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Abstract

Persistent homology has become an important tool for extracting geometric and
topological features from data, whose multi-scale features are summarized in a
persistence diagram. From a statistical perspective, however, persistence diagrams
are very sensitive to perturbations in the input space. In this work, we develop a
framework for constructing robust persistence diagrams from superlevel filtrations
of robust density estimators constructed using reproducing kernels. Using an ana-
logue of the influence function on the space of persistence diagrams, we establish
the proposed framework to be less sensitive to outliers. The robust persistence
diagrams are shown to be consistent estimators in bottleneck distance, with the
convergence rate controlled by the smoothness of the kernel—this in turn allows us
to construct uniform confidence bands in the space of persistence diagrams. Finally,
we demonstrate the superiority of the proposed approach on benchmark datasets.

1 Introduction

Given a set of points Xn = {X1,X2, . . . ,Xn} observed from a probability distribution P on an input

space X ⊆ R
d, understanding the shape of Xn sheds important insights on low-dimensional geometric

and topological features which underlie P, and this question has received increasing attention in
the past few decades. To this end, Topological Data Analysis (TDA), with a special emphasis on
persistent homology [20, 44], has become a mainstay for extracting the shape information from data.
In statistics and machine-learning, persistent homology has facilitated the development of novel
methodology (e.g., [8, 11, 14]), which has been widely used in a variety of applications dealing with
massive, unconventional forms of data (e.g., [5, 22, 43]).

Informally speaking, persistent homology detects the presence of topological features across a range
of resolutions by examining a nested sequence of spaces, typically referred to as a filtration. The
filtration encodes the birth and death of topological features as the resolution varies, and is presented
in the form of a concise representation—a persistence diagram or barcode. In the context of data-
analysis, there are two different methods for obtaining filtrations. The first is computed from the

pairwise Euclidean distances of Xn, such as the Vietoris-Rips, Čech, and Alpha filtrations [20].
The second approach is based on choosing a function on X that reflects the density of P (or its
approximation based on Xn), and, then, constructing a filtration. While the two approaches explore
the topological features governing P in different ways, in essence, they generate similar insights.
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Commonly used φP include the (i) kernelized density, fσ , (ii) Kernel Distance (KDist), dKσ

P
, and (iii)

distance-to-measure (DTM), dP,m, which are defined as:

fσ(x) =
·

∫

X

Kσ(x,y)dP(y) ; dKσ

P
=· ‖µδx − µP‖Hσ

; dP,m(x) =·

√

1

m

m

∫
0
F−1
x (u)du,

where Fx(t) = P (‖X− x‖2 ≤ t) and σ,m > 0. For these φP, the corresponding empirical

analogues, φn, are constructed by replacing P with the empirical measure, Pn =· 1
n

∑n
i=1 δXi .

For example, the empirical analogue of fσ is the familiar kernel density estimator (KDE),
fn
σ = 1

n

∑n
i=1 Kσ(·,Xi). While KDE and KDist encode the shape and distribution of mass for

supp(P) by approximating the density f (sublevel sets of KDist are rescaled versions of superlevel
sets of KDE [13, 32]), DTM, on the other hand, approximates the distance function to supp(P).

Since φn is based on Pn, it is sensitive to outliers in Xn, which, in turn affect the persistence diagrams
(as illustrated in Figure 1). To this end, in this paper, we propose robust persistence diagrams
constructed using superlevel filtrations of a robust density estimator of f , i.e., the filter function, φn

is chosen to be a robust density estimator of f . Specifically, we use the robust KDE, fn
ρ,σ , introduced

by [27] as the filter function, which is defined as a solution to the following M-estimation problem:

fn
ρ,σ =· arg inf

g∈G

∫

X

ρ
(

‖Φσ(y)− g‖
Hσ

)

dPn(y), (1)

where ρ : R≥0 → R≥0 is a robust loss function, and G = Hσ ∩ Dσ = Dσ is the hypothesis

class. Observe that when ρ(z) = 1
2z

2, the unique solution to Eq. (1) is given by the KDE, fn
σ .

Therefore, a robust KDE is obtained by replacing the square loss with a robust loss, which satisfies
the following assumptions. These assumptions, which are similar to those of [27, 39] guarantee the
existence and uniqueness (if ρ is convex) of fn

ρ,σ [27], and are satisfied by most robust loss functions,

including the Huber loss, ρ(z) = 1
2z

2
✶ {z ≤ 1} +

(

z − 1
2

)

✶ {z > 1} and the Charbonnier loss,

ρ(z) =
√
1 + z2 − 1.

(A1) ρ is strictly-increasing and M -Lipschitz, with ρ(0) = 0.

(A2) ρ′(x) is continuous and bounded with ρ′(0) = 0 .

(A3) ϕ(x) = ρ′(x)/x is bounded, L-Lipschitz and continuous, with ϕ(0) < ∞.

(A4) ρ′′ exists, with ρ′′ and ϕ nonincreasing.

Unlike for squared loss, the solution fn
ρ,σ cannot be obtained in a closed form. However, it can be

shown to be the fixed point of an iterative procedure, referred to as KIRWLS algorithm [27]. The

KIRWLS algorithm starts with initial weights {w(0)
i }ni=1 such that

∑n
i=1 w

(0)
i = 1, and generates the

iterative sequence of estimators {f (k)
ρ,σ}k∈N as

f (k)
ρ,σ =

n
∑

i=1

w
(k−1)
i Kσ(·,Xi) ; w

(k)
i =

ϕ(‖Φσ(Xi)− f
(k)
ρ,σ‖Hσ

)
∑n

j=1 ϕ(‖Φσ(Xj)− f
(k)
ρ,σ‖Hσ

)
.

Intuitively, note that if Xi is an outlier, then the corresponding weight wi is small (since ϕ is
nonincreasing) and therefore less weight is given to the contribution of Xi in the density estimator.
Hence, the weights serve as a measure of inlyingness—smaller (resp. larger) the weights, lesser (resp.
more) inlying are the points. When Pn is replaced by P, the solution of Eq. (1) is its population
analogue, fρ,σ . Although fρ,σ does not admit a closed form solution, it can be shown [27] that there
exists a non-negative real-valued function wσ satisfying

∫

Rd wσ(x) dP(x) = 1 such that

fρ,σ =

∫

Rd

Kσ(·,x)wσ(x)dP(x) =

∫

Rd

ϕ(‖Φσ(x)− fρ,σ‖Hσ
)

∫

Rd ϕ(‖Φσ(y)− fρ,σ‖Hσ
)dP(y)

Kσ(·,x) dP(x), (2)

where wσ acts as a population analogue of the weights in KIRWLS algorithm.

To summarize our proposal, the fixed point of the KIRWLS algorithm, which yields the robust
density estimator fn

ρ,σ, is used as the filter function to obtain a robust persistence diagram of Xn.
On the computational front, note that fn

ρ,σ is computationally more complex than the KDE, fn
σ ,

requiring O(nℓ) computations compared to O(n) of the latter, with ℓ being the number of iterations
required to reach the fixed point of KIRWLS. However, once these filter functions are computed, the
corresponding persistence diagrams have similar computational complexity as both require computing
superlevel sets, which, in turn, require function evaluations that scale as O(n) for both fn

ρ,σ and fn
σ .
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4 Theoretical Analysis of Robust Persistence Diagrams

In this section, we investigate the theoretical properties of the proposed robust persistence diagrams.
First, in Section 4.1, we examine the sensitivity of persistence diagrams to outlying perturbations
through the notion of metric derivative and compare the effect of different filter functions. Next, in
Section 4.2, we establish consistency and convergence rates for the robust persistence diagram to
its population analogue. These results allow to construct uniform confidence bands for the robust
persistence diagram. The proofs of the results are provided in Appendix A.

4.1 A measure of sensitivity of persistence diagrams to outliers

The influence function and gross error sensitivity are arguably the most popular tools in robust
statistics for diagnosing the sensitivity of an estimator to a single adversarial contamination [23, 26].
Given a statistical functional T : P(X) → (V, ‖·‖V ), which takes an input probability measure
P ∈ P(X) on the input space X and produces a statistic P 7→ T (P) in some normed space (V, ‖·‖V ),
the influence function of x ∈ X at P is given by the Gâteaux derivative of T at P restricted to the
space of signed Borel measures with zero expectation:

IF(T ;P,x) =·
∂

∂ǫ
T
(

(1− ǫ)P+ ǫδx

)
∣

∣

∣

ǫ=0
= lim

ǫ→0

T ((1− ǫ)P+ ǫδx)− T (P)

ǫ
,

and the gross error sensitivity at P is given by Γ(T ;P) =· sup
x∈X ‖IF(T ;P,x)‖V . However, a

persistence diagram (which is a statistical functional) does not take values in a normed space and
therefore the notion of influence functions has to be generalized to metric spaces through the concept
of a metric derivative: Given a complete metric space (X, dX) and a curve s : [0, 1] → X , the metric

derivative at ǫ = 0 is given by |s′| (0) =· limǫ→0
1
ǫdX(s(0), s(ǫ)). Using this generalization, we have

the following definition, which allows to examine the influence an outlier has on the persistence
diagram obtained from a filtration.

Definition 4.1. Given a probability measure P ∈ P(Rd) and a filter function φP depending on P, the

persistence influence of a perturbation x ∈ R
d on Dgm (φP) is defined as

Ψ(φP;x) = lim
ǫ→0

1

ǫ
W∞

(

Dgm
(

φPǫ
x

)

,Dgm (φP)
)

,

where P
ǫ
x
=· (1− ǫ)P+ ǫδx, and the gross-influence is defined as Γ(φP) = sup

x∈Rd Ψ(φP;x).

For ǫ > 0, let f ǫ,x
ρ,σ be the robust KDE associated with the probability measure P

ǫ
x

. The following
result (proved in Appendix A.1) bounds the persistence influence for the persistence diagram induced
by the filter function fρ,σ , which is the population analogue of robust KDE.

Theorem 4.2. For a loss ρ satisfying (A1)–(A3), and σ > 0, if lim
ǫ→0

1
ǫ

(

f ǫ,x
ρ,σ − fρ,σ

)

exists, then the

persistence influence of x ∈ R
d on Dgm (fρ,σ) satisfies

Ψ(fρ,σ;x) ≤ ‖Kσ‖
1

2

∞ ρ′
(

‖Φσ(x)− fρ,σ‖Hσ

)

(
∫

Rd

ζ
(

‖Φσ(y)− fρ,σ‖Hσ

)

dP(y)

)−1

, (3)

where ζ(z) = ϕ(z)− zϕ′(z).

Remark 4.3. We make the following observations from Theorem 4.2.

(i) Choosing ρ(z) = 1
2z

2 and noting that ϕ(z) = ρ′′(z) = 1, a similar analysis, as in the proof of
Theorem 4.2, yields a bound for the persistence influence of the KDE as

Ψ(fσ;x) ≤ σ−d/2 ‖Φσ(x)− fσ‖Hσ
.

On the other hand, for robust loss functions, the term in Eq. (3) involving ρ′ is bounded because of
(A2), making them less sensitive to very large perturbations. In fact, for nonincreasing ϕ, it can be
shown (see Appendix C) that

Ψ(fρ,σ;x) ≤ σ−d/2wσ(x) ‖Φσ(x)− fρ,σ‖Hσ
,

where, in contrast to KDE, the measure of inlyingness, wσ , weighs down extreme outliers.
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4.2 Statistical properties of robust persistence diagrams from samples

Suppose Dgm
(

fn
ρ,σ

)

is the robust persistence diagram obtained from the robust KDE on a sample

Xn and Dgm (fρ,σ) is its population analogue obtained from fρ,σ. The following result (proved in

Appendix A.3) establishes the consistency of Dgm
(

fn
ρ,σ

)

in the W∞ metric.

Theorem 4.5. For convex loss ρ satisfying (A1)–(A4), and fixed σ > 0, suppose Xn is observed iid

from a distribution P∈M(Rd) with density f . Then

W∞
(

Dgm
(

fn
ρ,σ

)

,Dgm (fρ,σ)
) p→ 0 as n → ∞.

We present the convergence rate of the above convergence in Theorem 4.7, which depends on the
smoothness of Hσ. In a similar spirit to [21], this result paves the way for constructing uniform
confidence bands. Before we present the result, we first introduce the notion of entropy numbers
associated with an RKHS.

Definition 4.6 (Entropy Number). Given a metric space (T, d) the nth entropy number is defined as

en(T, d) =
· inf







ǫ > 0 : ∃ {t1, t2, . . . , t2n−1} ⊂ T such that T ⊂
2n−1

⋃

i=1

Bd(ti, ǫ)







.

Further, if (V, ‖·‖V ) and (W, ‖·‖W ) are two normed spaces and L : V → W is a bounded, linear

operator, then en(L) = en(L : V → W ) =· en (L(BV ), ‖·‖W ), where BV is a unit ball in V .

Loosely speaking, entropy numbers are related to the eigenvalues of the integral operator associated
with the kernel Kσ , and measure the capacity of the RKHS in approximating functions in L2(R

d). In
our context, the entropy numbers will provide useful bounds on the covering numbers of sets in the
hypothesis class G. We refer the reader to [35] for more details. With this background, the following
theorem (proved in Appendix A.4) provides a method for constructing uniform confidence bands for
the persistence diagram constructed using the robust KDE on Xn.

Theorem 4.7. For convex loss ρ satisfying (A1)–(A4), and fixed σ > 0, suppose the kernel Kσ

satisfies en (id : Hσ → L∞(X)) ≤ aσn
− 1

2p , where aσ > 1, 0 < p < 1 and X ⊂ R
d. Then, for a

fixed confidence level 0 < α < 1,

sup
P∈M(X)

P
⊗n

{

W∞

(

Dgm
(

fn
ρ,σ

)

,Dgm (fρ,σ)
)

>
2M ‖Kσ‖

1

2

∞
µ

(

ξ(n, p) + δ

√

2 log (1/α)

n

)}

≤ α,

where ξ(n, p) is given by

ξ(n, p) =























γ
ap
σ

(1−2p) · 1√
n

if 0 < p < 1/2,

γC
√
aσ · log(n)√

n
if p = 1/2,

γ
p
√
aσ

2p−1 · 1
n1/4p if 1/2 < p < 1,

for fixed constants γ > 12√
log 2

, C > 3− log(9aσ) and µ = 2min
{

ϕ(2 ‖Kσ‖
1

2

∞), ρ′′(2 ‖Kσ‖
1

2

∞)
}

.

Remark 4.8. We highlight some salient observations from Theorem 4.7.

(i) If diam(X) = r, and the kernel Kσ is m-times differentiable, then from [35, Theorem 6.26],

the entropy numbers associated with Kσ satisfy en (id : Hσ → L∞(X)) ≤ crmn−m
d . In light of

Theorem 4.7, for p = d
2m , we can make two important observations. First, as the dimension of the

input space X increases, we have that the rate of convergence decreases; which is a direct consequence
from the curse of dimensionality. Second, for a fixed dimension of the input space, the parameter
p in Theorem 4.7 can be understood to be inversely proportional to the smoothness of the kernel.
Specifically, as the smoothness of the kernel increases, the rate of convergence is faster, and we obtain
sharper confidence bands. This makes a case for employing smoother kernels.

(ii) A similar result is obtained in [21, Lemma 8] for persistence diagrams from the KDE, with a

convergence rate Op(n
−1/2), where the proof relies on a simple application of Hoeffding’s inequality,

unlike the sophisticated tools the proof of Theorem 4.7 warrants for the robust KDE.
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Broader Impact

Over the last decade, Topological Data Analysis has become an important tool for extracting geometric
and topological information from data, and its applications have been far reaching. For example, it
has been used successfully in the study the fragile X-syndrome, to discover traumatic brain injuries,
and has also become an important tool in the study of protein structure. In astrophysics, it has
aided the study of cosmic microwave background, and the discovery of cosmic voids and filamental
structures in cosmological data. With a continual increase in its adoption in data analysis, it has
become important to understand the limitations of using persistent homology in machine learning
applications. As real-world data is often flustered with measurement errors and other forms of noise,
in this work, we examine the sensitivity of persistence diagrams to such noise, and provide methods
to mitigate the effect of this noise, so as to make reliable topological inference.
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