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Abstract

Persistent homology has become an important tool for extracting geometric and
topological features from data, whose multi-scale features are summarized in a
persistence diagram. From a statistical perspective, however, persistence diagrams
are very sensitive to perturbations in the input space. In this work, we develop a
framework for constructing robust persistence diagrams from superlevel filtrations
of robust density estimators constructed using reproducing kernels. Using an ana-
logue of the influence function on the space of persistence diagrams, we establish
the proposed framework to be less sensitive to outliers. The robust persistence
diagrams are shown to be consistent estimators in bottleneck distance, with the
convergence rate controlled by the smoothness of the kernel—this in turn allows us
to construct uniform confidence bands in the space of persistence diagrams. Finally,
we demonstrate the superiority of the proposed approach on benchmark datasets.

1 Introduction

Given a set of points X,, = { X7, Xo, ..., X, } observed from a probability distribution P on an input
space X C R?, understanding the shape of X,, sheds important insights on low-dimensional geometric
and topological features which underlie P, and this question has received increasing attention in
the past few decades. To this end, Topological Data Analysis (TDA), with a special emphasis on
persistent homology [20, 44], has become a mainstay for extracting the shape information from data.
In statistics and machine-learning, persistent homology has facilitated the development of novel
methodology (e.g., [8, 11, 14]), which has been widely used in a variety of applications dealing with
massive, unconventional forms of data (e.g., [5, 22, 43]).

Informally speaking, persistent homology detects the presence of topological features across a range
of resolutions by examining a nested sequence of spaces, typically referred to as a filtration. The
filtration encodes the birth and death of topological features as the resolution varies, and is presented
in the form of a concise representation—a persistence diagram or barcode. In the context of data-
analysis, there are two different methods for obtaining filtrations. The first is computed from the
pairwise Euclidean distances of X,,, such as the Vietoris-Rips, Cech, and Alpha filtrations [20].
The second approach is based on choosing a function on X that reflects the density of P (or its
approximation based on X,,), and, then, constructing a filtration. While the two approaches explore
the topological features governing [P in different ways, in essence, they generate similar insights.
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Figure 1: (Left) X,, is sampled from a circle with small perturbations to each point. The persistence diagram
detects the presence of the loop, as guaranteed by the stability of persistence diagrams [12, 16]. (Right) X, is
sampled from a circle but with just a few outliers. The resulting persistence diagram changes dramatically — the
persistence of the main loop plummets, and other spurious loops appear, as elaborated in Section 2.

Despite obvious advantages, the adoption of persistent homology in mainstream statistical method-
ology is still limited. An important limitation among others, in the statistical context, is that the
resulting persistent homology is highly sensitive to outliers. While the stability results of [12, 16]
guarantee that small perturbations on all of X, induce only small changes in the resulting persistence
diagrams, a more pathological issue arises when a small fraction of X,, is subject to very large
perturbations. Figure | illustrates how inference from persistence diagrams can change dramatically
when X, is contaminated with only a few outliers. Another challenge is the mathematical difficulty
in performing sensitivity analysis in a formal statistical context. Since the space of persistence
diagrams has an unusual mathematical structure, it falls victim to issues such as non-uniqueness
of Fréchet means and unbounded curvature of geodesics [18, 29, 36]. With this background, the
central objective of this paper is to develop outlier robust persistence diagrams, develop a framework
for examining the sensitivity of the resulting persistence diagrams to noise, and establish statistical
convergence guarantees. To the best of our knowledge, not much work has been carried out in this
direction. Bendich et al. [4] construct persistence diagrams from Rips filtrations on X, by replacing
the Euclidean distance with diffusion distance, Brécheteau and Levrard [7] use a coreset of X,, for
computing persistence diagrams from the distance-to-measure, and Anai et al. [2] use weighted-Rips
filtrations on X, to construct more stable persistent diagrams. However, no sensitivity analysis of the
resultant diagrams are carried out in [2, 4, 7] to demonstrate their robustness.

Contributions. The main contributions of this work are threefold. 1) We propose robust persistence
diagrams constructed from filtrations induced by an RKHS-based robust KDE (kernel density
estimator) [27] of the underlying density function of IP (Section 3). While this idea of inducing
filtrations by an appropriate function—([13, 21, 32] use KDE, distance-to-measure (DTM) and kernel
distance (KDist), respectively—has already been explored, we show the corresponding persistence
diagrams to be less robust compared to our proposal. 2) In Section 4.1, we generalize the notions
of influence function and gross error sensitivity—which are usually defined for normed spaces—to
the space of persistence diagrams, which lack the vector space structure. Using these generalized
notions, we investigate the sensitivity of persistence diagrams constructed from filtrations induced by
different functions (e.g., KDE, robust KDE, DTM) and demonstrate the robustness of the proposed
method, both mathematically (Remark 4.3) and numerically (Section 5). 3) We establish the statistical
consistency of the proposed robust persistence diagrams and provide uniform confidence bands by
deriving exponential concentration bounds for the uniform deviation of the robust KDE (Section 4.2).

Definitions and Notations. For a metric space X, the ball of radius r centered at z € X is denoted
by Bx(z, 7). P(RY) is the set of all Borel probability measures on R, and M(R?) denotes the set
of probability measures on R¢ with compact support and tame density function (See Section 2).
denotes a Dirac measure at . For bandwidth ¢ > 0, J{,; denotes a reproducing kernel Hilbert space
(RKHS) with K, : R? x RY — R as its reproducing kernel. We denote by &, (z) = K, (-,x) € H,,
the feature map associated with /;, which embeds & € R4 into ®,, (x) € H,. Throughout this paper,
we assume that K, is radial, i.e., K, (z,y) = o~ %)(||lz — yl/,/0) with ¢(|| - ||») being a pdf on R<,
where |3 = Y,
Matérn and inverse multiquadric kernels. We denote || Ky |, = sup, ,epae Ko (2, y) = o %4(0).
Without loss of generality, we assume /(0) = 1. For P € P(R?), up = [ K, (-, y)dP(y) € H, is

called the mean embedding of P, and D, = { pp : Pe P(Rd)} is the space of mean embeddings [30].

x? forex = (x1,...,24) € R<. Some common examples include the Gaussian,
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2 Persistent Homology: Preliminaries

We present the necessary background on persistent homology for completeness. See [9, 42] for a
comprehensive introduction.

Persistent Homology. Let ¢ : X — R>g be a function on the metric space (X, d). Atlevel r > 0,
the sublevel set X, = ¢~ 1 ([0,7]) = {z € X : ¢(x) < r} encodes the topological information in X.
For r < s, the sublevel sets are nested, i.e., X,, C X,. Thus {xr}0§r<oo is a nested sequence of

topological spaces, called a filtration, denoted by Sub(¢), and ¢ is called the filter function. As the
level r varies, the evolution of the topology is captured in the filtration. Roughly speaking, new cycles
(i.e., connected components, loops, voids and higher order analogues) can appear or existing cycles
can merge. A new k-dimensional feature is said to be born at b6 € R when a nontrivial k-cycle appears
in Xp. The same k-cycle dies at level d > b when Filter Function ¢(x) 0"-Persistence Diagram
it disappears in all X4, for € > 0. Persistent — |-oooccooeoo_a ]
homology is an algebraic module which tracks the '
persistence pairs (b,d) of births b and deaths d .
with multiplicity g across the entire filtration /
JI

Sub(¢). Mutatis mutandis, a similar notion holds
for superlevel sets X" = ¢~ 1 ([r, 00)), inducing = AN

the filtration Sup(¢). For r < s, the inclusion - \J
X" 2 X? is reversed and a cycle born at b diesata ©
level d < b, resulting in the persistence pair (d, b)
instead. Figure 2 shows 3 connected components Supertovel Setfor 18
in the superlevel set for » = 8. The components © - © « Death

. T T T T T T T T T
were born as 7 swept through the blue points, and 4 2 0 2 4 o 5 10 15

die when r approaches the red points. In practice, Fi 2D S f ‘RS TR
the filtrations are computed on a grid representation igure 2: Dgm (Sup(9)) for ¢ : & = R.
of the underlying space using cubical homology. We refer the reader to Appendix E for more details.

< Birth —

Persistence Diagrams. By collecting all persistence pairs, the persistent homology features are
concisely represented as a persistence diagram Dgm (Sub(¢)) = {(b,d) € R?: 0 < b < d < c0}. A
similar definition carries over to Dgm (Sup(¢)), using (d, b) instead. See Figure 2 for an illustration.
When the context is clear, we drop the reference to the filtration and simply write Dgm(¢). The k"
persistence diagram is the subset of Dgm(¢) corresponding to the k-dimensional features. The space
of persistence diagrams is the locally-finite multiset of points on 2 = {(z,y) : 0 <z < y < o0},
endowed with the family of p-Wasserstein metrics W,,, for 1 < p < oo. We refer the reader to
[18, 19] for a thorough introduction. W, is commonly referred to as the bottleneck distance.

Definition 2.1. Given two persistence diagrams Dy and Ds, the bottleneck distance is given by

Weo (D1, D2) = inf - sup |lp— ()l
Y€l peD;UA

where T = {v: D1 UA — Dy UA} is the set of all bijections from Dy to Do, including the
diagonal A = {(z,y) € R? : 0 < 2 = y < oo} with infinite multiplicity.

An assumption we make at the outset is that the filter function f is tame. Tameness is a metric
regularity condition which ensures that the number of points on the persistence diagrams are finite,
and, in addition, the number of nontrivial cycles which share identical persistence pairings are also
finite. Tame functions satisfy the celebrated stability property w.r.t. the bottleneck distance.

Proposition 2.2 (Stability of Persistence Diagrams [12, 16]). Given two tame functions f,q : X — R,
Woo (Dgm(f), Dgm(g)) < |[f —gll -

The space of persistence diagrams is, in general, challenging to work with. However, the stability
property provides a handle on the persistence space through the function space of filter functions.

3 Robust Persistence Diagrams

Given X,, = { X1, X5, ..., X,,} € R? drawn iid from a probability distribution P ¢ M (R?) with
density f, the corresponding persistence diagram can be obtained by considering a filter function
bn R? — R, constructed from X,, as an approximation to its population analogue, ¢p : RY 5 R,
that carries the topological information of IP.



Commonly used ¢p include the (i) kernelized density, f,, (ii) Kernel Distance (KDist), d% and (iii)
distance-to-measure (DTM), dp ,,,, which are defined as:

1 m
— [ Fz ' (u)du,

z) = / Ko y)dPy); 5 = |lus, — ppllye, : dpml(@) =
X m o

where F(t) = P(||X— x|, <t) and o,m > 0. For these ¢p, the corresponding empirical

analogues, ¢,,, are constructed by replacing P with the empirical measure, =1 Z" 0x;.
For example the emplrlcal analogue of f, is the familiar kernel densny estlmator (KDE)
fr=1%" K,(,X;). While KDE and KDist encode the shape and distribution of mass for

supp IPTL) by approx1mat1ng the density f (sublevel sets of KDist are rescaled versions of superlevel
sets of KDE [13, 32]), DTM, on the other hand, approximates the distance function to supp(IP).

Since ¢,, is based on IP,,, it is sensitive to outliers in X,;,, which, in turn affect the persistence diagrams
(as illustrated in Figure 1). To this end, in this paper, we propose robust persistence diagrams
constructed using superlevel filtrations of a robust density estimator of f, i.e., the filter function, ¢,,
is chosen to be a robust density estimator of f. Specifically, we use the robust KDE, f;ﬁg, introduced
by [27] as the filter function, which is defined as a solution to the following M-estimation problem:

n = arginf / 0 (1B0(5) — gllac. ) dPw(w), (1)
g€eg X

where p : R>g — R>¢ is a robust loss function, and G = H, N D, = D, is the hypothesis
class. Observe that when p(z) = %22, the unique solution to Eq. (1) is given by the KDE, .
Therefore, a robust KDE is obtained by replacing the square loss with a robust loss, which satisfies
the following assumptions. These assumptions, which are similar to those of [27, 39] guarantee the
existence and uniqueness (if p is convex) of f'; [27], and are satisfied by most robust loss functions,
including the Huber loss, p(z) = 1221 {z <1} + (2 — 3) 1{z > 1} and the Charbonnier loss,

p(z) =vV1+22 -1

(A1) pis strictly-increasing and M-Lipschitz, with p(0) = 0.
(A2) p'(x) is continuous and bounded with p’(0) = 0.
(A3) ( ) = p/(x)/z is bounded, L-Lipschitz and continuous, with ¢(0) < occ.

(A4) p” exists, with p”" and ¢ nonincreasing.

Unlike for squared loss, the solution f;fg cannot be obtained in a closed form. However, it can be
shown to be the fixed point of an iterative procedure, referred to as KIRWLS algorithm [27]. The
KIRWLS algorithm starts with initial weights {w( )} ', such that > | w(o) = 1, and generates the

iterative sequence of estimators { fp,oz tren as

n (k)
£ =S Vg X w® = PUP(Xs) = Joslloc,)
Zap> S o126 (X5) — £ 1)

Intuitively, note that if X; is an outlier, then the corresponding weight w; is small (since ¢ is
nonincreasing) and therefore less weight is given to the contribution of Xj; in the density estimator.
Hence, the weights serve as a measure of inlyingness—smaller (resp. larger) the weights, lesser (resp.
more) inlying are the points. When P, is replaced by PP, the solution of Eq. (1) is its population
analogue, f, . Although f, , does not admit a closed form solution, it can be shown [27] that there
exists a non-negative real-valued function w, satisfying [, w, () dP(x) = 1 such that

_ o e B(e] (1 (®) = Fpolse,)
fp,ﬂ* ]RdKU(’ ) 17( )d]P)( )* Rd fRdtp(H@a(y)*fp,gHJ{g)dIP’(y)

where w,, acts as a population analogue of the weights in KIRWLS algorithm.

Ko (- z) dP(z), (2)

To summarize our proposal, the fixed point of the KIRWLS algorithm, which yields the robust
density estimator f', is used as the filter function to obtain a robust persistence diagram of Xn.
On the computational front, note that f/', is computationally more complex than the KDE, f,
requiring O(n¢) computations compared to O(n) of the latter, with ¢ being the number of iterations
required to reach the fixed point of KIRWLS. However, once these filter functions are computed, the
corresponding persistence diagrams have similar computational complexity as both require computing
superlevel sets, which, in turn, require function evaluations that scale as O(n) for both [poand f7.



4 Theoretical Analysis of Robust Persistence Diagrams

In this section, we investigate the theoretical properties of the proposed robust persistence diagrams.
First, in Section 4.1, we examine the sensitivity of persistence diagrams to outlying perturbations
through the notion of metric derivative and compare the effect of different filter functions. Next, in
Section 4.2, we establish consistency and convergence rates for the robust persistence diagram to
its population analogue. These results allow to construct uniform confidence bands for the robust
persistence diagram. The proofs of the results are provided in Appendix A.

4.1 A measure of sensitivity of persistence diagrams to outliers

The influence function and gross error sensitivity are arguably the most popular tools in robust
statistics for diagnosing the sensitivity of an estimator to a single adversarial contamination [23, 26].
Given a statistical functional 7" : P(X) — (V,||-||;,), which takes an input probability measure
[P € P(X) on the input space X and produces a statistic P — T'(I?) in some normed space (V, ||-||;,),
the influence function of x € X at P is given by the Gateaux derivative of 1" at [P restricted to the
space of signed Borel measures with zero expectation:

T((1—e)P+edy) —T(P)

= lim ,

e=0 e—0 €

IF(T;P,z) = gT((l - e)IP’-i—eém)

and the gross error sensitivity at P is given by I'(T;P) = sup,cy [|IF(T; P, )||,,. However, a
persistence diagram (which is a statistical functional) does not take values in a normed space and
therefore the notion of influence functions has to be generalized to metric spaces through the concept
of a metric derivative: Given a complete metric space (X, dx) and a curve s : [0, 1] — X, the metric
derivative at € = 0 is given by |s'| (0) = lim¢_,0 dx (s(0), s(€)). Using this generalization, we have
the following definition, which allows to examine the influence an outlier has on the persistence
diagram obtained from a filtration.

Definition 4.1. Given a probability measure P € P(R?) and a filter function ¢p depending on P, the
persistence influence of a perturbation € R on Dgm (¢p) is defined as

W (95 ) = lim W (Dgm (6x;) . Dgm (62))

where P, = (1 — €)P + €04, and the gross-influence is defined as I'(¢p) = supycpe ¥ (¢p; ).

For e > 0, let f;-7 be the robust KDE associated with the probability measure P,. The following
result (proved in Appendlx A.1) bounds the persistence influence for the persistence dlagram induced
by the filter function f, , which is the population analogue of robust KDE.

Theorem 4.2. For a loss p satisfying (A1)—(A3), and o > 0, if lim L (f5% — fo.0) exists, then the
€E—>

persistence influence of x € R? on Dgm (f, ) satisfies

¥ (i) < 1! (1@ = ool ) ([ ¢(190) = fre %,,)dﬂ%y))_l, G)
where ((z) = p(z) — z¢'(2).

Remark 4.3. We make the following observations from Theorem 4.2.

(i) Choosing p(z) = 3z* and noting that ¢(z) = p”(z) = 1, a similar analysis, as in the proof of

Theorem 4.2, yields a bound for the persistence influence of the KDE as

U(foi@) <000 (@) — follse, -

On the other hand, for robust loss functions, the term in Eq. (3) involving p’ is bounded because of
(A2), making them less sensitive to very large perturbations. In fact, for nonincreasing ¢, it can be
shown (see Appendix C) that

U (fpoi@) <0~ Py (@) |06 () — fo0

where, in contrast to KDE, the measure of inlyingness, w,, weighs down extreme outliers.

l¢, -
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Figure 3: Points X,, are sampled from P with nontrivial 1°*-order homological features and outliers Y, are added
at a distance r from the support of PP. (Left) The average L, distance between the density estimators computed
using X, and X,, UY,, as r increases. (Center) The average W, distance between the corresponding persistence
diagrams for the 1°*-order homological features. (Right) The Wy distance (defined in Eq. E.1 in Appendix E)
between the same persistence diagrams. The results show that the outliers Y,, have little influence on the
persistence diagrams from the robust KDEs. In contrast, as the outliers become more extreme (i.e., r increases)
their influence on the persistence diagrams from the KDE becomes more prominent.

a/2 B

(i) For the generalized Charbonnier loss (a robust loss function), given by p(z) = (1 + 22) 1

for 1 < « < 2, the persistence influence satisfies

¥ (i) <2 (1 100(0) — fpald,) T (14 [ 1000) — Fually, aP0)

Note that for o = 1, the bound on the persistence influence ¥ (f, ; «) does not depend on how
extreme the outlier x is. Similarly, for the Cauchy loss, given by p(z) = log(1 + z?), we have

¥ Gy 0) <o (1 [ 00la) — fualy, aPlo).

This shows that for large perturbations, the gross error sensitivity for the Cauchy and Charbonnier
losses are far more stable than that of KDE. This behavior is also empirically illustrated in Figure 3.
The experiment is detailed in Appendix C.

(iii) For the DTM function, it can be shown that

¥ (o) = sw{|f@ - [ ro@w)| Ve <) @

While dp ,,, cannot be compared to both f, and f, ,, as it captures topological information at a
different scale, determined by m, we point out that when supp(P) is compact, ¥ (dp ;) is not
guaranteed to be bounded, unlike in W (f, ;). We refer the reader to Appendix C for more details.

o

It follows from Remark 4.3 that as o — 0, the persistence influence of both the KDE and robust KDE
behave as O(o ~¢), showing that the robustness of robust persistence diagrams manifests only in cases
where o > 0. However, robustness alone has no bearing if the robust persistence diagram and the
persistence diagram from the KDE are fundamentally different, i.e., they estimate different quantities
as ¢ — 0. The following result (proved in Appendix A.2) shows that as ¢ — 0, Dgm (f, ») recovers
the same information as that in Dgm (f,;), which is same as Dgm ( f), where f is the density of IP.

Theorem 4.4. For a strictly-convex loss p satisfying (A1)—(A4), and o > 0, suppose P ¢ M(R?)
with density f, and f, » is the robust KDE. Then Ws, (Dgm (f,.+),Dgm (f)) = 0aso — 0.

Suppose P = (1 — 7)Py + 7Q, where Py corresponds to the true signal which we are interested in
studying, and (Q manifests as some ambient noise with 0 < 7 < % In light of Theorem 4.4, by letting
o — 0, along with the topological features of Py, we are also capturing the topological features of Q,
which may obfuscate any statistical inference made using the persistence diagrams. In a manner,
choosing o > 0 suppresses the noise in the resulting persistence diagrams, thereby making them
more stable. On a similar note, the authors in [21] state that for a suitable bandwidth o > 0, the level
sets of f, carry the same topological information as supp(IP), despite the fact that some subtle details
in f may be omitted. In what follows, we consider the setting where robust persistence diagrams are
constructed for a fixed o > 0.



4.2 Statistical properties of robust persistence diagrams from samples

Suppose Dgm ( ;U) is the robust persistence diagram obtained from the robust KDE on a sample
X,, and Dgm (f, ) is its population analogue obtained from f, ,. The following result (proved in
Appendix A.3) establishes the consistency of Dgm ( f;’;o) in the W, metric.

Theorem 4.5. For convex loss p satisfying (A1)—(.A4), and fixed o > 0, suppose X,, is observed iid
from a distribution P € M(R?) with density f. Then

W (ng ( ;fo) ,Dgm (f,w)) 20 asn— oo.

We present the convergence rate of the above convergence in Theorem 4.7, which depends on the
smoothness of . In a similar spirit to [21], this result paves the way for constructing uniform
confidence bands. Before we present the result, we first introduce the notion of entropy numbers
associated with an RKHS.

Definition 4.6 (Entropy Number). Given a metric space (T, d) the nt" entropy number is defined as
2n71
en(T,d) =inf< e > 0:3 {t1,ta,...,ton1} C T suchthatT C U By(ti,e€)
i=1
Further, if (V. ||-||\,) and (W, ||-||y;,) are two normed spaces and L : V' — W is a bounded, linear
operator, then e,,(L) = e, (L : V — W) = e, (L(Bvy), ||| ). where By is a unit ball in' V.

Loosely speaking, entropy numbers are related to the eigenvalues of the integral operator associated
with the kernel K, and measure the capacity of the RKHS in approximating functions in Ly(R%). In
our context, the entropy numbers will provide useful bounds on the covering numbers of sets in the
hypothesis class G. We refer the reader to [35] for more details. With this background, the following
theorem (proved in Appendix A.4) provides a method for constructing uniform confidence bands for
the persistence diagram constructed using the robust KDE on X,,.

Theorem 4.7. For convex loss p satisfying (Al)—(A4), and fixed o > 0, suppose the kernel K,

satisfies e, (id : Hy — Loo(X)) < agnfﬁ, where ay > 1,0 < p < 1 and X C R% Then, for a
fixed confidence level 0 < o < 1,

up P@”{woo(ng (£2,) .Dem (£0) ) > 2ol (an,p) w W) } <o,
PeM(X) 1 n

where (n, p) is given by

7(131)) ﬁ if0<p<1/2,
£(n,p) = { 1OVae - 52 ifp=1/2,
Yol Lo if1/2<p<],

for fixed constants v > %, C > 3 —log(9a,) and p = 2 min {30(2 ||Kg||§o), P (2 ||KUH§<>)}

Remark 4.8. We highlight some salient observations from Theorem 4.7.

() If diam(X) = r, and the kernel K, is m-times differentiable, then from [35, Theorem 6.26],
the entropy numbers associated with K, satisfy e, (id : 3y — Loo(X)) < er™n~"¢. In light of
Theorem 4.7, for p = %, we can make two important observations. First, as the dimension of the
input space X increases, we have that the rate of convergence decreases; which is a direct consequence
from the curse of dimensionality. Second, for a fixed dimension of the input space, the parameter
p in Theorem 4.7 can be understood to be inversely proportional to the smoothness of the kernel.
Specifically, as the smoothness of the kernel increases, the rate of convergence is faster, and we obtain
sharper confidence bands. This makes a case for employing smoother kernels.

(ii) A similar result is obtained in [21, Lemma 8] for persistence diagrams from the KDE, with a

convergence rate Op(n‘l/ 2), where the proof relies on a simple application of Hoeffding’s inequality,
unlike the sophisticated tools the proof of Theorem 4.7 warrants for the robust KDE.



s s s
8 8 8
- P © o o =l <7 €
0%, oo 2
% ° ° 0% o008 S
s
%% L ° L8 °°0Q83 2 | e | o | -
~ o % @ o099 P 8 2 8 2 —_ 8 3 :
% ° g < g S - g s :
o o g g | g
T e T I i, : : —
00 P | p=g|
S 27 #%% % R $ S ! $ S K !
0 o® Po 2 2 ° 2 8 :
° & E g z g ° : g —o N
~ o'%’ 8 o008 a g 8 1 a g | — @ 1
LA ) % %0 $° S —— P 2 ; ° :
68 o0 T = == =
« | % 8o ° 2 g ! g ;
& & &
T T T T T S T T S T T S T T
4 0 2 4 RKDE KDE RKDE KDE RKDE KDE

(a) X, (in ) and Yo, (in o) )7 =20%p=4x10"%0  (©Or=30%p=2x10""2 (dm =40%p=25x10""°

Figure 4: (a) A realization of X,, U Y,,,. (b, ¢, d) As the noise level 7 increases, boxplots for W (Dp’g, Df)
in blue and W, (D(r7 D# ) in red show that the robust persistence diagram recovers the underlying signal better.

5 Experiments

We illustrate the performance of robust persistence diagrams in machine learning applications through
synthetic and real-world experiments.’ In all the experiments, the kernel bandwidth o is chosen as
the median distance of each x; € X, to its k*"—nearest neighbour using the Gaussian kernel with the
Hampel loss (similar setting as in [27])—we denote this bandwidth as o (k). Since DTM is closely
related to the £-NN density estimator [6], we choose the DTM smoothing parameter as m(k) = k/n.
Additionally, the KIRWLS algorithm is run until the relative change of empirical risk < 1076,

Runtime Analysis. For n = 1000, X,, is sampled from a torus inside [0, 2]®. For each grid resolution
a € {0.04,0.06,0.08,0.10}, the robust persistence diagram Dgm (f;fa) and the KDE persistence
diagram Dgm (f7) are constructed from the superlevel filtration of cubical homology. The total time
taken to compute the persistence diagrams is reported in Table 1. The results demonstrate that the
computational bottleneck is the persistent homology pipeline, and not the KIRWLS for f7' .

Table 1: Runtime (in Seconds) for computing Dgm ( I cr) and Dgm (f7) at each grid resolution.

Grid Resolution 0.04 0.06 | 0.08 | 0.10
Average runtime for Dgm (f;,fg) 76.7s | 17.1s | 6.7s | 3.5s
Average runtime for Dgm (f}) 75.58 | 15.3s | 4.7s | 1.8s

Bottleneck Simulation. The objective of this experiment is to assess how the robust KDE persistence
diagram compares to the KDE persistence diagram in recovering the topological features of the
underlying signal. X, is observed uniformly from two circles and Y, is sampled uniformly from
the enclosing square such that m = 200 and m/n = = € {20%, 30%, 40% }—shown in Figure 4 (a).
For each noise level 7, and for each of N = 100 realizations of X,, and Y ,,, the robust persistence
diagram D, , and the KDE persistence diagram D, are constructed from the noisy samples X,, UY .
In addition, we compute the KDE persistence diagram D# on X, alone as a proxy for the target
persistence diagram one would obtain in the absence of any contamination. The bandwidth o (k) >
0 is chosen for & = 5. For each realization 7, bottleneck distances U; = W (Dpﬁ, Df) and
Vi=Ws (DU, Df) are computed for 1%t-order homological features. The boxplots and p-values
for the one-sided hypothesistest Hy : U—V = 0vs. Hy : U—V < Oare reported in Figures 4 (b, c, d).
The results demonstrate that the robust persistence diagram is noticeably better in recovering the true
homological features, and in fact demonstrates superior performance when the noise levels are higher.

Spectral Clustering using Persistent Homology. We perform a variant of the six-class benchmark
experiment from [1, Section 6.1]. The data comprises of six different 3D “objects”: cube, circle,
sphere, 3clusters, 3clustersIn3clusters, and torus. 25 point clouds are sampled from
each object with additive Gaussian noise (SD= 0.1), and ambient Matérn cluster noise. For each
point cloud, X,,, the robust persistence diagram Dgm ( f;fa) and the persistence diagram Dgm (dx, ),
from the distance function, are constructed. Additionally, Dgm (dx,, ) is transformed to the persistence
image Img (dx,, , h) for h = 0.1. Note that Dgm ( ;}70) is a robust diagram while Img (dx_,h) is a
stable vectorization of a non-robust diagram [1]. For each homological order { Hy, Hy, H>}, distance

"https://github.com/sidv23/robust-PDs
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Figure 5: (a) X, is sampled from the image boundary of a bone, and uniform noise is added. (b) The resulting
persistence diagram from the robust KDE. The persistence diagram picks up the 1**—order features near the
joints of the cartoon bone. The misclassification error for the KDE, robust KDE and DTM as the persistence
image bandwidth increases, (c) for the three-class classification and, (d) for the five-class classification.

matrices {Ag, Aq, Ay} are computed: W, metric for Dgm (f, ), and L, metric for Img (dx,, , i)
with p € {1,200}, and spectral clustering is performed on the resulting distance-matrices. The
quality of the clustering is assessed using the rand-index. The results, reported in Table 2, evidence the
superiority of employing inherently robust persistence diagrams in contrast to a robust vectorization
of an inherently noisy persistence diagram.

Table 2: Rand-index for spectral clustering using distance matrices for Dgm (f,.») and Img (dx,,, h).

Dgm (fo.0) Img (dx,,, h)
Distance Metric Wi Wa Weo L1 Lo Lo
Ay (from Hy) 95.30% 93.66% 94.44% | 78.53% 81.77% 80.05%
Aj (from Hy) 91.43% 88.56% 84.53% | 81.89% 81.14% 77.75%
As (from H3) 86.33% 73.91% 73.62% | 80.09% 77.12% 77.35%
Amax = max {Ao, A1, As} | 95.72%  93.65% 94.44% | 82.43% 78.80% 79.78%

MPEG?7. In this experiment, we examine the performance of persistence diagrams in a classification
task on [28]. For simplicity, we only consider five classes: beetle, bone, spring, deer and horse. We
first extract the boundary of the images using a Laplace convolution, and sample X,, uniformly from
the boundary of each image, adding uniform noise (x = 15%) in the enclosing region. Persistence
diagrams Dgm ( f7) and Dgm ( f;fa) from the KDE and robust KDE are constructed. In addition,
owing to their ability to capture nuanced multi-scale features, we also construct Dgm (d,, ,,, ) from
the DTM filtration. The smoothing parameters o (k) and m (k) are chosen as earlier for k£ = 5. The
persistence diagrams are normalized to have a max persistence max{|d — b| = 1 : (b, d) € Dgm(¢)},
and then vectorized as persistence images, Img (f7, i), Img (f;fa, h), and Img (dy, ,, ) for various
bandwidths /. A linear SVM classifier is then trained on the resulting persistence images. In the first
experiment we only consider the first three classes, and in the second experiment we consider all five
classes. The results for the classification error, shown in Figure 5, demonstrate the superiority of the
proposed method. We refer the reader to Appendix D for additional experiments.

6 Conclusion & Discussion

In this paper, we proposed a statistically consistent robust persistent diagram using RKHS-based
robust KDE as the filter function. By generalizing the notion of influence function to the space
of persistence diagrams, we mathematically and empirically demonstrated the robustness of the
proposed method to that of persistence diagrams induced by other filter functions such as KDE.
Through numerical experiments, we demonstrated the advantage of using robust persistence diagrams
in machine learning applications. We would like to highlight that most of the theoretical results of
this paper crucially hinge on the loss function being convex. As a future direction, we would like to
generalize the current results to non-convex loss functions, and explore robust persistence diagrams
induced other types of robust density estimators, which could potentially yield more robust persistence
diagrams. Another important direction we intend to explore is to enhance the computational efficiency
of the proposed approach using coresets, as in [7], and/or using weighted Rips filtrations, as in [2].
We provide a brief discussion in Appendix E.



Broader Impact

Over the last decade, Topological Data Analysis has become an important tool for extracting geometric
and topological information from data, and its applications have been far reaching. For example, it
has been used successfully in the study the fragile X-syndrome, to discover traumatic brain injuries,
and has also become an important tool in the study of protein structure. In astrophysics, it has
aided the study of cosmic microwave background, and the discovery of cosmic voids and filamental
structures in cosmological data. With a continual increase in its adoption in data analysis, it has
become important to understand the limitations of using persistent homology in machine learning
applications. As real-world data is often flustered with measurement errors and other forms of noise,
in this work, we examine the sensitivity of persistence diagrams to such noise, and provide methods
to mitigate the effect of this noise, so as to make reliable topological inference.
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