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1. Introduction

Let 2, ¢ R*, n € N*, be a simply connected finite convex open domain, 82, be its boundary and
2, = 2,U08,. A degenerate Kawarada problem, or quenching problem, can be formulated as

o(x)uy = Viu+ f(u), =€ 0D, t>to, (1.1)
u(z,t) =0, xz€dN,, t> i, (1.2)
u(z,to) = uog(x), € O, (1.3)

where o(x) > 0, x € 2,; o(z) > 0, x € 042y, is the degeneracy function, u is a thermal distribution, V?
is the Laplacian, f(0) = fo > 0, fu(u) >0, 0 <wuy < b, b €RY, to >0 and lim,_,,- f(u) = oo [1-3]. It
has been shown that when the shape of (2, is fixed, then there exists a unique threshold a* > 0 such that if
a, the n-volume of (2,,, is greater than a* then there exists a finite time T'(a) such that u quenches at T'(a),
that is,

lim max u(z,t) =b.
t—T~(a) €02
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The above implies that u stops existing for ¢ > T'(a); a > a* [4-6]. Such a phenomenon is referred to as
quenching, and the corresponding u is a quenching solution.

Numerous computational methods have been developed to solve (1.1)-(1.3) and its fractional order
extensions in the past decades (for instance, see [7—11] and references therein). The study of numerical
stability has been conducted in the von Neumann sense, since localized linear analysis has been proven to
be sufficient for the type of nonlinear solvers presented [8,12—15]. Nonlinear source functions such as f(u)
in (1.1) are traditionally frozen in the analysis. This treatment, though helps avoid undesirable nonlinear
complications that may disturb investigations, raises concerns if the overall trustfulness of the algorithms
is impaired. Source function frozen has become a significant burden as more accurate simulations are in
demand for applications. This motivates our study to break the nonlinearity barrier, that is, without freezing
the nonlinear source term in (1.1) in the stability analysis.

For the simplicity of discussions, we set b = 1 and focus on a one-dimensional episode of (1.1)-(1.3) in
this letter. Map £2; = (0,a) to (0,1) to obtain the following reformulated Kawarada problem

up = a2P(2) gy + (x,u), x € (0,1), t > to, (1.4)
u(0,t) = u(l,t) = 0, t>to, (1.5)
u(z,tg) = ug(zx), =« €][0,1],

where ¢(z) = 1/o(z), Y(z,u) = f(u)/o(z), x € (0,1). We consider typical degenerate and source
functions [1,3,8]

o) =z(1—2)'" flu)=1-u)", 0<a<l, >0, zc(01). (1.7)

Our focused study is organized as follows. In the next section, a second order Crank—Nicolson type
method for (1.4)-(1.7) is derived. Uniform spatial grids and adaptive temporal steps are used. Analysis
of key approximation features are presented. The study of stability is carried out without freezing the
nonlinear source term in the sense of Hairer and Iserles [9,16]. It improves all existing results by introducing
a much relaxed constraint [7-10,12,13]. Section 3 focuses on multiple numerical experiments that highlight
the stability of solution and computations under relaxed stability conditions. Illustrations are given for the
adaptive steps generated and used. It is found that the analysis remarkably achieves its goal to ensure
the overall stability of the numerical method. The new ideas in the proof can be further extended for
solving multidimensional Kawarada problems and degenerate nonlinear systems, especially those modeling
polydisperse sedimentations and multiclass traffic flow dynamics [17]. The spectral norm is used throughout
our investigation unless otherwise specified.

2. Stability analysis without freezing the source term

Let a > a*, N € NT and N > 1, and denote x, = kh, k=0,1,...,N+1, h =1/(N +1). We have

w(rp—1,t) — 2u(zk, t) + u(Tpe1,t)
n2

Further, let vy = vi(t) be an approximation of v(zk,t), k = 0,1,..., N + 1. Drop the truncation error in

+0(h?), k=1,2,...,N, t > t. (2.1)

Ugr (:Ck:a t) =

(2.1). A semidiscretized system follows immediately from (1.4)-(1.6),

u = Au+1, t>t, (2.2)
u(to) = wo, (2.3)

where u = (u, ug, ..., un) , ¥ = (Y1, 0, ..., by) , A= BT € RV*N with B = diag[¢1, ¢o,...,bn], T =
(ah)~2tridiag 1, —2, 1].
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Now, a trapezoidal integrator for the solution of (2.2), (2.3) generates

T
ulty1) = E(rjAyu(ty) + 2 [ (ultyn) + B(m A (ulty)] + o(73), (2.4)
where E(-) = exp(-) is the matrix exponential and 7; = t;41 —t; < 1, j = 0,1,...,J, are variable

temporal steps determined via an adaptation procedure, such as the exponentially evolving grids (EEG)
formula [18,19]. We adopt the Courant constraints ¢; < 7;/ h? < dy, where ¢, d; > 0 are suitable constants,
due to the variable steps used. Let u(*) denote an approximation of u(t;), £ =0,1,2,...,J+1. Approximating
E by the A-acceptable [1/1] Padé approximant and dropping all truncation errors we acquire following fully
discretized implicit method from (2.4),

ab ) = (1- %A)_1 (r+ %A) [u + 2y (w)] + Dy (u0), =010 (25)
u® = . (2.6)

Definition 2.1 (/16,20]). Let the perturbed system corresponding to a numerical method such as (2.5),
(2.6) be
Ut = M@ j=0,1,...,

where ) = 4 — 30| 409 is a perturbed solution, and M is the perturbed coefficient matrix. We say that
the numerical method is stable if there exists a uniform constant ¢y > 0 such that

1Ml <1+ cor,

where 7 = maxo<y<; 70 — 0.
Theorem 2.2. Let e > 0 be arbitrarily small. If
. A(e) B+1
ﬁTg<ﬂTe+€§2mkln U(xk)(l—uk> , £=0,1,...,J,

where > 0 is given in (1.7) and ﬁ,(f) € (min ug),ﬂ,(f)} , max {u,(f),ﬂgf)}) C (0,1), then the semi-adaptive
nonlinear Crank—Nicolson method (2.5), (2.6) for solving (1.4)-(1.7) is stable.

Proof. The perturbed system corresponding to (2.5), (2.6) is
D T (g () g (a0t0)) = (1-Ta 1 Tia D4 Ty () g (@), =010
3 = 3 5 5 s 3=0,1,...,
We expand 9 (u(z)) — (ﬂ“)) , £=174,7+1, in a remainder form. Hence, the above system is equivalent to
(]_EF(;‘H))EQ‘H):([_EA)*1 (]+QA) (1+QF<J'))6<J'> =01 J
2 2 2 2 ) ) y*rtt )

where F) = ¢, (ﬁ(e)) € RVXN ¢ = j, j 4+ 1, are diagonal Jacobi matrices involved. Note that matrices
A, F® do not, in general, commute. Thus,

) ) S -1 o -1 ) o ,
D — preld) — (I - %F(JH)) (I - %A) (I n %A) (1 n %]F(J)) €D, G=0,1,....0 (27
It follows therefore

He(ﬁrl)” _ (1 _ QF<J»+1>)*1 ([ _ QA)* (I n QA) (1+ zFu)> )
2 2 2 2 2

<Jo-gr) | Jo-30 " 0+

3

2

()

Tj (i
I+ 20
143

) ) ) 2 2 (28)
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First, we recall that the Jacobians F/), FU+1 are diagonal and their nontrivial elements are positive
N B+
due to the fact that f, > 0. Denote v = 2minj<x<n {a(xk) (1 - ﬂg)) } Thus, following the hypothesis
of the theorem, we may claim that

H(I—T;FU“))l LI S L/ R W

2 T V=BT v = BT €

A

< 1+01Tj7

1—}—& §1+CQTJ‘.
Y

Secondly, for the Toeplitz symmetric tridiagonal (TST) matrix 7', we have |T||2 < 4(ah)~2. Further, since

IN

Ti (i
T JF(J)H
H + 2 2

s T T 1 T
B! — 27T = tridi N B )
2 ndag |\ =9 2n2 g2pr T g T 2a2m2

is tridiagonal, an application of the Gershgorin circle theorem yields the estimate
o\t 27; 1 2 1
ot 30) 7 = F 2
due to the Courant constraints 7'j/h2 <di, 7=0,1,...,J. Consequently, we find that

o~ a*h? g T a?  minicpen Ok
NG (s DI G

7N —1
- HI+TJ~ (B‘l——]T) T

2 2 2 2 2 2
_ T: N1 C3T;
<1l+7; (B 1 EJT) H2 1T, < 14+do|T|l,75 < 1+ h—;
Thirdly, based on the above discussions, from (2.8) we arrive at
[€9¥V]], € (A +eam) 1 +ern) <1+ %) <9, < (1+ %) Wter)? [P, 5=010,
where ¢ = max {¢j, ¢, ¢3}. This completes our proof. W
Corollary 2.3. Denote \; = Tjh’z, 7 =0,1,...,J, be the variable Courant numbers used. Then we have
an accumulative error bound for the perturbed system:
I+ H < de2cT(@) ‘6(0) H 7
2 2

where T = max {79, 71,...,75}, d = H'j]:O (1+c)\;), ¢ > 0, and T(a) = T(a) is approzimately the finite
quenching time.

Proof. Recall (2.7). Recursively, we arrive at an accumulative perturbation system,

(UHm+1) Jﬁ (I _ %Fwn)‘l (I _ %A)‘l (I+ %A) (I+ %Fw)) )

= Mj,e?, j=0,1,...,J —m, m>0. (2.9)

Set j =0, m = J and take a spectrum norm on both sides of (2.9) to yield

= I Gre) ™ (-5 (e 5 ()|

5 TN LT
o -5 003)

4

((0) H ,

(I _ EF(Z+1)>_1
2 2

e <e>H
I+-LF
745

2 2 ’ 2
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Utilizing the estimates derived in Theorem 2.2, we observe from the above that

J J
), < tteam) (14 55) €], < [TT(1+ )| [ILa+en?) [
H H +c17e) (14 came) (1 + 41;[ + 1;[ +c7)7| |le ,
< d(1+er)?UHD HAO H
where ¢ = max {¢1,¢2,¢3}, 7 = max {79, 71,...,7s}. Note that T'(a) = ZZ:O 7¢ is the finite quenching time

when a > a*. Hence, T'(a) $ T(a) = (J + 1)7 < co. Subsequently,

2¢e(J+1)T 2cT(a) =
(1+CT>2(J+1) _ {(H_CT)l/CT} _ [(1+CT)1/CT] < 2eT(a) o,

The above completes our proof. W

Remark 2.4. Denote 7 = max {7, 71,...,77}, A =max{\g, A\1,...,As}. We have

J
d= H (14 c)j) <eUHDr <o >0,
3=0

due to the fact that a quenching stop is always finite, that is, J < oc.

Remark 2.5. In the event if

<1, ¢=0,1,...,J,

H I——A (I+%A> 2

then we have the following improved uniform upper bound,

((J+1) H < ¢2T(a
2

[«

3. Simulation experiments

Since the semi-adaptive method (2.5), (2.6) is nonlinear, iterative procedures are in general needed
for advancing the solution. However, since our method is stable, an explicit intermediate solver may be
employed to simplify the computational procedure satisfactorily [7,9,15]. Under this consideration, we adopt
the following for simulation experiments,

ub) = (1 - %A)‘l (1+ %A) [u + Ty ()] + Dy (v9), =010 (3

U(O) = Up.

—~
w
[\

~

where vU+1) is calculated via an Euler method and then a two-step explicit Nystrém scheme [20].

A typical testing nonlinear source function f(u) with 8 = 1 is considered [3,8]. Temporal steps 7() are kept
uniformly for simplicity and efficiency until a pre-quenching phenomenon is detected. The spatial domain
21 = (0,a) with a = 5 is selected. For a further clarity, numerical results will be displayed directly on either
Dl or 'Ql-

Fig. 1 shows the numerical solution and its first, and second temporal derivative functions. A uniform time
step 7 is used in the experiments until the solution almost quenches, for example, when maxo<g<s u(z,t)
reaches 0.98. Then the sequence of adaptive temporal steps, {7;}, begins through

N2
7j = max {m_in {le, o mkin { (1 — u}iﬁ) }} 7m0} :
J

5
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Fig. 1. Numerical solution w of (3.1)-(3.2) (TOP), its temporal derivative u; (MIDDLE), and second derivative u;y (BOTTOM)
respectively. While the first two contour plots are full scaled, the rest of the figures are on the final 223 temporal steps
immediately before quenching. Temporal grid adaptation is clearly visible. It is found that maxo<.<su(z,T(5)) ~ 0.99008661,
SUPg< o5 Ut(T, T(5)) ~ 99.77142399, supg., 5 uet (@, T(5)) ~ 9.69478983 x 10°, and T'(5) =~ 0.50111987. The data agree satisfactorily
with existing results [1,4,7,10,11].

where ¢y > 0 is a suitable speed controller, and mg is a minimum step size that may keep the ratio of
7;/Tj—1 being bounded and smooth [10,11,19]. A quadratic function is being used to reflect the nonlinearity
and determine the next step size which allows the actual quenching singularity to drive the process. The
above monitoring function developed is different from classical arc-length formulas and is highly satisfactory.
The weaker stability constraint stated in Theorem 2.2 is observed. A total of J = 723 temporal steps are
executed. A single point quench is observed at x = 2.5 as predicted [1,12,21]. The numerical solution is clearly
nonnegative, monotonically increasing, and stable as t increases at any x € [0,a]. It can also be observed
that while the solution w remains bounded throughout the computation, its rate of change function, that
is, u¢, seems to shoot to infinity at x = 2.5 as quenching time is approached. The phenomenon is further
illustrated by a second derivative u;, which blows up in Fig. 1. The numerical simulation reflects ideally a
solid fuel combustion process facilitated through a single point ignition in the thermal physics [3,18].

6
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