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ABSTRACT

Biometric databases collect people’s information and allow users to
perform proximity searches (finding all records within a bounded
distance of the query point) with few cryptographic protections.
This work studies proximity searchable encryption applied to the
iris biometric.

Prior work proposed inner product functional encryption as a
technique to build proximity biometric databases (Kim et al., SCN
2018). This is because binary Hamming distance is computable
using an inner product. This work identifies and closes two gaps to
using inner product encryption for biometric search:

(1) Biometrics naturally use long vectors often with thousands

of bits. Many inner product encryption schemes generate a
random matrix whose dimension scales with vector size and
have to invert this matrix. As a result, setup is not feasible
on commodity hardware unless we reduce the dimension
of the vectors. We explore state of the art techniques to
reduce the dimension of the iris biometric and show that all
known techniques harm the accuracy of the resulting system.
That is, for small vector sizes multiple unrelated biometrics
are returned in the search. For length 64 vectors, at a 90%
probability of the searched biometric being returned, 10% of
stored records are erroneously returned on average.
Rather than changing the feature extractor, we introduce a
new cryptographic technique that allows one to generate sev-
eral smaller matrices. For vectors of length 1024 this reduces
time to run setup from 23 days to 4 minutes. At this vector
length, for the same 90% probability of the searched biomet-
ric being returned, .02% of stored records are erroneously
returned on average.

(2) Prior inner product approaches leak distance between the
query and all stored records. We refer to these as distance-
revealing. We show a natural construction from function
hiding, secret-key, predicate, inner product encryption (Shen,
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Shi, and Waters, TCC 2009). Our construction only leaks
access patterns, and which returned records are the same
distance from the query. We refer to this scheme as distance-
hiding.
We implement and benchmark one distance-revealing and one
distance-hiding scheme. The distance-revealing scheme can search
a small (hundreds) database in 4 minutes while the distance-hiding
scheme is not yet practical, requiring 3.5 hours.
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1 INTRODUCTION

Biometrics are measurements of physical phenomena of the human
body. We focus on the iris biometric in this work. Iris data, like all
biometric data is noisy, which means that two readings from the
same iris are unlikely to be identical. Feature extractors convert such
physical phenomena to a digital representation that is more stable
but still noisy. The output of feature extractors is called a template.
Biometric databases are used for both security critical applications
(such as access control) and privacy critical applications (such as
immigration). Let D be some distance metric and ¢ be some distance
threshold. Applications building on biometric templates require:

(1) Low False Reject Rate (FRR) templates from the same
biometric are within distance t with high probability, and

(2) Low False Accept Rate (FAR) templates from two different
biometrics are within distance ¢ with low probability.

Learning stored biometric templates enables an attacker to re-
verse this value into a convincing biometric [1-3], enabling pre-
sentation attacks [4-6] that can compromise users’ accounts and
devices. Since biometrics cannot be updated, such a compromise
lasts a lifetime.
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Searchable encryption [7-10] enables servers to be queried with-
out decrypting the data. For a distance metric O, proximity search-
able encryption returns all records that are within distance ¢. That
is, for a dataset xi, ..., x; for a query y, one should return all x;
such that D(x;,y) < t. Since biometric data is inherently noisy,
proximity searchable encryption is a key tool to secure biometric
databases while allowing queries.

Iris feature extractors usually produce binary vectors that are
similar in Hamming distance! (fingerprints are usually compared
by set difference, faces with L2 norm). Kim et al. proposed to use
secret-key, function-hiding inner product encryption or IPEg, g for
encrypted comparison of binary Hamming biometrics [11, 12].
IPEgy sk allows computation of inner product without revealing
underlying values. Inner product of vectors x, y in {1, 1}" encodes
Hamming distance:

D(x,y) = (n—(x,y))/2.

More formally the functionality of IPE¢, ¢ is as follows: one gener-
ates sk « Setup(-) and has two algorithms cty < Encrypt(x, sk)
and tk, « TokGen(y,sk) such that one can use Decrypt (with-
out sk) to learn {x,y). That is, Decrypt(cty,tky) = (x,y). One
can use IPEg, g to build proximity search by encrypting ¢; «
Encrypt(x;, sk) and providing all ¢; to the database server (addi-
tional data can be associated with x; using traditional encryption).
For queries y the client provides tky < TokGen(y, sk) to the server.
The server can compute the inner product between the query and
each stored record and should return all records with the appropri-
ate inner product.

We identify and close two gaps in the use of inner product en-
cryption to build proximity searchable encryption for the iris.

1.1 Our Contribution

Multi Random Projection Inner Product Encryption. Daugman’s
seminal iris feature extractor [13, 14] produces a vector of length
n = 1024, the open source OSIRIS [15] system uses n = 32768
by default, and recent neural network feature extractors [16] use
n = 2048.

The most efficient IPE¢, g schemes rely on dual pairing vector
spaces [17] in bilinear groups. The secret key for such constructions
is a random matrix A € IFZX" and its inverse A™'; ¢ is a large prime
that is the order of the bilinear pairing. Setup for the scheme must
invert a random A € FX",

This operation is prohibitive for n > 1000, as is the case for iris
feature extractors. For the most efficient known scheme which we
call Random Projection with Check or RProjC [11], the authors’ par-
allel implementation of key generation in FLINT [18] (on a modern
16 core machine), generating keys for n = 240, took roughly 3.5
hours. In our experiments, Setup time grows cubicly as expected.?
Through interpolation, we estimate the time to generate keys for
n = 1024 at 23 days.

While one can train feature extractors with smaller n, we show
(in Section 3) that known techniques harm the quality of the bio-
metric features, making the irises of different people appear similar.

!Note that real-valued vectors for the Euclidean distance can be converted to binary
vectors for the Hamming distance using mean or median thresholding, where values
above the mean/median are encoded as 1 and values below as 0.

2We have not evaluated sub-cubic matrix inversion in finite fields.
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The false accept vs false reject rate tradeoff degrades, leaving the
application with the choice of either not matching readings of the
same iris or matching readings of difference individuals’ irises. Both
choices have consequences for the resulting application.

In Section 3.1 and Table 3, we show that for a small size dataset
of 356 individuals using a feature extractor with n = 64, a distance ¢
that enables a 90% true accept rate searching for an individual in the
dataset returns 40 incorrect biometrics with an average query! By
comparison when n = 1024, queries return .06 incorrect biometrics
on average. Datasets with more individuals are not available; we
expect this rate to be consistent across dataset sizes.

Section 4 introduces a new transform for inner product encryp-
tion that generates multiple matrices Ay, ..., Ay and their inverses
during key generation where each A; is an (N +1) X (N + 1) matrix,
where N = [n/o], instead of a single large pair A, A=, To hide
partial information, both x and y are augmented when they are
split into component vectors:

x; = 1|| Xix N> o XisN+(N=1)
Yi = Gi 1| YieNs oo Yie N4 (N —1)

fori = 0,...,0 — 1 and {y, ..., {s—1 is a linear secret sharing of 0
that is chosen in TokGen. The intuition is that any collection of
o — 1 or fewer components represents a random group element, so
one cannot learn information about inner products between vector
components. We show security of two prior IPE schemes with multi
random projection (one in Section 4 and one in the full version of
this work [19]).

We implemented two versions of proximity search building
on this form of IPEg, g. The first is a direct application of the
RProjC [11] scheme and the second is our new multi random projec-
tion version, called Multi Random Projection with Check or MRProjC.
To benchmark, we encrypted a single reading of each individual
(£ = 356) from the ND0405 dataset [20, 21] which is a superset of
the NIST Iris Evaluation Challenge [22]. Queries are drawn from
other readings in the ND0405 dataset. This performance is sum-
marized in Table 1 with search taking approximately 4 minutes.
Our multi random projection technique reduces time for Setup by
four orders of magnitude with minimal impact on the timings of
the rest of the algorithms. This multi random projection technique
makes proximity searchable encryption on a 350 biometric dataset
feasible.

Distance Hiding Proximity Search. By design, proximity search
from IPEg, ¢ for any searched value y, allows the server to compute
the distance [11] between y and all stored records.® This establishes
a geometry on the space of stored records. If the server has side in-
formation on the stored records x;, they may be able to reconstruct
global geometry from the local geometry revealed by pairwise
distances [25, 26]. While we are not aware of any leakage abuse
attacks directly against proximity search, there are attacks against
k-nearest neighbor databases [27, 28].4 Distance allows one to eas-
ily compute the k-nearest points (with some error) so attacks that

3Some prior work allows computation of approximate distance [23] using locality
sensitive hashes [24], allowing the server to see how many hashes match, the number
of matches approximates distance.

“Here we focus on attacks that apply to proximity searchable encryption. There is a rich
history of leakage abuse attacks against different types of searchable encryption [27-
37].
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can exploit this leakage apply. Like most leakage abuse attacks,
the efficacy of these attacks depends on what the adversary knows
about the stored data. We discuss these attacks more in Section 7.

For applications where such leakage is unacceptable (or the
adversary has side information on the encrypted data), we show a
transform from a predicate version of inner product encryption to
proximity search that does not reveal pairwise distance. A predicate
IPE scheme produces ciphertexts cty and tokens tk, which allow
one to effectively check if (x, y) = 0 (instead of revealing the inner
product). Barbosa et al. [38] recently proposed such a scheme that is
a modification of Kim et al’s construction [11]. Their construction
simply removes the group elements that allow one to check the
inner product, so we call this Random Projection or RProj. We call
such a scheme an IPE¢p sk pred scheme. IPE¢p s pred allows one to
test if the inner product is equal to some value i as follows: add an
n+ 1" element as —1 to x, denoted x’, and create y; = y||i. Then,
'syiy = (x| -Ly i) =0) & ({(x,y) =1i). One can check all
values in a set 7 by generating a token tky, for each i € 1. Setting
I ={n-2%0,....,n—2xt}, yields a proximity check (these tokens
are permuted before being sent to the server).

We call this construction Multi Random Projection or MRProj. The
simplicity and generality of this construction is an advantage, it im-
mediately benefits from efficiency improvements in inner product
encryption and can be built from multiple computational assump-
tions. However, the size of tk, and search time grow linearly with
t. For the iris ¢ is usually around .3n.

Since the server can see if the same tkyi matches different records,
when two records are both within distance ¢, the server learns if
they match the same distance (but not the specific distance). Thus,
the resulting proximity scheme leaks two pieces of information:

Access Pattern [29, 30] The set of records returned by the
query. If x; and x; are both returned by a query it must be
the case that D(x;, xj) < 2t. Preventing attacks that only
require access pattern usually requires oblivious RAM [39]
and its high storage and communication overhead.

Distance Equality Leakage For a database x, ..., x; for a
searched value y if there are multiple records x;, x; such
that D(x;,y) < t and D(xj,y) < t our scheme additionally
reveals if D(x;,y) = D(xj,y).

No information is leaked about data that is not returned (beyond
that it was not returned). Biometrics are well spread, so one does
not expect readings of two biometrics to be close to a query. As
mentioned, the vector size has a large impact on the number of im-
proper records that will be returned by a query (recall for n = 64, 40
improper records are returned, when n = 1024, .06 improper records
are returned). Since MRProj only leaks when multiple records are
returned it is critical to ensure an accurate system, underscoring
the importance of our multi random projection approach enabling
Setup for large n where high correctness is possible.

In RProjC and MRProjC, the server learns the pairwise distance
between the query y and all records x;. So in that setting, n only
affects correctness, not security.

The search complexity of MRProj is roughly a multiplicative of
t ~ .3n slower than for MRProjC. See the difference in concrete
timing in Table 1. For n 1024 this corresponds to a t 307,
the measured multiplicative overhead is only 52.5. Closing this
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performance gap is the main open problem resulting from this
work; MRProj is not fast enough. In Section 8 we present avenues
for improving search efficiency.

Organization The rest of this work is organized as follows: Sec-
tion 2 describes mathematical and cryptographic preliminaries,
Section 3 describes the n vs accuracy tradeoff for the iris and its
impact on security, Section 4 introduces the multi random projec-
tion technique, Section 5 shows that IPEf, sk preq suffices to build
proximity search, Section 6 discusses our implementation, Section 7
reviews further related work and Section 8 concludes.

2 PRELIMINARIES

Let A be the security parameter throughout the paper. We use
poly(4) and negl(A) to denote unspecified functions that are poly-
nomial and negligible in A, respectively. For some n € N, [n]

denotes the set {1,---,n}. Let x & S denote sampling x uni-
formly at random from the finite set S. Let ¢ = q(1) € N be a
prime, then G4 denotes a cyclic group of order g. Let x denote
a vector over Zg such that x (x1,-++,%xn) € Zg, the dimen-
sion of vectors should be apparent from context. Consider vectors
x = (x1,---,xp) and y = (y1,- - ,yn), their inner-product is de-
noted by (x,y) = X1, x;y;. Let X be a matrix, then XT denotes its
transpose.

Hamming distance is defined as the distance between the bit
vectors x and y of length n: D(x,y) = [{i| x; # y;}|. We note that if
a vector over {0, 1} is encoded as x41; = 1ifx; = 1 and x41,; = -1
if x; = 0 then it is true that (x41,y+1) = n — 2D(x,y).

DEFINITION 1 (ASYMMETRIC BILINEAR GROUP). Suppose G1, Ga,
and Gr are three groups (respectively) of prime order q with generators
g1 € Gy, g2 € Gy and gr € Gr respectively. We denote a value x
encoded in Gy with either g or [x]1, we denote values encoded in
Gy and G similarly. Let e : G; X Gy — Gt be a non-degenerate
(i.e. e(g1,92) # 1) bilinear pairing operation such that for all x,y €
Zg, e([x]1, [yl2) = e(g1,92)*Y. We assume the group operations in
G1, Gy and G and the pairing operation e are efficiently computable,
then (G1, Gy, Gr, q, €) defines an asymmetric bilinear group.

Let Gpg be an algorithm that takes input 1" and outputs a de-
scription of an asymmetric bilinear groups (G1, Gy, GT, ¢, €) with
security parameter A.

2.1 Inner Product Encryption

Secret-key predicate encryption with function privacy supporting
inner products queries was first proposed by Shen et al. [40]. This
primitive allows one to check if the inner product between vectors
is zero or not. The scheme they presented is both attribute and
function hiding, meaning that an adversary running the decryp-
tion algorithm gains no knowledge on either the attribute or the
predicate.

DEFINITION 2 (SECRET KEY PREDICATE ENCRYPTION). Let A € N
be the security parameter, M be the set of attributes and F be a
set of predicates. We define PE = (PE.Setup, PE.Encrypt, PE.TokGen,
PE.Decrypt), a secret-key predicate encryption scheme, as follows:
PE.Setup(lA) — (sk, pp), PE.Encrypt(sk,x) — cty,

PE.TokGen(sk, f) — tkg, and PE.Decrypt(pp, tks, ctx) — b.
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Underlying IPE Type Multi Random Proj | Distance Operation Time
Scheme Name | IPE ‘ fh ‘ sk ‘ pred ‘ Applied ‘ Hiding Setup ‘ BuildIndex ‘ Trapdoor ‘ Search
RProjC [11] arane - - 2% 105 10.8 07 235
MRProjC [11] v |V - v - 268 10.8 .08 241
MRProj [38] V|V v v v 268 10.8 22.4 | 12600

Table 1: Time (in seconds) for operations with ¢ = 356 records stored at n = 1024. All algorithms are naturally parallelizable.
Timing for the single base scheme is interpolated from smaller vector lengths. BuildIndex encrypts the dataset at initialization
time, Trapdoor generates a search token, and Search finds the resulting indices. fh, sk and pred indicate that the underlying IPE
scheme is respectively a function-hiding, secret key and/or predicate only scheme. Distance Hiding indicates that the scheme
does not reveal the distance between the stored value and the query.

(1) Draws i {0,1},
(2) Computes (sk, pp) « PE.Setup(1%), sends pp to A,
(3) For 1 <i < s, A chooses xi(o),xi(l) eM,
(4) For 1 < j <r, A chooses fj(o),fj(l) €F,
(5) Denote R := (xl(o),xfl)) AR (xﬁo),xﬁl)),
— (£00) £(1) (0) £(1)

oo (10, 10). (1 4

(6) A sends Rand S to C,

(7) A loses the game if R and S are not admissible,
(8) A receives

cP) .= {cti(ﬁ) «— PE.Encrypt (sk, xiw)) o

7B — {tk](,ﬁ) «— PE.TokGen (Sk,fj(ﬁ)) j‘:r

(9) A returns p’ € {0, 1},
(10) Her advantage is

PE
AdV;plNl) = ’ Pr[ﬂ(ll’T(O),C(O)) -1

—Pr[AQYTD, ey = 1)

Figure 1: Definition of Expfﬁ , for predicate encryption.

We require the scheme to have the following properties:
Correctness: Foranyx e M,f € F,

cty < PE.Encrypt(skx)
tkg < PE.TokGen(sk.f)
b PE.Decrypt(pp,tks,cty)

Pr [f(x) =b } > 1 - negl(A).

Security of admissible queries: Letr = poly(A) ands = poly(A).
Any PPT adversary A has only negl(A) advantage in the Expf]f—]D
game (defined in Figure 1). Token and encryption queries must meet

the following admissibility requirements, Vj € [1,r],Vi € [1,s],
(0) ,(0)y _ (1) (1)
PE.Decrypt(pp, tkj ,ct;") = PE.Decrypt(pp, tkj ety ).

The above definition is called full security in the language of Shen,
Shi, and Waters [40]. Note that this definition is selective (not
adaptive), as the adversary specifies two sets of plaintexts and
functions apriori. The relevant primitive for us is IPEgp sk pred Which
uses the above definition restricted to the class of predicates ¥ =
{fylye Zg} such that for all vectors x € Zg, fy(x) = 1 when
(x,y) =0, fy+(x) = 0 otherwise.

We use (IPE.Setup, IPE.Encrypt, IPE.TokGen, IPE.Decrypt) to refer
to the corresponding tuple of algorithms.
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2.2 Proximity searchable encryption

In this section we define proximity searchable encryption (PSE), a
variant of searchable encryption that supports proximity queries.

DEFINITION 3 (HISTORY). Let X € M be a list of keywords drawn
from space M, let ¥ be a class of predicates over M. An m-query
history over ‘W is a tuple History = (X, F), with F = (f1,---, fm) a
list of m predicates, f; € F.

DEFINITION 4 (ACCESS PATTERN). Let X € M bea list of keywords.
The access pattern induced by an m-query history History = (X, F)
is the tuple AccPatt( History) = (fi(X),- -, fm(X))

DEFINITION 5 (DISTANCE EQUALITY). Let History(o), History(l)

?
be m-query histories for predicates of the type fy;(x) = (D(x,y) <
1). Let, DisEq(History®), History(1)) = 1 if and only if for each j it
is true that

{(i, k)

is the empty set.

(D(x,f‘”,yj-‘”>=D<x£°>,y}°)>Az)(x§”,y§-”)#D(x;”,y}”))}

\%
Dy 2Dy Dy =D ("))

DEFINITION 6 (PROXIMITY SEARCHABLE ENCRYPTION). Let

o A € N be the security parameter,

o DB = (M,---,My) be a database of size ¢,

o Keywords X = (x1,- - ,xy), such that x; € Zf]’ relates to M;,

o F ={fyrly €Zg t € N} be afamily of predicates such that,

for a keywordx € Zg, fy:(x) = 1if D(x,y) < t, 0 otherwise.

The algorithms PSE = (PSE.Setup, PSE.BuildIndex, PSE.Trapdoor,
PSE.Search) defines a proximity searchable encryption scheme:
PSE,Setup(l’l) — (sk, pp), PSE.BuildIndex(sk, X) — Ix,
PSE.Trapdoor(sk, fy,t) — tkyy, and PSE.Search(pp, Qy,t,Ix) —
Jx,y,t- We require the scheme to have the following properties:

Correctness Define Jx,+ = {ilfy:(xi) = 1,x; € X}. PSE is correct
if forall X and f;; € F:

I < PSE.BuildIndex(sk,X)

Qy,t —PSE.Trapdoor(sk.fy:) | > 1 — negl(2).
J' —PSE.Search(pp,Qy,+.Ix)

Pr []’ = Jx.y.t

Security for Admissible Queries Any PPT adversary A has only
negl(X) advantage in the experiment Expﬁf]ED defined in Figure 2, for
¢ =poly(A) and m = poly(A).
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(1) Draws f & {0,1),

(2) Computes (sk, pp) — PSE.Setup(lA) and sends pp to A.
(3) A chooses and outputs History'®), History(1).

(4) A loses the game if

AccPatt(History®)) # AccPatt(History"))
\Y DisEq(History(O), History(l)) =0

(5) A receives 1P) and Q(ﬁ).
(6) A outputs p’ € {0,1}
(7) Her advantage in the game is:

PSE
AdvVPINe () = | Pr[ A4 1@, 0©) = 1]

—Pr[ACA T, W)y = 1]

PSE

Figure 2: Definition of Expy,.

3 IRIS STATISTICS AND LEAKAGE

This section introduces iris feature extractors and shows that re-
ducing the length of the feature extractor harms the uniqueness of
the resulting biometric. Reduced uniqueness harms both the cor-
rectness (because the wrong set of irises is returned) and security
of the MRProj construction (because the server learns information
about returned irises). Daugman [13, 14] introduced the seminal iris
processing pipeline. This pipeline assumes a near infrared camera.
Iris images in near infrared are believed to be independent from
the visible light pattern; the near-infrared iris pattern is epigenetic,
irises of identical twins are believed to be independent [14, 41].
Traditional iris recognition consists of three phases:

Segmentation takes the image and identifies which pixels
should be included as part of the iris. This produces a {0, 1}
matrix of the same size as the input image with 1s corre-
sponding to iris pixels.

Normalization takes the variable size set of iris pixels and
maps them to a fixed size rectangular array. This can roughly
be thought of as unrolling the iris.

Feature Extraction transforms the rectangular array into a
fixed number of features. In Daugman’s original work this
consisted of convolving small areas of the rectangle with a 2D
wavelet. Modern feature extractors are usually convolutional
neural networks.

In identification systems the tradeoff is between FRR and FAR. FRR
is how frequently readings of the same biometric are regarded as
different. FAR is how frequently readings of different biometrics
are regarded as the same. As described above, when one wishes to
match a biometric y against a database one considers matches as the
set {x;|D(x;,y) < t} for some metric D and distance parameter ¢.
Selecting a small ¢ increases FRR and reduces FAR. Before investi-
gating the dependence on feature vector length and the FRR/FAR
tradeoff we introduce the feature extractor and dataset used in this
analysis.

Feature Extractor For the feature extractor, we use the recent
pipeline called ThirdEye [16, 42], which is publicly available [43].
The software produces a 1024 dimensional real valued feature vector.
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We convert this to a binary vector by setting f; = 1if f; > Exp[fi]
where the Exp[ f;] is the expectation of the individual feature, oth-
erwise f; = 0. We train the feature extractor as specified in [16].

Biometric Database There are many iris datasets collected across
a variety of conditions. In this work we use the NotreDame 0405
dataset [20, 21] which is a superset of the NIST Iris Evaluation
Challenge [22]. This dataset consists of images from 356 biomet-
rics (we consider left and right eyes as separate biometrics) with
64964 images in total. (See Appendix B for similar results with the
IITD dataset [44].) Figure 3(a) shows the histograms for the testing
portions of the feature extractor outputs. The blue histogram con-
tains comparisons between different readings of the same biometric
while the red histogram contains comparisons between different
biometrics. Let t” = /1024 be the fractional Hamming distance, the
FRR is the fraction of the blue histogram to the right of ¢’ and the
FAR is the fraction of the red histogram to the left of ¢’. There is
overlap between the red and blue histogram indicating that there
is a tradeoff between FRR and FAR.

3.1 Performance of Biometric Identification
with Small Dimension

The efficiency of IPE based proximity search critically depends
on the number of features n (see Table 4). In our experiments we
estimate Setup for n = 1024 for the schemes of Kim et al. [11] and
Barbosa et al. [38] to take 23 days on a modern server machine (see
details in Section 6). It is tempting to consider statistical methods
to produce feature vectors of reduced size. We show this comes at
a cost to the quality of the resulting feature vectors. This motivates
our approach to reduce the complexity of Setup in Section 4. Our
analysis consists of two major parts:

(1) We compare different mechanisms for reducing the size of
feature vectors using n = 64 as the target dimension.

(2) Using the best feature reduction mechanism we compare
the FRR/FAR tradeoff for n < 1024, showing direct impacts
for the correctness and security of the resulting biometric
search.

3.1.1 Dimensionality Reduction Method. We consider four different
mechanisms for dimension reduction and consider their impact on
FRR/FAR. For all techniques, the most important phenomena is
that variance of Different comparisons increases as the sample size
decreases.’> Compare Figure 3(a) and Figure 3(b). This makes the
tails of Same and Different wider leading to worse identification.
The four mechanisms we consider are:®

Random Sample Select a random subset of positions of size
64 and use this as the feature extractor. We denote this tech-
nique by R-64 (for random).

Error Rate Minimization Hollingsworth et al. [46] and Bolle
etal. [47] propose the concept of “fragile bits” which are more
likely to be susceptible to bit flips. Their work is based on the
Gabor based feature extractor (described at the beginning of

5This is consistent with previous observations that sampling from the iris red histogram
behaves similarly to a binomial distribution where the number of trials is proportional
the included entropy of the iris [45].

®For all experiments we computed the mechanism four times and report the average
in Table 2.
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Figure 3: Hamming distance distribution for images from the same iris in blue, and different irises in red. Histograms are
produced using ThirdEye [16]. Resulting histograms for the ND 0405 dataset. Figure 3(a) shows the histogram when n = 1024
with a small overlap between distances comparisons of the same iris and different irises. This overlaps is increased substantially
when n = 64 in in Figure 3b). Figure 3b) is produced using the E method.

this section) while ThirdEye [16] is a convolutional neural
network.

We select the 64 bits which have the least probability of
flipping. Results for this approach are shown in Table 2 and
denoted by S-64 (for stable).

Surprisingly, this approach is worse than random sampling.
We believe this approach to be appropriate for the Gabor
based feature extractor since it produces large number of
noisy features due to noise in different readings of an iris.
This is in contrast to our feature extractor which outputs a
succinct feature vector where the CNN tries to make indi-
viduals features independent.

Error Delta Maximization This approach uses bits which
maximize the difference between the means of the intra
and inter class distributions. That is, these are bits where
the difference between intra class and inter class error is
the highest. That is, we select the bits that maximize the
following difference:

Pr

max Pr
i x,y«—Same

i \x,y<Different

[xi #yi] = [xi # yil
The intuition is that bits are the most useful as they maximize
the difference in probability of error between the same and
different comparisons. The hope is to overcome the weakness
of the prior approach which did not consider the entropy
of bits across different biometrics. The top 64 bits are used.
This approach is denoted by E-64 (for error). This approach
improves over both R and S techniques.

Training Network Lastly, we train the ThirdEye architecture
[16] from scratch to output a smaller feature vector of size
n = 64 for both datasets. Essentially we train a new fea-
ture extractor on the same training data to reduce dimen-
sions. The feature extractor remains the same but is now
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FRR False Accept Rate

Size | 0] .01].02].03].04].05]|.06].07].08].09].10]|
1024 [ 5003 02]or]or[.otfor[or]o1] of o
R-64 | 99 | 38 | .29 | 24 | 22 | 18 | .17 | .16 | .14 | 13 | .12
S-64 | 1|.61| .61 | 51|.41|.41| 41| 3232|3226
E-64 | 97 | 30 | 24 | .18 | .14 | .14 | 10 | .10 | .10 | .07 | .07
T-64 | 96 | 27 | 16 | .13 | 13 | .09 | .09 | .06 | .06 | .06 | .04

Table 2: FRR for different output sizes and probabilities of
leakage for the ND0405 datasets. Summary of false reject
rates for queries drawn from Same distribution. We vary a
threshold ¢, report the false reject rate (FRR) when allowing
for the corresponding FAR. The original n = 1024 system is
presented for comparison.

constrained to learn 64 features. This is achieved by chang-
ing the number of neurons in the second last layer of our
convolutional neural network. We can expect this to perform
better than random sampling since the feature extractor is
explicitly learning to classify using 64 features. We use T
(for train) to denote this technique.

Results are summarized in Table 2. The E and T techniques outper-
form the R and S techniques. Going forward we use the E dimen-
sionality reduction technique for the rest of this work because it is
simpler to compute for different vector sizes.

3.1.2  Impact of reducing n. We now show that decreasing n using
the E method hurts the identification quality of the iris biometric.
First we note that an FRR of < .10 requires a distance tolerance
of t > .3n (see the histograms in Figure 3). However, comparisons
between different irises are tightly centered around t = .5n. This
means for a dataset {x; le for most pairs x;, x; there exists some
value x* such that D(x;,x*) < t and D(xj,x*) < t. This means
for most pairs x;, xj, there is some query that will cause them both
to be returned.
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Vector Length
ACount ‘ 64 | 96 | 128 | 256 | 384 | 512 | 768 | 1024 |
Avg. [ 408 (345130 [ 6.03 386|103 | 53| .06
o? ‘ .75‘ 74| 42 .23‘ 17 .083‘.076 019

Table 3: Effect of dimensionality reduction on the correctness
and security of the resulting biometric search system. ACount
is the average number of improperly records when searching
for a biometric that is in the dataset. All feature extractors
with n < 1024 use the E method to select features.

The goal of this subsection is to understand behavior on actual
queries. We consider a distribution over x* of different readings
of individuals stored in the dataset to see how frequently multiple
records are returned. Recall that multiple records being returned
impacts the system correctness for both the MRProjC and MRProj
constructions. It additionally affects leakage for MRProj. For these
analysis we consider the ND-0405 dataset with the E mechanism for
reducing the size of a feature vector (see the previous subsection).

We consider correctness of the system at different feature vector
lengths n. We select a random reading of each biometric to represent
the encrypted dataset. We first select a t that yields at most < 10%
FRR (for comparisons of the same iris on the training dataset). We
then use the following procedure:

(1) Initialize matrix C; ; = 0356%356

(2) Pick 7 c {1,....,356} of size 150 randomly.
(3) For eachiin I:
(a) Select 3 random readings of iris i, denoted x} (removing
reading that is encrypted):’

(b) Forall jif D(x},xj) < tand D(x},x;) <tCij=Cij+1

(4) Compute ACount = 333 (2355,

C,"j) /(3 % 150).

The value ACount represents how frequently a record of a different
biometric would be returned by an in use search system. For both
correctness and security considers one desires ACount to be as close
to 0 as possible. We ran this experiment 40 times and report the
mean and standard deviation of ACount in Table 3. As one can see
keeping a vector size of n = 1024 has a three order of magnitude
reduction in the average number of improperly returned records,
underscoring the importance of inner product encryption to work
with large n.

Leakage on readings of the same iris. There are two types of
biometric databases, those which associate a single reading x; of a
biometric with each record r; and those where multiple readings of a
biometric x; 1, ..., X; ;. are associated with a single record. Until now,
we’ve implicitly assumed that the database has only one reading of
a biometric. We now briefly consider the implications of leakage
between readings of the same biometric. That is, x; 1, ..., Xk are
readings from the same biometric and associated with a record r; in
the biometric database. First note that x; o and x; g are likely to be
close together (because readings of the same biometric are similar).

One may able to infer information about x; 1, ..., x; ;. from access
pattern and distance equality leakage. One may be able to learn
the relative positioning of the different readings by which values I
are return by a query y (if it is not all values). Similarly, we expect

"Every iris in the ND0405 dataset has at least 4 readings so this is the maximum number
of queries that will have an equal number of readings from the size 150 subset.
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the adversary to learn distance equality leakage for the entire set
Xi,1, .- X k. Both of these leakage profiles allow an adversary to
construct geometry of a biometric’s different readings. This may
allow the adversary to determine the type of noise present in that
individual’s biometric. It may be possible to use noise rates to draw
conclusions about sensitive attributes about the corresponding per-
son. Biometric systems frequently demonstrate systemic bias [48].
As one example most datasets draw from volunteer undergraduates
students. Systems accuracy varies based on sensitive attributes such
as gender, race, and age (see [48, Table 1]). Thus one may be able
to infer sensitive attributes based on the relative size of |7 |/k.

If one stores multiple readings, it seems important to use cryp-
tographic techniques to hide such leakage. A potential solution is
to instead store a single reading that is the average of the multiple
readings [49] and make other values associated data that are not
searchable.

4 MULTI RANDOM PROJECTION IPE

As described in the Introduction, we show a general technique
improving Setup efficiency for IPE schemes where ciphertexts and
tokens are projected into dual vector spaces by a pair of matrices
A, A~1. We call this multi random projection technique. The key
idea is to create multiple pairs of matrices of smaller dimension for
subvectors of the inputs. These independent encodings are then
combined with an additive secret sharing of 0 in the encryption
so that computation with ciphertexts and tokens is only useful
when using all of the components. Without this additional step,
an adversary could discard some subvectors of the inputs and still
learn the inner products of the remaining ones. In this section we
show security of the technique when applied to the RProj scheme
of Barbosa et al. [38, Section 4].3

Construction The construction is in Figure 4. We first argue
correctness and then security. For security we show the scheme
satisfies a stronger simulation based definition of security, as in the
work of Barbosa et al. [38].

Correctness First note that (x,y) = 37_, (x¢, yr), and thus

o A+ T . =r*RT . . (1/
I T et ] ctei]) = gy 7 F et

_ BT (yy)

_ aB YT Serxe,ye)
9r

_ g?ﬂ'<x,y>+aﬁ'2f:1 Qe :g?‘ﬁ-(x,y)

If (x,y) = 0 then H;’zlnﬁ.\ile(tk([i],ct[[i]) = e(g1,92)° = 1, which
is the identity element in Gt and is easily detectible and T «
Decrypt(pp, tk, ct) with probability 1. If {(x, y) # 0, then the proba-
bility that T « Decrypt(pp, tk, ct) is Pr[af - (x,y) = 0] < %

DEFINITION 7 (SIMULATION-BASED SECURITY). Let IPE =
(IPE.Setup, IPE.TokGen, IPE.Encrypt, IPE.Decrypt) be a predicate IPE
scheme over Zg. Then IPE is SIM-secure if for all PPT adversaries

A, there exist a simulator S such that for the experiment Expg;ﬁ/[

E IPE
described in figure 5, the advantage of A (adv;psm) is

| Pr[1 « Realpg 7 (11)] - Pr[1 « Ideal;pg 4 (1%)] | < negl(2).

8Functional encryption for orthogonality (OFE) as defined by Barbosa et al. is equal to
predicate inner product encryption, as defined in this work.
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Setup(ll, n,o):
(1) Sample (G1,Gz, Gr, g, €) < Gapy and randomly sample gen-
erators g1 € G1 and g2 € Ga.
(2) For 1 < ¢ < o, randomly samples an invertible square
matrix By € ZqNXN and sets By = (B;l)T,WithN =[n/o]+
1.
(3) Outputs pp = (G1,Gz,Gr, g, €,n,0) as public parameters
and sk = (g1, g2, {Be, B} }7_,)-
TokGen(pp, sk, y):

(1) Sample a i Zg.

(2) Splits y into o subvectors y; of size [n/c| and pads with
zeroes if needed.

(3) For 1 < ¢ < 0, defines y; = 1| yr and sets
tke=[a- (y;,)T - By |1, a vector in Gj.

(4) Outputs tk = (tky,- - - , tkg).

Encrypt(pp, sk, x):

(1) Samples j & Zg.

(2) Splits x into o subvectors x, of size [n/c], and pads
with zeroes if needed.

(3) For 1 < ¢ < ¢ — 1, samples {; i Zg then sets
{G == 227:_11 QV%

(4) For 1 < ¢ < o defines x; = {¢ || x¢ and sets ct; =
[B- (x{’,)T - B} ]2, a vector in Go.

(5) Outputs ct = (cty,- -, ctg).

Decrypt(pp, tk, ct):

Computes (H?zlﬂfile(tkg [i], cte [i])) and returns T if the

results is equal to 1 € Gr, L otherwise.

Figure 4: Construction of MRProj.

Real|pg, 7 (11)

(sk, pp) « lPE.Setup(l’l)
b — ﬂIPE.TokGen(sk,-),IPE.Encrypt(sk,~)(l)t)

Output b

Idealipg, 7 (1%)

(sk, pp) « lPE.Setup(lA)
b — AS@O) (14
Output b

Figure 5: Definition of experiment Exp'sl;ﬁ,f. ® denotes the
information leakage received by the simulator S such that
(i, j) = fy; (x;) for all i, j.

Kim et. al. [12, Remark 2.5] show that Definition 7 implies Defini-
tion 2 so we argue that the scheme in Figure 4 satisfies Definition 7.

THEOREM 1. In the Generic Group Model for asymmetric bilinear
groups the construction in Figure 4 is a secure IPEgh sk pred scheme
according to Definition 7 for the family of predicates F = {fyly € Zg}

such that for all vectors x € Zy, fy(x) = ({x,y) 2 0).

The proof of Theorem 1 is deferred until Appendix C.

5 BUILDING DISTANCE HIDING PSE

As mentioned in Section 2, Hamming distance can be calculated
using the inner product between the two biometric vectors. As such,
we can use a range of possible inner product values as the distance
threshold.

Predicate function-hiding secret key IPE [40], or IPEgy, sk pred.
allows one to test if the inner product between two vectors is equal
to zero. By appending a value to the first vector and -1 to the second
vector, we can support equality testing for non-zero values. Gener-
ating several tokens or ciphertexts, one per distance in the range,
allows to test if the inner product is below the chosen threshold.
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We show that one can use IPEfp sy pred to construct PSE for Ham-
ming distance’. Ata high level, each keyword is encoded as a {-1, 1}
vector and -1 is appended to it, which in turn is encrypted with
IPEfh, sk pred- Keywords are similarly encoded but this time a dis-
tance from the range is appended to them, and tokens generated as
part of the underlying IPEfp s pred scheme.

CONSTRUCTION 1 (PROXIMITY SEARCHABLE ENCRYPTION). Fix the
security parameter A € N. Let IPEgp g preq = (IPE.Setup, IPE. TokGen,
IPE.Encrypt, IPE.Decrypt) be a predicate function-hiding secret key
IPE scheme overZZ”. Letxj € ZZ and X = (x1,- -, x¢) be the list of
keywords. Let 7 be the set of all predicates such that for any x; € X,
fy,t(xi) = 1if the Hamming distance between x; and the query vector
ye ZZ is less or equal to some chosen threshold t € Zg, fy +(x;) =0
otherwise. Figure 6 is a proximity searchable encryption scheme for
the Hamming distance.

THEOREM 2 (PSE MAIN THEOREM). Let IPEg, sk pred = (IPE.Setup,
IPE.TokGen, IPE.Encrypt, IPE.Decrypt) be an IND-secure function-
hiding inner product predicate encryption scheme over ZZ”. Then
3PSE = (PSE.Setup, PSE.BuildIndex, PSE.Trapdoor, PSE.Search), a
secure proximity searchable encryption scheme for the Hamming

distance, such that for any PPT adversary Apsg for EprPIfIED, there

IPE

exists a PPT adversary Apg for Exp such that for any security

IND’
parameter A € N,
AdVEXPZS\JED — dvEXp}’;\gD
Apse Ape

The proof of Theorem 2 is deferred to Appendix D. Table 4
presents the resulting efficiency of distance hiding PSE schemes
based on different IPE¢p s pred constructions. This table corresponds
to t + 1 tokens with all operations on dimension n + 1.

6 IMPLEMENTATION

This section presents an implementation and an evaluation of the
PSE scheme proposed in this paper. We implemented the MRProj
9Support of addition/deletion of records seems achievable by deleting after search and

inserting new ciphertexts in the database. However this would result in additional
access pattern leakage since these record would be clearly identifiable by the server.



Session 8B: Biometrics and Security

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

PSE.Setup(lA) — (sk, pp):

Run and output (sk, pp) « IPE.Setup(14).

PSE.Trapdoor(sk, fy,:) — Qu.::

(1) For 0 < j <t compute d; = n — 2j,
(2) Set D = (dy, ..., dt),
(3) Sample random permutation x : [0,¢] — [0, t],
(4) Compute D* = 7(D) = {d;,--- ,d; },
(5) Encode yasy * € {-1,1}",
(6) For 0 < j < tcall

tkj « IPE.TokGen(sk, y *|| d;f),
(7) Output Qy = (tko, - -

-, tke).

PSE.BuildIndex(sk, X) — Ix:

(1) For each keyword x; € X,i € {1,---,¢},
encode x;* € {-1,1}",
compute ct; « IPE.Encrypt(sk, x;*[| -1).
(2) Outputs Ix = (ctq, -+, cty).

PSE.Search(pp, Qy.¢, Ix) — Jx,y.r:

(1) Initialize Jx,y,r = 0.
(2) For each ct; € Ix and for each tk; € Qy ¢,
call b; < IPE.Decrypt(pp, tkj, ct;).
Ifbj =1, add i to Jx,y,+, continue to ctj41.
(3) Outputs Jx, s

Figure 6: Construction of proximity search from IPE¢p sy pred-

Underlying IPE scheme

MRProj | RProj [38, Section 4] [38, Section 5] [50] [40]
group order Prime Prime Prime Prime Composite
Setup o((n+1)/0)3 (n+1)° (n+1)° (6n+6)3 an+8
BuildIndex t(n+o+1) t(n+1) t(12n +21) 6f(n+1) £(32n + 36)
Trapdoor (t+1)(n+0+1) (t+1)(n+1) | t+1)(12n+21) | 6(t+1)(n+1) | (t+1)(24n+40)
Search tt+1)(n+o+1) tt+1)(n+1) | £(t+1)(6n+12) | 6£(t+1)(n+1) | £(t+1)(4n+8)
[sk] 2(n+1)%/o+4n+20+6 2(n+1)%+2 24n + 42 60(n +1)° 4n+8
|| t(n+o+1) t(n+1) t(6n+12) 6t(n+1) t(2n+4)
[tky,¢| (t+1)(n+o+1) (t+1)(n+1) | (t+1)(6n+12) | 6(t+1)(n+1) (t+1)(2n+4)

Table 4: PSE scheme efficiency for keywords of size n depending on underlying IPE¢y, sk pred scheme. Upper part of the table
shows number of group or pairing operations per function. Lower part of the table shows number of group elements per
component. The scheme of Shen, Shi, and Waters [40] uses a composite order group whose order is the product of four large
primes. The number 7 is the length of the biometric template, o is the number of bases in the multi random projection scheme,
t is the desired distance tolerance, and ¢ is the total number of records in the database.

construction described in section 4 and a PSE (see section 5) scheme
using it in Python 3. These implementations can be found in a
Github repository [51]. Our IPE implementations uses the Charm [52]
and FLINT [18] libraries for the pairing group operations and finite
field arithmetic in Z4. For comparison purposes, we used the pair-
ing group over the asymmetric curve MNT159, the same as in Kim
et al’s FHIPE implementation [53].

The search, encryption and token generation algorithms were
parallelized. Benchmarking tests for each algorithm were imple-
mented and the number of random projections, the distance thresh-
old and the input vector sizes for these tests can vary. This allowed
us to compare efficiency for different parameters and pinpoint val-
ues that yield a practical and accurate scheme. With a number of
random projections equal to 1, we obtain Setup timings and secret
key size for RProjC. Setting the distance threshold to 0 allows us to
get timings for MRProjC. To be as realistic as possible, we used iris
readings from the ND 0405 as input vectors to the benchmarking
tests.

6.1 Evaluation

We evaluate our implementations on a Linux server with an AMD
Ryzen 9 3950X 16-Core processor and 64GB of RAM. Remember

1012

that the preferred input vector size for correctness is 1024 (as stated
in Section 3).

Timing. We evaluate the timing efficiency of our PSE construc-
tion with and without the multi random projection technique. Ta-
ble 5 reports the timings for all four algorithms of the PSE scheme.
MRProj corresponds to the PSE construction presented in this paper.
RProjC corresponds to Kim et al’s FHIPE construction, MRProjC
corresponds to the same scheme but with the multi random pro-
jection technique applied . In the last column of the timing section
of the table, we report the timing of the Setup algorithm without
this multi random projection construction. During our tests, we
noticed a jump in Setup timings when going from sub-vectors of 40
to 60 group elements, we thus chose o values that yield sub-vectors
lengths of approximately 40. We make three main observations.

(1) Setup and BuildIndex have comparable performance for MR-
Proj and MRProjC (the only difference is adding 1 to under-
lying dimension). However, Trapdoor is substantially slower
for MRProj since it prepares t + 1 tokens, but performance
remains reasonable.

(2) Distance hiding has a large impact on the Search algorithm.
MRProjC Search takes 4 minutes, MRProj Search takes 3.5
hours. Both approaches scans the whole database which is



Session 8B: Biometrics and Security

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Time Sizes

MRProj MRProjC RProjC [11] MRProj RProjC [11]
n o t | Setup | BuildIndex | Trapdoor | Search | Trapdoor | Search Setup || |EncDB| [sk| |sk|
128 3 38 75 1.5 .36 234 .01 31 4% 103 5.9 MB | 560 KB 1.6 MB
192 5 57 47 2.2 8 495 .01 46 1.3 x 10* 8.9 MB | 770 KB 3.6 MB
256 7 76 57 2.9 14 850 .02 62 3.2 x 104 12 MB | 980 KB 6.4 MB
384 10 | 115 94 4.4 3.1 1870 .03 92 1.1x10° 18 MB | 1.5 MB 14 MB
512 13 | 153 153 5.7 5.7 3282 .04 140 2.6 X 10° 24 MB | 2.1 MB 26 MB
768 19 | 230 269 8.6 13.4 7210 .06 185 8.6 X 10° 36 MB | 3.2 MB 57 MB
1024 | 25 | 307 268 10.8 22.4 12600 .08 241 2.0 x 10° 47 MB | 4.3 MB 100 MB

Table 5: Operations timing (in seconds) and sizes (in Megabytes/Kilobytes) for different vector sizes. n is the vector length, o the
number of bases used, and ¢ = .30 the distance tolerance. Setup and BuildIndex procedures for MRProj and MRProjC schemes
are the same procedures, MRProjC uses vectors whose length is 1 fewer. We only report these algorithms for MRProj. Timing
and storage for the MRProjC Setup is interpolated. Measured n = 10 to 240 in steps of 10. For timing, cubic fit with coefficients
y = .003x> — .578x% + 36x — 557 with R? = .996. For storage, quadratic fit with coefficients y = 96x? + 192x + 573 with R? = 1.

problematic for large datasets. We discuss possible solutions
in Section 8.

(3) Finally, this table shows that Setup without multi random
projection is completely impractical for large input vector
sizes. In particular, for vectors of size 1024, Setup takes ap-
proximately 23 days. In comparison, Setup using multi ran-
dom projection takes less than five minutes for input vectors
of size 1024. Our multi random projection construction thus
allows to use a large enough input vector size to maintain a
high correctness while increasing the efficiency of the setup
algorithm. This is explained by the fact that the Setup algo-
rithm’s running time is dominated by the matrix inversion.
It is then more efficient to perform multiple inversions of
small matrices than a single inversion of a bigger one.

Storage. We evaluate the impact of the multi random projection
PSE construction on storage efficiency. As can be seen on table 5,
the impact is low for small input vectors, however, it makes a big
difference for larger ones. Indeed, when the size of the Barbosa key
(key generated without the multi random projection technique)
grows quadratically with the vector size, the size of the key gen-
erated with the multi random projection technique grows with
(n/0)? % o ~ n?/o. For vectors of size 1024, we consider o = 25 and
the secret key generated with the multi random projection tech-
nique is 23.2 times smaller than the single basis key, confirming
the asymptotic analysis.

7 FURTHER RELATED WORK

In this section we review further related work on proximity search.
We defer discussion of leakage abuse attacks to Appendix A. Li et
al. [54], Wang et al. [55] and Boldyreva and Chenette [56] reduced
proximity search to keyword equality search. These works propose
two complimentary approaches:

(1) When adding a record x; to a database, also insert all close
values as keywords, that is {x; | D(x;,x;) < t} are added as
keywords associated to x;.

(2) The second approach requires searchable encryption sup-
porting disjunctive search. It inserts just x;, but when search-
ing for y it searches for the disjunction V| p(x;,y) <t *i-

Either approach can be instantiated using a searchable encryption
scheme that supports disjunction over keyword equality (inheriting

any leakage). However, for biometrics, the number of keywords
Vi D (xi,y) <t {xi} usually grows exponentially in ¢. In existing
disjunctive schemes, the size of the query grows with the size of
the disjunction [10], making this approach only viable for constant
values of t.

Kuzu et al’s [23] solution relies on locality sensitive hashes [24].
A locality sensitive hash ensures that close values have a higher
probability to produce collisions than values that are far apart. Thus,
a scheme can be built from any scheme supporting disjunctive
keyword equality, inheriting any leakage. The server learns the
number of matching locality sensitive hashes for each record (which
is expected to be more than 0). The number of matching locality
sensitive hashes is a proxy for the distance between the query value
and the records. More matching locality sensitive hashes implies
smaller distance. This allows the server to establish the approximate
distance between each record and the query.

Zhou and Ren [57] propose a variant of inner product encryption
that reveals if the distance is less than t only. However, their security
is based on Ax; and yB hiding x; and y for secret square A and B.
Security is heuristic with no underlying assumption or proof of
information theoretic security.

8 CONCLUSION

Iris biometric feature extractors produce feature vectors similar in
the binary Hamming metric. Inner product encryption was pro-
posed to build encrypted search for the binary Hamming metric.
In this work we explored a domain specific solution for secure
searchable encryption for iris biometric databases.

We observed in the statistics of the iris biometric data that large
vectors are required for both correctness and minimizing leakage.
With large vectors, we see that the distance between readings of
the same class can be separated from the distance distribution from
the readings of other classes (see Figure 3). This means that with
a fixed distance threshold, we can ensure that more readings of
the same class are approved while readings from other classes are
denied (with high probability).

In prior work, Setup was not feasible for large vector lengths
due to the cost of inverting large matrices. In the most relevant
prior work [11], they skip this step in benchmarking due to the high
cost. Our interpolation results show that for n = 1024 would take
roughly 23 days. This is estimated on a parallel implementation in
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C. The length n = 1024 is the length of prior iris feature extractors.
We do not consider this time acceptable.

In the RProjC scheme of Kim et al. [11], additionally the distance
is leaked between queries and all points in the database. Based on
prior work on trilaterilation, with a constant number of queries
observed in n, the server can build complete distance information
between the stored data points. If the adversary knows auxiliary
information about the database, the encryption may not protect
the data at all.

In this work we offer solutions to these two problems. We show
a multi random projection approach that allows for breaking large
vectors into small vectors. This allows us to use smaller matrices
greatly reducing the computational time required to invert the
matrices. Doing two n/2 inversions takes 1/4 the time of one size n
inversion. Careful optimization improves Setup time by four orders
of magnitude while only increasing search time by 3%.

We show how to use predicate inner product encryption to build
a scheme that hides the distance between the query and the stored
records. By using a predicate scheme instead of one that gives
the value of the inner product, the server only learns if the two
vectors are a fixed distance from one another. This greatly reduces
the information that is leaked through remotely executing this
operation. The server only learns information about data that are
close the queried point and learns nothing about data that are
outside the distance threshold. We show this scheme leaks only
access pattern and distance equality leakage.

The improvement in accuracy for higher n also yields an im-
provement of leakage profile for our MRProj scheme. When two
or more classes are returned from a single query, this leaks that
the returned items are within distance 2t (through access pattern)
and whether they are the same distance from the query (distance
equality leakage). Decreasing the statistical overlap between classes
minimizes the probability of both leakages which translates to a
more private system for sensitive biometric data.

The transformation comes at a cost of making search slower
and no longer appropriate for moderately sized databases. We be-
lieve that this transformation is required in order to maintain the
integrity of sensitive biometric information. Thus, our main open
problem is whether or not this significant slow down to search is
avoidable. For databases at larger scales, doing a linear search of the
entire database for each query is unacceptable. With our distance
hiding transformation we have to do a linear scan for each subtoken
(that checks a specific distance) and so we see a significant (but
linear) slowdown over a single linear database scan. Of particular
interest are approaches that use indices that natively support k
nearest neighbors but are not vulnerable to recent attacks (such
as [27, 28]) and interactive solutions where the client can guide the
search. In parallel work, Boldyreva and Ting [58] proposed such
a scheme that hides all leakage using oblivious data structures in
conjunction with locality sensitive hashes [24].
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LEAKAGE ABUSE ATTACKS

Searchable encryption achieves acceptable performance by leaking
information to the server. See Kamara, Moataz, and Ohrimenko for

an

overview of leakage types in structured encryption [59]. The

key to attacks is combining leakage with auxiliary data, such as the
frequency of values stored in the data set. Together these sources
can prove catastrophic — allowing the attacker to run attacks to

rec

over either the queries being made or the data stored in the data-

base. We consider attacks that rely on injecting files or queries [60]
to be out of scope. Common, attackable, relevant leakage profiles
are:

(1) Response length leakage [31, 34] Often known as volumetric
leakage, the attacker is given access to only the number of
records returned for each query. Based on this information,
attacks cross-correlate with auxiliary information about the
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dataset, and identify high frequency items in both the en-
crypted database and the auxiliary dataset.

(2) Query equality leakage [32] the attacker is able to glean
which queries are querying the same value, but not neces-
sarily the value itself. Attacks on this profile rely on having
information about the query distribution, and much like the
response length leakage attacks, match with that auxiliary
information based on frequency.

(3) Access pattern leakage [29, 30] here the attacker is given
knowledge if the same dataset element is returned for differ-
ent queries. This allows the attacker to build a co-occurrence
matrix, mapping which records are returned for pairs of
queries. Based on the frequencies of the co-occurrence ma-
trix for the encrypted dataset, and the co-occurrence matrix
for the auxiliary dataset, the attack can identify records.

Recent attacks have targeted the geometry present in range
search [33, 34, 36, 37, 61]. Building on the co-occurrence matrix
(available with access pattern leakage) consider the case when
records a, b, c are returned by a first query and c, d are returned by
a second query. One can immediately infer that the comparison
relation between a and d is the same as the comparison relation
between b and e. As more constraints of this type are collected one
can collect an ordering of all records (up to reflection).

In two (or three) dimensional Euclidean space, trilateration has
been practiced for hundreds of years: one is assumed to know
the location of x1i, ..., x; and the pairwise distances D (x;,y) and
is trying to find the location of y. Determining the location of y
requires k to be one larger than the dimension. The problem is more
difficult but well studied for approximate distances [62]. Similar
ideas can be applied in discrete metrics with each learned distance
reducing the set of possible y. In the Hamming metric of dimension
n, k = ©(n) suffices [63-65].

B ADDITIONAL STATISTICAL ANALYSIS

The IITD dataset which consists of 224 persons and 2240 images.
The IITD dataset is considered “easier” than the ND0405 dataset
because images are collected in more controlled environments lead-
ing to less noise and variation between images. Table 6 shows the
FAR/FRR tradeoff for IITD dataset akin to Table 2. We additionally
measured the number of improperly returned records as in Table 3;
improper records where only observed for length 64. Since IITD
is easier than NDO0405, this indicates that the needed biometric
dimension depends on collection conditions.

C PROOF OF THEOREM 1

This scheme has the security as the original IPEfp s pred scheme
from [38] for the simulation based security definition. We note
that that scheme of Barbosa et al. [38] builds on the work Kim et
al.[12] and our proof uses similar definitions of formal variables.
The scheme works by having a challenger interact with a simulator

S and two oracles, OT KGen and OEncrypt’ in the ideal scheme and a

pair of oracles, OrokGen and OEncrypt, in the real scheme. For this
proof, we will build the simulator S which can correctly simulate
the distribution of tokens and ciphertexts only using the predicate
evaluation on whether the inner product of the two vectors is 0.
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FRR False Accept Rate
Size | 0] .01].02].03].04].05].06].07].08].09].10
w2470 1| 1 o] 1] 1] 1] 1] 1] 1] 1
512 (57 | 1| 1| 1| 1| 1| 1| 1| 1| 1| 1
256 |47 | 99| 1| 1| 1| 1| 1| 1| 1| 1| 1
192 |48 | 99| 1| 1| 1| 1| 1] 1| 1| 1] 1
12854999 | 1| 1| 1| 1| 1| 1| 1] 1
96|40 (99|99 |99 | 1| 1| 1| 1| 1] 1] 1
64| 27|97 .99 99| 99] 99|99 | 1| 1| 1] 1

Table 6: TAR for different output sizes and probabilities of
leakage for the IITD Dataset. Summary of FAR for queries
drawn from Same distribution for noise tolerance parameters.
We vary a threshold ¢, report the FRR when FAR is as listed.
All sizes use the R methodology.

This information is supplied to the simulator by the oracles O’

’
and OEncrypt

Inner-product collection: Let i, j be shared counters between
the token generation and encryption oracles. Let x(!) ZZ and

TokGen
to match the functionality of the encryption scheme.

y(j ) € Zg denote respectively the adversary’s ith query to the

token generation oracle and jth query to the encryption oracle. The
collection of mappings Cjp, is defined as

{(u) —0 if (x@,y) =0
ip =

(i,j) > 1 otherwise.

Formal variables: The simulator constructs formal variables for
the unknowns of the system in order to respond as correctly as
possible. Let Q be the maximum number of queries made by an
adversary. Let o and N be as in the construction in Figure 4. For all

i€[Ql e [o] andk € [N],let ¢®), 0 £ 5 represent the
hidden variables a(?) /3(’> x(l) y(ll:, let l;[’k’m and I;;,k,m

the entry in position (k, m) of the B, and B} matrices respectively,

represent

let f {,(i) be the formal variables for { l,(i) where the simulator tracks

the constraints that for each i € [Q], X7_, ¢, #() — 0 and let s(l) nd
( ) , Tepresent formal polynomials as constructed below,
s = Z 35 bejem = beim + Z Gy bekm O
k=1
(i) N (&) ( ) (i)
M1 (1 * 1 E3 A 3k
=D 50 Bokm =8 Boimt Z S Brim @

Then the universe of formal variables is U = R U 7, where

R = {,;,(i),[;(i)} NOIO!

(’m’ &m
and

T = {&(z’)’ﬁ(i)}

i€[Q] { }1e[QJ telo], me[N]

A~ (i)
Xok o

A/(l) i
U
i€[Q] { g} },e [0, te[o], ke[N]

Uibpjm, b }
{ t,k,m tk,m telo],mke[N]

Specification of the simulator Let A be a PPT adversary that
makes at most Q = poly(A) queries to the oracles. The simula-
tor S starts by initializing an empty set of inner products Cj, and
three empty tables Tj, Tz, Tt which map handles to the polynomi-
als over the variables of R. The state of the simulator consists of
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these four objects, (Cip, Ti, T, Tr), which are updated after each
query received. The simulator S answers the adversary’s queries
as follows.

Token generation queries: On input x() ¢ Z§, 07 1 Gen Sends

the collection Ci’p to the simulator. S updates C,p — C(’p For1 <

& oy
(1) to T;. S then sets tk, =

¢ < 0,1 <m < N, S generates a new handle hyp, «—

and adds the mapping hy, — a3

he1,- -, heN. Finally, S returns the token tk = (tky,- -+, tkg).
Encryption queries: On input y(!) € zg, Oéncrypt sends the

collection Ci'ID to the simulator. S updates Cp < Ci’p. For1<?¢ <o,

i {0,1}* and adds
— ﬁ(i) . f(fgl to To. S sets cty = he, - -
, ,cto).

Addition oracle queries: Given hy, hy € {0, 1}1, S verifies that
formal polynomials py, p, exist in table Tr, 7 € {1, 2, T} such that
h1 — p1 and hy — pa. If it is not the case S returns L. If a handle
for (p1+p2) already exists in T S returns it. Otherwise, S generates

1 < m < N, S generates a new handle h¢,
the mapping h¢
Finally, S returns the ciphertext ct = (cty, - - -

JheN.

anew handle h & {0,1}*, adds the mapping h — (p1 + p2) to Ty
and returns h.

Pairing oracle queries: Given hy, hy € {0, 1}A, S verifies that
formal polynomials pj, p2 exist in tables T; and T respectively,
such that by — p; in T1 and hy — pz in Tp. If it is not the case S
returns L. If a handle for (p; - p2) already exists in Tr S returns

it. Otherwise, S generates a new handle h i {0,1}*, adds the
mapping h — (p1 - p2) to Tr and returns h.

Zero-testing oracle queries: Given h € {0, l}’l, S verifies that
formal polynomials p exists in T, 7 € {1,2, T}, such that h — p. If
it is not the case S returns L. S then works as follows.

(1) It “canonicalizes” the polynomial p by expressing it as a sum
of products of formal variables in 7~ with poly(A) terms.

(2) If 7 € {1, 2} and p is the zero polynomial, S outputs “zero”.
Otherwise if outputs “non-zero”.

(3) If r = T the simulator decomposes p into the form

Q
= 336080 o 6 i)
b 3)
O (T —|
where for 1 < i,j < Q, p; ; is defined as
N0 0
pij =cij- ( Z Sem {’Jm)
f,m=1
where c; ; € Zg is the coefficient of the term sfll) fl(]i), and

fi,j consists of the remaining terms.

(4) Ifforall1 < i,j < Q, (i,j) = 0in Cjp (corresponding to a
zero inner product) and f; ; does not contain any non-zero
term, S outputs “zero”. Otherwise it outputs “non-zero”.

Correctness of the simulator As in the original proof, the simu-
lator’s responses to token generation, encryption and group oracle
queries are distributed identically as in the real experiment. We now

1017

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

have to show correctness of the simulator’s answers to zero-testing
oracle queries.

(1) We first need to show that the canonicalization process in
step 11is efficient. Since the adversary can only obtain handles
to new monomials using token generation and encryption
queries, the monomials are all over formal variables in R.
Also, since the adversary can make Q queries at most, the
polynomial p they can build and submit to the zero-testing
oracle has at most poly(Q) terms and degree 2.

Then using Equations 1 and 2, the formal polynomial p can
be expressed as a polynomial over formal variables in 7.
Since p has degree at most 2 over variables in R, it can be
expressed as a sum of at most poly(Q, n) monomials over
variables in 7 and has degree at most poly(n). Since both
the polynomial over R and the canonical polynomial over
7 are polynomially-sized, this is efficient.

For 7 = 1, the only monomials the adversary can obtain are
responses to token generation queries. Then the canonical
polynomial is of the form

S ISIRCING
(i 13 Al
p= a(l) ( Z Ct’,m {4 m)
i=1 t,m=1
Q oN N
(i N4 ~
=52 53ty S )
i=1 t,m=1 k=1
Q ) o, N ) N
:Zéz(’)( c{(,fr)n b(’lm"’zy(l) bfkm))
i=1 t.m=1 k=2
(i) (i)
where cl"l, ,co_l,N €Zq.

5 (1)
t.k
the identically zero polynomial over the formal variables

{bAg,k’m}[E [o], k,me[N]- This holds irrespective of the actual
values of the adversary’s query x()_Since all {@(?) tielo]

Notice that the sum b}glm + ij . b} k,m can never be

and {l;[’k,m}gelo-]’ k,me[N] are sampled uniformly and inde-
pendently in the real game and the polynomial p has degree
poly(n) = poly(A), then by the Schwartz-Zippel lemma [12,
Lemma 2.9], p evaluates to non-zero with overwhelming
probability. This implies that the simulator is correct with
overwhelming probability.

For r = 2, the only monomials the adversary can obtain
are responses to ciphertexts queries. Then the canonical
polynomial is of the form

A(l))
t,m

(#)

Cl’m

) je

10l (l) EZq Not1cethatthesum§; oim ™t

IHBET U

1
where ¢

;can only be the identically zero polynomial



Session 8B: Biometrics and Security

over the formal variables {bt, km Yeelol], kme[N] if é’( D=0
which happens with negligible probability. Again, this holds
irrespective of the adversary’s queries y(l), e y(Q) and pis
not the identically zero polynomial over the formal variables
{ﬂ(’)}ie[Q] and {b;’k’m}fe[g], kme[N]- Since all b;,k,m ar
independent from one another (since l;f, k,m Was sampled uni-
formly and independently), then again by Schwartz-Zippel
lemma p evaluates to non-zero with overwhelming probabil-
ity, the simulator is correct with overwhelming probability.
For 7 = T, the only polynomials the adversary can obtain
are products of two polynomials, one from each base group.
Then the polynomial p can be decomposed into a sum of
monomials that each contain a?) and B () for some i, j €
[Q]. Then S can regroup terms for each i, j € [Q] and obtain
Equation 3. If f; ; does not contain any term, then p is of the

(S

©

form
Q . N . o-
p= 3 a o) ~c,-,,~-( S0 }5],31)
i,j=1 £,m=1
SN (1)
ZZ&(I),B(J)'CU’( Z (Zg b{’km)
ij=1 £m=1

2
t’l: bt’km))

@

k=1
Q o
- aDpU) ¢ (Z( "UNT B; BT - u(z))
ij=1 =1
Q N\ AL e
= Z (5((1)[3(]) “eij - (Zév(l) + (x(j) A(z)>)
i.j=1 =1
Q AL . . .
= Z dWRD ;- x5y
ij=1

p is the zero polynomial when all (i, j) inner products are
zero, which can be known by checking if (i, j) — 0 in Cjp.
Now suppose that for some i, j € [Q] the polynomial f; ;
contains at least one term. Then we claim that f; ; cannot
be the identically zero polynomial over the formal vari-
ables { I;[’k’m }ee[o],k,me[N]> irrespective of the adversary’s
choice of admissible queries. We refer the reader to the orig-
inal work [12, Section 3] for a detailed proof of this claim.
Then by the Schwartz-Zippel lemma, p evaluates to non-zero
with overwhelming probability when f; ; contains at least
one term.

D PROOF OF THEOREM 2

The correctness of the scheme follows from the correctness of the
underlying IPE scheme. Assume there exists x; € X, i € [1,¢], such
that fy;(x;) = 1. That is D(y, x;) < t with D(y, x;) the Hamming
distance between vectors y and x;. Then there exists a unique
tk; € Qs such that b; < IPE.Decrypt(pp, tkj, ct;) and b = 1 with
overwhelming probability by the correctness of the IPE scheme.
Now assume that for some x; € X, i € [1,£], we have fy+(x;) = 0.
Then for all tkj € Qy ¢, bj « IPE.Decrypt(pp, tkj, ct;) and b; = 1
with negligible probability. Then considering the worst case where
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either D(y,x;) =t or for all x; € X, fy+(x;) = 0, we have:

Pr[PSE.Search(pp, Qy.r. Ix) = Jx,y.]
IPE.Decrypt (pp,tk;,ct;)
#(D (xiy)2d))

1-£(t+1) X negl(R).

v

1-¢€(t+1) XPr

\%

We now prove the security of the construction. Let Apsg be a PPT

adversary for the experiment EXPZ%IED and Cipg be an challenger

IPE
IND"

as follows:

for Exp

IPE
IND

(1) Aypg receives pp from Cipg and forwards it to Apsg.

(2) Apg receives two m-query histories History(o), History(l)
from Apgg where History(ﬂ) = (X FB) for p € {0,1}.

(3) For each xi(ﬁ) e X i€ [1,¢], Ape encodes it as x; =

0|11, 0% 1),

We build a PPT adversary Ajpg for the experiment
Exp

{-1,1}" and creates the query S; = (x;
(4) Aipg sets S =51,---,Sp.
(5) For eachfj(ﬂ) eFB) je[1,m]:
(a) Ajpg extracts a vector yj(ﬁ) € ZZ and t € N.
(b) A\pg encodes yj(ﬁ) as yj(ﬁ)* € {-1, 1} and creates Dj(.o) =
(do,- -+ ,dy) such thatdy =n— 2k with0 < k < t.
(c) Apg creates DJ(.O)* by reordering the elements in D(.O)
such that for all k € [0,¢] and d” € D}O)*,d,@ e DJ(“

(0)y 2 4(0)y _ 1 (1) 2 (1)
we have ((x Y; ) = d ) = ((xi Y; = d ).
(Ape can always find a permutation to make this last
condition by the admissibility requirement.)

(d) Apg samples a random permutation y; : [0,t] — [0, ¢].

(e) For 0 < k < t, Apg creates yj<'6)*|| dlgﬁ) with g € {0, 1},
d® e p\9* and d<1) € D(l) Then A t
N ; N e IPE computes

and sets Rj = (RJ(.O), R](.l)).

(f) Apg setsR=Ry, - ,Rp.
(6) Ajp sends the token generation queries R and encryption
queries S to Cipg and receives back a set of tokens TP =

ki%)’ ... ,tkfrfg and a set of encrypted keywords C(F) =
iﬂ),--- ,ctt(,ﬁ) such that

tk;i) « IPE.TokGen(sk, y»"|| )

ctgﬁ) «— IPE.Encrypt(sk, xi(ﬁ)*H -1)

forie [1,¢],j€ [1,m],k € [0,t] and S € {0, 1}. Apg for-
wards TP and P to Apsk, respectively as the encrypted
index I/ and the list of queries 28
(7) Apg receives ' € {0, 1} from Apsg and returns it.
Since the number of token generation queries, m X t, sent by A\pg
remains polynomial in the security parameter, the advantage of
Apsk is

PSE
AdVEXpIND Adv EXpIND
PSE V Aipe

This completes the proof of Theorem 2.
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