boehm et al., 2022; United Nations, 2022). Others have
indicated that thresholdwill be reached between 2040 and 2050 (Jevrejeva
et al., 2016). Even under ambitious emission reduction scenarios, ice losses
and thermal expansion are foreseen to lead to the continued acceleration in
the rate of SLR throughout the century and especially during the second
half (Overland et al., 2019; Sweet et al., 2022; Ciracì et al., 2023). These ob-
servations lead Bamber et al. (2019) to suggest a SLR of 2 m by 2100, rela-
tive to 2005, should be usedwhen preparing coastal adaptation plans: that's
an average rate of rise of ∼20 mm yr−1. Hence, the projections derived
from the observations reported in this study are likely a ‘best case’ scenario.
Faster rates of SLR to higher elevations are now considered probable and
will accelerate the pace and magnitude of geomorphic and ecological
change as described herein.

5.3. Application of findings to other regions

To gauge the application of this study's findings to other regions, a pre-
liminary review of published paleo-environmental investigations under-
taken on the modern shoreface and shelf in other areas of the United
States and on other continents was conducted. The results indicate the
sequence of synchronous paleo-environmental events observed along
the Florida coast was occurring on a global scale in regions where rela-
tive SLR rise during the Holocene Epoch was predominantly a conse-
quence of global eustatic processes. For example, in North America,
studies have described the presence of overstepped antecedent topogra-
phy and palimpsest or relict sediments on the continental shelves of the
Western North Atlantic (Swift et al., 1971; Belknap and Kraft, 1981) and
northern Gulf of Mexico (Parker et al., 1992). Transgressive facies se-
quences attributed to erosional shoreface retreat have been reported
on the inner shelf and lower shoreface of the Western Atlantic (Swift,
1975; Kraft et al., 1987; Thieler et al., 2014), Georgia Bight (Thieler
et al., 2014; Long et al., 2021) and northern Gulf of Mexico (Anderson
et al., 2022). Stratigraphic sequences, paleo-environmental interpreta-
tions, and geochronologies similar to those described in this study
have also been reported from the Gulf of California (Curray et al.,
1978), the Yucatan (Platt and Wright, 2022), Brazil (Rangel and
Dominguez, 2020), northern Qatar (Rivers et al., 2020), the Great Bar-
rier Reef (Sanborn et al., 2020), Japan (Saito, 1994), and the Yellow
(Lee and Yoon, 1997) and Adriatic (Correggiari et al., 1996) Seas. In
summary, there appears to have been a globally similar and synchro-
nous coastal response to changing rates of eustatic Holocene SLR in
both siliciclastic and carbonate depositional settings. Efforts to model
the response of these coastal systems to accelerating rates of SLR fore-
cast accompanying climate change may therefore benefit from consider-
ation of locally derived paleo-environmental reconstructions and
associated SLR tipping points.

6. Conclusions

Sedimentologic, stratigraphic, and geochronologic data generated dur-
ing the Holocene marine transgression along the Florida coast indicate a
uniform and synchronous response to rate of RSL rise tipping points. During
the early Holocene, when the rate of SLR averaged at least 5 mm yr−1, the
coastal zone experienced overstep and submergence as evidenced by the
presence relict or palimpsest sediments discontinuously overlying pre-
Holocene strata on the modern continental shelf. The rate of SLR slowed
to an average of ∼2 mm yr−1 during the mid-Holocene and this was ac-
companied by erosional shoreface retreat of coastal environments and for-
mation of a transgressive facies sequence. During the late Holocene, the
rate of SLR averaged <1 mm yr−1. All of Florida's modern coastal environ-
ments originated and/or stabilized during this period.

Based upon observations obtained from14NOAA tide gauge stations lo-
cated along the Florida coastline, the rate of SLR has accelerated from an
historical average of 3.1 mm yr−1 (<1972–2022; range 2.2 to 4.2) to
5.9 mm yr−1 over the past 30 years (1993–2022; range 4.8 to 6.9) and
8.2 mm yr−1 during the 21st century (2003–2022; range 7.6 to 10.0).
The 21st century rates of SLR vary between stations, however all fall within
the range of values documented during the early Holocene; a timewhen the
Florida coastal zone was rapidly transgressed and submerged. Observa-
tional extrapolations of these data to 2050 align with the intermediate,
intermediate-high, and high scenario-based estimates of Sweet et al.
(2022).

Recent studies have demonstrated that the destabilizing effects of this
acceleration on Florida's coastal geomorphology and ecology are already
evident. Rates of rise are expected to continue accelerating. Therefore,
the tempo and scale of landward translation and concomitant submergence
of Florida's coastal environmentwill likely increase over the duration of this
century.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.164448.
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