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a b s t r a c t

Conventionally, the numerical stability of finite difference approximations of non-
linear Kawarada problems is shown only via frozen source terms, that is, ignoring
potential jeopardization from quenching nonlinearities. The approach leaves an
inadequacy behind even in the sense of localized stability analysis. This paper
provides a much improved analysis of the numerical stability without freezing
nonlinear source terms of the underlying equations. The strategy implemented
can be extended for similar endeavors to higher dimensional cases. Simulation
experiments are included.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ωn ⊂ Rn, n ∈ N+, be a simply connected finite convex open domain, ∂Ωn be its boundary and
¯

n = Ωn ∪ ∂Ωn. A degenerate Kawarada problem, or quenching problem, can be formulated as

σ(x)ut = ∇2u+ f(u), x ∈ Ωn, t > t0, (1.1)
u(x, t) = 0, x ∈ ∂Ωn, t > t0, (1.2)
u(x, t0) = u0(x), x ∈ Ω̄n, (1.3)

here σ(x) > 0, x ∈ Ωn; σ(x) ≥ 0, x ∈ ∂Ωn, is the degeneracy function, u is a thermal distribution, ∇2

s the Laplacian, f(0) = f0 > 0, fu(u) > 0, 0 ≤ u0 ≪ b, b ∈ R+, t0 ≥ 0 and limu→b− f(u) = ∞ [1–3]. It
as been shown that when the shape of Ωn is fixed, then there exists a unique threshold a∗ > 0 such that if
, the n-volume of Ωn, is greater than a∗ then there exists a finite time T (a) such that u quenches at T (a),
hat is,

lim
t→T −(a)

max
x∈Ω̄n

u(x, t) = b.

∗ Corresponding author.
E-mail addresses: qin_sheng@baylor.edu (Q. Sheng), eduardo_servin1@baylor.edu (E.S. Torres).
ttps://doi.org/10.1016/j.aml.2023.108730
893-9659/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.aml.2023.108730
https://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aml.2023.108730&domain=pdf
mailto:qin_sheng@baylor.edu
mailto:eduardo_servin1@baylor.edu
https://doi.org/10.1016/j.aml.2023.108730


Q. Sheng and E.S. Torres Applied Mathematics Letters 144 (2023) 108730

T
q

e
s
b

w
f

m

F
(

he above implies that u stops existing for t ≥ T (a); a ≥ a∗ [4–6]. Such a phenomenon is referred to as
uenching, and the corresponding u is a quenching solution.

Numerous computational methods have been developed to solve (1.1)-(1.3) and its fractional order
xtensions in the past decades (for instance, see [7–11] and references therein). The study of numerical
tability has been conducted in the von Neumann sense, since localized linear analysis has been proven to
e sufficient for the type of nonlinear solvers presented [8,12–15]. Nonlinear source functions such as f(u)

in (1.1) are traditionally frozen in the analysis. This treatment, though helps avoid undesirable nonlinear
complications that may disturb investigations, raises concerns if the overall trustfulness of the algorithms
is impaired. Source function frozen has become a significant burden as more accurate simulations are in
demand for applications. This motivates our study to break the nonlinearity barrier, that is, without freezing
the nonlinear source term in (1.1) in the stability analysis.

For the simplicity of discussions, we set b = 1 and focus on a one-dimensional episode of (1.1)-(1.3) in
this letter. Map Ω1 = (0, a) to (0, 1) to obtain the following reformulated Kawarada problem

ut = a−2ϕ(x)uxx + ψ(x, u), x ∈ (0, 1), t > t0, (1.4)
u(0, t) = u(1, t) = 0, t > t0, (1.5)
u(x, t0) = u0(x), x ∈ [0, 1], (1.6)

here ϕ(x) = 1/σ(x), ψ(x, u) = f(u)/σ(x), x ∈ (0, 1). We consider typical degenerate and source
unctions [1,3,8]

σ(x) = xα(1 − x)1−α, f(u) = (1 − u)−β , 0 ≤ α ≤ 1, β > 0, x ∈ (0, 1). (1.7)

Our focused study is organized as follows. In the next section, a second order Crank–Nicolson type
ethod for (1.4)-(1.7) is derived. Uniform spatial grids and adaptive temporal steps are used. Analysis

of key approximation features are presented. The study of stability is carried out without freezing the
nonlinear source term in the sense of Hairer and Iserles [9,16]. It improves all existing results by introducing
a much relaxed constraint [7–10,12,13]. Section 3 focuses on multiple numerical experiments that highlight
the stability of solution and computations under relaxed stability conditions. Illustrations are given for the
adaptive steps generated and used. It is found that the analysis remarkably achieves its goal to ensure
the overall stability of the numerical method. The new ideas in the proof can be further extended for
solving multidimensional Kawarada problems and degenerate nonlinear systems, especially those modeling
polydisperse sedimentations and multiclass traffic flow dynamics [17]. The spectral norm is used throughout
our investigation unless otherwise specified.

2. Stability analysis without freezing the source term

Let a ≥ a∗, N ∈ N+ and N ≫ 1, and denote xk = kh, k = 0, 1, . . . , N + 1, h = 1/(N + 1). We have

uxx(xk, t) = u(xk−1, t) − 2u(xk, t) + u(xk+1, t)
h2 + O(h2), k = 1, 2, . . . , N, t > t0. (2.1)

urther, let vk = vk(t) be an approximation of v(xk, t), k = 0, 1, . . . , N + 1. Drop the truncation error in
2.1). A semidiscretized system follows immediately from (1.4)-(1.6),

u′ = Au+ ψ, t > t0, (2.2)
u(t0) = u0, (2.3)

where u = (u1, u2, . . . , uN )⊤
, ψ = (ψ1, ψ2, . . . , ψN )⊤

, A = BT ∈ RN×N with B = diag [ϕ1, ϕ2, . . . , ϕN ] , T =
−2
(ah) tridiag [1,−2, 1].
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Now, a trapezoidal integrator for the solution of (2.2), (2.3) generates

u(tj+1) = E(τjA)u(tj) + τj

2 [ψ(u(tj+1)) + E(τjA)ψ(u(tj))] + O(τ2
j ), (2.4)

here E(·) = exp(·) is the matrix exponential and τj = tj+1 − tj ≪ 1, j = 0, 1, . . . , J , are variable
emporal steps determined via an adaptation procedure, such as the exponentially evolving grids (EEG)
ormula [18,19]. We adopt the Courant constraints c1 ≤ τj/h

2 ≤ d1, where c1, d1 > 0 are suitable constants,
due to the variable steps used. Let u(ℓ) denote an approximation of u(tℓ), ℓ = 0, 1, 2, . . . , J+1. Approximating
E by the A-acceptable [1/1] Padé approximant and dropping all truncation errors we acquire following fully
discretized implicit method from (2.4),

u(j+1) =
(
I − τj

2 A
)−1 (

I + τj

2 A
) [
u(j) + τj

2 ψ
(
u(j)

)]
+ τj

2 ψ
(
u(j+1)

)
, j = 0, 1, . . . , J, (2.5)

u(0) = u0. (2.6)

Definition 2.1 ([16,20]). Let the perturbed system corresponding to a numerical method such as (2.5),
(2.6) be

ϵ(j+1) = Mϵ(j), j = 0, 1, . . . ,

here ϵ(j) = u(j) − ũ(j), ũ(j) is a perturbed solution, and M is the perturbed coefficient matrix. We say that
he numerical method is stable if there exists a uniform constant c0 > 0 such that

∥M∥2 ≤ 1 + c0τ,

where τ = max0≤ℓ≤J τℓ → 0+.

heorem 2.2. Let ε > 0 be arbitrarily small. If

βτℓ < βτℓ + ε ≤ 2 min
k

{
σ(xk)

(
1 − û

(ℓ)
k

)β+1
}
, ℓ = 0, 1, . . . , J,

where β > 0 is given in (1.7) and û(ℓ)
k ∈

(
min

{
u

(ℓ)
k , ũ

(ℓ)
k

}
,max

{
u

(ℓ)
k , ũ

(ℓ)
k

})
⊂ (0, 1), then the semi-adaptive

onlinear Crank–Nicolson method (2.5), (2.6) for solving (1.4)-(1.7) is stable.

Proof. The perturbed system corresponding to (2.5), (2.6) is

ϵ(j+1) −
τj

2

(
ψ

(
u(j+1)

)
− ψ

(
ũ(j+1)

))
=

(
I −

τj

2
A

)−1 (
I +

τj

2
A

)[
ϵ(j) +

τj

2

(
ψ

(
u(j)

)
− ψ

(
ũ(j)

))]
, j = 0, 1, . . . , J.

e expand ψ
(
u(ℓ)) − ψ

(
ũ(ℓ)) , ℓ = j, j + 1, in a remainder form. Hence, the above system is equivalent to(

I − τj

2 F
(j+1)

)
ϵ(j+1) =

(
I − τj

2 A
)−1 (

I + τj

2 A
) (

I + τj

2 F
(j)

)
ϵ(j), j = 0, 1, . . . , J,

here F (ℓ) = ψu

(
û(ℓ)) ∈ RN×N , ℓ = j, j + 1, are diagonal Jacobi matrices involved. Note that matrices

A, F (ℓ) do not, in general, commute. Thus,

ϵ(j+1) = Mϵ(j) =
(
I − τj

2 F
(j+1)

)−1 (
I − τj

2 A
)−1 (

I + τj

2 A
) (

I + τj

2 F
(j)

)
ϵ(j), j = 0, 1, . . . , J. (2.7)

It follows thereforeϵ(j+1)


2
=

(
I − τj

2 F
(j+1)

)−1 (
I − τj

2 A
)−1 (

I + τj

2 A
) (

I + τj

2 F
(j)

)
ϵ(j)


2

≤
(
I − τj

F (j+1)
)−1

 (
I − τj

A
)−1 (

I + τj
A

) I + τj
F (j)

 ϵ(j)
 . (2.8)
2 2 2 2 2 2 2 2
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First, we recall that the Jacobians F (j), F (j+1) are diagonal and their nontrivial elements are positive
ue to the fact that fu > 0. Denote γ = 2 min1≤k≤N

{
σ(xk)

(
1 − û

(j)
k

)β+1
}

. Thus, following the hypothesis
of the theorem, we may claim that(

I − τℓ

2 F
(j+1)

)−1


2
≤ γ

γ − βτj
= 1 + βτj

γ − βτj
≤ 1 + βτj

ε
≤ 1 + c1τj ,I + τj

2 F
(j)


2

≤ 1 + βτj

γ
≤ 1 + c2τj .

Secondly, for the Toeplitz symmetric tridiagonal (TST) matrix T , we have ∥T∥2 ≤ 4(ah)−2. Further, since

B−1 − τj

2 T = tridiag
(

− τj

2a2h2 ,
τj

a2h2 + 1
ϕk
,− τj

2a2h2

)
s tridiagonal, an application of the Gershgorin circle theorem yields the estimate(

B−1 − τj

2 T
)−1


2

≤ 2τj

a2h2 + 1
ϕk

≤ 2d1

a2 + 1
min1≤k≤N ϕk

= d0

ue to the Courant constraints τj/h
2 ≤ d1, j = 0, 1, . . . , J . Consequently, we find that(

I − τj

2 A
)−1 (

I + τj

2 A
)

2
=

(
B−1 − τj

2 T
)−1 (

B−1 + τj

2 T
)

2
=

I + τj

(
B−1 − τj

2 T
)−1

T


2

≤ 1 + τj

(
B−1 − τj

2 T
)−1


2

∥T∥2 ≤ 1 + d0 ∥T∥2 τj ≤ 1 + c3τj

h2 .

Thirdly, based on the above discussions, from (2.8) we arrive atϵ(j+1)


2
≤ (1 + c1τj) (1 + c2τj)

(
1 +

c3τj

h2

)ϵ(j)


2
≤

(
1 +

cτj

h2

)
(1 + cτj)2

ϵ(j)


2
, j = 0, 1, . . . , J,

where c = max {c1, c2, c3}. This completes our proof. ■

Corollary 2.3. Denote λj = τjh
−2, j = 0, 1, . . . , J , be the variable Courant numbers used. Then we have

an accumulative error bound for the perturbed system:ϵ(J+1)


2
≤ de2cT̃ (a)

ϵ(0)


2
,

where τ = max {τ0, τ1, . . . , τJ} , d =
∏J

j=0 (1 + cλj) , c > 0, and T̃ (a) ≈ T (a) is approximately the finite
quenching time.

Proof. Recall (2.7). Recursively, we arrive at an accumulative perturbation system,

ϵ(j+m+1) =
j+m∏
ℓ=j

(
I − τℓ

2 F
(ℓ+1)

)−1 (
I − τℓ

2 A
)−1 (

I + τℓ

2 A
) (

I + τℓ

2 F
(ℓ)

)
ϵ(j)

= Mj,mϵ
(j), j = 0, 1, . . . , J −m, m ≥ 0. (2.9)

Set j = 0, m = J and take a spectrum norm on both sides of (2.9) to yieldϵ(J+1)


2
=


J∏

ℓ=0

(
I − τℓ

2 F
(ℓ+1)

)−1 (
I − τℓ

2 A
)−1 (

I + τℓ

2 A
) (

I + τℓ

2 F
(ℓ)

)
ϵ(0)


2

≤
J∏ (

I − τℓ

2 F
(ℓ+1)

)−1
 (

I − τℓ

2 A
)−1 (

I + τℓ

2 A
) I + τℓ

2 F
(ℓ)


2

ϵ(0)


2
.

ℓ=0 2 2
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Utilizing the estimates derived in Theorem 2.2, we observe from the above thatϵ(J+1)


2
≤

J∏
ℓ=0

(1 + c1τℓ) (1 + c2τℓ)
(

1 + c3τℓ

h2

) ϵ(0)


2
≤

[
J∏

ℓ=0

(
1 + cτℓ

h2

)] [
J∏

ℓ=0
(1 + cτ)2

] ϵ(0)


2

≤ d (1 + cτ)2(J+1)
ϵ(0)


2
,

where c = max {c1, c2, c3} , τ = max {τ0, τ1, . . . , τJ}. Note that T (a) =
∑J

ℓ=0 τℓ is the finite quenching time
hen a ≥ a∗. Hence, T (a) ⪅ T̃ (a) = (J + 1)τ < ∞. Subsequently,

(1 + cτ)2(J+1) =
[
(1 + cτ)1/cτ

]2c(J+1)τ

=
[
(1 + cτ)1/cτ

]2cT̃ (a)
≤ e2cT̃ (a) < ∞.

The above completes our proof. ■

Remark 2.4. Denote τ = max {τ0, τ1, . . . , τJ} , λ = max {λ0, λ1, . . . , λJ}. We have

d =
J∏

j=0
(1 + cλj) ≤ ec(J+1)λ < ∞, c > 0,

ue to the fact that a quenching stop is always finite, that is, J < ∞.

emark 2.5. In the event if(
I − τℓ

2 A
)−1 (

I + τℓ

2 A
)

2
≤ 1, ℓ = 0, 1, . . . , J,

hen we have the following improved uniform upper bound,ϵ(J+1)


2
≤ e2cT̃ (a)

ϵ(0)


2
.

3. Simulation experiments

Since the semi-adaptive method (2.5), (2.6) is nonlinear, iterative procedures are in general needed
for advancing the solution. However, since our method is stable, an explicit intermediate solver may be
employed to simplify the computational procedure satisfactorily [7,9,15]. Under this consideration, we adopt
the following for simulation experiments,

u(j+1) =
(
I − τj

2 A
)−1 (

I + τj

2 A
) [
u(j) + τj

2 ψ
(
u(j)

)]
+ τj

2 ψ
(
v(j+1)

)
, j = 0, 1, . . . , J, (3.1)

u(0) = u0. (3.2)

here v(j+1) is calculated via an Euler method and then a two-step explicit Nyström scheme [20].
A typical testing nonlinear source function f(u) with β = 1 is considered [3,8]. Temporal steps τ (ℓ) are kept

niformly for simplicity and efficiency until a pre-quenching phenomenon is detected. The spatial domain
1 = (0, a) with a = 5 is selected. For a further clarity, numerical results will be displayed directly on either

¯1 or Ω1.
Fig. 1 shows the numerical solution and its first, and second temporal derivative functions. A uniform time

tep τ is used in the experiments until the solution almost quenches, for example, when max0≤x≤5 u(x, t)
eaches 0.98. Then the sequence of adaptive temporal steps, {τj}, begins through

τj = max
{

min
{
τj−1, c0 min

{(
1 − u

(j)
k

)2
}}

,m0

}
,

j k

5
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Fig. 1. Numerical solution u of (3.1)-(3.2) (TOP), its temporal derivative ut (MIDDLE), and second derivative utt (BOTTOM)
espectively. While the first two contour plots are full scaled, the rest of the figures are on the final 223 temporal steps
mmediately before quenching. Temporal grid adaptation is clearly visible. It is found that max0≤x≤5 u(x, T (5)) ≈ 0.99008661,
up0<x<5 ut(x, T (5)) ≈ 99.77142399, sup0<x<5 utt(x, T (5)) ≈ 9.69478983 × 105, and T (5) ≈ 0.50111987. The data agree satisfactorily
ith existing results [1,4,7,10,11].

here c0 > 0 is a suitable speed controller, and m0 is a minimum step size that may keep the ratio of
j/τj−1 being bounded and smooth [10,11,19]. A quadratic function is being used to reflect the nonlinearity
nd determine the next step size which allows the actual quenching singularity to drive the process. The
bove monitoring function developed is different from classical arc-length formulas and is highly satisfactory.
he weaker stability constraint stated in Theorem 2.2 is observed. A total of J = 723 temporal steps are
xecuted. A single point quench is observed at x = 2.5 as predicted [1,12,21]. The numerical solution is clearly
onnegative, monotonically increasing, and stable as t increases at any x ∈ [0, a]. It can also be observed
hat while the solution u remains bounded throughout the computation, its rate of change function, that
s, ut, seems to shoot to infinity at x = 2.5 as quenching time is approached. The phenomenon is further
llustrated by a second derivative utt, which blows up in Fig. 1. The numerical simulation reflects ideally a
solid fuel combustion process facilitated through a single point ignition in the thermal physics [3,18].
6
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