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Abstract

Authentication systems are vulnerable to model inversion
attacks where an adversary is able to approximate the inverse
of a target machine learning model. Biometric models are a
prime candidate for this type of attack. This is because
inverting a biometric model allows the attacker to produce a
realistic biometric input to spoof biometric authentication
systems.

One of the main constraints in conducting a successful
model inversion attack is the amount of training data re-
quired. In this work, we focus on iris and facial biometric
systems and propose a new technique that drastically re-
duces the amount of training data necessary. By leveraging
the output of multiple models, we are able to conduct model
inversion attacks with 1/10th the training set size of Ahmad
and Fuller (IJCB 2020) for iris data and 1/1000th the train-
ing set size of Mai et al. (Pattern Analysis and Machine
Intelligence 2019) for facial data. We denote our new attack
technique as structured random with alignment loss.

1. Introduction

Many authentication systems are based on biometric iden-
tification [1, 2]. Two widely adopted biometrics include iris
and facial recognition. Despite the prevalence of these bio-
metric based authentication systems, they remain vulnerable
to a type of attack called a model inversion [3]. In a model
inversion attack, an adversary is able to train an attack model
that approximates the inverse of the target biometric model
used in the authentication system. Once the adversary is
able to succeed in training this attack model, they are able to
produce realistic looking biometrics. These realistic looking
biometrics can be used for spoofing attacks [4], where an
attacker creates a “fake” version of a user’s biometric.

Deep learning models are increasingly being used for
biometrics [5–10]. Fredikson et al. initiated model inversion
attacks on such networks, targeting the facial biometric [3].
Recent model inversion attacks use generative adversarial

networks or GANs [11] and use auxiliary information such
as blurred faces.

To set notation, denote the trained biometric identification
system as f T  to indicate it is the model being targeted in the
attack. The attack proceeds in stages:

Training The attacker receives ℓ samples of the form

(xi , yi  =  f T  (x i )) .

At the end of this stage the attacker outputs a model
f −1 .  It should be the case that for unseen pairs x ′ , y ′

the value f −1 (y ′ )  is similar to x ′ .

Test/Attack The attacker receives values y ′ and inverts
them to produce realistic biometric values f −1 (y ′ ) .

A  limitation of prior work is the need for a large number of
training samples. Mai et al. [12] require 2 ×  106 training
samples in their attack on the facial biometric. Ahmad and
Fuller [13] require 2 ×  104 training samples in their attack
on the iris biometric. While large facial and iris datasets
exist, model inversion targets smaller applications. It is thus
crucial to determine if model inversion is possible with fewer
training points.

We investigate whether the adversary can substitute the
output of multiple models in Training in place of more
training samples.1 We consider the following new attack
setup (for parameter α):

Training Let f T  , ..., fT      be models used in training a final
model f T α  . The attacker receives ℓ samples of the form

(x i , f T 1  (x i ) , f T 2  (x), ...., fTα  (x i )) .

At the end of this stage the attacker outputs a model
f −1 .  It should be the case that for unseen pairs x ′ , y ′

the value f −1 (y ′ )  is similar to x ′ .

1Salem et al. [14] study the difference a model undergoes when it is
updated in an online fashion. Their work considers small updates while we
explore larger changes when the target model’s dataset undergoes deletion
or addition of classes.
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Test/Attack The attacker receives values y ′ and inverts
them to produce realistic biometric values f −1 (y ′ ) .

Multiple works have considered attack avenues to steal mod-
els [15–17]. We review three settings when multiple models
are available in Section 2.1. We ask whether an attacker
who sees the output of multiple models when training the
attack model is able to invert more effectively. The research
question of this work is:

How to effectively use multiple models to reduce
the training set size?

We consider training set size of ℓ =  2 ×  103. Mai et al. [12]
used ℓ =  2 ×  106, Ahmad and Fuller [13] used ℓ =  2 ×  104.

Our attacks are performed on raw templates which are
output from biometric networks and stored insecurely. There
are two relevant lines of work on securing biometric models.
One line shows how to encrypt the output of biometric net-
works [1, 18–31] in a way that authentication systems still
work. These methods have constraints where the provided
security (in bits) is small or authentication is slow. A  second
line show how to securely train models and allow these mod-
els to be evaluated privately [32–34]. Our attacks are black
box but do need the ability to observe f T i  for multiple i.

1.1. Attack Approach

The high level architecture of our inversion attack is a
generative adversarial network or GAN [35] as in prior work
on biometric model inversion [12, 13]. A  GAN is a pair of
algorithms, a generator and a discriminator. In usual image
applications, the generator takes random noise. The genera-
tor’s goal is to produce images that the discriminator cannot
distinguish from true training samples. As with previous
work [12, 13], we modify this paradigm, making the GAN
generator take the output of biometric transform as input.
The discriminator is then given either real biometrics or
those created by the generator. By fooling the discriminator,
the generator works as our attack model and an inverter for
the biometric transform. Yang et al. [36] proposed a simple
mechanism for incorporating multiple models:

Random During attack model training, a random 1 ≤  i  ≤
α is selected and the pair ( x j , f T  ( x j ) )  is provided as
ground truth for the GAN.

We show visual reconstructions of irises in Figure 3, de-
ferring discussion of results and visual reconstructions of
faces until Section 5. The Random or Rand method does
recover the high level shape of the iris but is missing crucial
details such as 1) a crisp boundary between the iris and the
pupil and 2) iris texture.

1.2. Our Contribution

Let m denote the output dimension of f T  . Yang et al. [36]
consider a GAN with input length of m. All  of our new

methods consider a GAN takes inputs of length α · m. We
call these networks input-augmented GANs. We introduce
the following input-augmented GANs:

Concatenation In this approach the GANs training samples
are the entire tuple (x j , f T 1  ( x j ) , f T 2  (x), ...., fTα  (x j ) ) .

Structured Random Sample a random 1 ≤  i  ≤  α as above
and set other components of the vector to 0. That is,
input

(xj , 0, 0, ..., 0, fTi (xj ), 0, ..., 0).

Structured Random w/ Alignment Loss This     approach
follows the structured random approach above, but also
asks the GAN to predict i.

Going forward we refer to these three methods of incorpo-
ration as Concat, SR and SRwAL respectively. We consider
two types of target models: feature extractors and classifiers
(see Section 4.4).

SRwAL provides the best results see Section 6). This is
interesting in comparison to SR because the only difference
is that SRwAL asks the model to remember which location i  is
nonzero. Even though the value i  is “easy” to predict, forcing
the GAN to predict this value improves overall performance.
We believe that the GAN is better able to distinguish between
inputs from different models, which leads to better inversion
on the final model f T  . Our accuracy results are in Tables 1
and 2.

Organization     The rest of this work is organized as fol-
lows: Section 2 describes the system architecture, Section 3
reviews how feature extractors and classifiers are used in
biometrics, Section 4 describes our attack model, Sections 5,
6 present evaluation methodology and results respectively.
Section 7 concludes.

2. Adversarial Model

This section describes the adversarial model. We defer
discussion of measuring attacker success until Section 4.4.
Recall that we use x  to denote the input to the target network
and y =  f  (x )  to indicate the resulting output. The goal of
the attack is to train a network f − 1  that on input y that can
predict x. As mentioned in the Introduction, we assume that
the adversary has access to the output of multiple related
models. That is, in the Training stage they receive tuples of
the form

x i , f T 1  (x i ) , f T 2  (x), ...., fTα  (x i ) .

the goal of the training stage is to produce a model f − 1

where it is true that

f − 1 ( f T α  (x ′ ))  ≈  x ′ .
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We use i  to additionally index the target model, for ex-
ample: x , { f T  (x )  =  y i }α       . The parameter α controls how
many models the adversary has access to. The second stage
of the attack is denoted as Test where we assume outputs
f T α  (x ′ )  leak and the attacker will reconstruct x ′ .

2.1. Accessing Multiple Models

We consider three types of related models that may be
available to an attacker that we call Upslope, Update and
Downslope.

Upslope     In the first setting, we consider the intermediate
models that are created when a model is first trained. Due
to the complexity of modern models, training is a compu-
tationally intensive process and is done in epochs. Since
training is a complex, error-prone process models and perfor-
mance data are stored for debugging purposes.2 The target
iris and face recognition models converge in 100 epochs (see
Section 5.1).

We utilize five different models saved during training
in this attack. We utilize models after 0 (Pre-trained on
ImageNet), 25%, 50%, 75% and 100% of training. At attack
time, we consider two settings when only the final production
model’s output is available and when all models are available.
The setting when all models are available at test time is used
to compare the different methods for incorporating multiple
vectors and is not intended to be realistic.

Update     Addition of a new user into the system that needs
to be learned by the model. In this case the attacker may be
able to prepare the images used in training the model on the
new user. That is, the image need not come from the
honest biometric distribution. A  natural setting in which
an attacker could perform Upslope and Update attacks is
federated learning [33, 37]. In this setting, a model is trained
but the adversary asks the model to learn on new images.

Images in the Update attack are crafted by the adversary.
The updates are crafted by taking a normal biometric image
and applying a Gaussian blur using a 3x3 kernel and sigma
of 0.8 to all images of the new user being added. Blurring
makes images from different classes appear similar. Fredrik-
son et al. [38] perform a similar attack where they recover
original faces from blurred out images however we perform a
smaller amount of blur. We retrain the target model for 10
epochs. The attacker has access to the original, 5th and 10th
model.

Downslope     Removal of a person from the system. Such
a removal may occur due to right to be forgotten legisla-
tion which has resulting in the field of machine unlearn-
ing [39–41]. In this setting, the adversary requests an indi-
vidual be removed but has no control over how this removal

2Salem et al. [14] considered the related question is whether the dif-
ference in two models when an individual item is added leaks about that
individual item.

is processed. Recent laws and regulations have also taken
privacy risks into account. The General Data Protection
Regulation (GDPR) [42] in the European Union and the Cal-
ifornia Consumer Privacy Act (CCPA) [43] in the United
States call for more action to protect personal data and con-
trol how and where data is stored. In addition to simplifying
rules on data storage and privacy, this legislation grants con-
trol to a person over their personal data, consequently, a
person can ask a company to remove their data.

We assume machine unlearning is performed naively:
completely retraining the model after deleting required data
from the training dataset. Attacking more sophisticated un-
learning strategies is an important piece of future work.

We retrain the target model (to perform unlearning) for
100 epochs on the new training dataset. We utilize models
after 0, 25%, 50%, 75% and 100% of re-training has been
completed for a total of 5 models. We assume the adversary
removes multiple people/classes from the training set of a
model. We remove 10 classes from our iris application and 5
classes from our face dataset and then retrain the model.

For all attacks except for the Update attack, the adversary
can passively receive normal biometric images and their
corresponding outputs. As mentioned above for the Update
attack, these images are prepared specially and differ from
the normal biometric distribution.

In our attacks we only assume the output of the model,
either a template or a classification vector, is revealed. This is
in contrast to models that assume knowledge of the internal
weights of the models f T i  such as Fredriskson et al. [38].

3. Review of Types of Biometric Target Models

Feature extractors f E , T        Feature extraction net-
works [44] output a m-dimensional feature vector. Feature
extractors are trained to generate embeddings from given
biometric inputs. As an example, given a biometric input x
a network f E , T  generates an embedding/feature vector y
=  f E , T  (x). This embedding is known as a template and
stored in a database (in mobile devices this storage is
inside of a secure enclave). At a subsequent reading of
the same biometric input (with noise) another embed-ding
y ′ =  f E , T  (x ′ )  is produced. A  distance metric such
as Euclidean distance is used to compare the two vectors
d =  L2 (y , y ′ ) = n       (yi  −  y ′ )2 . The biometric will au-
thenticate an individual successfully if the distance is below
a precomputed threshold, denoted thres. Training feature
extraction networks generally does not require a set number
of classes, only labelling which samples should be grouped
together or pushed apart. Feature extractors are used in ap-
plications when not all users are known when the model is
trained.

Classifiers f C , T  Classification networks output an m-
dimensional classification vector. Classifiers work with
known number of classes. The objective is to learn a clas-
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sification vector such that every input x  that belongs to a
class from {1, . . . , m} is assigned to its class in the classi-
fication vector. Usually, the output layer of a classification
network is a softmax based layer which takes the preceding
(feature vector) layer and maps it to a classification vector.
When all users are known at training time, classifier use for
biometric identification is straightforward. A  biometric is
deemed to belong to class i  if the classification output indi-
cates membership in class i  with high enough confidence
(which depends on the application).

The second last layer of a classification network is a fully
connected layer and serves as a high quality feature extractor.

4. Attack Model Design

and a discriminator which judges how good the generated
images are. Usually, the input of the generator is a noise
vector sampled from a multivariate normal distribution. In
our attack case the generator of the inversion attack model is
an autoencoder which takes input a feature vector (or a
prediction vector) and tries to reconstruct the corresponding
image by minimizing multiple loss functions. The core of
prior biometrics model inversion attacks is also a GAN [12,
13].

The discriminator and generator of a GAN model can be
summarized in two loss equations:

L ( D )  =  −  E x�P r e a l  [log(D(x))] −  E x ′ �P f a k e  [log(1 −  D (x ′ ) ) ]

4.1. Attack Goal L ( G )  =  −  E x ′ �P f a k e  [log(D(x ′ ))]. (2)

As a reminder, for a target network f T  where y ′ =  f T  (x ′ )
the goal is to learn a transform f such that for x� =
f −1 (y ′ )  the values f T  (x ′ )  and f T  (x�) are similar.

We briefly review the goals for the two settings of feature
extractors and classifiers. For feature networks the goal
is given y to produce an x ′  such that x ′  � x  where y =  f T

(x). In classification networks, the goal is to produce an x ′

that will be classified as class i  with the highest confidence
possible [45]. As we are using a GAN to produce these x ′

there is a secondary goal that x ′  appears similar to valid
x. This may not be the case if x ′  was simply the class
average [36].

The reason for the difference in goal is because of the dif-
ference in how these network types are used in identification
systems. Feature extractors and classifiers are used differ-
ently in identification systems. Feature extractors are used
to extract templates that are compared with a stored value.
Thus, the goal is to be able to recreate the stored template
as accurately as possible. Classifiers judge an input to be in
a class if has “high enough” confidence of being assigned
to that class so the goal is simply to maximize that confi-
dence. Thus, the attacker goal in both settings to produce
an image that will authenticate with the highest probabil-
ity. In the literature the feature extractor inversion task is
called reconstruction [10] while the classifier inversion task
is called model inversion [12]. We do both in this work. To
summarize the goals of model inversion are as follows:

Feature Extractor Given y =  f T  (x )  find x ′  that is similar
to original x,

Classifier For class i, find x ′  that is labelled i  with high
confidence and cannot be distinguished from real im-
age.

4.2. GAN design

Our attack network is a GAN [35]. A  GAN architecture
has two sub-models, a generator which generates images

Where L ( D )  is the discriminator loss and L ( G )  is the
generator loss. x  and x ′  are the original and inverted im-
age. That is, the discriminator’s loss function is simply the
difference in its classification performance for original and
inverted images, while the generator’s loss function is how
well the discriminator does in identifying fake images.

For feature extractor target networks, the GAN model
takes as input a feature vector. For classification networks,
the GAN takes as input a classification vector. Recall that
these two attacks have different goals, the feature extrac-
tor GAN is trying to reproduce x ′  as accurately as possible.
We do not address explicitly train our models to generate
x ′  samples which will have a high inversion attack accu-
racy. Minimization of visual difference between original and
reproduced samples serves as a placeholder for inversion
attack accuracy. The generator loss functions include the L1
loss, SSIM [46] loss and the perceptual loss [47] between
the inverted and actual image. We minimize: 1) the L1, 2)
the perceptual loss, and 3) the structural dissimilarity (or
maximizing structural similarity). Finally since a GAN con-
sists of a generator and a discriminator, the generator is fine
tuned by the output of the discriminator. Our final objective
for the generator including the discriminator loss is:

L G  =  LP e r c e p t u a l  +  L L 1  +  L S S I M  +  L D (3)

Where L D  is the discriminator output affecting the gener-ator
along with other reconstruction loss function as in [13].

4.3. Incorporating multiple vectors

There are multiple ways the additional vectors (for both
attack types) per image can be used to better train our attack
models. Generally a deep learning feature extraction model
is trained by sampling from a training dataset and minimizing
or maximizing a loss function.

In the Rand approach, for every update to our attack
models we sample vectors randomly (with a probability
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of 1/α) chosen from the outputs of one model among α
models. The inversion model then learns to invert these
feature vectors to their corresponding images.
New mechanisms     Merging vectors to form a long vector is
another way of feeding additional information to our attack
models. The Concat method takes α vectors of size m to
form an input vector of size α · m. The attack now learns
from multiple models in one training step. In the structured
random or SR approach, we randomly sample a vector as
in our random approach but instead of a m sized vector we
form a α · m sized vector with all zeros except the randomly
sampled vector placed in the i t h  index :

0, 0, ..., 0, fTi (xj ), 0, ..., 0.

Intuitively, we force the inversion model to differentiate be-
tween vectors gathered from multiple models. This enables
the inversion model to learn how the output of a target model
changed as it trained (or untrained) to convergence. The
attack model now learns from a single vector in a single
learning step while having the context of multiple vectors
across multiple learning steps.

The structured random w/ alignment loss or SRwAL forces
the attack model to predict the i t h  index or the index which
holds the non-zero vector. In the SRwAL method we add
to the GAN an additional loss L A  =  σ(z) where σ repre-
sents the softmax function and cross-entropy loss applied on
an intermediary layer z in the generator model. This layer
predicts the index of the randomly chosen vector. This pre-
diction forces the generator model to implicitly learn features
from multiple vectors extracted from multiple models.

This forces the model to further differentiate between
vectors from multiple models by forcing the attack model to
pass index information across its weights. Alignment loss
allows the attack model to better understand how a target
model was trained. We show the setup for SRwAL in Figure 1.

4.4. Measuring Success

We use two standard accuracy metrics that will be used
in this work for feature extractors [12, 13].

Rank-1 How frequently the inverted biometric value x� is
closest to a biometric from the same class excluding the
reading used to invert. A  true positive for rank-1 accu-
racy is when the reconstructed image’s extracted feature
vector is closest to a feature vector belonging to a mem-
ber of the same class as the target image. Importantly,
it excludes the target image from this comparison.

That is, the true positive rate is for a set of differ-
ent biometrics Bio  =  { B i o j }  consisting of pairs
x i , j , y i , j  =  f T  (x i , j )  � Bio j :

" ! #

Pr arg min d(y�, fT ( f −1 (y i , j ) ) ) � B i o j
( x�, y �)�B i o , y �= y i , j

Type1 Type1 considers the quality of biometric with respect
to a specific distance threshold t. That is, we first com-
pute t as the maximum value such that the false accept
rate (FAR) of an image of a different biometric (in the
underlying f T  ) is at most .01 on the target model’s
training dataset. It then considers how frequently the re-
constructed image produces a feature vector that would
be accepted by a system with threshold t. Mathemati-
cally, this is written as

Pr[d
 
y i , j , f T  

 
f −1 (y i , j )

 
≤  t].

Rank-1 accuracy is more instructive for applications with
all to all matching while Type1 accuracy is more important
for a spoofing application where one wishes to break into a
biometric authentication system.

For classification networks, we consider traditional accu-
racy:

Accuracy for y, how frequently is f T  ( f −1 (y ) )  labelled
with the same class as y.

In all attacks, we do not use any images used to train
the target model in the attack. Instead, we probe the target
model with a probe dataset that is smaller than the training
dataset. This probe dataset is class disjoint from the training
dataset for the feature extraction setting.

5. Evaluation

This section details the datasets used in training both the
target models and the attack, specifies the training method-
ology for the target models, and describes accuracy metrics
used for the attacks.

We utilize two datasets in our work, one for the iris and
one for faces. The ND-IRIS-0405 [48, 49] dataset contains
64,980 iris grayscale images from 356 subjects. The classes
are highly imbalanced, some classes have many more im-
ages than others. There are 712 classes since left and right
irises are different classes due to them being statistically
independent [50].

Labeled Faces in the Wild (LFW) [51] face recognition
dataset contains 13233 images of 5749 people downloaded
from the various websites with 1680 people having 2 or more
images. For our evaluation we only consider people with
more than 15 images yielding 89 classes or people with 3482
images.

5.1. Target models training

Our target models use the DenseNet-169 architecture
from the original DenseNet paper [52]. We use loss func-
tion from SphereFace [6] coupled with the Adam opti-
mizer [53] to train the target networks using Tensorflow [54].
Dropout [55] has been studied in literature as a defense
against membership inference attacks [56]. We train our
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Figure 1: Vector alignment process for SRwAL method of incorporating multiple vectors. When reconstructing from vectors
only a single feature vector is used while the rest are truncated to zero. The inversion model now implicitly learns from
multiple vectors over the entire training process.

networks with dropout applied to the fully connected layer
which is the second to last layer of our target classification
network. The dropout ratio used is 0.5. DenseNets pro-
vide near state of art recognition accuracy when coupled
with dropout. Our target networks are thus generalized and
possess some defense through the use of Dropout. Mai et al.
[12] and Ahmad et al. [13] do not use any dropout in their target
networks.

We now discuss the training and probe dataset splits for
our feature extraction and classification networks. Note
that in our attacks against feature extraction networks the
target data’s training is class disjoint from the probe attack
dataset. This is not the case for classification networks as
classification networks are designed for a predefined set of
classes.
Iris - Feature Extraction     The target model for the iris
dataset is trained on left iris images of all (356) subjects
forming a private training set of roughly 10000 images. The
attack model is trained on a dataset of 2000 right iris images
randomly sampled from all classes. The testing set (probe)
for the attack model also has 2000 images from left irises
of all subjects. This probe dataset is disjoint (but not class
disjoint) from the private training dataset used to train the
target model.
Iris - Classification     We train our target model on left iris
images of all subjects. The total number of images is 11000
with training done on 7000. 2000 left iris images from these
subjects are used to train the attack model and the remaining
2000 are used as testing for the attack model .
Face - Feature Extraction     After restricting to faces with
at least 15 images there are 89 classes with 3632 total images.
Of these 1076 are used to train the target network, 1500 are
used to train the attack model while the remaining 1556 are
used as probe images as testing for the attack model.
Face - Classification     The target model is trained on all
entire 89 classes leaving out 15% images from each class to
make the probe dataset.

The iris images are segmented [57] to not include any
additional texture besides that of the iris. The reconstruction
attack model therefore is forced to learn texture information
stored in the output feature vector. We utilize deep-funneled
images [58] for LFW dataset and crop the images to a size
of 128x128 to include the face area only.

Types of Training f E f C

Dataset Models              #         set size       Type1       Rank-1       Acc.
Single                1             2000         59%           35%       81%
Upslope           5             2000         65%           45%       82%

ND Update 3 2000 61% 38% 81%
Downslope 5 2000 60% 44% 82%
[13] 1           20000 75% 96%             -
Single 1 1500 85% 82% 74%
Upslope 5 1500 89% 84% 78%

LFW Update 3 1500 87% 84% 75%
Downslope 5 1500 87% 83% 73%
[12] 1         2 · 106 99%                  -             -

Table 1: Comparison of Accuracy when using multiple mod-
els with the Rand method of incorporation. Model Inversion
for both Feature Extraction Networks, f E  and Classification
Networks f C .  Accuracy per dataset and attack type. Accu-
racy for classification networks is how frequently an image
is assigned the correct class label.

6. Results

6.1. Feature Extraction Networks

We show Type-1 and Rank-1 accuracy for our attacks. An
overview of results in Tables 1 and 2. Figure 3 showed visual
results for the iris. Visual results for the facial biometric are
in Figure 2.
Single Model Results     Type-1 attack accuracy when in-
verting feature vectors using access to a single target model
is 59% and 85% for the iris and face dataset respectively.
In the Type-1 setting a reconstructed biometric is matched
with its original counterpart, we obtain Type-1 attack accu-
racy numbers of 59% compared to Ahmad and Fuller [13]
who achieve 75% while using 10 times the training set size.
These results are shown in Table 1.

Our Rank-1 accuracy is considerably lower . We attribute
this to slight overfitting of the inversion network due to our
small training dataset and the use of dropout in the target
network. Our target network also uses a more modern loss
function than Ahmad and Fuller [13]. Rank-1 accuracy
measures the probability of a reconstructed biometric being
matched with an original biometric of the same class (and
not itself), our inversion network seems to do better at the
specific task of inverting a template to a particular image and
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Dataset

ND

LFW

Incorporation
Method
Rand
Concat
Concat
SR
SRwAL
SRwAL
[13]
Rand
Concat
Concat
SR
SRwAL
SRwAL
[12]

# Models
5
5
5
5
5
5
1
5
5
5
5
5
5
1

Training
set size

2000
2000
2000
2000
2000
2000

20000
1500
1500
1500
1500
1500
1500

2000000

Models
for Test
Final
Final
All
Final
Final
All
−
Final
Final
All
Final
Final
All
−

f E

Type1 Rank-1
65%           45%
48%           27%
50%           30%
66%           46%
72%           53%
65%           45%
75%           96%
89%           84%
78%           75%
80%           78%
89%           84%
91%           86%
89%           84%
99%                 -

f C

Accuracy
82%
78%
86%
81%
83%
81%

-
78%
74%
81%
79%
79%
79%

-

Table 2: Comparison of Methods for incorporating multiple models. All data uses Upslope models. Both Feature Extraction
Networks, f E  and Classification Networks f C .  Accuracy per dataset and attack type. Accuracy for classification networks is
how frequently an image is assigned the correct class label. Models for Test Column indicates whether all models or just the
final model were used during testing.

Figure 2: Alignment helps with reconstructing face features
such as facial hair and correcting skin tone.

does not generalize well.
Our target network has also not been fine tuned, our Rank-

1 accuracy on the test set of the target network is 98.2% while
Ahmad and Fuller used a target network with an accuracy of
99.5%. This accuracy changes the threshold distance used to
accept or reject biometric comparisons; this change affects
Type1 attack accuracy but not Rank-1.

For LFW, we achieve a Type-1 accuracy of 85% when us-
ing a single model to obtain the training dataset for the inver-
sion attack network. Our inversion attack network achieves
85% accuracy in Type-1 and 82% in Rank-1 settings. This
is in contrast to iris reconstruction results, face images have
myriad of facial features in addition to some background of

the LFW images making them easier to invert and harder for
the target model to achieve high test accuracy. Iris images
have only the iris texture while other features such as the
skin and eyelid are segmented out.

Incorporating Multiple Models     Turning to the setting
of multiple models, we present the gain in using multiple
models with the Rand technique in Table 1. In all settings,
multiple models improve accuracy of the inversion network.
Because all attack settings perform similarly, in comparing
how to effectively incorporate multiple models we focus on
the Upslope model.

Results for different incorporation techniques are pre-
sented in Table 2. The largest gain is using the technique
SRwAL. For the iris, this technique boosts Rank-1 accuracy
from 45% to 53%. Input-augmented GANs boost attack
accuracy in most settings.

The SR technique performs nearly identically to the Rand
technique. This is of particular interested compared to the
SRwAL technique which is only forcing the model to learn
the provided input which is easy.

Discussion The Concat technique can hurt performance
when only a single model output is available at testing. The
most natural explanation is that feature vectors from mod-
els which have not converged hold information that is hard
to use by our inversion models. However, if one assumes
that the adversary sees the output of all models at test time,
that is the adversary sees f T  (x), ..., fT (x )  at test time this
accuracy improves. This indicates that the problem may be
the mismatch between the format of the training and testing
data. We note that this phenomenon is switched on SRwAL,
providing all vectors at test time is harmful. This supports
the hypothesis that Structured Random with Alignment loss
is superior for natural attack scenarios.

The accuracy gain when using multiple models is less
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pronounced for the LFW face dataset. In this setting, we
believe that the small amount of training data resulting in
the attack model overfitting the training data. However, our
attack achieves close to state of art inversion accuracy while
using orders of magnitude less training data.

6.2. Classification Networks

Model inversion attacks on classification networks output
the average of a certain class (see discussion in Section 4.1).
The attack is successful if the reconstructed biometric images
are classified to their correct class by the target model. For
Single Model Results our inversion attack models perform
at 81% and 74% attack accuracy for the iris and face datasets
respectively. Results are displayed in Table 1.

For Incorporating Multiple Models structured random
with alignment loss bumps the accuracy to 83% and 79% re-
spectively. We do not see a proportional increase in inversion
accuracy as we saw with feature extraction networks. Classi-
fication networks output prediction vectors which are simple
and do not hold much information. Previous works have
even truncated prediction vectors [36] for better inversion.

If all models’ output is available at test time Concat
method improves but the SRwAL does not. This same phe-
nomenon was observed in feature extraction network.

Recall, for classification networks the traditional goal is
to output the class average. Prior works have not considered
that this average may not appear similar to a real biometric
(such as Fredrikson et al. [3]). When training and testing
with concatenated prediction vectors (α · m) our inverted
images vary across a class instead of being the same class
average image. An example of different images for the same
iris biometric is shown in Figure 3. We attribute this to the
additional information in multiple vectors which form the
concatenated vector. A  similar phenomenon is seen in the
work of Yang et al. [36] where classes unknown to the
target model are inverted by a method called alignment (that
differs from SRwAL).

6.3. Which attack types perform the best?

We perform an experiment to validate which models con-
tribute the most to inversion attack accuracy. With access
to the final trained target model and using random sampling
for training, an adversary’s reconstructed iris images have a
Rank-1 attack accuracy of 35% which drops to 15% if the
adversary has access to the 25th and 50th model. Attack
accuracy jumps to 36% if the first and 100th model are used
by the adversary. The target model is trained using an off
the shelf network architecture which was pre-trained on the
Imagenet dataset, which would generate different yet some-
what accurate feature vectors [59]. Finally the last model
would generate accurate feature vectors which would allow
the adversary to generate better reconstructions. Our pro-
posed Alignment loss works best with feature vectors while

Figure 3: Alignment process enables inversion to vary. Each
row represents a different iris from the same biometrics. For
classification networks single model always inverts to class
average. However, SRwAL can invert to distinct images that
better match the stored template.

for prediction vectors the concatenation attack works best.

7. Conclusion

An adversary can perform model inversion attacks to
gain unauthorized access to biometric authentication sys-
tems through biometric spoofing. We explore an adversary’s
access to deep learning models trained and stored, models
generated after a model is updated, and finally models gener-
ated after an unlearning request. In this work we show when
multiple models are accessible by an adversary model inver-
sion attacks can be performed with fewer training samples
with high attack accuracy. We explore different methods of
incorporating multiple models into the attack model training
process.

An interesting finding of our work is that while incorpo-
rating multiple models using the Rand method is universally
helpful (across biometrics and types of biometric transforms),
results using input-augmented GANs are mixed. If only the
last model is available at Test time the Concat technique can
actually hurt performance, for the iris Type1 accuracy drops
from 59% to 48% and is much lower than the 65% achieved
by the random method. However, our proposed method
of using SRwAL always improves performance compared to
the Rand technique improving Type1 accuracy to 72% com-
pared to the 65% of Rand. We leave additional measures of
combining data from multiple models and performance with
additional data as future work.
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