

1 **Thermodynamics and Kinetics of Refractory Multi-Principal Element Alloys: An**
2 **Experimental and Modeling Comparison**

3
4 R. Puerling¹, A. Miklas¹, F.G. Coury^{1,2}, N.R. Philips³, P. Mason⁴, N.E. Peterson^{1*}, A. Deal⁵, J.
5 Klemm-Toole¹, A.J. Clarke¹

6
7 ¹Colorado School of Mines, Golden, CO 80401

8 ²Universidade Federal de São Carlos, São Carlos – SP, 13565-905, Brazil

9 ³Allegheny Technologies Incorporated, Albany, OR 97321

10 ⁴Thermo-Calc Software, McMurray, PA 15317

11 ⁵Kansas City National Security Campus, Kansas City, MO 64147

12
13 *nepeterson@mines.edu

14
15
16 The search for structural alloys capable of ultrahigh temperature performance has led to the
17 exploration of refractory multi-principal element alloys (RMPEAs). In this work, experimental
18 results for solidification segregation and homogenization of two RMPEAs, NbTaTiW and
19 MoNbTaTi, are compared to simulations using the Scheil and DICTRA modules in Thermo-
20 Calc®. Scheil calculations accurately predict the observed solidification segregation, while
21 DICTRA predicts general trends and can provide a minimum time to achieve homogenization at
22 a given temperature.

23
24 As technological advances reach their limits with currently available materials, advanced
25 structural metallic alloys need to be discovered and developed for multiple key areas, including
26 ultrahigh temperature performance in extreme environments. High-entropy alloys (HEAs), also
27 referred to as multi-principal element alloys (MPEAs) or complex concentrated alloys (CCAs),
28 have become a popular area of research during the last 15 years because they offer potential
29 property combinations otherwise unattainable with conventional alloys. [1] The need for metallic
30 structural alloys for use in ultrahigh temperature applications has led to the exploration of
31 MPEAs comprised of only, or primarily, refractory metals. These alloys are known as refractory
32 multi-principal element alloys (RMPEAs).

33 Although RMPEAs are capable of maintaining high strengths at elevated temperatures, their
34 fabrication is generally limited by room and low temperature ductility, especially in the as-cast
35 condition, making thermomechanical processing challenging. [1–10] The use of thermodynamic
36 simulation programs, such as Thermo-Calc®, has been demonstrated as useful tools for screening

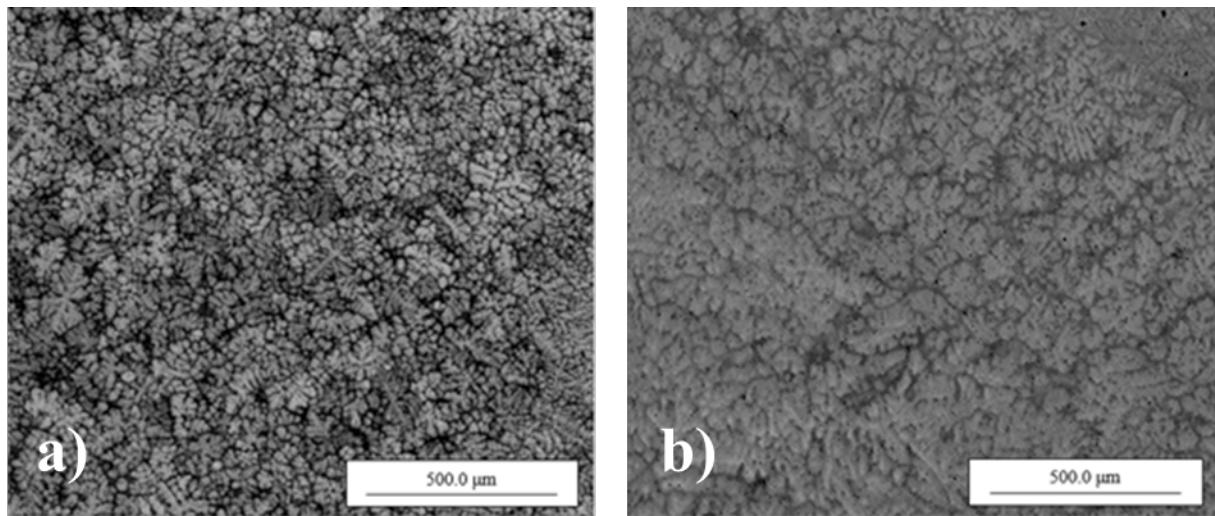
37 of potential compositions in alloy design studies in a wide variety of alloy systems, including
38 steels [11–13], aluminum [14,15], Ni-based alloys [16], and MPEAs [4,17,18]. This work
39 compares experimental data with predictions of the solidification and homogenization behavior
40 of the equimolar RMPEAs NbTaTiW and MoNbTaTi using Thermo-Calc®.

41 The Scheil-Gulliver model [19,20] and DICTRA module [21] available in Thermo-Calc®
42 (Version 2021a) were used to simulate spatial variations in composition during solidification and
43 homogenization, respectively, of the NbTaTiW and MoNbTaTi alloys. For the simulations, the
44 TCHEA4 and MOBHEA2 databases were used to provide the thermodynamic and mobility data,
45 respectively. The initial segregation results obtained from Scheil-Gulliver simulations were
46 subsequently used to initialize the homogenization simulations. To explore the effects of the
47 solidification microstructure on the homogenization kinetics, homogenization simulations were
48 run with effective secondary dendrite arm spacings of 1000, 100, and 10 μm . The parameter used
49 in Thermo-Calc® to capture secondary dendrite arm spacing is length scale. These were chosen
50 to see the difference the order of magnitude makes on the simulations. Length scale is the
51 distance over which segregation can be observed and is representative of the distance from the
52 center of a secondary dendrite arm to the center of the interdendritic region adjacent to it and is
53 therefore proportional to the secondary dendrite arm spacing. The simulated homogenization
54 treatment was 35 hours at 1673K.

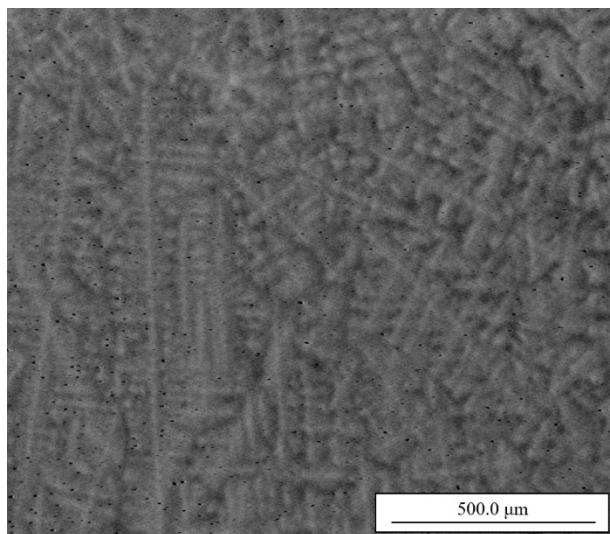
55
56 The measured compositions of the NbTaTiW and MoNbTaTi alloys investigated in this work are
57 shown in Table 1. The alloys listed in Table 1 were produced by Allegheny Technologies
58 Incorporated, in collaboration with the Center for Advanced Non-Ferrous Structural Alloys at the
59 Colorado School of Mines. Additional details regarding sample preparation are provided in
60 [8,10]. These alloys were made by non-consumable arc melting of high quality, remelt grade
61 elements in an inert argon atmosphere. Each button was re-melted three times to achieve a well-
62 mixed sample.

63 Table 1: Bulk compositions (at %) for the RMPEAs NbTaTiW and MoNbTaTi measured by
64 EDS.

65

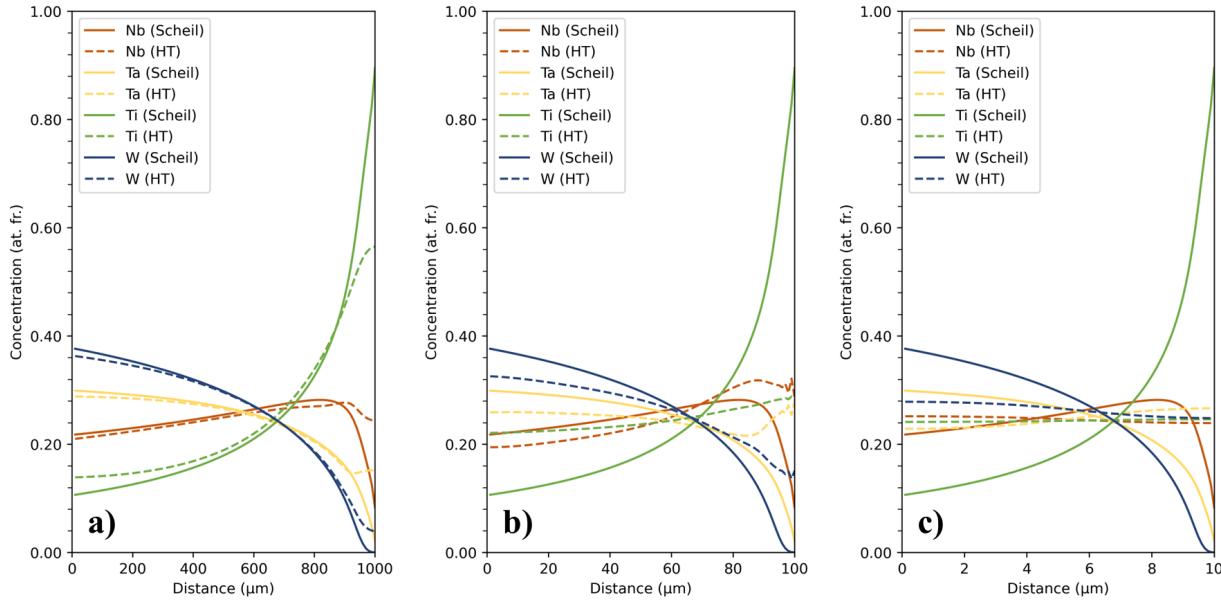

	Mo/W	Nb	Ta	Ti
MoNbTaTi	25.3	24.6	24.8	25.3
NbTaTiW	26.4	24.5	24.5	24.6

66
67 The alloy buttons were then heat treated under vacuum at 1673K for 35 h in an attempt to
68 achieve homogenization. Samples in both the as-cast and heat-treated condition were ground to a
69 1200 grit surface finish with different SiC metallographic papers, followed by polishing with 6
70 μm , 3 μm , and 1 μm diamond media for about 5 min each. A final polishing step of 0.05 μm
71 colloidal silica was performed for a total of 8 h in a vibratory polisher. The samples were then
72 imaged and characterized using Scanning Electron Microscopy (SEM) using an FEI Quanta 600i
73 Environmental SEM equipped with an Energy Dispersive X-Ray Spectroscopy (EDS) detector
74 (EDAX Element). For the compositional measurements using EDS, the count time per pixel was
75 set to 100 s and the accelerating voltage was set to 25 kV. [22] The raw counts obtained for each
76 EDS spectra were subsequently converted to atomic fractions using the vendor supplied ZAF
77 correction scheme (EDAX Team software).

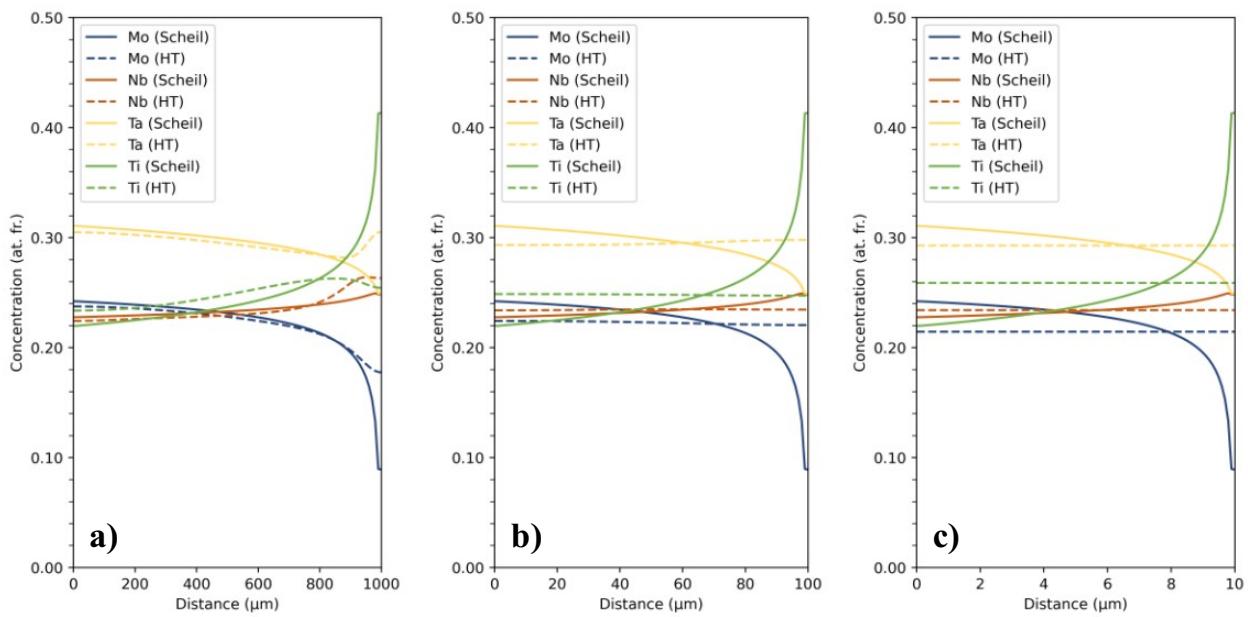

78
79 The solidification segregation behavior prior to homogenization heat treatment has been
80 evaluated experimentally for similar alloys. Samples of NbTaV-(Ti, W) and MoNbTaV were
81 made by arc melting commercially pure elemental powder, each button being re-melted three
82 times. The NbTaV-(Ti, W) samples were observed to have Ta and W-rich dendrite cores and Nb,
83 Ti, and V-rich interdendritic regions. [23] In the MoNbTaV sample, the dendrite cores were
84 observed to be Ta-rich, while the interdendritic regions were found to be Nb, Mo, and V-rich.
85 [24] Therefore, in the MoNbTaTi, it is expected that the dendrite cores will be Ta-rich and the
86 interdendritic regions will be Mo, Nb, and Ti-rich, while in the NbTaTiW, it is expected that the
87 dendrite cores will be Ta and W-rich, and the interdendritic regions will be Nb and Ti-rich.

88
89 Back-scattered electron (BSE) micrographs of the as-cast and heat-treated (35 hours at 1673K)
90 of the NbTaTiW alloy are shown in Figure 1. The dendritic structure in the as-cast condition,
91 shown in Figure 1(a) indicates a secondary dendrite arm spacing of 10-30 μm . Secondary
92 dendrite arm spacing was evaluated by taking 20 measurements from the center of different
93 secondary dendrite arms to the center of their adjacent interdendritic regions. SEM BSE
94 micrographs after homogenization at 1673K for 35 h also reveal contrast associated with residual
95 compositional segregation, as shown in Figure 1(b). Figure 2 also shows similar residual

96 compositional segregation from solidification in MoNbTaTi after homogenization at 1673K for
97 35 h.



98
99
100 Figure 1: SEM BSE micrographs of (a) as-cast and (b) heat treated (1673K for 35 h) NbTaTiW.
101



102
103
104 Figure 2: SEM BSE micrograph of MoNbTaTi after heat treatment at 1673K for 35 h.
105
106 The results of simulations to predict segregation from solidification and subsequent
107 homogenization during a 1673K heat treatment for 35 h for NbTaTiW are shown in Figure 3.
108 Figures 3(a), 3(b), and 3(c) simulate homogenization for a range of secondary dendrite arm
109 spacings, with the 10 μm characteristic length scale resulting in almost complete removal of
110 segregation. Similar behavior is shown in Figures 4(a), 4(b), and 4(c) for MoNbTaTi. The rate of
111 homogenization is highly dependent on the length scale over which the solidification segregation

112 is observed. It can be seen that the as-cast condition for both alloys mostly follow the trends
 113 predicted above; the dendrite cores are Mo, Ta, and W-rich, while the interdendritic regions are
 114 Nb and Ti-rich.

115
 116 Figure 3: Solidification and homogenization simulations (35 h, 1673K) of NbTaTiW for length
 117 scales of (a) 1000 μm , (b) 100 μm , and (c) 10 μm , where Scheil is the composition
 118 profile from the Scheil calculation, HT is the composition profile from the simulated
 119 homogenization heat treatment. The distance (x-axis) is measured from the center of
 120 the secondary dendrite arm to the interdendritic region.
 121

122

123 Figure 4: Solidification and homogenization simulations (35 h, 1673K) of MoNbTaTi for length
124 scales of (a) 1000 μm , (b) 100 μm , and (c) 10 μm , where Scheil is the composition
125 profile from the Scheil calculation, HT is the composition profile from the simulated
126 homogenization heat treatment. The distance (x-axis) is measured from the center of
127 the secondary dendrite arm to the interdendritic region.

128

129 Experimental EDS measurements of the principal elements at the dendrite core and interdendritic
130 regions taken in the as-cast condition are compared to the solidification simulation results in
131 Tables 2 and 3. The simulation results captured in Table 2 are representative of the extremes,
132 where the dendrite core composition is taken at a distance of zero and the interdendritic
133 composition is taken at the maximum distance from the center of the dendrite. While Nb
134 concentration in the dendrite core is similar in both the experimental and simulation data with a
135 difference of only 0.6 at%, all other elements have compositional differences ranging from 5.4
136 at% (Ta in the dendrite core) to 37.2 at% (Ti in the interdendritic region). This can be attributed
137 to the error inherent in experimentally estimating the center of the dendrite core and
138 interdendritic regions. If the measurements are instead assumed to be taken off-center, the
139 solidification segregation simulation is in much better agreement, as shown in Table 3. These
140 off-center measurements were assumed to be taken at 50% and 90% of the length-scale for the
141 dendrite core and interdendritic regions, respectively. These locations were picked for two
142 reasons: it is more difficult to measure the center of the dendrite core than the interdendritic
143 region, and the composition within the dendrite core changes more gradually than the
144 interdendritic region. Tables 4 and 5 show simulation results for dendrite cores and interdendritic
145 regions at the various length scales and experimental EDS measurements after homogenization.
146 Both tables include the assumption that the experimental measurements were not taken at the
147 exact centers of the dendrite core and interdendritic region. The 1000 μm length scale simulation
148 data agrees the most with the experimental data for both RMPEAs, although this length scale is
149 approximately two orders of magnitude greater than measured in Figures 1 and 2. For
150 NbTaTiW, the 100 μm simulation data remains close to the experimental data; the biggest
151 discrepancy is observed for Ti, for which the simulation predicts it to be approximately 4 at%
152 higher in the dendrite core than the experimental data exhibits. The 10 μm simulation is the least
153 accurate of the length scales, as it predicts almost full homogenization after heat treatment, while
154 Figure 1(b) shows that segregation is still present. All but the concentration of Nb in the dendrite
155 core are off by about 2 at% or more. For MoNbTaTi, the 100 μm simulation predicts almost full

156 homogenization, with the simulation prediction for Ta at the dendrite core differing from the
 157 experimental data by approximately 3 at%. The 10 μm simulation displays the greatest deviation
 158 from the experimental data, predicting complete homogenization, while Figure 2 shows that
 159 segregation remains after heat treatment. While the sluggish diffusion effect was considered to
 160 be a possible contributing factor in the discrepancy between the experimental results and the
 161 simulations, recent studies suggest sluggish diffusion is caused by specific compositions and is
 162 not a general HEA effect. [25,26]. It is more likely that DICTRA, with the mobility data in the
 163 MOBHEA2 database predicts faster diffusion than the actual rate observed experimentally. The
 164 simulation was successful, however, in predicting the segregation trends during solidification
 165 and heat treatment.

166

167 Table 2: As cast compositional (at%) data for experimental and simulation solidification of
 168 NbTaTiW, with simulated data taken from the extremes.

169

		Nb	Ta	Ti	W
Dendrite Core	Experimental	22.3	24.5	26.0	27.2
	Simulated	21.7	29.9	10.6	37.8
Interdendritic	Experimental	24.3	14.1	52.3	9.1
	Simulated	8.3	2.2	89.5	0.004

170

171 Table 3: As cast compositional (at%) data for experimental and simulation solidification of
 172 NbTaTiW, including the assumption experimental measurements were taken at 50%
 173 and 90% of the length-scale for the dendrite core and interdendritic region, respectively
 174 instead of the exact center of the dendrite core and interdendritic region.

175

		Nb	Ta	Ti	W
Dendrite “Core”	Experimental	22.3	24.5	26.0	27.2
	Simulated	27.0	24.5	23.3	25.2
Interdendritic	Experimental	24.3	14.1	52.3	9.1
	Simulated	25.5	14.6	52.5	7.3

176

177 Table 4: Heat treated compositional (at%) data for experiments and simulations for NbTaTiW.

178

		Nb	Ta	Ti	W
Dendrite Core	Experimental	23.2	27.9	19.8	29.1
	1000 μm	25.1	26.4	19.3	29.2
	100 μm	23.5	24.8	23.8	27.9
	10 μm	24.6	24.5	24.3	26.6

Interdendritic	Experimental		26.5	23.9	26.3	23.5
	Simulated	1000 μm	26.6	23.4	26.5	23.6
		100 μm	28.1	22.8	25.5	23.6
		10 μm	24.2	25.8	24.5	25.5

179
180
181

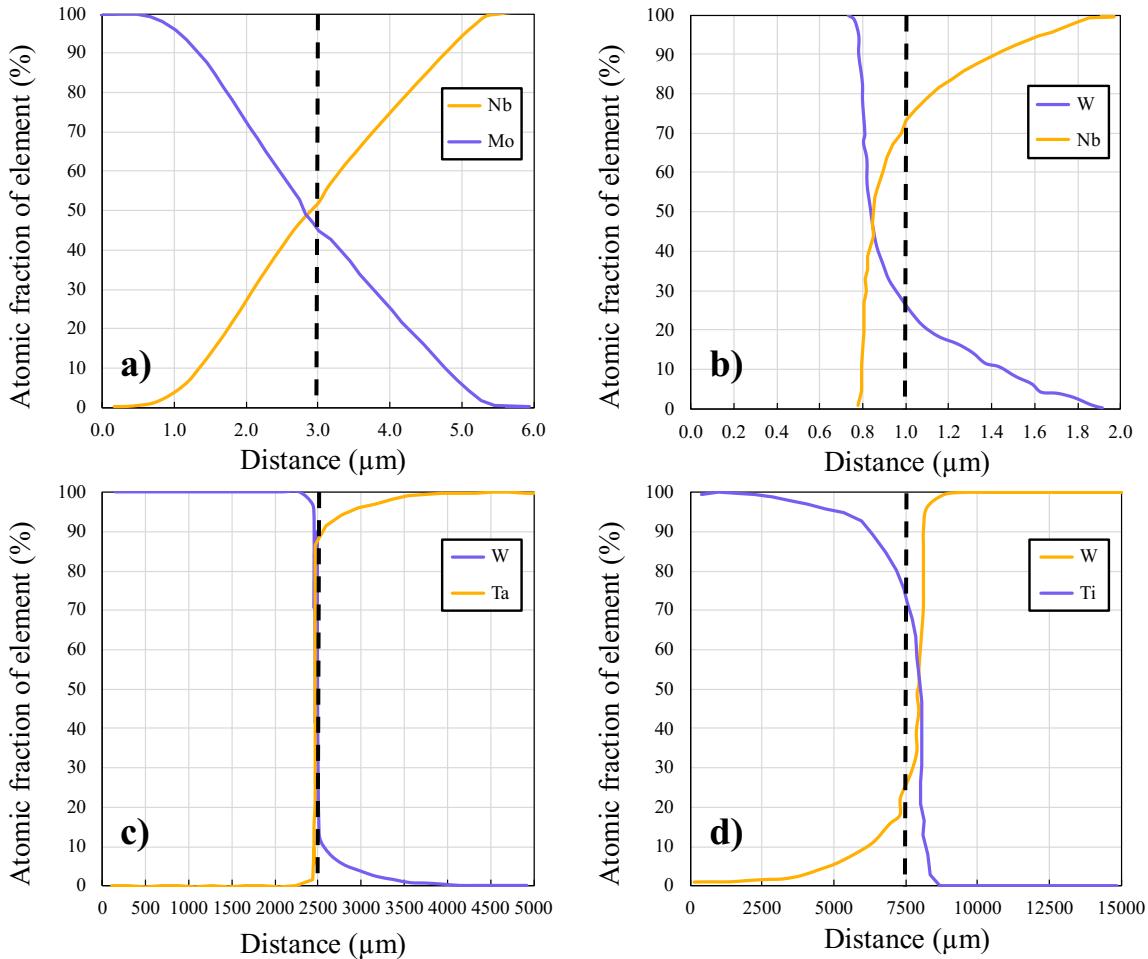
Table 5: Heat treated compositional (at %) data for experiments and simulations for MoNbTaTi.

		Mo	Nb	Ta	Ti	
Dendrite Core	Experimental	21.7	22.3	33.5	21.4	
	Simulated	1000 μm	23.7	22.4	30.5	23.4
		100 μm	22.4	23.4	29.3	24.9
		10 μm	21.4	23.4	29.3	25.9
Interdendritic	Experimental	22.8	24.5	25.5	28.4	
	Simulated	1000 μm	17.7	26.3	30.5	25.4
		100 μm	22.0	23.4	29.8	24.7
		10 μm	21.4	23.4	29.3	25.9

182

183 This discrepancy between the experimental and simulation results for homogenization of
184 MoNbTaTi prompted additional exploration of diffusion behavior in refractory binary systems.
185 Homogenization simulations were performed using DICTRA for the Mo/Nb, Nb/W, Ta/W, and
186 Ti/W binary systems, for a heat treatment at 1400°C for 35 hours. The calculated compositional
187 profiles from these simulations are shown in Figure 5 below. As a comparison, characteristic
188 self-diffusion lengths for Mo, Nb, Ta, Ti and W and inter-diffusion lengths for Ta in Ta₃₀W₇₀
189 and W in Ta₃₀W₇₀ were calculated using Equation 1, shown below, with literature values for the
190 self-diffusion and inter-diffusion coefficients as a function of temperature, [27,28]

$$L_D = \sqrt{D_0 e^{\left(\frac{-E}{RT}\right)} t} \quad \text{Equation 1}$$


191 where L_D is the diffusion length, D_0 is the diffusion coefficient, E is the activation energy for
192 diffusion, R is the ideal gas constant, T is temperature, and t is time. Comparing the results from
193 these two calculation methods, a discrepancy specific to the diffusivity of Ta was found.
194

195 Table 6: Calculated self-diffusion and inter-diffusion lengths (L_D) for a heat treatment for 35
 196 hours at 1673K. The diffusion coefficient pre-factor, activation energies and relevant
 197 temperature ranges for both values used to calculate the diffusion lengths are also
 198 listed.

	$D_0 (10^{-4} \text{ m}^2\text{s}^{-1})$	$E (\text{kJ mol}^{-1})$	Applicable Temp Range (K)	$L_D (\mu\text{m})$
Mo (max)	8.0 ^a	488.2 ^a	1087-2500 ^a	0.24
Mo (min)	1.39 ^b	549.3 ^b	1363-2724 ^b	0.111
Nb (max)	1.1 ^a	401.9 ^a	1224-2668 ^a	2.0
Nb (min)	3.7 ^a	438.0 ^a	1354-2692 ^a	0.99
Ta (max)	0.124 ^a	413.2 ^a	1523-2576 ^a	0.443
Ta (min)	0.21 ^a	423.6 ^a	1261-2993 ^a	0.40
Ti (max)	4.54×10^{-4} ^a	131.0 ^a	1228-1784 ^a	682
Ti (min)	1.09 ^a	251.2 ^a	1172-1813 ^a	444
W (max)	0.04 ^a	525.8 ^a	1705-3409 ^a	0.004
W (min)	46 ^a	665.7 ^a	1705-3409 ^a	0.00098
Ta in Ta₃₀W₇₀	1.8 ^b	553.9 ^b	1573-2373 ^b	0.011
W in Ta₃₀W₇₀	0.17 ^b	510.8 ^b	1573-2373 ^b	0.016

200 ^aRef. [27], ^bRef. [28]

201
 202 The simulation (Figure 5(c)) predicts the TaW diffusion couple diffuses about 100 μm (measured
 203 at 25 at%), while the calculated characteristic diffusion length only predicts diffusion of less than
 204 0.1 μm . It is recognized that the interdiffusion coefficient for the relevant binary system, which
 205 depends upon composition, is necessary to perform a homogenization simulation. Unfortunately,
 206 the availability of interdiffusion data is more limited than self-diffusion data, which is why only
 207 two interdiffusion calculations were performed to verify order of magnitude. Given the only
 208 interdiffusion coefficients used were that of Ta and W in Ta₃₀W₇₀, the discrepancy between the
 209 simulated TaW diffusion couple and the calculations remains.

211
 212
 213 Figure 5: Diffusion couple simulations of (a) MoNb, (b) NbW, (c) TaW, and (d) TiW after a heat
 214 treatment of 35 hours at 1673K. The original interface position is shown with a black
 215 dashed line.
 216

217 The predicted solidification segregation from the Scheil-Gulliver model using compared well
 218 with the experimental data. However, the homogenization simulations using DICTRA did not
 219 agree with the experimental data, predicting homogenization to occur in much shorter times than
 220 was actually observed. After analyzing the diffusion couple simulation results, it can be
 221 hypothesized that the faster than experimentally observed homogenization of the two RMPEAs
 222 studied can be attributed to the diffusivity of Ta within the MOBHEA2 database. The rest of the
 223 diffusion couple results agree with the rough diffusion calculations, suggesting DICTRA would
 224 be accurate in simulating RMPEA alloys without Ta. That said, the simulations are valuable to
 225 show qualitative trends. As the length scale of the solidification segregation decreases, the
 226 simulations predict the degree of homogeneity to increase, given a heat-treatment at 1673K for

227 35 h. This trend agrees with theory, when assuming the concentration of each element varies
228 sinusoidally with distance in one dimension. The simulation is being performed over half a
229 period, starting at either the maximum or minimum, depending on the element. The amplitude
230 (β) of the concentration profile after a time (t) is given by the following equation:

$$231 \quad \beta = \beta_0 \exp \frac{-t\pi^2 D_B}{l^2} \quad \text{Equation 2}$$

232 where β_0 is the amplitude at $t = 0$, D_B is the diffusion coefficient of the element in question, and
233 l is the length scale. [29]. This equation shows that decreasing the length scale, while keeping all
234 else constant, will decrease the amplitude, which is exactly what the simulations predict.

235

236 In summary, due in large part to the high melting temperatures of refractory metals and the
237 challenges associated with obtaining experimental data, opportunity exists to continually
238 improve available thermodynamic databases, particularly for refractory alloys and RMPEAs.
239 Research in this area is largely guided by simulations performed using computational
240 thermodynamic and kinetic software. Therefore, the generation of both thermodynamic and
241 kinetic data to fill in the current knowledge gaps will be essential to advancing the state of the art
242 in refractory alloy and heat treatment design.

243

244 The need for structural metallic alloys for use in ultrahigh temperature applications has led to the
245 exploration of RMPEAs, largely through a combination of simulation and experiments.
246 Simulations were performed using the Scheil-Gulliver model and DICTRA in Thermo-Calc® to
247 predict solidification segregation and homogenization in two RMPEA alloys, namely NbTaTiW
248 and MoNbTaTi. While the Scheil-Gulliver model can accurately predict the solidification
249 segregation of the RMPEAs, DICTRA does not predict the extent of homogenization observed
250 experimentally when realistic length scales are used for a 35 h, 1673K heat treatment. The
251 homogenization heat treatments performed with realistic length scales predict homogenization to
252 occur faster than the experimental data shows. In particular, these results suggest the diffusivity
253 of Ta in the MOBHEA2 database may be too high. Despite some discrepancies between
254 simulation and experiment, DICTRA predicts minimum homogenization times that can be
255 explored by heat treatment, thereby accelerating the design of future experiments to assess the
256 thermodynamics and kinetics of RMPEAs. Future work can include comparing the RMPEA

257 simulations with relevant binary simulations to further distinguish inconsistencies in either the
258 database or experimental data.

259

260 **Acknowledgements**

261 This work was funded by the Department of Energy's Kansas City National Security Campus
262 which is operated and managed by Honeywell Federal Manufacturing Technologies, LLC under
263 contract number DE-NA0002839. The electron microscopy and the contributions of author F.G.
264 Coury were separately supported by the Center for Advanced Non-Ferrous Structural Alloys
265 (CANFSA), a National Science Foundation Industry/University Cooperative Research Center
266 (I/UCRC) [Award No. 1624836] at the Colorado School of Mines and the Conselho Nacional de
267 Desenvolvimento Científico e Tecnológico - Brasil (CNPq) [Grant No. 424645/2018-1]. We also
268 thank ATI for producing the experimental alloys studied here.

269 **Conflict of Interest statement**

270 On behalf of all authors, the corresponding author states that there is no conflict of interest.

271 **References**

272 1. O. N. Senkov, D. B. Miracle, K. J. Chaput, and J.-P. Couzinie, *J. Mater. Res.* **33**, 3092 (2018).
273 2. M.-H. Tsai and J.-W. Yeh, *Materials Research Letters* **2**, 107 (2014).
274 3. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, and Y. Liu, *Journal of Alloys and Compounds* **760**, 15 (2018).
275 4. O. N. Senkov, C. Zhang, A. L. Pilchak, E. J. Payton, C. Woodward, and F. Zhang, *Journal of Alloys and Compounds* **783**, 729 (2019).
276 5. S. Praveen and H. S. Kim, *Advanced Engineering Materials* **20**, 1700645 (2017).
277 6. J.-P. Couzinié, O. N. Senkov, D. B. Miracle, and G. Dirras, *Data in Brief* **21**, 1622 (2018).
278 7. A. B. Melnick and V. K. Soolshenko, *Journal of Alloys and Compounds* **694**, 223 (2017).
279 8. F. G. Coury, M. Kaufman, and A. J. Clarke, *Acta Materialia* **175**, 66 (2019).
280 9. F. Maresca and W. A. Curtin, *Acta Materialia* **182**, 235 (2020).
281 10. F. G. Coury, T. Butler, K. Chaput, A. Saville, J. Copley, J. Foltz, P. Mason, K. Clarke, M. Kaufman, and A. Clarke, *Materials & Design* **155**, 244 (2018).
282 11. U. E. Klotz, C. Solenthaler, and P. J. Uggowitzer, *Materials Science and Engineering: A* **476**, 186 (2008).
283 12. T. Yamashita, K. Okuda, and T. Obara, *Journal of Phase Equilibria* **20**, 231 (1999).
284 13. V. Knežević, J. Balun, G. Sauthoff, G. Inden, and A. Schneider, *Materials Science and Engineering: A* **477**, 334 (2008).
285 14. A. W. Zhu, B. M. Gable, G. J. Shiflet, and E. A. Starke, *Advanced Engineering Materials* **4**, 839 (2002).
286 15. H.-L. Chen, Q. Chen, and A. Engström, *Calphad* **62**, 154 (2018).
287 16. P. D. Jablonski and J. A. Hawk, *Journal of Materials Engineering and Performance* **26**, 4 (2017).
288 17. P. L. Conway, T. P. C. Klaver, J. Steggo, and E. Ghassemali, *Materials Science and Engineering: A* **830**, 142297 (2022).
289 18. M. Asadikiya, Y. Zhang, L. Wang, D. Apelian, and Y. Zhong, *Journal of Alloys and Compounds* **891**, 161836 (2022).
290 19. G. H. Gulliver, *J Inst Met* **13**, 263 (1915).
291 20. E. Scheil, *International Journal of Materials Research* **34**, 70 (1942).
292 21. A. Borgenstam, L. Höglund, J. Ågren, and A. Engström, *Journal of Phase Equilibria* **21**, 269 (2000).
293 22. F. G. Coury, *Solid Solution Strengthening Mechanisms in High Entropy Alloys*, Dissertation, Colorado School of Mines, 2018.
294 23. H. W. Yao, J. W. Qiao, M. C. Gao, J. A. Hawk, S. G. Ma, H. F. Zhou, and Y. Zhang, *Materials Science and Engineering: A* **674**, 203 (2016).
295 24. H. Yao, J.-W. Qiao, M. C. Gao, J. A. Hawk, S.-G. Ma, and H. Zhou, *Entropy* **18**, 189 (2016).
296 25. J. Dąbrowa, M. Zajusz, W. Kucza, G. Cieślak, K. Berent, T. Czeppe, T. Kulik, and M. Danielewski, *Journal of Alloys and Compounds* **783**, 193 (2019).
297 26. W. Kucza, J. Dąbrowa, G. Cieślak, K. Berent, T. Kulik, and M. Danielewski, *Journal of Alloys and Compounds* **731**, 920 (2018).
298 27. H. Mehrer, N. Stolica, and N. A. Stolwijk, *Landolt-Börnstein - Group III Condensed Matter* **64** (n.d.).
299 28. W. F. Gale and T. C. Totemeier, *Smithells Metals Reference Book* (Elsevier, 2003).
300 29. D. A. Porter and K. E. Easterling, *Phase Transformations in Metals and Alloys (Revised Reprint)* (CRC press, 2009).

317

318

319