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We search for new massive scalar particles X and Y through the resonant process X — YH — bbbb, where
H is the standard model Higgs boson. Data from CERN LHC proton-proton collisions are used, collected
at a centre-of-mass energy of 13 TeV in 2016-2018 and corresponding to an integrated luminosity of
138 fb~!. The search is performed in mass ranges of 0.9-4 TeV for X and 60-600 GeV for Y, where both
Y and H are reconstructed as Lorentz-boosted single large-area jets. The results are interpreted in the

context of the next-to-minimal supersymmetric standard model and also in an extension of the standard
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LHC cross section vary between 0.1 and 150 fb depending on the X and Y masses, and represent a significant
CMS improvement over results from previous searches.
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Boosted jets

1. Introduction

The discovery of a Higgs boson (H) of mass 125 GeV [1-3] at
the CERN LHC validated the Brout-Englert-Higgs mechanism [4-9]
of the standard model (SM), yet raised questions of its viability
at higher energy scales [10-13]. Besides, empirical observations
such as the measurements of the neutrino masses and the baryon
asymmetry in the universe are inconsistent with SM expectations.
Beyond the standard model (BSM) theories, including those invok-
ing supersymmetry [14] or extra dimensions [15], seek to address
many of the shortcomings of the SM. No BSM phenomena have
been observed at the LHC. However, there are unexplored BSM pa-
rameter spaces, among which are areas of the scalar sector, the
topic of this search.

The minimal supersymmetric extension of the SM (MSSM) [16,
17] postulates two complex scalar field doublets with SU(2) gauge
symmetry. The next-to-minimal model (NMSSM) [18,19] was pro-
posed to solve the MSSM’s “unnaturalness problem” [20], where
the Higgs boson mass parameter is many orders of magnitude
smaller than the Planck scale. In the NMSSM, an extra complex
scalar field gives a total of seven Higgs bosons: three neutral (one
would be associated with H) and two charged scalar particles, as
well as two neutral pseudoscalars. Searches for a heavier scalar
X decaying to SM particles [21-23] have set a lower limit on its
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mass at My = 1.5(1.0) TeV for tan8 = 21(8) [21], where tanp
is the ratio of the vacuum expectation values (VEVs) of the two
Higgs doublets. The NMSSM favours low tan 8, where the current
My bounds are the weakest.

In the NMSSM, the neutral scalar production cross sections
may be suppressed because of their small couplings to SM
fermions [18]. Enhanced “Higgs-to-Higgs” decays are then possi-
ble, such as X — YH [24,25], Y being the lighter scalar. Within
the NMSSM, the largest branching fractions for both H and Y (for
Y mass My less than twice that of the top quark t) are to a b
quark-antiquark pair, giving the final state X — YH — bbbb. For
higher My values the Y — bb branching fraction is ~10% [25,26].
The second dominant process is X — YH — 7 tbb, which has been
excluded [27] for 0.4 < My < 0.6 TeV and 50 < My < 200 GeV, for
specific values of the parameters of the model.

Another interesting model of new physics that motivates
this search is the two-real-scalar-singlet extension of the SM
(TRSM) [28], which introduces two additional scalar fields. This
simplified model, onto which more complicated theories can be
mapped, has nine degrees of freedom: the masses and VEVs of
the three scalar fields, and three mixing angles. In the scenario
where all three VEVs are non-zero, the three fields give rise to
three massive scalars, one of which can be associated with the H
boson. Depending on their masses and mixing angles, the heaviest
scalar can decay to the two lighter scalars. These in turn can decay
to SM particles with mass-dependent branching fractions.
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This Letter describes the search for two new scalar particles,
X and Y, the former being more massive and decaying through
X — YH. The search uses LHC proton-proton (pp) collision data
collected by the CMS experiment in 2016-2018 corresponding to a
total integrated luminosity of 138 fb! [29-31]. The masses of the
scalar particles satisfy My > My + My; Y may be lighter or heavier
than H and both Y and H decay to bb. The search is generic, and X
and Y can be associated with the particles predicted in the NMSSM
or the TRSM, which are both mentioned above.

This search focuses on the kinematic region where My is suf-
ficiently larger than both My and My such that Y and H carry
considerable momenta and therefore their decay products, i.e.
the bb pairs, are highly collimated. We explore the mass ranges
0.9 < Mx <4 TeV and 60 < My < 600 GeV, complementing the
X — YH — ttbb search [27]. In the high-momentum kinematic
regime, special techniques are used to reconstruct the final states
containing the collimated bb pairs, in order to increase the signal
sensitivity well beyond that covered by previous searches [27].

Tabulated results for this analysis are provided in HEPData [32].

2. The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic field
of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL),
and a brass and scintillator hadron calorimeter (HCAL), each com-
posed of a barrel and two endcap sections. Forward calorimeters
extend the pseudorapidity (1) coverage provided by the barrel and
endcap detectors. Muons are measured in gas-ionization detectors
embedded in the steel flux-return yoke outside the solenoid. A
more detailed description of the CMS detector, together with a def-
inition of the coordinate system used and the relevant kinematic
variables, can be found in Ref. [33]. Events of interest are selected
using a two-tiered trigger system. The first level, composed of cus-
tom hardware processors, uses information from the calorimeters
and muon detectors to select events at a rate of around 100 kHz
within a fixed latency of about 4 ps [34]. The second level, known
as the high-level trigger (HLT), consists of a farm of processors run-
ning a version of the full event reconstruction software optimized
for fast processing, and reduces the event rate to around 1 kHz
before data storage [35].

The primary vertex is taken to be the vertex corresponding to
the hardest scattering in the event, evaluated using tracking infor-
mation alone, as described in Section 9.4.1 of Ref. [36].

A particle-flow algorithm (PF) [37] aims to reconstruct and
identify each individual particle in an event, with an optimized
combination of information from the various elements of the CMS
detector. The photon energy is obtained from the ECAL measure-
ments. The energy of electrons is determined from a combination
of the electron momentum at the primary interaction vertex as
determined by the tracker, the energy of the corresponding ECAL
cluster, and the energy sum of all bremsstrahlung photons spatially
compatible with originating from the electron track. The energy of
muons is obtained from the curvature of the corresponding track.
The energy of charged hadrons is determined from a combina-
tion of their momentum measured in the tracker and the matching
ECAL and HCAL energy deposits, corrected for the response func-
tion of the calorimeters to hadronic showers. Finally, the energy
of neutral hadrons is obtained from the corresponding corrected
ECAL and HCAL energies.

Jets are clustered from PF candidates using the anti-ky algo-
rithm [38,39] with a distance parameter of either 0.4 (AK4 jets)
or 0.8 (AK8 jets). The jet momentum is defined as the vectorial
sum of all particle momenta in a jet, and is found from simulation
to be, on average, within 5-10% of the true momentum over the
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whole transverse momentum (py) spectrum and detector accep-
tance [40]. Additional pp interactions within the same or nearby
bunch crossings (pileup), averaging 23-32 in 2016-2018, can con-
tribute additional tracks and calorimetric energy depositions to the
jet momentum. The effect of pileup is mitigated using the charged-
hadron subtraction (CHS) algorithm [41], whereby charged parti-
cles identified to be originating from pileup vertices are discarded
and an offset correction is applied to correct for remaining con-
tributions. Jet energy corrections are derived from simulation and
data to bring the measured response of jets to that of particle level
jets on average [40].

For AK8 jets, masses are computed after applying grooming [42]
techniques, which remove wide-angled soft and collinear radia-
tion from the jets, in order to mitigate the effects of contamina-
tion from initial state radiation, the underlying event, and multiple
hadron scattering. The trimming algorithm [43] uses a subjet size
parameter of 0.3 and a radiation fraction parameter z = 0.1, which
determines the minimum py fraction that the reclustered jet con-
stituents need to have in order not to be removed. The mass of the
resultant jet is referred to as its “trimmed mass”. The “soft-drop
mass” of the jet is obtained by applying the soft-drop algorithm
[44,45]. Here it is obtained using a value z = 0.1 for the radia-
tion fraction parameter. The angular exponent parameter is set as
B =0, so there is no dependence of the p; fraction threshold on
the distance between jet constituents.

In case of the soft-drop algorithm, the pileup per particle iden-
tification (PUPPI) [41,46] algorithm is used to mitigate the effect
of pileup on AKS8 jets. In PUPPI, the treatment of charged parti-
cles is similar to that in CHS. A weight between zero and one is
assigned to neutral particles, larger values indicating higher prob-
ability of originating from the primary interaction vertex. The jet
mass is computed from the weighted sum of the constituent four-
momenta. )

The missing transverse momentum vector (p1 ) is computed
as the negative vector sum of the transverse momenta of all the

PF candidates in an event, and its magnitude is denoted as p1

[47]. The p™* is modified to account for corrections to the energy
scale of the reconstructed jets in the event.

3. Signal and background processes

Monte Carlo simulations of the signal process X — YH — bbbb,
with a width of 1 MeV for all the three scalars, are generated
at leading order (LO) using the MADGRAPH5_aMC@NL02.6.5 [48]
event generator. The NMSSM model [49,50] is used to produce the
simulated samples. However, the kinematic parameters are model-
independent, enabling the results to be interpreted using other
BSM scenarios.

The two main backgrounds are tt+jets events, where the top
quarks decay hadronically, and events with jets arising purely from
SM quantum chromodynamics (QCD) interactions (multijet events).
Other sources of background like single top quark production, and
Higgs boson production in association with a top quark pair or a
W or Z boson are found to have negligible contributions.

The tt+jets events with hadronic top quark decays are mod-
elled using POWHEG2.0 [51-54], at next-to-leading order (NLO). A
sample of semileptonic tt decays, with one of the top quarks de-
caying via t - Wb — £¢vb, ¢ being a lepton (electron or muon),
is also simulated using the same configuration. These events are
used in dedicated tt enriched control regions to derive additional
data-to-simulation correction factors. The simulated tt+jets event
yields are scaled using a cross section of 832f§g pb, calculated at
next-to-next-to-leading order (NNLO) in QCD with soft gluon re-
summation at next-to-next-to-leading logarithmic precision [55].
The QCD multijet event samples, containing two to four jets, are
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simulated at LO using the MADGRAPH5_aMC@NLO event generator
and are used to develop the tools for the analysis. However, this
background is estimated using data-driven techniques.

The signal and semileptonic tt+jets samples are generated using
the NNPDF3.1 [56] NNLO parton distribution functions (PDFs) from
the LHAPDF6 PDF library [57]. The hadronic tt+jets samples are gen-
erated using NNPDF3.0 [58] NLO for 2016 and NNPDF3.1 NNLO for
2017 and 2018 simulation. The multijet background samples are
generated using NNPDF3.0 LO for the 2016 and NNPDF3.1 NNLO
for the 2017 and 2018 simulation.

The showering and hadronization of partons are simulated with
PYTHIA8.226 [59] for 2016 and pyTHIA8.240 for 2017 and 2018
samples. The jet-to-parton matching for all LO samples, i.e. the sig-
nal and the multijets background, use the MLM [60] scheme. The
CP5 tune [61] is used for all samples, except for the 2016 tt and
multijet samples, which use CUETP8M2T4 [62] and CUETP8M1 [63]
tunes, respectively.

All generated events are processed through a simulation of the
CMS detector based on GEANT4 [64]. The effects of pileup are mod-
elled assuming a total inelastic pp cross section of 69.2 mb [65].
All simulated event samples are weighted to match the distribu-
tion of the expected pileup profile of the data.

4. Event selection

The events are selected in two mutually-exclusive categories:
an “all-jets” event sample containing only jets, and a “jets+lepton”
sample, containing a lepton (electron or muon). The latter serves
to derive corrections to the simulated tt+jets background, in order
to match the expectations in the data.

4.1. All-jets event selection

A set of triggers based on requirements on jet properties are
used for online event selection in the all-jets category.

One trigger criterion required a single AK8 jet with pp > 450 or
500 GeV in 2016 and in 2017-2018, respectively. A second trigger
required that the scalar sum (Hy) of the p; of all AK4 jets with
pt > 30 GeV and |n| < 2.5 should be greater than 800 or 900 GeV
in 2016, depending on the LHC beam instantaneous luminosity. In
2017-2018, Hy > 1050 GeV was required.

The third trigger algorithm used required an AKS8 jet with a
trimmed mass >30 GeV along with py > 360 GeV (in 2016). In
2017-2018, the AK8 jet py threshold in this trigger was raised to
400 or 420 GeV, depending on the LHC beam instantaneous lu-
minosity, keeping the same trimmed mass criterion. The fourth
trigger required Hy > 650 or 700 GeV (in 2016) and Ht > 800 GeV
(in 2017-2018), together with an AK8 jet having a trimmed mass
>50 GeV.

In addition to the above, three trigger algorithms were used
in 2016 only, with the following criteria: (1) two AK8 jets with
pr > 280 and >200 GeV with one of them having a trimmed mass
>30 GeV; (2) having the same requirements as (1) and with one
of the AK8 jets passing a loose b tagging criterion using the “com-
bined secondary vertex” algorithm [66] (with efficiency ~ 81%);
(3) Hy > 650 GeV with a pair of AK4 jets having an invariant mass
>900 GeV with their pseudorapidity separation |A7| < 1.5.

The combined logical OR of all the triggers improves the overall
trigger efficiency, particularly for signals with low values of My.

Events in the offline all-jets selection are required to have at
least two AK8 jets with pp > 350(450) GeV and |n| < 2.4(2.5) for
2016 (2017-2018). The higher py requirement in 2017-2018 re-
flects the higher trigger thresholds and ensures a trigger efficiency
close to 100%. The AKS8 jet pairs in multijet backgrounds tend to
have a larger separation in pseudorapidity than the signal, for a
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given M) range, and therefore a selection |An| < 1.3 is used to
reduce such backgrounds. _ B

The two leading-py jets are considered for H— bb and Y — bb
candidates. An H — bb candidate or an “H jet” is a jet whose soft-
drop mass is 110 < MJH < 140 GeV. The second jet is designated as
the Y — bb candidate or the “Y jet” if its soft-drop mass satisfies

MJY > 60 GeV. When both AK8 jets satisfy the first mass require-
ment, the Y jet is chosen at random. Events without either an H or
a 'Y jet are rejected. The mass of the Y jet and the invariant mass of
the H and Y jets are used to isolate the signal with approximately
15% and 9% resolution in MJY and My, respectively.

The all-jets event category trigger efficiency is measured in the
data requiring a single AK4 jet with pr > 260 GeV by applying the
above offline selection, and counting the number of events passing
the trigger selection. It is found to be between 94 and 100%. Sim-
ulated events are weighted by this efficiency as a function of the
invariant mass of the two leading-pr AK8 jets in the event, Mj;.

A graph convolutional neural network algorithm, ParticleNet [67],
is employed to discriminate the decays of a boosted massive par-
ticle R, which could be an H boson or a Y resonance, to a pair
of b quarks against a background of other jets, using the proper-
ties of the jet PF constituents as features. As with all heavy-flavour
jet classifiers, displaced tracks and vertices are the most important
features. The multiclassifier ParticleNet algorithm outputs several
variables, each in the range 0-1, and each of which can be inter-
preted as the probability of a jet having originated from a certain
decay, such as from a massive resonance R — bb (P(R — bb))
or from a light-flavoured quark or a gluon (P(QCD)). In this
analysis, the ParticleNet score is defined as P(R — bb)/(P(R —
bb) + P(QCD)), where P(R — bb) is a unified score for jets origi-
nating from H or Y decays.

The ParticleNet algorithm is trained [68] on AKS8 jets using as
the signal simulated Lorentz-boosted spin-0 particles decaying to
a pair of b quarks, with a wide range of masses. The QCD multijet
samples are used for the background. The wide signal mass range
in the training sample ensures that the background rejection rate
is decorrelated from the mass of the jet [68]. As a consequence,
background enriched regions can be defined using low ParticleNet
scores on jets that have the same mass spectra as that of the back-
ground in the signal region. An accurate background model can
therefore be developed. B

The ParticleNet scores used for selecting the H— bb and the
Y — bb candidates (“signal jets”) are either >0.98 (tight require-
ment) or >0.94 (loose requirement). Depending on the jet pr, the
former has an efficiency of 62-72% and a misidentification rate of
0.45%, while the latter has an efficiency of 80-85% and a misiden-
tification rate of 1%.

The efficiency of the ParticleNet classifier is calibrated in data
using a sample of jets originating from fragmentation of a gluon
to bb (g — bb), which are similar to H— bb and Y — bb jets.
Such jets are selected from the data using a boosted decision tree
(BDT) classifier, such that their ensemble ParticleNet score resem-
bles that of Y and H jets. Using simulated multijet events, the BDT
is trained to separate g — bb jets from jets of other flavours. A
systematic uncertainty is assigned to account for different possible
choices of such jets. The measurements give a data-to-simulation
correction factor of 0.9-1.4 for the ParticleNet selection efficiencies,
depending on the jet py and data-taking year.

The ParticleNet scores of the H and Y jets are used to classify
events into either signal, sideband, or validation categories. A lay-
out of the different regions is shown in Fig. 1.

Two signal regions are defined using the tight and the loose
ParticleNet scores (Fig. 1). The “signal region 1” (SR1) and the “sig-
nal region 2” (SR2) are statistically exclusive. SR1 has a higher
signal-to-background ratio and is thus more sensitive to the pres-
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Fig. 1. Simulated ParticleNet score distributions of the H and the Y candidate jets for
a signal with My = 1600 GeV and My = 90 GeV (filled squares) and the multijets
background (open circles). The grid lines show the different event categories defined
using the ParticleNet scores of the two jets. A description of the regions is given in
the text.

ence of signal. However, the SR2 improves the sensitivity for signal
mass points with low background by increasing the signal effi-
ciency.

Corresponding to the two signal regions, two “sideband region-
s” are defined for estimating the multijet background from data.
They are labelled as “Sideband 1” (SB1) and “Sideband 2” (SB2) in
Fig. 1. The SB2 region includes SB1 in order to provide better side-
band region characteristics for estimating the multijets background
in their respective signal regions.

In addition, six “validation regions” are used to validate the
background estimation method. They are grouped into two sets of
three regions: VS1, VS2, VB1, and VS3, VS4, VB2 as shown in Fig. 1.
The labels VS and VB stand for “signal-like” and “background-like”
validation regions, respectively. All these regions are enriched in
QCD multijet events, and have much smaller signal-to-background
ratios than the signal regions.

The signal selection efficiencies range from 1.7% to 12.6% in SR1
and 1.3% to 5.6% in SR2. Based on simulation, the background com-
position is about an equal proportion of tt+jets and QCD multijets
in the signal regions and in the corresponding validation regions,
VS1-VS4. However, the sideband and validation sideband regions
are composed ~ 90% of multijet events.

4.2. Jets+lepton event selection

The triggers in the jets+lepton category required events to have
either an isolated muon of pr > 24 or 27 GeV; an isolated elec-
tron having pr > 27, 32, or 35 GeV, or a photon with py > 175 or
200 GeV. The thresholds changed between data-taking years. The
jets+lepton event trigger efficiencies are measured in a sample of
Z — £¢ events and are found to be close to 100%.

Offline selection requires the events to have a lepton with
pt > 40 GeV and |n| < 2.4. Tight identification and isolation
criteria are used for electrons [69] and muons [70]. An AK4
jet, corrected for pileup using charged hadron subtraction [41]
and tagged as originating from a bottom quark (b-tagged) us-
ing the DeepJet algorithm [71], is required to be close to the
lepton. The criterion is AR(lepton, jet) < 1.5, where AR(1,2) =

\/(nl - 772)2 + (¢ — (p2)2 is the distance between two objects in
the pseudorapidity-azimuthal angle plane.

The loose DeepJet working point, with a mistag rate of 10%
and approximately 90% efficiency, is used. The DeepJet score dis-
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tributions of the AK4 jets are corrected using a weight extracted
from measurements in the data [66]. Requirements of pr > >

60 GeV and Hp > 500 GeV are imposed. The lepton, p-rl-mss, and
the b-tagged jet provide the signature of the leptonic decay of
a top quark. A hadronically decaying top quark candidate is re-
constructed from an AK8 jet with p; > 350(450) GeV and || <
2.4(2.5) for 2016 (2017-2018), a soft-drop mass >60 GeV, and
satisfying AR(lepton, AK8 jet) > 2. Events in the jetstlepton cate-
gory, which has a purity of >90%, are split into two regions based
on whether the AK8 jet passes the tight or loose ParticleNet scores.
Two separate correction factors are derived, one each for SR1 and
SR2.

5. Background estimation

The analysis searches for a narrow signal in the 2-dimensional
plane spanned by Mj; and MJY. The two-dimensional (My;, MJY) dis-
tributions of the multijet events are estimated using a pass-to-fail
ratio method, described in the following paragraphs. The simulated
tt+jets event distributions are corrected by fitting the top quark jet
mass MJt distributions to the data in the jets+lepton regions.

The multijet background is estimated for the three data-taking
years combined. First, transfer functions, Rp/g, are defined as the

ratio of event distributions in the (Mj;, MJY) plane in the signal re-
gions to those in the sidebands, SR1-to-SB1 and SR2-to-SB2. These
are a priori unknown, and are determined from the fit of signal
and background distributions to the data.

An initial estimate Rp)p is made using the first set of vali-
dation regions, using the data and correcting for the simulated

tt+jets component: VS1-to-VB1 and VS2-to-VB1. With the defini-
tion Rpp = R}%ero. only the correction function R, needs to
be determined directly from the fit to the data. The validation re-
gions provide a good estimate of Rp/, because the pass-to-fail
event ratios SR1-to-SB1 and SR2-to-SB2 are close to VS1-to-VB1
and VS2-to-VB1, as borne out in simulations. The values of R .,
are therefore of order unity and lead to stability of the fit of signal
and background models to the data.

The values of Rg}l;, closely related to the loose and tight
misidentification rates of the ParticleNet tagger, are determined
as functions of MJY only. The 1-dimensional modelling reduces the
statistical uncertainties in the R})n/lé. A quadratic function is found
to be the best model. Furthermore, the Rp/ dependence on Mj
is weaker and is modelled through the R,,;,, determined directly
from the fit to the data in the signal regions.

The form of the R,,;, is chosen to be a product of two poly-
nomials in MJY and Mj;, whose parameters are determined from a
simultaneous fit of the binned signal and background distributions
to the data in SR1, SR2, SB1, and SB2. A variable bin width over the
(My, MJY) plane was chosen to correspond to the signal resolution
while ensuring that there were no zero-event bins in the sideband
regions.

A Fisher’s F-test [72] is used to determine the minimum poly-
nomial order necessary and sufficient for the model. Starting from
polynomials of order one in both My and MJY, terms are added un-
til no significant improvement is observed. The F-test shows that
linear functions in both My and MJY are favoured at 95% confi-
dence level (CL). The two R, values range from 0.4 to 2.9 over

the whole (My;, MJY) plane.

The simulated tt+jets event distributions in (My;, MJY) for the
signal regions are corrected for their shape and yield using the
jets+lepton event category, which is highly enriched in this back-
ground. The AK8 jets from top quark decays fall into three cat-
egories, depending on the top quark boost. A high enough boost
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may result in a fully merged t — Wb — qq’b decay, labelled as a
bqq jet. At moderate boosts, the W — qq’ may be merged to form
a W jet with the b quark forming its own jet. However, such events
are nearly all eliminated in the event selection. Finally, one of the
quarks from the W boson decay can merge with the b quark to
form a bq jet. Unmerged jets and other combinatorial backgrounds
constitute a small fraction outside these three categories.

The masses of the bqq and bq jet components in the jets+lep-
ton event category are fit to the data simultaneously with the
all-jets event categories. These two mass distributions are scaled
independently, with each being tied to the corresponding jet com-
ponent from the tt+jets in SR1 and SR2. They are independent for
the three years, giving six scales in total ranging from 0.79 to 1.35.

Two sets of cross-checks are performed for the background es-
timation method. The first is to predict the background in the
validation regions VS1 and VS2 using the validation region VB1
as a sideband. The Rp)p are estimated from the ratios of events
in the regions VS3 to VB2 and VS4 to VB2. The jets+lepton regions
are treated as they would be for the true background estimation in
the signal regions. Similar to the actual background estimation pro-
cess, a Fisher’s test is used to decide the polynomial order of the
Riatio function. Again, the most favoured form for R, is found

to be the product of linear functions along both M and in MJY.
A goodness-of-fit test confirmed the agreement between the data
and the estimated background, with the p-value greater than 0.05.

The second check uses generated toy data sets for SR1 and SR2.
A toy QCD multijets background is first obtained for these regions
by applying the Rp;y of VS1 and VS2, obtained in the first val-
idation exercise, to SB1 and SB2, respectively. The toy multijets
background is then combined with the tt+jets sample and differ-
ent signal strengths to get the toy data sets. The test consists of
comparing the estimated and true signal strengths after the full
background estimation and signal extraction procedure. The test
shows no bias in the estimated signal yields for a wide range of
My and My.

6. Systematic uncertainties

Several sources of systematic uncertainty affect the (My;, MJY)
shapes and the yields of the signals and backgrounds. The impact
of the systematic uncertainties is reported for a signal with My =
1.6 TeV and My = 150 GeV.

e ParticleNet scale factor: the uncertainty is 7-37%, depending on
the AK8 jet pr, and affects the signal by 15%.

o Jet energy scale and resolution: the uncertainties are applied to
both AK4 and AKS jets, and are fully correlated between the
two sets of jets. The signal is affected by 5%.

o Jet mass scale: this is modelled as a +5% shift in the AK8 jet
soft-drop mass. It is uncorrelated between the bqq, the bq,
and the signal jets. It affects the signal by 13%. The jet mass
scale uncertainty in the tt+jets background is reduced by in-
cluding the jets+lepton control region.

o Jet mass resolution: simulated AK8 jet masses are smeared to
match their distributions in the data, based on studies using
Lorentz-boosted W — qq’ (W boson jets). The nominal simu-
lated unsmeared jet mass resolution is taken as the downward
uncertainty while applying a 20% larger smear [41] is used to
estimate the upward uncertainty in the AKS8 jet mass resolu-
tion. The resultant impact on the signal yield is an uncertainty
of 4%.

The following uncertainties affect only the backgrounds.

o tt normalization: the uncertainties in the bqq and bq jet scale
factors range from 6% to 16%.
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e Top quark pr modelling in Monte Carlo simulations: an uncer-
tainty is assigned to the tt+jets simulation process [73], re-
sulting in a 2% uncertainty in this background.

e Multijets background uncertainty: the uncertainty derives mainly
from the uncertainty in the Ri)n/l;(MJY), which is driven by the
sample sizes in the sideband regions VS1, VS2, and VBI1. It cor-
responds to a 7-11% change in the multijet background yields.

Other systematic uncertainties with minor impact are the follow-
ing.

o Trigger efficiency: the difference between the jet energy scale
at the HLT and in the offline reconstruction [74] is appreciable
for Mj; < 1100 GeV, resulting in the trigger efficiency dropping
below 100%. An uncertainty equal to half of the difference be-
tween unity and the measured trigger efficiency is assigned.
It is larger than the statistical uncertainty and is expected to
cover jet energy scale uncertainties in the trigger efficiencies.
Its maximum value is 3%.
Trigger timing correction: during the 2016-2017 data taking, a
gradual shift in the timing of the inputs of the ECAL hardware
level trigger in the region of |n| > 2 caused a specific trigger
inefficiency. To take this effect into account, a 2% normaliza-
tion uncertainty is applied to tt events and signal for these
years.
Integrated luminosity: the uncertainty in the total Run 2
(2016-2018) integrated luminosity [30,31] is 1.6%.
Pileup: the value of the pp total inelastic cross section that is
used in the simulation of pileup events is varied upwards and
downwards from its assumed value of 69.2 mb by its uncer-
tainty of 4.6% [65].
PDF and scale uncertainties: the impact of the PDF and the QCD
factorization pp and renormalization g scale uncertainties
in the signal acceptance and selection is estimated to be 1%.
The former is derived using the PDF4LHC procedure [75] and
the NNPDF3.1 PDF sets. The latter is evaluated by separately
changing wy and g in simulation by factors of 0.5 and 2.
Sample size of sideband regions: the effects of the limited sizes
of the SB1 and SB2 samples are included as statistical uncer-
tainties in the multijets background predicted in SR1 and SR2,
using the Barlow-Beeston Lite prescription [76,77]. These un-
certainties are small compared to the uncertainties in R},“/'E
Lepton ID and isolation efficiencies: the data-to-simulation cor-
rection factors for the efficiencies have uncertainties that affect
the event yields by 1-2% in the jetstlepton selection.
o AK4 jet b-tagging data-to-simulation scale factor uncertainty: this
uncertainty amounts to about 2% and affects the semileptonic
tt+jets event yields.

All uncertainties affecting the signal and the tt+jets samples are
uncorrelated among years, except those associated with the PDF
choice, the renormalization and factorization scales, the pileup cor-
rection, the integrated luminosity, and the top quark pr modelling.

7. Results

The joint likelihood of the signal + background (Mj;, MJY) dis-
tributions in the all-jets regions (SR1 and SR2; SB1 and SB2), along
with the MJt distributions in the jets+lepton tight and loose regions

is constructed. The binned signal (M, MJY) distributions are ex-
tracted from 260 signal hypothesis simulations. A combined three-
year multijets background component is used in the likelihood
distribution to reduce the statistical uncertainty. However, the like-
lihood has three separate tt+jets and signal components, one for
each data-taking year. For the three years, 2016-2018, the data
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Fig. 2. The MJY (upper) and Mj; (lower) distributions for the number of ob-
served events (black markers) compared with the estimated backgrounds (filled
histograms) and their uncertainties (hatched areas) in SR1. The distributions ex-
pected from the signal under three My and My hypotheses and assuming a cross
section of 1 fb are also shown. The lower panels show the “Pulls” defined as

(observed events—expected events)/v aozbs - Uezxp, where 0,5 and oy, are the sta-
tistical and total uncertainties in the observation and the background estimation,
respectively. The minus sign accounts for the correlation between data and the data-
driven estimation.

distributions in the all-jets regions are added, while those for the
jets+lepton regions are kept separate. The uncertainties are treated
as nuisance parameters while fitting the signal+background models
to the data. The distributions of the data, the post-fit background,
and three representative signals in SR1 are shown in Fig. 2. The
fitted distributions in the jets+lepton tight region, used for deter-
mining the corrections to the simulated tt+jets events, are shown
in Fig. 3 (for 2018).

The signal hypothesis with My = 1.6 TeV and My = 90 GeV
gives the highest observed local significance of 3.10, which be-
comes 0.70 after accounting for the look-elsewhere effect [78].
However, the excess is not apparent in Fig. 2, which shows the
separate 1-dimensional distributions of M) and MJY, integrated
over the other variable. The estimated background is otherwise in
agreement with the observed data. Upper limits on the signal cross
section are calculated for various hypothesized values of My and
My.
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Fig. 3. The soft-drop mass distributions of the top quark candidate jets in the 2018
jets+lepton category, in the tight ParticleNet region, after the joint fit in the all-
jets and jets+lepton categories. The observed data (black markers) and the post-fit
estimate (filled histograms) are shown for the three jet categories. The lower pan-
els show the “Pulls” defined as (observed events—expected events)/v Uozbs +ae2xp,
where oy, and 0, are the total uncertainties in the observation and the back-
ground estimation, respectively.
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Fig. 4. The 95% confidence level expected (upper) and observed (lower) upper limits
on o (pp — X — YH — bbbb) for different values of My and My. The areas within
the red and black contours represent the regions where the cross sections predicted
by NMSSM and TRSM, respectively, are larger than the experimental limits. The ar-
eas within the dashed and dotted contours on the upper plot show the excluded
masses at —1 standard deviation from the expected limits.

The upper limits are computed with a modified frequentist
approach, using the CLg criterion [79,80] with the profile like-
lihood ratio used as the test-statistic and with the asymptotic
approximation [81]. As the signal distributions only assume that
they originate from spin-0 particle decays, the limits are model-
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independent. The expected and observed limits at 95% CL as a
function of My and My are shown in Fig. 4, and range from 0.1 fb
to 150 fb.

The cross section limits are compared with the maximally al-
lowed cross sections in the NMSSM and TRSM. In the NMSSM,
no mass range is excluded by the median expected limits. How-
ever, the observed limits exclude an area with My range of
1.00-1.15 TeV and My range of 101-145 GeV. For TRSM, an ex-
pected exclusion area with the bounds 0.90 < My < 1.26 TeV and
100 < My < 126 GeV is found while the observed exclusion range
spans 0.95 < My < 1.33 TeV and 110 < My < 132 GeV.

8. Summary

A search for massive scalar resonances X and Y, where X de-
cays to Y and the standard model Higgs boson H, has been per-
formed using proton-proton collision data collected at the LHC
by the CMS detector between 2016 and 2018, and corresponding
to an integrated luminosity of 138 fb~'. Events are selected us-
ing jet substructure and neural network based boosted H/Y — bb
identification algorithms. Upper limits at 95% confidence level are
set on the cross section of the process pp — X — YH — bbbb
for assumed masses of X in the range 0.9-4 TeV and Y between
60-600 GeV. The expected and observed cross section limits for
the considered process, set between 0.1 and 150 fb, are the most
stringent to date over much of the explored mass range. These lim-
its are interpreted as exclusion of possible My and My within the
frameworks of the next-to-minimal supersymmetric model and the
two-real-scalar-singlet extension of the standard model.
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