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ABSTRACT
Biometric databases collect people’s information and allow users to

perform proximity searches (finding all records within a bounded

distance of the query point) with few cryptographic protections.

This work studies proximity searchable encryption applied to the

iris biometric.

Prior work proposed inner product functional encryption as a

technique to build proximity biometric databases (Kim et al., SCN

2018). This is because binary Hamming distance is computable

using an inner product. This work identifies and closes two gaps to

using inner product encryption for biometric search:

(1) Biometrics naturally use long vectors often with thousands

of bits. Many inner product encryption schemes generate a

random matrix whose dimension scales with vector size and

have to invert this matrix. As a result, setup is not feasible

on commodity hardware unless we reduce the dimension

of the vectors. We explore state of the art techniques to

reduce the dimension of the iris biometric and show that all

known techniques harm the accuracy of the resulting system.

That is, for small vector sizes multiple unrelated biometrics

are returned in the search. For length 64 vectors, at a 90%

probability of the searched biometric being returned, 10% of

stored records are erroneously returned on average.

Rather than changing the feature extractor, we introduce a

new cryptographic technique that allows one to generate sev-

eral smaller matrices. For vectors of length 1024 this reduces

time to run setup from 23 days to 4 minutes. At this vector

length, for the same 90% probability of the searched biomet-

ric being returned, .02% of stored records are erroneously

returned on average.

(2) Prior inner product approaches leak distance between the

query and all stored records. We refer to these as distance-

revealing. We show a natural construction from function

hiding, secret-key, predicate, inner product encryption (Shen,
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Shi, and Waters, TCC 2009). Our construction only leaks

access patterns, and which returned records are the same

distance from the query. We refer to this scheme as distance-

hiding.

We implement and benchmark one distance-revealing and one

distance-hiding scheme. The distance-revealing scheme can search

a small (hundreds) database in 4 minutes while the distance-hiding

scheme is not yet practical, requiring 3.5 hours.
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1 INTRODUCTION
Biometrics are measurements of physical phenomena of the human

body. We focus on the iris biometric in this work. Iris data, like all

biometric data is noisy, which means that two readings from the

same iris are unlikely to be identical. Feature extractors convert such
physical phenomena to a digital representation that is more stable

but still noisy. The output of feature extractors is called a template.
Biometric databases are used for both security critical applications

(such as access control) and privacy critical applications (such as

immigration). LetD be some distance metric and 𝑡 be some distance

threshold. Applications building on biometric templates require:

(1) Low False Reject Rate (FRR) templates from the same

biometric are within distance 𝑡 with high probability, and

(2) Low False Accept Rate (FAR) templates from two different

biometrics are within distance 𝑡 with low probability.

Learning stored biometric templates enables an attacker to re-

verse this value into a convincing biometric [1–3], enabling pre-
sentation attacks [4–6] that can compromise users’ accounts and

devices. Since biometrics cannot be updated, such a compromise

lasts a lifetime.
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Searchable encryption [7–10] enables servers to be queried with-

out decrypting the data. For a distance metric D, proximity search-

able encryption returns all records that are within distance 𝑡 . That

is, for a dataset 𝑥1, ..., 𝑥ℓ for a query 𝑦, one should return all 𝑥𝑖
such that D(𝑥𝑖 , 𝑦) ≤ 𝑡 . Since biometric data is inherently noisy,

proximity searchable encryption is a key tool to secure biometric

databases while allowing queries.

Iris feature extractors usually produce binary vectors that are

similar in Hamming distance
1
(fingerprints are usually compared

by set difference, faces with L2 norm). Kim et al. proposed to use

secret-key, function-hiding inner product encryption or IPEfh,sk for
encrypted comparison of binary Hamming biometrics [11, 12].

IPEfh,sk allows computation of inner product without revealing

underlying values. Inner product of vectors 𝑥,𝑦 in {−1, 1}𝑛 encodes

Hamming distance:

D(𝑥,𝑦) = (𝑛 − ⟨𝑥,𝑦⟩)/2.
More formally the functionality of IPEfh,sk is as follows: one gener-
ates sk← Setup(·) and has two algorithms ct𝑥 ← Encrypt(𝑥, sk)
and tk𝑦 ← TokGen(𝑦, sk) such that one can use Decrypt (with-
out sk) to learn ⟨𝑥,𝑦⟩. That is, Decrypt(ct𝑥 , tk𝑦) = ⟨𝑥,𝑦⟩. One
can use IPEfh,sk to build proximity search by encrypting 𝑐𝑖 ←
Encrypt(𝑥𝑖 , sk) and providing all 𝑐𝑖 to the database server (addi-

tional data can be associated with 𝑥𝑖 using traditional encryption).

For queries𝑦 the client provides tk𝑦 ← TokGen(𝑦, sk) to the server.
The server can compute the inner product between the query and

each stored record and should return all records with the appropri-

ate inner product.

We identify and close two gaps in the use of inner product en-

cryption to build proximity searchable encryption for the iris.

1.1 Our Contribution
Multi Random Projection Inner Product Encryption. Daugman’s

seminal iris feature extractor [13, 14] produces a vector of length

𝑛 = 1024, the open source OSIRIS [15] system uses 𝑛 = 32768

by default, and recent neural network feature extractors [16] use

𝑛 = 2048.

The most efficient IPEfh,sk schemes rely on dual pairing vector
spaces [17] in bilinear groups. The secret key for such constructions

is a random matrix A ∈ F𝑛×𝑛𝑞 and its inverse A−1; 𝑞 is a large prime

that is the order of the bilinear pairing. Setup for the scheme must

invert a random A ∈ F𝑛×𝑛𝑞 .

This operation is prohibitive for 𝑛 > 1000, as is the case for iris

feature extractors. For the most efficient known scheme which we

call Random Projection with Check or RProjC [11], the authors’ par-

allel implementation of key generation in FLINT [18] (on a modern

16 core machine), generating keys for 𝑛 = 240, took roughly 3.5

hours. In our experiments, Setup time grows cubicly as expected.
2

Through interpolation, we estimate the time to generate keys for

𝑛 = 1024 at 23 days.

While one can train feature extractors with smaller 𝑛, we show

(in Section 3) that known techniques harm the quality of the bio-

metric features, making the irises of different people appear similar.

1
Note that real-valued vectors for the Euclidean distance can be converted to binary

vectors for the Hamming distance using mean or median thresholding, where values

above the mean/median are encoded as 1 and values below as 0.

2
We have not evaluated sub-cubic matrix inversion in finite fields.

The false accept vs false reject rate tradeoff degrades, leaving the

application with the choice of either not matching readings of the

same iris or matching readings of difference individuals’ irises. Both

choices have consequences for the resulting application.

In Section 3.1 and Table 3, we show that for a small size dataset

of 356 individuals using a feature extractor with 𝑛 = 64, a distance 𝑡

that enables a 90% true accept rate searching for an individual in the

dataset returns 40 incorrect biometrics with an average query! By

comparison when 𝑛 = 1024, queries return .06 incorrect biometrics

on average. Datasets with more individuals are not available; we

expect this rate to be consistent across dataset sizes.

Section 4 introduces a new transform for inner product encryp-

tion that generates multiple matrices A1, ...,A𝜎 and their inverses

during key generation where each A𝑖 is an (𝑁 +1) × (𝑁 +1) matrix,

where 𝑁 = ⌈𝑛/𝜎⌉, instead of a single large pair A,A−1. To hide

partial information, both 𝑥 and 𝑦 are augmented when they are

split into component vectors:

𝑥 ′𝑖 = 1 | | 𝑥𝑖∗𝑁 , ..., 𝑥𝑖∗𝑁+(𝑁−1)
𝑦′𝑖 = 𝜁𝑖 | | 𝑦𝑖∗𝑁 , ..., 𝑦𝑖∗𝑁+(𝑁−1)

for 𝑖 = 0, ..., 𝜎 − 1 and 𝜁0, ..., 𝜁𝜎−1 is a linear secret sharing of 0

that is chosen in TokGen. The intuition is that any collection of

𝜎 − 1 or fewer components represents a random group element, so

one cannot learn information about inner products between vector

components. We show security of two prior IPE schemes with multi

random projection (one in Section 4 and one in the full version of

this work [19]).

We implemented two versions of proximity search building

on this form of IPEfh,sk. The first is a direct application of the

RProjC [11] scheme and the second is our newmulti random projec-
tion version, calledMulti Random Projection with Check orMRProjC.
To benchmark, we encrypted a single reading of each individual

(ℓ = 356) from the ND0405 dataset [20, 21] which is a superset of

the NIST Iris Evaluation Challenge [22]. Queries are drawn from

other readings in the ND0405 dataset. This performance is sum-

marized in Table 1 with search taking approximately 4 minutes.

Our multi random projection technique reduces time for Setup by

four orders of magnitude with minimal impact on the timings of

the rest of the algorithms. This multi random projection technique

makes proximity searchable encryption on a 350 biometric dataset

feasible.

Distance Hiding Proximity Search. By design, proximity search

from IPEfh,sk for any searched value𝑦, allows the server to compute

the distance [11] between𝑦 and all stored records.3 This establishes
a geometry on the space of stored records. If the server has side in-

formation on the stored records 𝑥𝑖 , they may be able to reconstruct

global geometry from the local geometry revealed by pairwise

distances [25, 26]. While we are not aware of any leakage abuse

attacks directly against proximity search, there are attacks against

𝑘-nearest neighbor databases [27, 28].4 Distance allows one to eas-

ily compute the 𝑘-nearest points (with some error) so attacks that

3
Some prior work allows computation of approximate distance [23] using locality

sensitive hashes [24], allowing the server to see how many hashes match, the number

of matches approximates distance.

4
Here we focus on attacks that apply to proximity searchable encryption. There is a rich

history of leakage abuse attacks against different types of searchable encryption [27–

37].
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can exploit this leakage apply. Like most leakage abuse attacks,

the efficacy of these attacks depends on what the adversary knows

about the stored data. We discuss these attacks more in Section 7.

For applications where such leakage is unacceptable (or the

adversary has side information on the encrypted data), we show a

transform from a predicate version of inner product encryption to

proximity search that does not reveal pairwise distance. A predicate

IPE scheme produces ciphertexts ct𝑥 and tokens tk𝑦 which allow

one to effectively check if ⟨𝑥,𝑦⟩ = 0 (instead of revealing the inner

product). Barbosa et al. [38] recently proposed such a scheme that is

a modification of Kim et al.’s construction [11]. Their construction

simply removes the group elements that allow one to check the

inner product, so we call this Random Projection or RProj. We call

such a scheme an IPEfh,sk,pred scheme. IPEfh,sk,pred allows one to

test if the inner product is equal to some value 𝑖 as follows: add an

𝑛 + 1𝑡ℎ element as −1 to 𝑥 , denoted 𝑥 ′, and create 𝑦𝑖 = 𝑦 | |𝑖 . Then,
⟨𝑥 ′, 𝑦𝑖 ⟩ = (⟨𝑥 | | -1, 𝑦 | |𝑖⟩ = 0) ⇔ (⟨𝑥,𝑦⟩ = 𝑖) . One can check all

values in a set I by generating a token tk𝑦𝑖 for each 𝑖 ∈ I. Setting
I = {𝑛 − 2 ∗ 0, ...., 𝑛 − 2 ∗ 𝑡}, yields a proximity check (these tokens

are permuted before being sent to the server).

We call this constructionMulti Random Projection orMRProj. The
simplicity and generality of this construction is an advantage, it im-

mediately benefits from efficiency improvements in inner product

encryption and can be built from multiple computational assump-

tions. However, the size of tk𝑦 and search time grow linearly with

𝑡 . For the iris 𝑡 is usually around .3𝑛.

Since the server can see if the same tk𝑦𝑖 matches different records,

when two records are both within distance 𝑡 , the server learns if

they match the same distance (but not the specific distance). Thus,

the resulting proximity scheme leaks two pieces of information:

Access Pattern [29, 30] The set of records returned by the

query. If 𝑥𝑖 and 𝑥 𝑗 are both returned by a query it must be

the case that D(𝑥𝑖 , 𝑥 𝑗 ) ≤ 2𝑡 . Preventing attacks that only

require access pattern usually requires oblivious RAM [39]

and its high storage and communication overhead.

Distance Equality Leakage For a database 𝑥1, ..., 𝑥ℓ for a

searched value 𝑦 if there are multiple records 𝑥𝑖 , 𝑥 𝑗 such

that D(𝑥𝑖 , 𝑦) ≤ 𝑡 and D(𝑥 𝑗 , 𝑦) ≤ 𝑡 our scheme additionally

reveals if D(𝑥𝑖 , 𝑦) = D(𝑥 𝑗 , 𝑦).

No information is leaked about data that is not returned (beyond

that it was not returned). Biometrics are well spread, so one does

not expect readings of two biometrics to be close to a query. As

mentioned, the vector size has a large impact on the number of im-

proper records that will be returned by a query (recall for 𝑛 = 64, 40

improper records are returned, when𝑛 = 1024, .06 improper records

are returned). SinceMRProj only leaks when multiple records are

returned it is critical to ensure an accurate system, underscoring

the importance of our multi random projection approach enabling

Setup for large 𝑛 where high correctness is possible.

In RProjC and MRProjC, the server learns the pairwise distance
between the query 𝑦 and all records 𝑥𝑖 . So in that setting, 𝑛 only

affects correctness, not security.

The search complexity of MRProj is roughly a multiplicative of

𝑡 ≈ .3𝑛 slower than for MRProjC. See the difference in concrete

timing in Table 1. For 𝑛 = 1024 this corresponds to a 𝑡 ≈ 307,

the measured multiplicative overhead is only 52.5. Closing this

performance gap is the main open problem resulting from this

work; MRProj is not fast enough. In Section 8 we present avenues

for improving search efficiency.

Organization The rest of this work is organized as follows: Sec-

tion 2 describes mathematical and cryptographic preliminaries,

Section 3 describes the 𝑛 vs accuracy tradeoff for the iris and its

impact on security, Section 4 introduces the multi random projec-

tion technique, Section 5 shows that IPEfh,sk,pred suffices to build

proximity search, Section 6 discusses our implementation, Section 7

reviews further related work and Section 8 concludes.

2 PRELIMINARIES
Let 𝜆 be the security parameter throughout the paper. We use

poly(𝜆) and negl(𝜆) to denote unspecified functions that are poly-

nomial and negligible in 𝜆, respectively. For some 𝑛 ∈ N, [𝑛]
denotes the set {1, · · · , 𝑛}. Let 𝑥 $←− 𝑆 denote sampling 𝑥 uni-

formly at random from the finite set 𝑆 . Let 𝑞 = 𝑞(𝜆) ∈ N be a

prime, then G𝑞 denotes a cyclic group of order 𝑞. Let 𝑥 denote

a vector over Z𝑞 such that 𝑥 = (𝑥1, · · · , 𝑥𝑛) ∈ Z𝑛𝑞 , the dimen-

sion of vectors should be apparent from context. Consider vectors

𝑥 = (𝑥1, · · · , 𝑥𝑛) and 𝑦 = (𝑦1, · · · , 𝑦𝑛), their inner-product is de-
noted by ⟨𝑥,𝑦⟩ = ∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖 . Let 𝑋 be a matrix, then 𝑋𝑇
denotes its

transpose.

Hamming distance is defined as the distance between the bit

vectors 𝑥 and 𝑦 of length 𝑛:D(𝑥,𝑦) = |{𝑖 | 𝑥𝑖 ≠ 𝑦𝑖 }|. We note that if

a vector over {0, 1} is encoded as 𝑥±1,𝑖 = 1 if 𝑥𝑖 = 1 and 𝑥±1,𝑖 = −1
if 𝑥𝑖 = 0 then it is true that ⟨𝑥±1, 𝑦±1⟩ = 𝑛 − 2D(𝑥,𝑦).

Definition 1 (Asymmetric Bilinear Group). Suppose G1,G2,
andG𝑇 are three groups (respectively) of prime order𝑞 with generators
𝑔1 ∈ G1, 𝑔2 ∈ G2 and 𝑔𝑇 ∈ G𝑇 respectively. We denote a value 𝑥
encoded in G1 with either 𝑔𝑥

1
or [𝑥]1, we denote values encoded in

G2 and G𝑇 similarly. Let 𝑒 : G1 × G2 → G𝑇 be a non-degenerate
(𝑖 .𝑒 . 𝑒 (𝑔1, 𝑔2) ≠ 1) bilinear pairing operation such that for all 𝑥,𝑦 ∈
Z𝑞 , 𝑒 ( [𝑥]1, [𝑦]2) = 𝑒 (𝑔1, 𝑔2)𝑥𝑦 . We assume the group operations in
G1,G2 and G𝑇 and the pairing operation 𝑒 are efficiently computable,
then (G1,G2,G𝑇 , 𝑞, 𝑒) defines an asymmetric bilinear group.

Let G𝑎𝑏𝑔 be an algorithm that takes input 1
𝜆
and outputs a de-

scription of an asymmetric bilinear groups (G1,G2,G𝑇 , 𝑞, 𝑒) with
security parameter 𝜆.

2.1 Inner Product Encryption
Secret-key predicate encryption with function privacy supporting

inner products queries was first proposed by Shen et al. [40]. This

primitive allows one to check if the inner product between vectors

is zero or not. The scheme they presented is both attribute and

function hiding, meaning that an adversary running the decryp-

tion algorithm gains no knowledge on either the attribute or the

predicate.

Definition 2 (Secret key predicate encryption). Let 𝜆 ∈ N
be the security parameter, M be the set of attributes and F be a
set of predicates. We define PE = (PE.Setup, PE.Encrypt, PE.TokGen,
PE.Decrypt), a secret-key predicate encryption scheme, as follows:
PE.Setup(1𝜆) → (sk, pp), PE.Encrypt(sk, 𝑥) → ct𝑥 ,
PE.TokGen(sk, 𝑓 ) → tk𝑓 , and PE.Decrypt(pp, tk𝑓 , ct𝑥 ) → 𝑏.

Session 8B: Biometrics and Security ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

1006



Underlying IPE Type Multi Random Proj Distance Operation Time

Scheme Name IPE fh sk pred Applied Hiding Setup BuildIndex Trapdoor Search
RProjC [11] ✓ ✓ − − − 2 × 106 10.8 .07 235

MRProjC [11] ✓ ✓ − ✓ − 268 10.8 .08 241

MRProj [38] ✓ ✓ ✓ ✓ ✓ 268 10.8 22.4 12600

Table 1: Time (in seconds) for operations with ℓ = 356 records stored at 𝑛 = 1024. All algorithms are naturally parallelizable.
Timing for the single base scheme is interpolated from smaller vector lengths. BuildIndex encrypts the dataset at initialization
time, Trapdoor generates a search token, and Search finds the resulting indices. fh, sk and pred indicate that the underlying IPE
scheme is respectively a function-hiding, secret key and/or predicate only scheme. Distance Hiding indicates that the scheme
does not reveal the distance between the stored value and the query.

(1) Draws 𝛽
$←− {0, 1},

(2) Computes (sk, pp) ← PE.Setup(1𝜆), sends pp to A,

(3) For 1 ≤ 𝑖 ≤ 𝑠 , A chooses 𝑥
(0)
𝑖

, 𝑥
(1)
𝑖
∈ M,

(4) For 1 ≤ 𝑗 ≤ 𝑟 , A chooses 𝑓
(0)
𝑗

, 𝑓
(1)
𝑗
∈ F ,

(5) Denote 𝑅 :=

(
𝑥
(0)
1

, 𝑥
(1)
1

)
, · · · ,

(
𝑥
(0)
𝑟 , 𝑥

(1)
𝑟

)
,

𝑆 :=

(
𝑓
(0)
1

, 𝑓
(1)
1

)
, · · · ,

(
𝑓
(0)
𝑠 , 𝑓

(1)
𝑠

)
.

(6) A sends 𝑅 and 𝑆 to C,
(7) A loses the game if 𝑅 and 𝑆 are not admissible,

(8) A receives

𝐶 (𝛽 ) := {𝑐𝑡 (𝛽 )
𝑖
← PE.Encrypt

(
sk, 𝑥 (𝛽 )

𝑖

)
}𝑟𝑖=1,

𝑇 (𝛽 ) := {𝑡𝑘 (𝛽 )
𝑗
← PE.TokGen

(
sk, 𝑓 (𝛽 )

𝑗

)
}𝑠𝑗=1 .

(9) A returns 𝛽′ ∈ {0, 1},
(10) Her advantage is

Adv
ExpPE

𝐼𝑁𝐷

A (𝜆) =
��� Pr[A(1𝜆,𝑇 (0) ,𝐶 (0) ) = 1]

− Pr[A(1𝜆,𝑇 (1) ,𝐶 (1) ) = 1]
���

Figure 1: Definition of ExpPE
𝐼𝑁𝐷

for predicate encryption.

We require the scheme to have the following properties:

Correctness: For any 𝑥 ∈ M, 𝑓 ∈ F ,

Pr

[
𝑓 (𝑥) = 𝑏

����� ct𝑥←PE.Encrypt(sk,𝑥 )
tk𝑓←PE.TokGen(sk,𝑓 )

𝑏←PE.Decrypt(pp,tk𝑓 ,ct𝑥 )

]
≥ 1 − negl(𝜆).

Security of admissible queries: Let 𝑟 = poly(𝜆) and 𝑠 = poly(𝜆).
Any PPT adversary A has only negl(𝜆) advantage in the ExpPE

𝐼𝑁𝐷
game (defined in Figure 1). Token and encryption queries must meet
the following admissibility requirements, ∀𝑗 ∈ [1, 𝑟 ],∀𝑖 ∈ [1, 𝑠],

PE.Decrypt(pp, tk(0)
𝑗

, ct(0)
𝑖
) = PE.Decrypt(pp, tk(1)

𝑗
, ct(1)

𝑖
).

The above definition is called full security in the language of Shen,

Shi, and Waters [40]. Note that this definition is selective (not

adaptive), as the adversary specifies two sets of plaintexts and

functions apriori. The relevant primitive for us is IPEfh,sk,pred which
uses the above definition restricted to the class of predicates F =

{𝑓𝑦 | 𝑦 ∈ Z𝑛𝑞 } such that for all vectors 𝑥 ∈ Z𝑛𝑞 , 𝑓𝑦 (𝑥) = 1 when

⟨𝑥,𝑦⟩ = 0, 𝑓𝑦,𝑡 (𝑥) = 0 otherwise.

We use (IPE.Setup, IPE.Encrypt, IPE.TokGen, IPE.Decrypt) to refer
to the corresponding tuple of algorithms.

2.2 Proximity searchable encryption
In this section we define proximity searchable encryption (PSE), a
variant of searchable encryption that supports proximity queries.

Definition 3 (History). Let 𝑋 ∈ M be a list of keywords drawn
from spaceM, let F be a class of predicates overM. An𝑚-query
history overW is a tuple History = (𝑋, 𝐹 ), with 𝐹 = (𝑓1, · · · , 𝑓𝑚) a
list of𝑚 predicates, 𝑓𝑖 ∈ F .

Definition 4 (Access pattern). Let𝑋 ∈ M be a list of keywords.
The access pattern induced by an𝑚-query history History = (𝑋, 𝐹 )
is the tuple AccPatt(History) = (𝑓1 (𝑋 ), · · · , 𝑓𝑚 (𝑋 ))

Definition 5 (Distance Eqality). Let History(0) ,History(1)

be𝑚-query histories for predicates of the type 𝑓𝑦,𝑡 (𝑥) = (D(𝑥,𝑦)
?

≤
𝑡). Let, DisEq(History(0) ,History(1) ) = 1 if and only if for each 𝑗 it
is true that{
(𝑖, 𝑘)

�����(D (𝑥 (0)𝑖
,𝑦
(0)
𝑗
)=D(𝑥 (0)

𝑘
,𝑦
(0)
𝑗
)∧D(𝑥 (1)

𝑖
,𝑦
(1)
𝑗
)≠D(𝑥 (1)

𝑘
,𝑦
(1)
𝑗
) )

∨
(D(𝑥 (0)

𝑖
,𝑦
(0)
𝑗
)≠D(𝑥 (0)

𝑘
,𝑦
(0)
𝑗
)∧D(𝑥 (1)

𝑖
,𝑦
(1)
𝑗
)=D(𝑥 (1)

𝑘
,𝑦
(1)
𝑗
) )

}
,

is the empty set.

Definition 6 (Proximity Searchable Encryption). Let

• 𝜆 ∈ N be the security parameter,
• DB = (𝑀1, · · · , 𝑀ℓ ) be a database of size ℓ ,
• Keywords 𝑋 = (𝑥1, · · · , 𝑥ℓ ), such that 𝑥𝑖 ∈ Z𝑛𝑞 relates to𝑀𝑖 ,
• F = {𝑓𝑦,𝑡 | 𝑦 ∈ Z𝑛𝑞 , 𝑡 ∈ 𝑁 } be a family of predicates such that,
for a keyword 𝑥 ∈ Z𝑛𝑞 , 𝑓𝑦,𝑡 (𝑥) = 1 if D(𝑥,𝑦) ≤ 𝑡 , 0 otherwise.

The algorithms PSE = (PSE.Setup, PSE.BuildIndex, PSE.Trapdoor,
PSE.Search) defines a proximity searchable encryption scheme:
PSE.Setup(1𝜆) → (sk, pp), PSE.BuildIndex(sk, 𝑋 ) → 𝐼𝑋 ,
PSE.Trapdoor(sk, 𝑓𝑦,𝑡 ) → tk𝑦,𝑡 , and PSE.Search(pp, 𝑄𝑦,𝑡 , 𝐼𝑋 ) →
𝐽𝑋,𝑦,𝑡 . We require the scheme to have the following properties:

Correctness Define 𝐽𝑋,𝑦,𝑡 = {𝑖 |𝑓𝑦,𝑡 (𝑥𝑖 ) = 1, 𝑥𝑖 ∈ 𝑋 }. PSE is correct

if for all 𝑋 and 𝑓𝑦,𝑡 ∈ F :

Pr

[
𝐽 ′ = 𝐽𝑋,𝑦,𝑡

����� 𝐼𝑋←PSE.BuildIndex(sk,𝑋 )
𝑄𝑦,𝑡←PSE.Trapdoor(sk,𝑓𝑦,𝑡 )
𝐽 ′←PSE.Search(pp,𝑄𝑦,𝑡 ,𝐼𝑋 )

]
≥ 1 − negl(𝜆) .

Security for Admissible Queries Any PPT adversary A has only
negl(𝜆) advantage in the experiment ExpPSE

𝐼𝑁𝐷
defined in Figure 2, for

ℓ = poly(𝜆) and𝑚 = poly(𝜆).
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(1) Draws 𝛽
$←− {0, 1},

(2) Computes (sk, pp) ← PSE.Setup(1𝜆) and sends pp to A.
(3) A chooses and outputs History(0) ,History(1) .
(4) A loses the game if

AccPatt(History(0) ) ≠ AccPatt(History(1) )

∨ DisEq(History(0) ,History(1) ) = 0

(5) A receives 𝐼 (𝛽 ) and 𝑄 (𝛽 ) .
(6) A outputs 𝛽′ ∈ {0, 1}
(7) Her advantage in the game is:

Adv
ExpPSE

𝐼𝑁𝐷

A (𝜆) =
��� Pr[A(1𝜆, 𝐼 (0) , 𝑄 (0) ) = 1]

− Pr[A(1𝜆, 𝐼 (1) , 𝑄 (1) ) = 1]
���

Figure 2: Definition of ExpPSE
𝐼𝑁𝐷

.

3 IRIS STATISTICS AND LEAKAGE
This section introduces iris feature extractors and shows that re-

ducing the length of the feature extractor harms the uniqueness of

the resulting biometric. Reduced uniqueness harms both the cor-

rectness (because the wrong set of irises is returned) and security

of the MRProj construction (because the server learns information

about returned irises). Daugman [13, 14] introduced the seminal iris

processing pipeline. This pipeline assumes a near infrared camera.

Iris images in near infrared are believed to be independent from

the visible light pattern; the near-infrared iris pattern is epigenetic,

irises of identical twins are believed to be independent [14, 41].

Traditional iris recognition consists of three phases:

Segmentation takes the image and identifies which pixels

should be included as part of the iris. This produces a {0, 1}
matrix of the same size as the input image with 1s corre-

sponding to iris pixels.

Normalization takes the variable size set of iris pixels and

maps them to a fixed size rectangular array. This can roughly

be thought of as unrolling the iris.

Feature Extraction transforms the rectangular array into a

fixed number of features. In Daugman’s original work this

consisted of convolving small areas of the rectangle with a 2D

wavelet. Modern feature extractors are usually convolutional

neural networks.

In identification systems the tradeoff is between FRR and FAR. FRR

is how frequently readings of the same biometric are regarded as

different. FAR is how frequently readings of different biometrics

are regarded as the same. As described above, when one wishes to

match a biometric𝑦 against a database one considers matches as the

set {𝑥𝑖 |D(𝑥𝑖 , 𝑦) ≤ 𝑡} for some metric D and distance parameter 𝑡 .

Selecting a small 𝑡 increases FRR and reduces FAR. Before investi-

gating the dependence on feature vector length and the FRR/FAR

tradeoff we introduce the feature extractor and dataset used in this

analysis.

Feature Extractor For the feature extractor, we use the recent

pipeline called ThirdEye [16, 42], which is publicly available [43].

The software produces a 1024 dimensional real valued feature vector.

We convert this to a binary vector by setting 𝑓 ′
𝑖
= 1 if 𝑓𝑖 > Exp[𝑓𝑖 ]

where the Exp[𝑓𝑖 ] is the expectation of the individual feature, oth-

erwise 𝑓 ′
𝑖
= 0. We train the feature extractor as specified in [16].

Biometric Database There are many iris datasets collected across

a variety of conditions. In this work we use the NotreDame 0405

dataset [20, 21] which is a superset of the NIST Iris Evaluation

Challenge [22]. This dataset consists of images from 356 biomet-

rics (we consider left and right eyes as separate biometrics) with

64964 images in total. (See Appendix B for similar results with the

IITD dataset [44].) Figure 3(a) shows the histograms for the testing

portions of the feature extractor outputs. The blue histogram con-

tains comparisons between different readings of the same biometric

while the red histogram contains comparisons between different

biometrics. Let 𝑡 ′ = 𝑡/1024 be the fractional Hamming distance, the

FRR is the fraction of the blue histogram to the right of 𝑡 ′ and the

FAR is the fraction of the red histogram to the left of 𝑡 ′. There is
overlap between the red and blue histogram indicating that there

is a tradeoff between FRR and FAR.

3.1 Performance of Biometric Identification
with Small Dimension

The efficiency of IPE based proximity search critically depends

on the number of features 𝑛 (see Table 4). In our experiments we

estimate Setup for 𝑛 = 1024 for the schemes of Kim et al. [11] and

Barbosa et al. [38] to take 23 days on a modern server machine (see

details in Section 6). It is tempting to consider statistical methods

to produce feature vectors of reduced size. We show this comes at

a cost to the quality of the resulting feature vectors. This motivates

our approach to reduce the complexity of Setup in Section 4. Our

analysis consists of two major parts:

(1) We compare different mechanisms for reducing the size of

feature vectors using 𝑛 = 64 as the target dimension.

(2) Using the best feature reduction mechanism we compare

the FRR/FAR tradeoff for 𝑛 < 1024, showing direct impacts

for the correctness and security of the resulting biometric

search.

3.1.1 Dimensionality ReductionMethod. We consider four different

mechanisms for dimension reduction and consider their impact on

FRR/FAR. For all techniques, the most important phenomena is

that variance of Different comparisons increases as the sample size

decreases.
5
Compare Figure 3(a) and Figure 3(b). This makes the

tails of Same and Different wider leading to worse identification.

The four mechanisms we consider are:
6

Random Sample Select a random subset of positions of size

64 and use this as the feature extractor. We denote this tech-

nique by R-64 (for random).

Error Rate Minimization Hollingsworth et al. [46] and Bolle

et al. [47] propose the concept of “fragile bits” which aremore

likely to be susceptible to bit flips. Their work is based on the

Gabor based feature extractor (described at the beginning of

5
This is consistent with previous observations that sampling from the iris red histogram

behaves similarly to a binomial distribution where the number of trials is proportional

the included entropy of the iris [45].

6
For all experiments we computed the mechanism four times and report the average

in Table 2.
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(a) ND 0405 Histogram with 𝑛 = 1024 (b) ND 0405 Histogram with 𝑛 = 64

Figure 3: Hamming distance distribution for images from the same iris in blue, and different irises in red. Histograms are
produced using ThirdEye [16]. Resulting histograms for the ND 0405 dataset. Figure 3(a) shows the histogram when 𝑛 = 1024

with a small overlap between distances comparisons of the same iris and different irises. This overlaps is increased substantially
when 𝑛 = 64 in in Figure 3b). Figure 3b) is produced using the E method.

this section) while ThirdEye [16] is a convolutional neural

network.

We select the 64 bits which have the least probability of

flipping. Results for this approach are shown in Table 2 and

denoted by S-64 (for stable).

Surprisingly, this approach is worse than random sampling.

We believe this approach to be appropriate for the Gabor

based feature extractor since it produces large number of

noisy features due to noise in different readings of an iris.

This is in contrast to our feature extractor which outputs a

succinct feature vector where the CNN tries to make indi-

viduals features independent.

Error Delta Maximization This approach uses bits which

maximize the difference between the means of the intra

and inter class distributions. That is, these are bits where

the difference between intra class and inter class error is

the highest. That is, we select the bits that maximize the

following difference:

max

𝑖

(
Pr

𝑥,𝑦←Different

[𝑥𝑖 ≠ 𝑦𝑖 ] − Pr

𝑥,𝑦←Same

[𝑥𝑖 ≠ 𝑦𝑖 ]
)

The intuition is that bits are the most useful as theymaximize

the difference in probability of error between the same and

different comparisons. The hope is to overcome theweakness

of the prior approach which did not consider the entropy

of bits across different biometrics. The top 64 bits are used.

This approach is denoted by E-64 (for error). This approach

improves over both R and S techniques.

Training Network Lastly, we train the ThirdEye architecture

[16] from scratch to output a smaller feature vector of size

𝑛 = 64 for both datasets. Essentially we train a new fea-

ture extractor on the same training data to reduce dimen-

sions. The feature extractor remains the same but is now

FRR False Accept Rate

Size 0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

1024 .50 .03 .02 .01 .01 .01 .01 .01 .01 0 0

R-64 .99 .38 .29 .24 .22 .18 .17 .16 .14 .13 .12

S-64 1 .61 .61 .51 .41 .41 .41 .32 .32 .32 .26

E-64 .97 .30 .24 .18 .14 .14 .10 .10 .10 .07 .07

T-64 .96 .27 .16 .13 .13 .09 .09 .06 .06 .06 .04

Table 2: FRR for different output sizes and probabilities of
leakage for the ND0405 datasets. Summary of false reject
rates for queries drawn from Same distribution. We vary a
threshold 𝑡 , report the false reject rate (FRR) when allowing
for the corresponding FAR. The original 𝑛 = 1024 system is
presented for comparison.

constrained to learn 64 features. This is achieved by chang-

ing the number of neurons in the second last layer of our

convolutional neural network. We can expect this to perform

better than random sampling since the feature extractor is

explicitly learning to classify using 64 features. We use T

(for train) to denote this technique.

Results are summarized in Table 2. The E and T techniques outper-

form the R and S techniques. Going forward we use the E dimen-

sionality reduction technique for the rest of this work because it is

simpler to compute for different vector sizes.

3.1.2 Impact of reducing 𝑛. We now show that decreasing 𝑛 using

the E method hurts the identification quality of the iris biometric.

First we note that an FRR of ≤ .10 requires a distance tolerance

of 𝑡 ≥ .3𝑛 (see the histograms in Figure 3). However, comparisons

between different irises are tightly centered around 𝑡 = .5𝑛. This

means for a dataset {𝑥𝑖 }ℓ𝑖=1 for most pairs 𝑥𝑖 , 𝑥 𝑗 there exists some

value 𝑥∗ such that D(𝑥𝑖 , 𝑥∗) ≤ 𝑡 and D(𝑥 𝑗 , 𝑥∗) ≤ 𝑡 . This means

for most pairs 𝑥𝑖 , 𝑥 𝑗 , there is some query that will cause them both

to be returned.
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Vector Length

ACount 64 96 128 256 384 512 768 1024

Avg. 40.8 34.5 13.0 6.03 3.86 1.03 .53 .06

𝜎2 .75 .74 .42 .23 .17 .083 .076 .019

Table 3: Effect of dimensionality reduction on the correctness
and security of the resulting biometric search system. ACount
is the average number of improperly records when searching
for a biometric that is in the dataset. All feature extractors
with 𝑛 < 1024 use the 𝐸 method to select features.

The goal of this subsection is to understand behavior on actual

queries. We consider a distribution over 𝑥∗ of different readings
of individuals stored in the dataset to see how frequently multiple

records are returned. Recall that multiple records being returned

impacts the system correctness for both the MRProjC and MRProj
constructions. It additionally affects leakage for MRProj. For these
analysis we consider the ND-0405 dataset with the 𝐸 mechanism for

reducing the size of a feature vector (see the previous subsection).

We consider correctness of the system at different feature vector

lengths𝑛. We select a random reading of each biometric to represent

the encrypted dataset. We first select a 𝑡 that yields at most ≤ 10%

FRR (for comparisons of the same iris on the training dataset). We

then use the following procedure:

(1) Initialize matrix 𝐶𝑖, 𝑗 = 0
356×356

.

(2) Pick I ⊂ {1, ...., 356} of size 150 randomly.

(3) For each 𝑖 in I:
(a) Select 3 random readings of iris 𝑖 , denoted 𝑥∗

𝑖
(removing

reading that is encrypted):
7

(b) For all 𝑗 ifD(𝑥∗
𝑖
, 𝑥 𝑗 ) ≤ 𝑡 andD(𝑥∗

𝑖
, 𝑥𝑖 ) ≤ 𝑡 𝐶𝑖, 𝑗 = 𝐶𝑖, 𝑗 + 1.

(4) Compute ACount =
∑
355

𝑖=0

(∑
355

𝑗=0, 𝑗≥𝑖 𝐶𝑖, 𝑗
)
/(3 ∗ 150) .

The value ACount represents how frequently a record of a different

biometric would be returned by an in use search system. For both

correctness and security considers one desires ACount to be as close
to 0 as possible. We ran this experiment 40 times and report the

mean and standard deviation of ACount in Table 3. As one can see

keeping a vector size of 𝑛 = 1024 has a three order of magnitude

reduction in the average number of improperly returned records,

underscoring the importance of inner product encryption to work

with large 𝑛.

Leakage on readings of the same iris. There are two types of

biometric databases, those which associate a single reading 𝑥𝑖 of a

biometric with each record 𝑟𝑖 and those wheremultiple readings of a

biometric 𝑥𝑖,1, ..., 𝑥𝑖,𝑘 are associated with a single record. Until now,

we’ve implicitly assumed that the database has only one reading of

a biometric. We now briefly consider the implications of leakage

between readings of the same biometric. That is, 𝑥𝑖,1, ..., 𝑥𝑖,𝑘 are

readings from the same biometric and associated with a record 𝑟𝑖 in

the biometric database. First note that 𝑥𝑖,𝛼 and 𝑥𝑖,𝛽 are likely to be

close together (because readings of the same biometric are similar).

One may able to infer information about 𝑥𝑖,1, ..., 𝑥𝑖,𝑘 from access

pattern and distance equality leakage. One may be able to learn

the relative positioning of the different readings by which values I
are return by a query 𝑦 (if it is not all values). Similarly, we expect

7
Every iris in the ND0405 dataset has at least 4 readings so this is the maximum number

of queries that will have an equal number of readings from the size 150 subset.

the adversary to learn distance equality leakage for the entire set

𝑥𝑖,1, ..., 𝑥𝑖,𝑘 . Both of these leakage profiles allow an adversary to

construct geometry of a biometric’s different readings. This may

allow the adversary to determine the type of noise present in that

individual’s biometric. It may be possible to use noise rates to draw

conclusions about sensitive attributes about the corresponding per-

son. Biometric systems frequently demonstrate systemic bias [48].

As one example most datasets draw from volunteer undergraduates

students. Systems accuracy varies based on sensitive attributes such

as gender, race, and age (see [48, Table 1]). Thus one may be able

to infer sensitive attributes based on the relative size of |I |/𝑘 .
If one stores multiple readings, it seems important to use cryp-

tographic techniques to hide such leakage. A potential solution is

to instead store a single reading that is the average of the multiple

readings [49] and make other values associated data that are not

searchable.

4 MULTI RANDOM PROJECTION IPE
As described in the Introduction, we show a general technique

improving Setup efficiency for IPE schemes where ciphertexts and

tokens are projected into dual vector spaces by a pair of matrices

A,A−1. We call this multi random projection technique. The key

idea is to create multiple pairs of matrices of smaller dimension for

subvectors of the inputs. These independent encodings are then

combined with an additive secret sharing of 0 in the encryption

so that computation with ciphertexts and tokens is only useful

when using all of the components. Without this additional step,

an adversary could discard some subvectors of the inputs and still

learn the inner products of the remaining ones. In this section we

show security of the technique when applied to the RProj scheme

of Barbosa et al. [38, Section 4].
8

Construction The construction is in Figure 4. We first argue

correctness and then security. For security we show the scheme

satisfies a stronger simulation based definition of security, as in the

work of Barbosa et al. [38].

Correctness First note that ⟨𝑥,𝑦⟩ = ∑𝜎
ℓ=1⟨𝑥ℓ , 𝑦ℓ ⟩, and thus

Π𝜎
ℓ=1Π

𝑁
𝑖=1𝑒 (tkℓ [𝑖], ctℓ [𝑖]) = 𝑔

∑𝜎
ℓ=1 𝛽 · (𝑥 ′ℓ )𝑇 ·B∗ℓ ·B𝑇ℓ ·𝛼 · (𝑦′ℓ )

𝑇

= 𝑔

∑𝜎
ℓ=1 𝛽 · (𝑥 ′ℓ )𝑇 ·𝛼 · (𝑦′ℓ )

𝑇
= 𝑔

𝛼𝛽
∑𝜎

ℓ=1 𝜁ℓ+⟨𝑥ℓ ,𝑦ℓ ⟩
𝑇

= 𝑔
𝛼𝛽 ·⟨𝑥,𝑦⟩+𝛼𝛽 ·∑𝜎

ℓ=1 𝜁ℓ
𝑇

= 𝑔
𝛼𝛽 ·⟨𝑥,𝑦⟩
𝑇

If ⟨𝑥,𝑦⟩ = 0 then Π𝜎
ℓ=1

Π𝑁
𝑖=1

𝑒 (tkℓ [𝑖], ctℓ [𝑖]) = 𝑒 (𝑔1, 𝑔2)0 = 1, which

is the identity element in G𝑇 and is easily detectible and ⊤ ←
Decrypt(pp, tk, ct) with probability 1. If ⟨𝑥,𝑦⟩ ≠ 0, then the proba-

bility that ⊤ ← Decrypt(pp, tk, ct) is Pr[𝛼𝛽 · ⟨𝑥,𝑦⟩ = 0] ≤ 2

𝑞 .

Definition 7 (Simulation-based security). Let IPE =

(IPE.Setup, IPE.TokGen, IPE.Encrypt, IPE.Decrypt) be a predicate IPE
scheme over Z𝑛𝑞 . Then IPE is SIM-secure if for all PPT adversaries
A, there exist a simulator S such that for the experiment ExpIPE

𝑆𝐼𝑀

described in figure 5, the advantage of A (adv
ExpIPE

𝑆𝐼𝑀

A ) is��
Pr[1← RealIPE,A (1𝜆)] − Pr[1← IdealIPE,A (1𝜆)]

�� ≤ negl(𝜆) .
8
Functional encryption for orthogonality (OFE) as defined by Barbosa et al. is equal to

predicate inner product encryption, as defined in this work.

Session 8B: Biometrics and Security ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

1010



Setup(1𝜆, 𝑛, 𝜎):
(1) Sample (𝐺1,𝐺2,𝐺𝑇 , 𝑞, 𝑒) ← G𝑎𝑏𝑔 and randomly sample gen-

erators 𝑔1 ∈ 𝐺1 and 𝑔2 ∈ 𝐺2.

(2) For 1 ≤ ℓ ≤ 𝜎 , randomly samples an invertible square

matrixBℓ ∈ Z𝑁×𝑁𝑞 and setsB∗
ℓ
= (B-1

ℓ
)𝑇 , with𝑁 = ⌈𝑛/𝜎⌉+

1.

(3) Outputs pp = (𝐺1,𝐺2,𝐺𝑇 , 𝑞, 𝑒, 𝑛, 𝜎) as public parameters

and sk = (𝑔1, 𝑔2, {Bℓ ,B∗ℓ }
𝜎
ℓ=1
).

TokGen(pp, sk, 𝑦):

(1) Sample 𝛼
$←− Z𝑞 .

(2) Splits 𝑦 into 𝜎 subvectors 𝑦ℓ of size ⌈𝑛/𝜎⌉ and pads with

zeroes if needed.

(3) For 1 ≤ ℓ ≤ 𝜎 , defines 𝑦′
ℓ
= 1 | | 𝑦ℓ and sets

tkℓ = [ 𝛼 · (𝑦′ℓ )
𝑇 · Bℓ ]1, a vector in 𝐺1.

(4) Outputs tk = (tk1, · · · , tk𝜎 ).

Encrypt(pp, sk, 𝑥):

(1) Samples 𝛽
$←− Z𝑞 .

(2) Splits 𝑥 into 𝜎 subvectors 𝑥ℓ of size ⌈𝑛/𝜎⌉, and pads
with zeroes if needed.

(3) For 1 ≤ ℓ ≤ 𝜎 − 1, samples 𝜁ℓ
$←− Z𝑞 then sets

𝜁𝜎 = −∑𝜎−1
ℓ=1 𝜁ℓ .

(4) For 1 ≤ ℓ ≤ 𝜎 defines 𝑥 ′
ℓ
= 𝜁ℓ | | 𝑥ℓ and sets ctℓ =

[ 𝛽 · (𝑥 ′
ℓ
)𝑇 · B∗

ℓ
]2, a vector in 𝐺2.

(5) Outputs ct = (ct1, · · · , ct𝜎 ).
Decrypt(pp, tk, ct):

Computes

(
Π𝜎
ℓ=1

Π𝑁
𝑖=1

𝑒 (tkℓ [𝑖], ctℓ [𝑖])
)
and returns ⊤ if the

results is equal to 1 ∈ G𝑇 , ⊥ otherwise.

Figure 4: Construction of MRProj.

RealIPE,A (1𝜆)
(sk, pp) ← IPE.Setup(1𝜆)
𝑏 ← AIPE.TokGen(sk,· ),IPE.Encrypt(sk,· ) (1𝜆)
Output 𝑏

IdealIPE,A (1𝜆)
(sk, pp) ← IPE.Setup(1𝜆)
𝑏 ← AS(Φ( ·) ) (1𝜆)
Output 𝑏

Figure 5: Definition of experiment ExpIPE
𝑆𝐼𝑀

. Φ denotes the
information leakage received by the simulator S such that
Φ(𝑖, 𝑗) = 𝑓𝑦 𝑗

(𝑥𝑖 ) for all 𝑖, 𝑗 .

Kim et. al. [12, Remark 2.5] show that Definition 7 implies Defini-

tion 2 so we argue that the scheme in Figure 4 satisfies Definition 7.

Theorem 1. In the Generic Group Model for asymmetric bilinear
groups the construction in Figure 4 is a secure IPEfh,sk,pred scheme
according to Definition 7 for the family of predicates F = {𝑓𝑦 |𝑦 ∈ Z𝑛𝑞 }
such that for all vectors 𝑥 ∈ Z𝑛𝑞 , 𝑓𝑦 (𝑥) = (⟨𝑥,𝑦⟩

?

= 0).

The proof of Theorem 1 is deferred until Appendix C.

5 BUILDING DISTANCE HIDING PSE
As mentioned in Section 2, Hamming distance can be calculated

using the inner product between the two biometric vectors. As such,

we can use a range of possible inner product values as the distance

threshold.

Predicate function-hiding secret key IPE [40], or IPEfh,sk,pred,
allows one to test if the inner product between two vectors is equal

to zero. By appending a value to the first vector and -1 to the second

vector, we can support equality testing for non-zero values. Gener-

ating several tokens or ciphertexts, one per distance in the range,

allows to test if the inner product is below the chosen threshold.

We show that one can use IPEfh,sk,pred to construct PSE for Ham-

ming distance
9
. At a high level, each keyword is encoded as a {-1, 1}

vector and -1 is appended to it, which in turn is encrypted with

IPEfh,sk,pred. Keywords are similarly encoded but this time a dis-

tance from the range is appended to them, and tokens generated as

part of the underlying IPEfh,sk,pred scheme.

Construction 1 (Proximity Searchable Encryption). Fix the
security parameter 𝜆 ∈ N. Let IPEfh,sk,pred = (IPE.Setup, IPE.TokGen,
IPE.Encrypt, IPE.Decrypt) be a predicate function-hiding secret key
IPE scheme over Z𝑛+1𝑞 . Let 𝑥𝑖 ∈ Z𝑛𝑞 and 𝑋 = (𝑥1, · · · , 𝑥ℓ ) be the list of
keywords. Let F be the set of all predicates such that for any 𝑥𝑖 ∈ 𝑋 ,
𝑓𝑦,𝑡 (𝑥𝑖 ) = 1 if the Hamming distance between 𝑥𝑖 and the query vector
𝑦 ∈ Z𝑛𝑞 is less or equal to some chosen threshold 𝑡 ∈ Z𝑞 , 𝑓𝑦,𝑡 (𝑥𝑖 ) = 0

otherwise. Figure 6 is a proximity searchable encryption scheme for
the Hamming distance.

Theorem 2 (PSE main theorem). Let IPEfh,sk,pred = (IPE.Setup,
IPE.TokGen, IPE.Encrypt, IPE.Decrypt) be an IND-secure function-
hiding inner product predicate encryption scheme over Z𝑛+1𝑞 . Then
∃PSE = (PSE.Setup, PSE.BuildIndex, PSE.Trapdoor, PSE.Search), a
secure proximity searchable encryption scheme for the Hamming
distance, such that for any PPT adversary APSE for ExpPSE

𝐼𝑁𝐷
, there

exists a PPT adversary AIPE for ExpIPE𝐼𝑁𝐷
, such that for any security

parameter 𝜆 ∈ N,

Adv
ExpPSE

𝐼𝑁𝐷

APSE
= Adv

ExpIPE
𝐼𝑁𝐷

AIPE

The proof of Theorem 2 is deferred to Appendix D. Table 4

presents the resulting efficiency of distance hiding PSE schemes

based on different IPEfh,sk,pred constructions. This table corresponds
to 𝑡 + 1 tokens with all operations on dimension 𝑛 + 1.

6 IMPLEMENTATION
This section presents an implementation and an evaluation of the

PSE scheme proposed in this paper. We implemented theMRProj
9
Support of addition/deletion of records seems achievable by deleting after search and

inserting new ciphertexts in the database. However this would result in additional

access pattern leakage since these record would be clearly identifiable by the server.
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PSE.Setup(1𝜆) → (sk, pp):
Run and output (sk, pp) ← IPE.Setup(1𝜆).

PSE.Trapdoor(sk, 𝑓𝑦,𝑡 ) → 𝑄𝑦,𝑡 :

(1) For 0 ≤ 𝑗 ≤ 𝑡 compute 𝑑 𝑗 = 𝑛 − 2 𝑗 ,
(2) Set 𝐷 = (𝑑0, ..., 𝑑𝑡 ),
(3) Sample random permutation 𝜋 : [0, 𝑡] → [0, 𝑡],
(4) Compute 𝐷∗ = 𝜋 (𝐷) = {𝑑∗

0
, · · · , 𝑑∗𝑡 },

(5) Encode 𝑦 as 𝑦 ∗ ∈ {−1, 1}𝑛 ,
(6) For 0 ≤ 𝑗 ≤ 𝑡 call

tk𝑗 ← IPE.TokGen(sk, 𝑦 ∗ | | 𝑑∗
𝑗
),

(7) Output 𝑄𝑦,𝑡 = (tk0, · · · , tk𝑡 ).

PSE.BuildIndex(sk, 𝑋 ) → 𝐼𝑋 :

(1) For each keyword 𝑥𝑖 ∈ 𝑋 , 𝑖 ∈ {1, · · · , ℓ},
encode 𝑥 ∗

𝑖
∈ {−1, 1}𝑛 ,

compute ct𝑖 ← IPE.Encrypt(sk, 𝑥 ∗
𝑖
| | -1).

(2) Outputs 𝐼𝑋 = (ct1, · · · , ctℓ ).
PSE.Search(pp, 𝑄𝑦,𝑡 , 𝐼𝑋 ) → 𝐽𝑋,𝑦,𝑡 :

(1) Initialize 𝐽𝑋,𝑦,𝑡 = ∅.
(2) For each ct𝑖 ∈ 𝐼𝑋 and for each tk𝑗 ∈ 𝑄𝑦,𝑡 ,

call 𝑏 𝑗 ← IPE.Decrypt(pp, tk𝑗 , ct𝑖 ).
If 𝑏 𝑗 = 1, add 𝑖 to 𝐽𝑋,𝑦,𝑡 , continue to ct𝑖+1.

(3) Outputs 𝐽𝑋,𝑦,𝑡 .

Figure 6: Construction of proximity search from IPEfh,sk,pred.

Underlying IPE scheme

MRProj RProj [38, Section 4] [38, Section 5] [50] [40]

group order Prime Prime Prime Prime Composite

Setup 𝜎 ((𝑛 + 1)/𝜎)3 (𝑛 + 1)3 (𝑛 + 1)3 (6𝑛 + 6)3 4𝑛 + 8
BuildIndex ℓ (𝑛 + 𝜎 + 1) ℓ (𝑛 + 1) ℓ (12𝑛 + 21) 6ℓ (𝑛 + 1) ℓ (32𝑛 + 36)
Trapdoor (𝑡 + 1) (𝑛 + 𝜎 + 1) (𝑡 + 1) (𝑛 + 1) (𝑡 + 1) (12𝑛 + 21) 6(𝑡 + 1) (𝑛 + 1) (𝑡 + 1) (24𝑛 + 40)
Search ℓ (𝑡 + 1) (𝑛 + 𝜎 + 1) ℓ (𝑡 + 1) (𝑛 + 1) ℓ (𝑡 + 1) (6𝑛 + 12) 6ℓ (𝑡 + 1) (𝑛 + 1) ℓ (𝑡 + 1) (4𝑛 + 8)
|sk| 2(𝑛 + 1)2/𝜎 + 4𝑛 + 2𝜎 + 6 2(𝑛 + 1)2 + 2 24𝑛 + 42 60(𝑛 + 1)2 4𝑛 + 8
|I | ℓ (𝑛 + 𝜎 + 1) ℓ (𝑛 + 1) ℓ (6𝑛 + 12) 6ℓ (𝑛 + 1) ℓ (2𝑛 + 4)
|tk𝑦,𝑡 | (𝑡 + 1) (𝑛 + 𝜎 + 1) (𝑡 + 1) (𝑛 + 1) (𝑡 + 1) (6𝑛 + 12) 6(𝑡 + 1) (𝑛 + 1) (𝑡 + 1) (2𝑛 + 4)

Table 4: PSE scheme efficiency for keywords of size 𝑛 depending on underlying IPEfh,sk,pred scheme. Upper part of the table
shows number of group or pairing operations per function. Lower part of the table shows number of group elements per
component. The scheme of Shen, Shi, and Waters [40] uses a composite order group whose order is the product of four large
primes. The number 𝑛 is the length of the biometric template, 𝜎 is the number of bases in the multi random projection scheme,
𝑡 is the desired distance tolerance, and ℓ is the total number of records in the database.

construction described in section 4 and a PSE (see section 5) scheme

using it in Python 3. These implementations can be found in a

Github repository [51]. Our IPE implementations uses the Charm [52]

and FLINT [18] libraries for the pairing group operations and finite

field arithmetic in Z𝑞 . For comparison purposes, we used the pair-

ing group over the asymmetric curve MNT159, the same as in Kim

et al.’s FHIPE implementation [53].

The search, encryption and token generation algorithms were

parallelized. Benchmarking tests for each algorithm were imple-

mented and the number of random projections, the distance thresh-

old and the input vector sizes for these tests can vary. This allowed

us to compare efficiency for different parameters and pinpoint val-

ues that yield a practical and accurate scheme. With a number of

random projections equal to 1, we obtain Setup timings and secret

key size for RProjC. Setting the distance threshold to 0 allows us to
get timings forMRProjC. To be as realistic as possible, we used iris
readings from the ND 0405 as input vectors to the benchmarking

tests.

6.1 Evaluation
We evaluate our implementations on a Linux server with an AMD

Ryzen 9 3950X 16-Core processor and 64GB of RAM. Remember

that the preferred input vector size for correctness is 1024 (as stated

in Section 3).

Timing. We evaluate the timing efficiency of our PSE construc-

tion with and without the multi random projection technique. Ta-

ble 5 reports the timings for all four algorithms of the PSE scheme.

MRProj corresponds to the PSE construction presented in this paper.
RProjC corresponds to Kim et al.’s FHIPE construction,MRProjC
corresponds to the same scheme but with the multi random pro-

jection technique applied . In the last column of the timing section

of the table, we report the timing of the Setup algorithm without

this multi random projection construction. During our tests, we

noticed a jump in Setup timings when going from sub-vectors of 40

to 60 group elements, we thus chose 𝜎 values that yield sub-vectors

lengths of approximately 40. We make three main observations.

(1) Setup and BuildIndex have comparable performance forMR-
Proj and MRProjC (the only difference is adding 1 to under-

lying dimension). However, Trapdoor is substantially slower

forMRProj since it prepares 𝑡 + 1 tokens, but performance

remains reasonable.

(2) Distance hiding has a large impact on the Search algorithm.

MRProjC Search takes 4 minutes,MRProj Search takes 3.5

hours. Both approaches scans the whole database which is

Session 8B: Biometrics and Security ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

1012



Time Sizes

MRProj MRProjC RProjC [11] MRProj RProjC [11]

𝑛 𝜎 𝑡 Setup BuildIndex Trapdoor Search Trapdoor Search Setup |EncDB| |sk| |sk|
128 3 38 75 1.5 .36 234 .01 31 4 × 103 5.9 MB 560 KB 1.6 MB

192 5 57 47 2.2 .8 495 .01 46 1.3 × 104 8.9 MB 770 KB 3.6 MB

256 7 76 57 2.9 1.4 850 .02 62 3.2 × 104 12 MB 980 KB 6.4 MB

384 10 115 94 4.4 3.1 1870 .03 92 1.1 × 105 18 MB 1.5 MB 14 MB

512 13 153 153 5.7 5.7 3282 .04 140 2.6 × 105 24 MB 2.1 MB 26 MB

768 19 230 269 8.6 13.4 7210 .06 185 8.6 × 105 36 MB 3.2 MB 57 MB

1024 25 307 268 10.8 22.4 12600 .08 241 2.0 × 106 47 MB 4.3 MB 100 MB

Table 5: Operations timing (in seconds) and sizes (in Megabytes/Kilobytes) for different vector sizes. 𝑛 is the vector length, 𝜎 the
number of bases used, and 𝑡 = .30 the distance tolerance. Setup and BuildIndex procedures for MRProj and MRProjC schemes
are the same procedures, MRProjC uses vectors whose length is 1 fewer. We only report these algorithms for MRProj. Timing
and storage for the MRProjC Setup is interpolated. Measured 𝑛 = 10 to 240 in steps of 10. For timing, cubic fit with coefficients
𝑦 = .003𝑥3 − .578𝑥2 + 36𝑥 − 557 with 𝑅2 = .996. For storage, quadratic fit with coefficients 𝑦 = 96𝑥2 + 192𝑥 + 573 with 𝑅2 = 1.

problematic for large datasets. We discuss possible solutions

in Section 8.

(3) Finally, this table shows that Setup without multi random

projection is completely impractical for large input vector

sizes. In particular, for vectors of size 1024, Setup takes ap-

proximately 23 days. In comparison, Setup using multi ran-

dom projection takes less than five minutes for input vectors

of size 1024. Our multi random projection construction thus

allows to use a large enough input vector size to maintain a

high correctness while increasing the efficiency of the setup

algorithm. This is explained by the fact that the Setup algo-

rithm’s running time is dominated by the matrix inversion.

It is then more efficient to perform multiple inversions of

small matrices than a single inversion of a bigger one.

Storage. We evaluate the impact of the multi random projection

PSE construction on storage efficiency. As can be seen on table 5,

the impact is low for small input vectors, however, it makes a big

difference for larger ones. Indeed, when the size of the Barbosa key

(key generated without the multi random projection technique)

grows quadratically with the vector size, the size of the key gen-

erated with the multi random projection technique grows with

(𝑛/𝜎)2 ∗𝜎 ≈ 𝑛2/𝜎 . For vectors of size 1024, we consider 𝜎 = 25 and

the secret key generated with the multi random projection tech-

nique is 23.2 times smaller than the single basis key, confirming

the asymptotic analysis.

7 FURTHER RELATEDWORK
In this section we review further related work on proximity search.

We defer discussion of leakage abuse attacks to Appendix A. Li et

al. [54], Wang et al. [55] and Boldyreva and Chenette [56] reduced

proximity search to keyword equality search. These works propose

two complimentary approaches:

(1) When adding a record 𝑥𝑖 to a database, also insert all close

values as keywords, that is {𝑥 𝑗 | D(𝑥𝑖 , 𝑥 𝑗 ) ≤ 𝑡} are added as
keywords associated to 𝑥𝑖 .

(2) The second approach requires searchable encryption sup-

porting disjunctive search. It inserts just 𝑥𝑖 , but when search-

ing for 𝑦 it searches for the disjunction ∨𝑥𝑖 |D (𝑥𝑖 ,𝑦)≤𝑡 𝑥𝑖 .
Either approach can be instantiated using a searchable encryption

scheme that supports disjunction over keyword equality (inheriting

any leakage). However, for biometrics, the number of keywords

∨𝑥𝑖 |D (𝑥𝑖 ,𝑦)≤𝑡 {𝑥𝑖 } usually grows exponentially in 𝑡 . In existing

disjunctive schemes, the size of the query grows with the size of

the disjunction [10], making this approach only viable for constant

values of 𝑡 .

Kuzu et al.’s [23] solution relies on locality sensitive hashes [24].
A locality sensitive hash ensures that close values have a higher

probability to produce collisions than values that are far apart. Thus,

a scheme can be built from any scheme supporting disjunctive

keyword equality, inheriting any leakage. The server learns the

number of matching locality sensitive hashes for each record (which

is expected to be more than 0). The number of matching locality

sensitive hashes is a proxy for the distance between the query value

and the records. More matching locality sensitive hashes implies

smaller distance. This allows the server to establish the approximate

distance between each record and the query.

Zhou and Ren [57] propose a variant of inner product encryption

that reveals if the distance is less than 𝑡 only. However, their security

is based on A𝑥𝑖 and 𝑦B hiding 𝑥𝑖 and 𝑦 for secret square A and B.
Security is heuristic with no underlying assumption or proof of

information theoretic security.

8 CONCLUSION
Iris biometric feature extractors produce feature vectors similar in

the binary Hamming metric. Inner product encryption was pro-

posed to build encrypted search for the binary Hamming metric.

In this work we explored a domain specific solution for secure

searchable encryption for iris biometric databases.

We observed in the statistics of the iris biometric data that large

vectors are required for both correctness and minimizing leakage.

With large vectors, we see that the distance between readings of

the same class can be separated from the distance distribution from

the readings of other classes (see Figure 3). This means that with

a fixed distance threshold, we can ensure that more readings of

the same class are approved while readings from other classes are

denied (with high probability).

In prior work, Setup was not feasible for large vector lengths

due to the cost of inverting large matrices. In the most relevant

prior work [11], they skip this step in benchmarking due to the high

cost. Our interpolation results show that for 𝑛 = 1024 would take

roughly 23 days. This is estimated on a parallel implementation in
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C. The length 𝑛 = 1024 is the length of prior iris feature extractors.

We do not consider this time acceptable.

In the RProjC scheme of Kim et al. [11], additionally the distance

is leaked between queries and all points in the database. Based on

prior work on trilaterilation, with a constant number of queries

observed in 𝑛, the server can build complete distance information

between the stored data points. If the adversary knows auxiliary

information about the database, the encryption may not protect

the data at all.

In this work we offer solutions to these two problems. We show

a multi random projection approach that allows for breaking large

vectors into small vectors. This allows us to use smaller matrices

greatly reducing the computational time required to invert the

matrices. Doing two 𝑛/2 inversions takes 1/4 the time of one size 𝑛

inversion. Careful optimization improves Setup time by four orders

of magnitude while only increasing search time by 3%.

We show how to use predicate inner product encryption to build

a scheme that hides the distance between the query and the stored

records. By using a predicate scheme instead of one that gives

the value of the inner product, the server only learns if the two

vectors are a fixed distance from one another. This greatly reduces

the information that is leaked through remotely executing this

operation. The server only learns information about data that are

close the queried point and learns nothing about data that are

outside the distance threshold. We show this scheme leaks only

access pattern and distance equality leakage.

The improvement in accuracy for higher 𝑛 also yields an im-

provement of leakage profile for our MRProj scheme. When two

or more classes are returned from a single query, this leaks that

the returned items are within distance 2𝑡 (through access pattern)

and whether they are the same distance from the query (distance

equality leakage). Decreasing the statistical overlap between classes

minimizes the probability of both leakages which translates to a

more private system for sensitive biometric data.

The transformation comes at a cost of making search slower

and no longer appropriate for moderately sized databases. We be-

lieve that this transformation is required in order to maintain the

integrity of sensitive biometric information. Thus, our main open

problem is whether or not this significant slow down to search is

avoidable. For databases at larger scales, doing a linear search of the

entire database for each query is unacceptable. With our distance

hiding transformation we have to do a linear scan for each subtoken

(that checks a specific distance) and so we see a significant (but

linear) slowdown over a single linear database scan. Of particular

interest are approaches that use indices that natively support 𝑘

nearest neighbors but are not vulnerable to recent attacks (such

as [27, 28]) and interactive solutions where the client can guide the

search. In parallel work, Boldyreva and Ting [58] proposed such

a scheme that hides all leakage using oblivious data structures in

conjunction with locality sensitive hashes [24].
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A LEAKAGE ABUSE ATTACKS
Searchable encryption achieves acceptable performance by leaking
information to the server. See Kamara, Moataz, and Ohrimenko for

an overview of leakage types in structured encryption [59]. The

key to attacks is combining leakage with auxiliary data, such as the

frequency of values stored in the data set. Together these sources

can prove catastrophic – allowing the attacker to run attacks to

recover either the queries being made or the data stored in the data-

base. We consider attacks that rely on injecting files or queries [60]

to be out of scope. Common, attackable, relevant leakage profiles

are:

(1) Response length leakage [31, 34] Often known as volumetric
leakage, the attacker is given access to only the number of

records returned for each query. Based on this information,

attacks cross-correlate with auxiliary information about the
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dataset, and identify high frequency items in both the en-

crypted database and the auxiliary dataset.

(2) Query equality leakage [32] the attacker is able to glean

which queries are querying the same value, but not neces-

sarily the value itself. Attacks on this profile rely on having

information about the query distribution, and much like the

response length leakage attacks, match with that auxiliary

information based on frequency.

(3) Access pattern leakage [29, 30] here the attacker is given

knowledge if the same dataset element is returned for differ-

ent queries. This allows the attacker to build a co-occurrence
matrix, mapping which records are returned for pairs of

queries. Based on the frequencies of the co-occurrence ma-

trix for the encrypted dataset, and the co-occurrence matrix

for the auxiliary dataset, the attack can identify records.

Recent attacks have targeted the geometry present in range

search [33, 34, 36, 37, 61]. Building on the co-occurrence matrix

(available with access pattern leakage) consider the case when

records 𝑎, 𝑏, 𝑐 are returned by a first query and 𝑐, 𝑑 are returned by

a second query. One can immediately infer that the comparison

relation between 𝑎 and 𝑑 is the same as the comparison relation

between 𝑏 and 𝑒 . As more constraints of this type are collected one

can collect an ordering of all records (up to reflection).

In two (or three) dimensional Euclidean space, trilateration has

been practiced for hundreds of years: one is assumed to know

the location of 𝑥1, ..., 𝑥𝑘 and the pairwise distances D(𝑥𝑖 , 𝑦) and
is trying to find the location of 𝑦. Determining the location of 𝑦

requires 𝑘 to be one larger than the dimension. The problem is more

difficult but well studied for approximate distances [62]. Similar

ideas can be applied in discrete metrics with each learned distance

reducing the set of possible 𝑦. In the Hamming metric of dimension

𝑛, 𝑘 = Θ(𝑛) suffices [63–65].

B ADDITIONAL STATISTICAL ANALYSIS
The IITD dataset which consists of 224 persons and 2240 images.

The IITD dataset is considered “easier” than the ND0405 dataset

because images are collected in more controlled environments lead-

ing to less noise and variation between images. Table 6 shows the

FAR/FRR tradeoff for IITD dataset akin to Table 2. We additionally

measured the number of improperly returned records as in Table 3;

improper records where only observed for length 64. Since IITD

is easier than ND0405, this indicates that the needed biometric

dimension depends on collection conditions.

C PROOF OF THEOREM 1
This scheme has the security as the original IPEfh,sk,pred scheme

from [38] for the simulation based security definition. We note

that that scheme of Barbosa et al. [38] builds on the work Kim et

al.[12] and our proof uses similar definitions of formal variables.

The scheme works by having a challenger interact with a simulator

𝑆 and two oracles, O′TokGen and O′Encrypt, in the ideal scheme and a

pair of oracles, OTokGen and OEncrypt, in the real scheme. For this

proof, we will build the simulator S which can correctly simulate

the distribution of tokens and ciphertexts only using the predicate

evaluation on whether the inner product of the two vectors is 0.

FRR False Accept Rate

Size 0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

1024 .70 1 1 1 1 1 1 1 1 1 1

512 .57 1 1 1 1 1 1 1 1 1 1

256 .47 .99 1 1 1 1 1 1 1 1 1

192 .48 .99 1 1 1 1 1 1 1 1 1

128 .54 .99 .99 1 1 1 1 1 1 1 1

96 .40 .99 .99 .99 1 1 1 1 1 1 1

64 27 .97 .99 .99 .99 .99 .99 1 1 1 1

Table 6: TAR for different output sizes and probabilities of
leakage for the IITD Dataset. Summary of FAR for queries
drawn from Same distribution for noise tolerance parameters.
We vary a threshold 𝑡 , report the FRR when FAR is as listed.
All sizes use the 𝑅 methodology.

This information is supplied to the simulator by the oracles O′TokGen
and O′Encrypt to match the functionality of the encryption scheme.

Inner-product collection: Let 𝑖, 𝑗 be shared counters between

the token generation and encryption oracles. Let 𝑥 (𝑖 ) ∈ Z𝑛𝑞 and

𝑦 ( 𝑗 ) ∈ Z𝑛𝑞 denote respectively the adversary’s 𝑖th query to the

token generation oracle and 𝑗 th query to the encryption oracle. The

collection of mappings Cip is defined as

Cip =

{
(𝑖, 𝑗) → 0 if ⟨𝑥 (𝑖 ) , 𝑦 ( 𝑗 ) ⟩ = 0

(𝑖, 𝑗) → 1 otherwise.

Formal variables: The simulator constructs formal variables for

the unknowns of the system in order to respond as correctly as

possible. Let 𝑄 be the maximum number of queries made by an

adversary. Let 𝜎 and 𝑁 be as in the construction in Figure 4. For all

𝑖 ∈ [𝑄], ℓ ∈ [𝜎] and 𝑘 ∈ [𝑁 ], let 𝛼 (𝑖 ) , ˆ𝛽 (𝑖 ) , 𝑥 (𝑖 )
ℓ,𝑘

, 𝑦
(𝑖 )
ℓ,𝑘

represent the

hidden variables 𝛼 (𝑖 ) , 𝛽 (𝑖 ) , 𝑥 (𝑖 )
ℓ,𝑘

, 𝑦
(𝑖 )
ℓ,𝑘

, let
ˆ𝑏ℓ,𝑘,𝑚 and

ˆ𝑏∗
ℓ,𝑘,𝑚

represent

the entry in position (𝑘 ,𝑚) of the Bℓ and B
∗
ℓ
matrices respectively,

let
ˆ𝜁
(𝑖 )
ℓ

be the formal variables for 𝜁
(𝑖 )
ℓ

where the simulator tracks

the constraints that for each 𝑖 ∈ [𝑄], ∑𝜎
ℓ=1

ˆ𝜁
(𝑖 )
ℓ

= 0 and let 𝑠
(𝑖 )
ℓ,𝑚

and

𝑡
(𝑖 )
ℓ,𝑚

represent formal polynomials as constructed below,

𝑠
(𝑖 )
ℓ,𝑚

=

𝑁∑︁
𝑘=1

𝑦
′(𝑖 )
ℓ,𝑘
· ˆ𝑏ℓ,𝑘,𝑚 = ˆ𝑏ℓ,1,𝑚 +

𝑁∑︁
𝑘=2

𝑦
(𝑖 )
ℓ,𝑘-1
· ˆ𝑏ℓ,𝑘,𝑚 (1)

𝑡
(𝑖 )
ℓ,𝑚

=

𝑁∑︁
𝑘=1

𝑥
′(𝑖 )
ℓ,𝑘
· ˆ𝑏∗

ℓ,𝑘,𝑚
= ˆ𝜁
(𝑖 )
ℓ
· ˆ𝑏∗ℓ,1,𝑚 +

𝑁∑︁
𝑘=2

𝑥
(𝑖 )
ℓ,𝑘-1
· ˆ𝑏∗

ℓ,𝑘,𝑚
(2)

Then the universe of formal variables isU = R ∪ T , where

R =

{
𝛼 (𝑖 ) , ˆ𝛽 (𝑖 )

}
𝑖∈[𝑄 ]

∪
{
𝑠
(𝑖 )
ℓ,𝑚

, 𝑡
(𝑖 )
ℓ,𝑚

}
𝑖∈[𝑄 ], ℓ∈[𝜎 ], 𝑚∈[𝑁 ]

and

T =

{
𝛼 (𝑖 ) , ˆ𝛽 (𝑖 )

}
𝑖∈[𝑄 ]

∪
{
𝑥
′(𝑖 )
ℓ,𝑘

, 𝑦
′(𝑖 )
ℓ,𝑘

, ˆ𝜁
(𝑖 )
ℓ

}
𝑖∈[𝑄 ], ℓ∈[𝜎 ], 𝑘∈[𝑁 ]

∪
{
ˆ𝑏ℓ,𝑘,𝑚 , ˆ𝑏∗

ℓ,𝑘,𝑚

}
ℓ∈[𝜎 ],𝑚,𝑘∈[𝑁 ]

Specification of the simulator Let A be a PPT adversary that

makes at most 𝑄 = poly(𝜆) queries to the oracles. The simula-

tor S starts by initializing an empty set of inner products Cip and
three empty tables 𝑇1,𝑇2,𝑇𝑇 which map handles to the polynomi-

als over the variables of R. The state of the simulator consists of
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these four objects, (Cip,𝑇1,𝑇2,𝑇𝑇 ), which are updated after each

query received. The simulator S answers the adversary’s queries

as follows.

Token generation queries: On input 𝑥 (𝑖 ) ∈ 𝑍𝑛
𝑞 , O′TokGen sends

the collection C′ip to the simulator. S updates Cip ← C′ip. For 1 ≤

ℓ ≤ 𝜎 , 1 ≤ 𝑚 ≤ 𝑁 , S generates a new handle ℎℓ,𝑚
$←− {0, 1}𝜆

and adds the mapping ℎℓ,𝑚 → 𝛼 (𝑖 ) · 𝑠 (𝑖 )
ℓ,𝑚

to 𝑇1. S then sets tkℓ =
ℎℓ,1, · · · , ℎℓ,𝑁 . Finally, S returns the token tk = (tk1, · · · , tk𝜎 ).
Encryption queries: On input 𝑦 (𝑖 ) ∈ 𝑍𝑛

𝑞 , O′Encrypt sends the
collection C′ip to the simulator. S updates Cip ← C′ip. For 1 ≤ ℓ ≤ 𝜎 ,

1 ≤ 𝑚 ≤ 𝑁 , S generates a new handle ℎℓ,𝑚
$←− {0, 1}𝜆 and adds

the mapping ℎℓ,𝑚 → ˆ𝛽 (𝑖 ) · 𝑡 (𝑖 )
ℓ,𝑚

to 𝑇2. S sets ctℓ = ℎℓ,1, · · · , ℎℓ,𝑁 .

Finally, S returns the ciphertext ct = (ct1, · · · , ct𝜎 ).
Addition oracle queries: Given ℎ1, ℎ2 ∈ {0, 1}𝜆 , S verifies that

formal polynomials 𝑝1, 𝑝2 exist in table 𝑇𝜏 , 𝜏 ∈ {1, 2,𝑇 } such that

ℎ1 → 𝑝1 and ℎ2 → 𝑝2. If it is not the case S returns ⊥. If a handle
for (𝑝1+𝑝2) already exists in𝑇𝜏 S returns it. Otherwise,S generates

a new handle ℎ
$←− {0, 1}𝜆 , adds the mapping ℎ → (𝑝1 + 𝑝2) to 𝑇𝜏

and returns ℎ.

Pairing oracle queries: Given ℎ1, ℎ2 ∈ {0, 1}𝜆 , S verifies that

formal polynomials 𝑝1, 𝑝2 exist in tables 𝑇1 and 𝑇2 respectively,

such that ℎ1 → 𝑝1 in 𝑇1 and ℎ2 → 𝑝2 in 𝑇2. If it is not the case S
returns ⊥. If a handle for (𝑝1 · 𝑝2) already exists in 𝑇𝑇 S returns

it. Otherwise, S generates a new handle ℎ
$←− {0, 1}𝜆 , adds the

mapping ℎ → (𝑝1 · 𝑝2) to 𝑇𝑇 and returns ℎ.

Zero-testing oracle queries: Given ℎ ∈ {0, 1}𝜆 , S verifies that

formal polynomials 𝑝 exists in 𝑇𝜏 , 𝜏 ∈ {1, 2,𝑇 }, such that ℎ → 𝑝 . If

it is not the case S returns ⊥. S then works as follows.

(1) It “canonicalizes” the polynomial 𝑝 by expressing it as a sum

of products of formal variables in T with poly(𝜆) terms.

(2) If 𝜏 ∈ {1, 2} and 𝑝 is the zero polynomial, S outputs “zero”.

Otherwise if outputs “non-zero”.

(3) If 𝜏 = 𝑇 the simulator decomposes 𝑝 into the form

𝑝 =

𝑄∑︁
𝑖, 𝑗=1

𝛼 (𝑖 ) ˆ𝛽 ( 𝑗 ) ·
(
𝑝𝑖, 𝑗

({
𝑠
(𝑖 )
ℓ,𝑚

, 𝑡
( 𝑗 )
ℓ,𝑚

}
ℓ∈[𝜎 ],𝑚∈[𝑁 ]

)
+𝑓𝑖, 𝑗

({
𝑠
(𝑖 )
ℓ,𝑚

, 𝑡
( 𝑗 )
ℓ,𝑚

}
ℓ∈[𝜎 ],𝑚∈[𝑁 ]

)) (3)

where for 1 ≤ 𝑖, 𝑗 ≤ 𝑄 , 𝑝𝑖, 𝑗 is defined as

𝑝𝑖, 𝑗 = 𝑐𝑖, 𝑗 ·
(

𝜎,𝑁∑︁
ℓ,𝑚=1

𝑠
(𝑖 )
ℓ,𝑚

𝑡
( 𝑗 )
ℓ,𝑚

)
where 𝑐𝑖, 𝑗 ∈ Z𝑞 is the coefficient of the term 𝑠

(𝑖 )
1,1

𝑡
( 𝑗 )
1,1

, and

𝑓𝑖, 𝑗 consists of the remaining terms.

(4) If for all 1 ≤ 𝑖, 𝑗 ≤ 𝑄 , (𝑖, 𝑗) = 0 in Cip (corresponding to a

zero inner product) and 𝑓𝑖, 𝑗 does not contain any non-zero

term, S outputs “zero”. Otherwise it outputs “non-zero”.

Correctness of the simulator As in the original proof, the simu-

lator’s responses to token generation, encryption and group oracle

queries are distributed identically as in the real experiment. We now

have to show correctness of the simulator’s answers to zero-testing

oracle queries.

(1) We first need to show that the canonicalization process in

step 1 is efficient. Since the adversary can only obtain handles

to new monomials using token generation and encryption

queries, the monomials are all over formal variables in R.
Also, since the adversary can make 𝑄 queries at most, the

polynomial 𝑝 they can build and submit to the zero-testing

oracle has at most poly(𝑄) terms and degree 2.

Then using Equations 1 and 2, the formal polynomial 𝑝 can

be expressed as a polynomial over formal variables in T .
Since 𝑝 has degree at most 2 over variables in R, it can be

expressed as a sum of at most poly(𝑄,𝑛) monomials over

variables in T and has degree at most poly(𝑛). Since both
the polynomial over R and the canonical polynomial over

T are polynomially-sized, this is efficient.

(2) For 𝜏 = 1, the only monomials the adversary can obtain are

responses to token generation queries. Then the canonical

polynomial is of the form

𝑝 =

𝑄∑︁
𝑖=1

𝛼 (𝑖 )
(

𝜎,𝑁∑︁
ℓ,𝑚=1

𝑐
(𝑖 )
ℓ,𝑚
· 𝑠 (𝑖 )

ℓ,𝑚

)
=

𝑄∑︁
𝑖=1

𝛼 (𝑖 )
(

𝜎,𝑁∑︁
ℓ,𝑚=1

𝑐
(𝑖 )
ℓ,𝑚

𝑁∑︁
𝑘=1

𝑦
′(𝑖 )
ℓ,𝑘
· ˆ𝑏ℓ,𝑘,𝑚

)
=

𝑄∑︁
𝑖=1

𝛼 (𝑖 )
(

𝜎,𝑁∑︁
ℓ,𝑚=1

𝑐
(𝑖 )
ℓ,𝑚

(
ˆ𝑏ℓ,1,𝑚 +

𝑁∑︁
𝑘=2

𝑦
(𝑖 )
ℓ,𝑘
· ˆ𝑏ℓ,𝑘,𝑚

))
where 𝑐

(𝑖 )
1,1

, · · · , 𝑐 (𝑖 )
𝜎,𝑁
∈ Z𝑞 .

Notice that the sum
ˆ𝑏ℓ,1,𝑚 +

∑𝑁
𝑘=2

𝑦
(𝑖 )
ℓ,𝑘
· ˆ𝑏ℓ,𝑘,𝑚 can never be

the identically zero polynomial over the formal variables

{ ˆ𝑏ℓ,𝑘,𝑚}ℓ∈[𝜎 ], 𝑘,𝑚∈[𝑁 ] . This holds irrespective of the actual
values of the adversary’s query 𝑥 (𝑖 ) . Since all {𝛼 (𝑖 ) }𝑖∈[𝑄 ]
and { ˆ𝑏ℓ,𝑘,𝑚}ℓ∈[𝜎 ], 𝑘,𝑚∈[𝑁 ] are sampled uniformly and inde-

pendently in the real game and the polynomial 𝑝 has degree

poly(𝑛) = poly(𝜆), then by the Schwartz-Zippel lemma [12,

Lemma 2.9], 𝑝 evaluates to non-zero with overwhelming

probability. This implies that the simulator is correct with

overwhelming probability.

(3) For 𝜏 = 2, the only monomials the adversary can obtain

are responses to ciphertexts queries. Then the canonical

polynomial is of the form

𝑝 =

𝑄∑︁
𝑖=1

ˆ𝛽 (𝑖 )
(

𝜎,𝑁∑︁
ℓ,𝑚=1

𝑐
(𝑖 )
ℓ,𝑚
· 𝑡 (𝑖 )
ℓ,𝑚

)
=

𝑄∑︁
𝑖=1

ˆ𝛽 (𝑖 )
(

𝜎,𝑁∑︁
ℓ,𝑚=1

𝑐
(𝑖 )
ℓ,𝑚

𝑁∑︁
𝑘=1

𝑥
′(𝑖 )
ℓ,𝑘
· ˆ𝑏∗

ℓ,𝑘,𝑚

)
=

𝑄∑︁
𝑖=1

ˆ𝛽 (𝑖 )
(

𝜎,𝑁∑︁
ℓ,𝑚=1

𝑐
(𝑖 )
ℓ,𝑚

(
𝜁
(𝑖 )
ℓ
· ˆ𝑏∗ℓ,1,𝑚 +

𝑁∑︁
𝑘=2

𝑥
(𝑖 )
ℓ,𝑘
· ˆ𝑏∗

ℓ,𝑘,𝑚

))
where 𝑐

(𝑖 )
1,1

, · · · , 𝑐 (𝑖 )
𝜎,𝑁
∈ Z𝑞 . Notice that the sum 𝜁

(𝑖 )
ℓ
· ˆ𝑏∗

ℓ,1,𝑚
+∑𝑁

𝑘=2
𝑥
(𝑖 )
ℓ,𝑘
· ˆ𝑏∗

ℓ,𝑘,𝑗
can only be the identically zero polynomial
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over the formal variables { ˆ𝑏∗
ℓ,𝑘,𝑚
}ℓ∈[𝜎 ], 𝑘,𝑚∈[𝑁 ] if 𝜁

(𝑖 )
ℓ

= 0

which happens with negligible probability. Again, this holds

irrespective of the adversary’s queries𝑦 (1) , · · · , 𝑦 (𝑄 ) and 𝑝 is
not the identically zero polynomial over the formal variables

{ ˆ𝛽 (𝑖 ) }𝑖∈[𝑄 ] and { ˆ𝑏∗ℓ,𝑘,𝑚}ℓ∈[𝜎 ], 𝑘,𝑚∈[𝑁 ] . Since all
ˆ𝑏∗
ℓ,𝑘,𝑚

are

independent from one another (since
ˆ𝑏ℓ,𝑘,𝑚 was sampled uni-

formly and independently), then again by Schwartz-Zippel

lemma 𝑝 evaluates to non-zero with overwhelming probabil-

ity, the simulator is correct with overwhelming probability.

(4) For 𝜏 = 𝑇 , the only polynomials the adversary can obtain

are products of two polynomials, one from each base group.

Then the polynomial 𝑝 can be decomposed into a sum of

monomials that each contain 𝛼 (𝑖 ) and 𝛽 ( 𝑗 ) for some 𝑖, 𝑗 ∈
[𝑄]. ThenS can regroup terms for each 𝑖, 𝑗 ∈ [𝑄] and obtain
Equation 3. If 𝑓𝑖, 𝑗 does not contain any term, then 𝑝 is of the

form

𝑝 =

𝑄∑︁
𝑖, 𝑗=1

𝛼 (𝑖 ) ˆ𝛽 ( 𝑗 ) · 𝑐𝑖, 𝑗 ·
(

𝜎,𝑁∑︁
ℓ,𝑚=1

𝑠
(𝑖 )
ℓ,𝑚

𝑡
( 𝑗 )
ℓ,𝑚

)
=

𝑄∑︁
𝑖, 𝑗=1

𝛼 (𝑖 ) ˆ𝛽 ( 𝑗 ) · 𝑐𝑖, 𝑗 ·
(

𝜎,𝑁∑︁
ℓ,𝑚=1

(
𝑁∑︁
𝑘=1

𝑦
′(𝑖 )
ℓ,𝑘
· ˆ𝑏ℓ,𝑘,𝑚

)
·

(
𝑁∑︁
𝑘=1

𝑥
′( 𝑗 )
ℓ,𝑘
· ˆ𝑏∗

ℓ,𝑘,𝑚

))
=

𝑄∑︁
𝑖, 𝑗=1

𝛼 (𝑖 ) ˆ𝛽 ( 𝑗 ) · 𝑐𝑖, 𝑗 ·
(

𝜎∑︁
ℓ=1

(𝑥 ′( 𝑗 )
ℓ
)𝑇 · B∗ℓ · B

𝑇
ℓ · 𝑦

′(𝑖 )
ℓ

)
=

𝑄∑︁
𝑖, 𝑗=1

𝛼 (𝑖 ) ˆ𝛽 ( 𝑗 ) · 𝑐𝑖, 𝑗 ·
(

𝜎∑︁
ℓ=1

𝜁
(𝑖 )
ℓ
+ ⟨𝑥 ( 𝑗 )

ℓ
, 𝑦
(𝑖 )
ℓ
⟩
)

=

𝑄∑︁
𝑖, 𝑗=1

𝛼 (𝑖 ) ˆ𝛽 ( 𝑗 ) · 𝑐𝑖, 𝑗 · ⟨𝑥 ( 𝑗 ) , 𝑦 (𝑖 ) ⟩

𝑝 is the zero polynomial when all (𝑖, 𝑗) inner products are
zero, which can be known by checking if (𝑖, 𝑗) → 0 in Cip.
Now suppose that for some 𝑖, 𝑗 ∈ [𝑄] the polynomial 𝑓𝑖, 𝑗
contains at least one term. Then we claim that 𝑓𝑖, 𝑗 cannot

be the identically zero polynomial over the formal vari-

ables { ˆ𝑏ℓ,𝑘,𝑚 }ℓ∈[𝜎 ],𝑘,𝑚∈[𝑁 ] , irrespective of the adversary’s
choice of admissible queries. We refer the reader to the orig-

inal work [12, Section 3] for a detailed proof of this claim.

Then by the Schwartz-Zippel lemma, 𝑝 evaluates to non-zero

with overwhelming probability when 𝑓𝑖, 𝑗 contains at least

one term.

D PROOF OF THEOREM 2
The correctness of the scheme follows from the correctness of the

underlying IPE scheme. Assume there exists 𝑥𝑖 ∈ 𝑋 , 𝑖 ∈ [1, ℓ], such
that 𝑓𝑦,𝑡 (𝑥𝑖 ) = 1. That is D(𝑦, 𝑥𝑖 ) ≤ 𝑡 with D(𝑦, 𝑥𝑖 ) the Hamming

distance between vectors 𝑦 and 𝑥𝑖 . Then there exists a unique

tk𝑗 ∈ 𝑄𝑦,𝑡 such that 𝑏 𝑗 ← IPE.Decrypt(pp, tk𝑗 , ct𝑖 ) and 𝑏 = 1 with

overwhelming probability by the correctness of the IPE scheme.

Now assume that for some 𝑥𝑖 ∈ 𝑋 , 𝑖 ∈ [1, ℓ], we have 𝑓𝑦,𝑡 (𝑥𝑖 ) = 0.

Then for all tk𝑗 ∈ 𝑄𝑦,𝑡 , 𝑏 𝑗 ← IPE.Decrypt(pp, tk𝑗 , ct𝑖 ) and 𝑏 𝑗 = 1

with negligible probability. Then considering the worst case where

either D(𝑦, 𝑥ℓ ) = 𝑡 or for all 𝑥𝑖 ∈ 𝑋 , 𝑓𝑦,𝑡 (𝑥𝑖 ) = 0, we have:

Pr

[
PSE.Search(pp, 𝑄𝑦,𝑡 , 𝐼𝑋 ) = 𝐽𝑋,𝑦,𝑡

]
≥ 1 − ℓ (𝑡 + 1) × Pr

[
IPE.Decrypt(pp,tk𝑗 ,ct𝑖 )

≠(D (𝑥𝑖 ,𝑦)
?

=𝑑 𝑗 )

]
≥ 1 − ℓ (𝑡 + 1) × negl(𝜆).

We now prove the security of the construction. Let APSE be a PPT

adversary for the experiment ExpPSE
𝐼𝑁𝐷

and CIPE be an challenger

for ExpIPE
𝐼𝑁𝐷

. We build a PPT adversary AIPE for the experiment

ExpIPE
𝐼𝑁𝐷

as follows:

(1) AIPE receives pp from CIPE and forwards it to APSE.

(2) AIPE receives two𝑚-query histories History(0) ,History(1)

from APSE where History(𝛽 ) = (𝑋 (𝛽 ) , 𝐹 (𝛽 ) ) for 𝛽 ∈ {0, 1}.
(3) For each 𝑥

(𝛽 )
𝑖
∈ 𝑋 (𝛽 ) , 𝑖 ∈ [1, ℓ],AIPE encodes it as 𝑥

(𝛽 )∗
𝑖

∈
{-1, 1}𝑛 and creates the query 𝑆𝑖 = (𝑥 (0)∗𝑖

| | -1, 𝑥 (1)∗
𝑖
| | -1).

(4) AIPE sets 𝑆 = 𝑆1, · · · , 𝑆ℓ .
(5) For each 𝑓

(𝛽 )
𝑗
∈ 𝐹 (𝛽 ) , 𝑗 ∈ [1,𝑚]:

(a) AIPE extracts a vector 𝑦
(𝛽 )
𝑗
∈ Z𝑛𝑞 and 𝑡 ∈ N.

(b) AIPE encodes𝑦
(𝛽 )
𝑗

as𝑦
(𝛽 )∗
𝑗

∈ {-1, 1}𝑛 and creates𝐷
(0)
𝑗

=

(𝑑0, · · · , 𝑑𝑡 ) such that 𝑑𝑘 = 𝑛 − 2𝑘 with 0 ≤ 𝑘 ≤ 𝑡 .

(c) AIPE creates 𝐷
(0)∗
𝑗

by reordering the elements in 𝐷
(0)
𝑗

such that for all 𝑘 ∈ [0, 𝑡] and 𝑑 (0)
𝑘
∈ 𝐷 (0)∗

𝑗
, 𝑑
(1)
𝑘
∈ 𝐷 (1)

𝑗

we have

(
⟨𝑥 (0)

𝑖
, 𝑦
(0)
𝑗
⟩ ?

= 𝑑
(0)
𝑘

)
=

(
⟨𝑥 (1)

𝑖
, 𝑦
(1)
𝑗
⟩ ?

= 𝑑
(1)
𝑘

)
.

(AIPE can always find a permutation to make this last

condition by the admissibility requirement.)

(d) AIPE samples a random permutation𝜓 𝑗 : [0, 𝑡] → [0, 𝑡].
(e) For 0 ≤ 𝑘 ≤ 𝑡 , AIPE creates 𝑦

(𝛽 )∗
𝑗
| | 𝑑 (𝛽 )

𝑘
with 𝛽 ∈ {0, 1},

𝑑
(0)
𝑘
∈ 𝐷 (0)∗

𝑗
and 𝑑

(1)
𝑘
∈ 𝐷 (1)

𝑗
. Then AIPE computes

𝑅
(𝛽 )
𝑗

= 𝜓 𝑗

(
𝑦
(𝛽 )∗
𝑗
| | 𝑑 (𝛽 )

0
, · · · , 𝑦 (𝛽 )∗

𝑗
| | 𝑑 (𝛽 )𝑡

)
and sets 𝑅 𝑗 = (𝑅 (0)𝑗

, 𝑅
(1)
𝑗
).

(f) AIPE sets 𝑅 = 𝑅1, · · · , 𝑅𝑚 .

(6) AIPE sends the token generation queries 𝑅 and encryption

queries 𝑆 to CIPE and receives back a set of tokens 𝑇 (𝛽 ) =

tk(𝛽 )
1,0

, · · · , tk(𝛽 )𝑚,𝑡 and a set of encrypted keywords 𝐶 (𝛽 ) =

ct(𝛽 )
1

, · · · , ct(𝛽 )
ℓ

such that

tk(𝛽 )
𝑗,𝑘
← IPE.TokGen(sk, 𝑦 (𝛽 )∗

𝑗
| | 𝑑 (𝛽 )

𝑘
)

ct(𝛽 )
𝑖
← IPE.Encrypt(sk, 𝑥 (𝛽 )∗

𝑖
| | -1)

for 𝑖 ∈ [1, ℓ], 𝑗 ∈ [1,𝑚], 𝑘 ∈ [0, 𝑡] and 𝛽 ∈ {0, 1}. AIPE for-

wards𝑇 (𝛽 ) and𝐶 (𝛽 ) toAPSE, respectively as the encrypted

index 𝐼 (𝛽 ) and the list of queries 𝑄 (𝛽 ) .
(7) AIPE receives 𝛽′ ∈ {0, 1} from APSE and returns it.

Since the number of token generation queries,𝑚 × 𝑡 , sent by AIPE
remains polynomial in the security parameter, the advantage of

APSE is

Adv
ExpPSE

𝐼𝑁𝐷

APSE
= Adv

ExpIPE
𝐼𝑁𝐷

AIPE

This completes the proof of Theorem 2.
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