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Harmonic quasi-isometries
of pinched Hadamard surfaces are injective

Yves Benoist and Dominique Hulin

We prove that a harmonic quasi-isometric map between pinched Hadamard
surfaces is a quasi-conformal diffeomorphism.

1. Introduction

1A. Main result. The main result of this paper is the following.

Theorem 1.1. Let h : S1 → S2 be a harmonic quasi-isometric map between pinched
Hadamard surfaces. Then, h is a quasi-conformal diffeomorphism.

A pinched Hadamard manifold is a complete simply connected Riemannian
manifold whose curvature satisfies −b2

≤ K ≤ −a2 for some positive constants
0< a ≤ b. For instance, the hyperbolic disk D is a pinched Hadamard surface with
constant curvature −1.

A map f : M1 → M2 between two metric spaces is quasi-isometric if there exists
a constant c ≥ 1 such that, for every x, x ′

∈ M1,

c−1 d(x, x ′)− c ≤ d( f (x), f (x ′))≤ c d(x, x ′)+ c. (1-1)

A smooth map h : M1 → M2 between Riemannian manifolds is harmonic if it is
a critical point for the Dirichlet energy integral E(h)=

∫
|Dh|2dvM1 with respect

to variations with compact support.
A diffeomorphism h : M1 → M2 between n-dimensional Riemannian manifolds

is quasi-conformal, if there exists a constant C > 0 such that ∥Dh∥n
≤ C |Jac(h)|

where Jac(h) := det(Dh) is the Jacobian of h.

1B. A few comments. The special case of Theorem 1.1 where both S1 and S2 are
the hyperbolic disk D, is due to [Li and Tam 1991] and [Markovic 2017].

The main issue in Theorem 1.1 is the injectivity of h. The quasi-conformality
of h is but our way to prove injectivity.
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In Theorem 1.1 we only deal with surfaces. Indeed the analog in higher dimen-
sions is not true. A counterexample due to Farrell, Ontaneda and Raghunathan is
given in [Farrell et al. 2000].

Given two pinched Hadamard surfaces S1 and S2, there exist many harmonic
quasi-isometric maps from S1 to S2 (see [Benoist and Hulin 2021] or Theorem 2.2).
Theorem 1.1 asserts that all these maps are injective.

Theorem 1.1 extends the Schoen–Yau injectivity theorem [1978] which says that
a harmonic map between two compact Riemannian surfaces with negative curvature,
when homotopic to a diffeomorphism, is also a diffeomorphism. This injectivity
theorem is used in the parametrization due to J. Sampson and M. Wolf of the Teich-
müller space by the Hopf quadratic differentials; see [Wolf 1989] and [Jost 1997].

From a historical point of view, the first injectivity theorem for harmonic maps
is due to Rado, Kneser and Choquet, almost 100 years ago. It states that, in the
Euclidean plane, the harmonic extension of an homeomorphism of the unit circle
is a diffeomorphism of the unit disk; see [Hubbard 2006, Lemma 5.1.10]. The
analog statement in dimension d ≥ 3 is not true. A counterexample is given by
R. Laugesen [1996]. Later on, injective harmonic maps between surfaces were
studied by H. Lewy [1936] who proved that their Jacobian does not vanish, by
R. Heinz [1956] and by J. Jost and H. Karcher in [Jost 1984, Chapter 7] who found
a lower bound for their Jacobian. There is also an extension of the Schoen–Yau
injectivity theorem by Jost and R. Schoen that allows some positive curvature in
[Jost 1984, Chapter 11].

1C. Structure of the paper. In Section 2, we recall classical facts concerning
Hadamard surfaces, quasi-isometric maps and harmonic maps between surfaces.
We will see that we can assume that the source S1 is the hyperbolic disk D. Recall
that the special case of Theorem 1.1 where the target S2 is the hyperbolic disk D is
due to Li and Tam and to Markovic.

In Section 3 we give an overview of the proof of Theorem 1.1. This proof uses
a deformation (gt) of the metric on S2, starting with the hyperbolic metric, and a
deformation (ht) of the harmonic map h. The key point will be to obtain a uniform
upper bound for the norm of the differential of ht and a uniform lower bound for
the Jacobian of ht .

In Section 4, we gather compactness results for Hadamard surfaces and harmonic
maps.

In Section 5, we obtain a uniform lower bound for the Jacobian of harmonic
quasi-conformal diffeomorphisms.

In Section 6, we prove that the family (ht) varies continuously with t and we
complete the proof of Theorem 1.1.

In Section 6B, we include a short new proof of the special case of Theorem 1.1
where S1 = S2 = D.
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This paper is as self-contained as possible, the main tools being the Bland–Kalka
uniformization theorem [1986], the Bochner equations for harmonic maps between
surfaces in [Jost 1997], the existence and uniqueness of quasi-isometric harmonic
maps in [Benoist and Hulin 2021], and the PDE elliptic regularity in [Gilbarg and
Trudinger 2001].

2. Background

We recall well-known properties of pinched Hadamard surfaces, quasi-isometric
maps and harmonic maps between surfaces.
2A. Pinched Hadamard surfaces. The first example of a pinched Hadamard sur-
face is the hyperbolic disk D = (D, ghyp), where D = {|z| < 1} ⊂ C is the unit
disk equipped with the hyperbolic metric ghyp = ρ

2(z)|dz|2 with conformal factor
ρ2

= 4(1− |z|2)−2. It is a Hadamard manifold with constant curvature −1.
Any pinched Hadamard surface is conformal to the disk, namely, reads as

(D, σ 2(z)|dz|2). Moreover the conformal factors ρ2 and σ 2 are in a bounded
ratio: if the curvature K of this surface satisfies −b2

≤ K ≤ −a2 < 0, then
a2σ 2

≤ ρ2
≤ b2σ 2. See Proposition 3.1.

Also observe that, for maps defined on a Riemannian surface S1, the Dirichlet
energy functional is invariant under a conformal change of metric on S1. Hence, the
harmonicity of such a map depends only on the conformal class of the source surface.

We infer from this discussion that, to prove Theorem 1.1, we can assume that S1

is the hyperbolic disk D.

2B. Quasi-isometric maps. Let S = (D, σ 2(z)|dz|2) be a pinched Hadamard sur-
face. It is a proper Gromov hyperbolic space (a general reference for Gromov
hyperbolic spaces is [Ghys and de la Harpe 1990]). The boundary at infinity ∂∞S
of S is defined as the set of equivalence classes of geodesic rays, where two geodesic
rays are identified whenever they remain within bounded distance from each other.
The union S = S ∪ ∂∞S provides a compactification of S (see [Ballmann 1995]).

The boundary at infinity ∂∞D naturally identifies with the boundary S1
=

{z∈C, |z|=1} of D. Since the identity map Id : D→ D is a quasi-isometry between
the hyperbolic disk D = (D, ρ2(z)|dz|2) and the surface S = (D, σ 2(z)|dz|2), the
boundary at infinity ∂∞S also identifies canonically with ∂∞D = S1.

A quasi-isometric map f : D → S admits a boundary value at infinity ∂∞ f :

∂∞D → ∂∞S, that we read as ∂∞ f : S1
→ S1 through the above identifications.

Two quasi-isometric maps share the same boundary value at infinity if and only if
they remain within bounded distance from each other. By the Ahlfors–Beurling
theorem, the maps ϕ : S1

→ S1 that appear as boundary values at infinity of quasi-
isometric maps f : D → S are exactly the quasi-symmetric homeomorphisms. See
[Benoist and Hulin 2017, Fact 1.4] for a short historical account of these facts. We
will often identify S1 with R/2πZ.
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Definition 2.1. Let k ≥ 1. A homeomorphism ϕ : S1
→ S1 is a k-quasi-symmetric

map if
1
k
≤
ϕ(θ +α)−ϕ(θ)

ϕ(θ)−ϕ(θ −α)
≤ k (2-1)

holds for every θ, α with 0< α ≤ π .

Note that any quasi-isometric map f :D→ S is actually a quasi-isometry. Namely,
one has supy∈S d(y, f (D)) <∞. Here is a first short proof: the inverse ϕ−1 of
its boundary map is also a quasi-symmetric homeomorphism, hence ϕ−1 is the
boundary map of a quasi-isometric map f ′ : S → D, and the map f ◦ f ′ : S → S is
within bounded distance from the identity map. Here is another sketch of proof: the
hyperbolic disc D is not quasi-isometric to one of its proper convex subsets because
the boundary S1 of the disc is not homeomorphic to one of its proper subsets.

In a previous paper, we studied harmonic quasi-isometric maps between pinched
Hadamard manifolds. Our result, when specialized to surfaces, asserts that any
quasi-isometric map f : D → S has the same boundary value at infinity as a unique
harmonic quasi-isometric map. In other words, the following holds.

Theorem 2.2 [Benoist and Hulin 2021]. Let S = (D, σ 2(z)|dz|2) be a pinched
Hadamard surface and ϕ : S1

→ S1 be a quasi-symmetric map. Then, there exists
a unique harmonic quasi-isometric map h : D → S such that ∂∞h = ϕ.

2C. Harmonic maps between surfaces. We introduce some notation that will be
used throughout the paper, and recall some classical results concerning harmonic
maps between surfaces. A general reference for this section is [Jost 1997].

Let h :D→ S be a smooth map from the hyperbolic disk D= (D, ρ2(z)|dz|2) to
a pinched Hadamard surface S = (D, σ 2(z)|dz|2) with pinching condition −b2

≤

K ≤−a2 < 0. Recall that the curvature K of S is given by

K =−σ−21e log σ,

where 1e = 4∂z∂z̄ is the Euclidean Laplacian. For such a map h, we introduce as
usual the functions hz, h z̄ : D → C defined by

hz =
1
2(hx − ih y), h z̄ =

1
2(hx + ih y),

where the conformal parameter reads as z = x+iy, and the subscript x or y indicates
a directional derivative. The map h is holomorphic (or antiholomorphic) if h z̄ = 0
(or hz = 0). It is worth noting that h z̄ = h̄z .

Proposition 2.3 [Jost 1997, Section 3.6]. The map h : D → S is harmonic if and
only if it satisfies

hzz̄ + 2
(
σz

σ
◦ h

)
hzh z̄ = 0.
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If the map h is either holomorphic or antiholomorphic, then it is harmonic.
Introduce the square norms of the complex derivatives of h:

H = ∥∂h∥2
:=
σ 2

◦ h
ρ2 |hz|

2 and L = ∥∂̄h∥2
:=
σ 2

◦ h
ρ2 |h z̄|

2,

so that one has ∥Dh∥2
= H + L . Observe that h is a local diffeomorphism if the

Jacobian J = H − L does not vanish, and is moreover orientation-preserving if
J > 0.

Lemma 2.4 [Jost 1997, Section 3.10]. Let h : D → S be a harmonic map. On the
open subsets where they are non zero, the functions H and L satisfy the Bochner
equations

(1/2)1 log H = (−K ◦ h)J − 1, (2-2)

(1/2)1 log L = ( K ◦ h)J − 1. (2-3)

Here 1= 4 ρ−2∂z∂z̄ is the Laplace operator relative to the hyperbolic metric.
On the open set � := {hz ̸= 0}, we introduce the conformal distortion µ :�→ C

by letting h z̄ = µhz , so that one has the useful equalities

|µ|2 = L/H, 1− |µ|2 = J/H and
1− |µ|2

1+ |µ|2
=

J
∥Dh∥2 . (2-4)

3. A family of metrics and harmonic maps

In this section we explain the continuity method we will use to prove Theorem 1.1.
Let S = (D, σ 2(z)|dz|2) be a pinched Hadamard surface, with curvature bounds

−b2
≤ K ≤ −a2 < 0. Choose an increasing quasi-symmetric homeomorphism

ϕ : S1
→ S1, and let h : D → S be the unique harmonic quasi-isometric map with

boundary value at infinity ∂∞h = ϕ. We want to prove that h is a quasi-conformal
diffeomorphism.

In case the surface S is the hyperbolic disk, that is, for a harmonic quasi-isometric
map h : D → D, the result is due to Li and Tam and to Markovic (see Section 6B
for a proof). To prove it for a harmonic map h : D → S with values in a general
pinched Hadamard surface S, we use the method of continuity, involving a family of
pinched Hadamard surfaces St = (D, e2ut ghyp), for 0 ≤ t ≤ 1, starting with S0 = D

and such that S1 = S.

3A. Construction of the metrics gt . We construct the metric gt by prescribing its
curvature.

More specifically, we introduce for 0 ≤ t ≤ 1 the unique complete conformal
metric gt = e2ut ghyp on the unit disk D with curvature Kt := −(1 − t) + t K.
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Each function Kt being pinched between two negative constants, the existence and
uniqueness of such a metric is granted by the following.

Proposition 3.1 [Bland and Kalka 1986]. Let S0 = (D, g0) be a pinched Hadamard
surface with curvature −b2

0 ≤ k0 ≤ −a2
0 < 0. Let k be a smooth function on S0

such that −β2
≤ k ≤ −α2 for some constants 0 < α ≤ β. Then, there exists a

unique complete conformal metric g = e2ug0 on D with curvature k. Moreover, the
conformal factor e2u is controlled, with

a2
0/β

2
≤ e2u

≤ b2
0/α

2. (3-1)

Sketch of proof. The sub-supersolution method for the curvature equation

10u =−k e2u
+ k0, (3-2)

where 10 is the Laplace operator for g0, proves existence and uniqueness.
The upper bound in (3-1) relies on the generalized maximum principle of Yau

applied to the bounded function v := 1/(1+ e−u); see [Yau 1975] or Lemma 3.2.
For the lower bound, exchange the roles of g and g0. We only need a light form of
this maximum principle that reads as follows. □

Lemma 3.2. Let v : S → R be a smooth function defined on a pinched Hadamard
surface S. Assume that v is bounded above.

Then, there exists a sequence (xn) in S such that

v(xn)→ sup
S
v, |∇v|(xn)→ 0 and lim sup1v(xn)≤ 0. (3-3)

Proof. We can assume that supS v= 1. We fix a point x0 ∈ S where this supremum is
not achieved and we introduce the function vn on S given by vn(x)=v(x) e−d(x,x0)/n.
This function is smooth, except maybe at x0, and it achieves its supremum at a
point xn ̸= x0 for n large. This sequence (xn) satisfies (3-3) since vn(xn) → 1,
∇vn(xn)= 0 and 1vn(xn)≤ 0. □

3B. Construction of the harmonic maps ht . We construct the harmonic map ht

by prescribing its boundary map.
By construction, one has D = (D, g0) and S = (D, g1). For 0 ≤ t ≤ 1, we let

ht : D → St be the unique harmonic quasi-isometric map whose boundary value at
infinity is ϕ : S1

→ S1. Recall that the existence and uniqueness of those ht are
granted by Theorem 2.2.

Here is some basic information concerning these harmonic maps ht . For 0 ≤

s, t ≤1, let d(hs, ht) := supz∈D d(hs(z), ht(z)) denote the uniform distance between
these two maps, where the distance is taken with respect to the hyperbolic metric
ghyp on the target.
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Lemma 3.3. There exists c∗ > 0 such that, for all t ∈ [0, 1], the map ht is c∗-quasi-
isometric, one has d(ht , h0)≤ c∗, and the map ht is c∗-Lipschitz.

Remark that, since the functions ut are uniformly bounded (Proposition 3.1), it
was not really necessary to specify with respect to which one of the metrics gt the
above distances were being estimated.

Proof. As explained in Section 2B, there exists a c-quasi-isometric map f : D → D

whose boundary value at infinity is our quasi-symmetric map ∂∞ f = ϕ. By taking
a larger constant c, we may assume that each map f : D → St (that is, the same
map f now seen with values in one of the Riemannian surfaces St , with t ∈ [0, 1])
is c-quasi-isometric.

Thus the main result of [Benoist and Hulin 2021] asserts that there exists a
constant C > 0 such that d( f, ht)≤ C . This constant C depends only on c and on
the pinching constants a and b, hence it does not depend on t ∈ [0, 1]. Thus the
first two claims hold if c∗ ≥ 2c+ 2C .

The map f being c-quasi-isometric, each harmonic map ht : D → St sends
any ball B(z, 1) ⊂ D with radius 1 inside the ball B(ht(z), R) ⊂ St with radius
R = 2c+ 2C . Now the uniform Lipschitz continuity of the maps ht follows from
the Cheng lemma, which we recall below. □

Lemma 3.4 [Cheng 1980]. Let S be a Hadamard surface with −b2
≤ K ≤ 0. There

exists a constant κ , that depends only on b, such that if a harmonic map h : D → S
satisfies h(B(z, 1))⊂ B(h(z), R) for some radius R, then

∥Dh(z)∥ ≤ κR.

3C. An injectivity criterion. The following lemma tells us that a uniform lower
bound for the Jacobian Jt = Jac(ht) is enough to ensure that ht is a quasi-conformal
diffeomorphism.

Lemma 3.5. If infz∈D Jt(z) > 0 then ht is a quasi-conformal diffeomorphism.

Proof. By assumption, the Jacobian Jt does not vanish, hence the map ht : D → St

is a local diffeomorphism. By construction, the map ht is quasi-isometric, so it is a
proper map. It thus follows that ht is a covering map. Since S is simply connected,
the map ht is a diffeomorphism. By Lemma 3.4, ht is Lipschitz, so the lower bound
for its Jacobian Jt ensures that ht is quasi-conformal. □

3D. Strategy of proof of Theorem 1.1. We will need the following two proposi-
tions.

Proposition 3.6. There exists j∗ > 0 such that, for all t ∈ [0, 1] for which ht is a
quasi-conformal diffeomorphism, one has Jt ≥ j∗.
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Proposition 3.6 is a straightforward consequence of Proposition 5.2 that will be
proven in Section 5. Indeed Lemma 3.3 ensures that the maps ht are c∗-Lipschitz.

Let Cb(D,R) be the space of bounded continuous functions ψ endowed with
the sup norm: ∥ψ∥∞ = supz∈D|ψ(z)|.

Proposition 3.7. The map t ∈ [0, 1] → Jt ∈ Cb(D,R) is continuous.

Proposition 3.7 will be proven in Section 6 as part of Proposition 6.2 .

Proof of Theorem 1.1 using Propositions 3.6 and 3.7. Let A be the set of parameters
t ∈ [0, 1] such that the harmonic map ht : D → St is a quasi-conformal diffeo-
morphism. We want to prove that 1 ∈ A. We already know that 0 ∈ A (this is
Theorem A.1 due to Li and Tam and to Markovic). It is enough to check that A is
open and closed. Let j be the function on [0, 1] given by

j (t) := inf
z∈D

Jt(z) ∈ R.

By Proposition 3.7 the function j is continuous. By Lemma 3.5 and Proposition 3.6,
one has both A = j−1(]0,∞[) and A = j−1([ j∗,∞[). Hence A is both open and
closed. □

4. Sequences of metrics and harmonic maps

In order to obtain the uniform lower bounds in Section 5, or the continuity properties
in Section 6, we will have to consider sequences of conformal metrics on the unit
disk D, and sequences of harmonic maps. In this section, we state compactness
results for such sequences.

These compactness results also hold in higher dimension (see [Petersen 2016],
or [Benoist and Hulin 2021]). Since we will only deal here with conformal metrics
on the disk D, the complex parameter z ∈ D naturally provides a global harmonic
chart for these metrics so that the statements and the proofs are more elementary.

4A. Sequence of Hadamard surfaces. Let us begin with sequences of conformal
Riemannian structures on the unit disk D.

The convergence in the following lemma is nothing but a special case of the
Gromov–Hausdorff convergence for isometry classes of pointed proper metric
spaces using the base point 0 ∈ D. See [Benoist and Hulin 2021, Section 5.3] or
[Burago et al. 2001] for a short introduction to this notion.

Lemma 4.1. Let gn = e2un ghyp be a sequence of complete conformal metrics on
the unit disk D with curvature −b2

≤ Kn ≤−a2 < 0. Then there is a subsequence
of (un) that converges to a C1 function u∞ in the C1

loc topology.
The limit metric g∞ = e2u∞ghyp is a C1 complete conformal metric on D, and

S∞ := (D, g∞) is a CAT-space with curvature between −b2 and −a2.
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Proof. Proposition 3.1 ensures that the logarithms un : D → R of the conformal
factors are uniformly bounded. The curvature equation

1un = (−Kn) e2un − 1 ((3-2)n)

for gn ensures that the Laplacians 1un are also uniformly bounded.
Pick 0 ≤ α < 1. We may now apply to the sequence (un) the following first

Schauder estimates (see [Gilbarg and Trudinger 2001, Theorem 3.9] or [Petersen
2016, Theorem 70]). These estimates state that there exists a constant c such that,
for any smooth function v : D → R on the hyperbolic disk, the inequality

∥v∥C1,α(B1) ≤ cα(∥1v∥C0(B2)+∥v∥C0(B2)) (4-1)

holds for any pair of concentric hyperbolic balls B1 ⊂ B2 ⊂ D with respective radii
1 and 2. This provides a uniform local bound for the norms ∥un∥C1,α . Going if
necessary to a subsequence, we may thus assume that the sequence (un) converges in
the C1

loc topology. Let u∞= lim un and g∞= e2u∞ghyp and introduce S∞= (D, g∞).
As a limit of such, the length space S∞ is a CAT-space with curvature between −b2

and −a2 (see [Bridson and Haefliger 1999, Corollary II.3.10] and [Burago et al.
2001, Theorem 10.7.1]). □

Remark. Under the hypothesis of Lemma 4.1, after extraction, the sequence of
bounded functions Kn : D →R converges weakly to a bounded measurable function
K∞ : D → R with −b2

≤ K∞ ≤−a2, and the C1 function u∞ is a weak solution of

1u∞ = (−K∞) e2u∞ − 1 . ((3-2)∞)

4B. Sequence of harmonic maps. Now turn to sequences of maps between such
Riemannian surfaces.

Lemma 4.2. Let Sn = (D, gn) be a sequence converging to S∞ = (D, g∞) as
in Lemma 4.1. Let c > 0, and let hn : D → Sn be c-Lipschitz maps satisfying
dn(hn(0), 0) ≤ c. Then there is a subsequence of (hn) that converges locally
uniformly to a c-Lipschitz map h∞ : D → S∞.

(a) If all the maps hn are C-quasi-isometric, then h∞ is C-quasi-isometric.

(b) If all the maps hn are harmonic, then h∞ is C2 and is harmonic too.

Proof. Observe that, on any fixed compact set, the maps hn : D → S∞ are cn-
Lipschitz for some constants cn converging to c. Indeed these are the initial maps hn ,
albeit with the limit metric on the target. Since we assumed that dn(hn(0), 0)≤ c,
these maps hn are locally uniformly bounded (this means locally in z and uniformly
in n). It thus follows from the Ascoli lemma that we may assume the sequence (hn)

to converge uniformly on compact sets to a c-Lipschitz map h∞ : D → S∞.
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(a) If all hn : D → Sn are C-quasi-isometric, then, on any fixed compact set, the
maps hn : D → S∞ are Cn-quasi-isometric for some constant Cn converging to C ,
and so h∞ is C-quasi-isometric.

(b) Now assume that each map hn :D→ Sn is harmonic, namely, that each function
hn : D → D ⊂ C satisfies the equation

(hn)zz̄ + 2 ((un)z ◦ hn) (hn)z(hn)z̄ = 0. (4-2)

We want to prove that h∞ is harmonic, namely, that it is C2 and satisfies

(h∞)zz̄ + 2 ((u∞)z ◦ h∞) (h∞)z(h∞)z̄ = 0. (4-3)

The maps hn : D → Sn are c-Lipschitz, so that all the derivatives (hn)z and (hn)z̄

are locally uniformly bounded. We have seen in the proof of Lemma 4.1 that the
gradients ∇un are locally uniformly bounded, hence (un)z ◦hn are locally uniformly
bounded. Then (4-2) ensures the functions 1hn are also locally uniformly bounded.
We apply the first Schauder estimates (4-1) to the functions v = hn . This implies
that, for 0< α < 1, the functions hn are uniformly bounded in the C1,α

loc topology.
Plugging this information into (4-2), and recalling from the proof of Lemma 4.1

that the gradients ∇un are also uniformly bounded in the Cα
loc topology, we see

that the functions 1hn are uniformly bounded in the Cα
loc topology. We will now

apply the second Schauder estimates to the functions v = hn (see [Petersen 2016,
Theorem 70]). With the same notation as (4-1), these estimates state

∥v∥C2,α(B1) ≤ cα(∥1v∥Cα(B2)+∥v∥C0(B2)). (4-4)

Hence the functions hn are uniformly bounded in the C2,α
loc topology.

Therefore (hn) admits a subsequence which converges in the C2
loc topology. This

proves that h∞ is C2 and going to the limit in (4-2) ensures that the limit map h∞

is harmonic, as claimed. □

5. A lower bound for the Jacobian

In this section we provide a lower bound for the Jacobian Jt of ht when ht is a
quasi-conformal diffeomorphism (Proposition 3.6).

The notation is that of Section 2C: S is a pinched Hadamard surface and h :

D → S is a harmonic map. We assume moreover that h is an orientation-preserving
diffeomorphism. The Jacobian of h, which is J = H − L with H := ∥∂h∥2 and
L := ∥∂h∥2, is positive. The function w :=

1
2 log H satisfies (2-2), which we may

also write as
1w = (−K ◦ h) (1− |µ|2) e2w

− 1, (5-1)

where µ := h z̄/hz is the conformal distortion. By (2-4) the diffeomorphism h is
quasi-conformal if and only if there exists a δ < 1 such that |µ| ≤ δ.
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5A. Controlling the norm of the differential. The next lemma tells us that the
norm of the differential ∥Dh∥ of a harmonic quasi-conformal diffeomorphism is
uniformly bounded below (see also [Wan 1992]).

Lemma 5.1. Let h : D → S be a quasi-conformal harmonic diffeomorphism, where
S is a pinched Hadamard surface with curvature −b2

≤ K ≤−a2 < 0. Then one
has e2w

≥ b−2.

Proof. Introduce the conformal metric g̃ = e2wghyp on D. We first prove that g̃ is
complete with pinched negative curvature. Proposition 3.1 will then provide the
lower bound on w.

Let S= (D, σ 2(z)|dz|2). The map h :D→ S being a diffeomorphism and S being
complete, the pull-back metric G = h∗(σ 2(z)|dz|2) is complete. This pull-back met-
ric reads as G = (σ 2

◦h)|hz|
2
|dz+µdz̄|2. Since one has g̃ = (σ 2

◦h)|hz|
2
|dz|2 and

|µ| ≤ 1, one easily checks that G ≤ 4g̃. This ensures that the metric g̃ is complete.
Comparison of (5-1) satisfied byw and the curvature (3-2) yields that the metric g̃

has curvature K̃ = (K ◦ h)(1− |µ|2). It follows that −b2
≤ K̃ ≤−a2(1− δ2) < 0,

where δ := ∥µ∥∞ < 1. Proposition 3.1 thus ensures that w satisfies b−2
≤ e2w

≤

a−2(1− δ2)−1. □

5B. Controlling the Jacobian. The following proposition tells us that the Jaco-
bian of a harmonic quasi-conformal diffeomorphism is controlled by its Lipschitz
constant.

Proposition 5.2. Let 0<a≤b. Then, for every c>0, there exists j∗= j∗(a, b, c)>0
such that, if S is a pinched Hadamard surface with curvature −b2

≤ K ≤−a2, the
Jacobian J of any c-Lipschitz quasi-conformal harmonic diffeomorphism h : D → S
satisfies J ≥ j∗.

Proof. Assume by contradiction that there exist a sequence of pinched Hadamard sur-
faces Sn = (D, e2un ghyp) with curvatures −b2

≤ Kn ≤−a2, a sequence hn :D→ Sn

of c-Lipschitz harmonic quasi-conformal diffeomorphisms and a sequence (xn) of
points of D such that the Jacobian Jn of hn satisfy Jn(xn)→ 0.

Choosing sequences (γn) and (γ ′
n) of isometries of the hyperbolic disk such that

γn(xn)= 0 and γ ′
n(hn(xn))= 0, and replacing un by un ◦ γ

′
n
−1 and hn by γ ′

nhnγ
−1
n ,

we can assume that xn = 0 and hn(xn)= 0.
By Lemmas 4.1 and 4.2, going to a subsequence, one may assume that

• the sequence (un) converges to a C1 function u∞ in the C1
loc topology,

• the sequence (hn) converges to a C2 map h∞ in the C2
loc topology.

Recall from (2-4) that Jn = (1 − |µn|
2)e2wn where µn = (hn)z̄/(hn)z is the

conformal distortion and where e2wn = ∥∂hn∥
2. Lemma 5.1 ensures that

e2w∞ = lim
n→∞

e2wn ≥ b−2. (5-2)
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Thus (h∞)z does not vanish. Hence the functions µn also converge to a C1 func-
tion µ∞ in the C1

loc topology, and one has ∥µ∞∥∞ = 1 and |µ∞(0)| = 1.

First step: we claim that |µ∞| ≡ 1. We introduce the nonnegative C1 functions
ℓn :=− log|µn|

2 defined on�n :={µn ̸=0} and their limit ℓ∞ :=− log|µ∞|
2, which

is defined on �∞ := {µ∞ ̸= 0}. By assumption, the function ℓ∞ is a nonnegative
function that achieves its minimum ℓ∞(0)= 0 at the origin. We will prove that the
set {ℓ∞ = 0} is open in �∞, so that ℓ∞ ≡ 0 as claimed.

The function ℓn satisfies the equation on �n , the difference of (2-2) and (2-3):

1ℓn = 4 (−Kn ◦ hn) (1− e−ℓn ) e2wn . (5-3)

Since |Kn| ≤ b2, 1− e−ℓn ≤ ℓn and e2wn ≤ c2, we infer that

1ℓn ≤ 4b2c2 ℓn.

Hence ℓ∞ is a C1 function on �∞ that satisfies in the weak sense

1ℓ∞ ≤ 4b2c2 ℓ∞.

In particular, one has bounds 1eℓ∞ ≤ CK ℓ∞ on compact sets K of �∞ and, by
Lemma 5.3 below, the set {ℓ∞ = 0} is open. This proves |µ∞| ≡ 1.

Second step: we seek a contradiction. We recall that the functions wn satisfy (5-1),
namely,

1wn = (−Kn ◦ hn) (1− |µn|
2) e2wn − 1.

Since the functions (−Kn◦hn) and e2wn are uniformly bounded and limn→∞|µn|=1,
the limit functionw∞= limwn satisfies1w∞=−1 in the weak sense. In particular
w∞ is smooth. Note also that (5-2) yields the lower bound 2w∞ ≥ log b−2.

In conclusion, w∞ is a smooth function on D which is bounded below and
satisfies 1w∞ =−1. By the generalized maximum principle of Lemma 3.2, such
a function w∞ does not exist. This is a contradiction. □

In the previous proof we have used the following lemma as in [Heinz 1956].

Lemma 5.3. Let C > 0 and ℓ be a nonnegative continuous function on an open set
U ⊂ R2 such that 1eℓ≤ Cℓ weakly. Then the set {ℓ= 0} is open.

Proof. We can assume that ℓ(0)= 0. By a standard convolution argument, in a small
ball B(0, R)⊂�, we can write ℓ as a uniform limit of nonnegative C2-functions ℓn

that also satisfy
1eℓn ≤ Cℓn. (5-4)

We introduce the mean values of ℓn and ℓ on circles of radius r ≤ R,

Mn(r) := 1
2π

∫ 2π
0 ℓn(r eiθ ) dθ and M(r) := 1

2π

∫ 2π
0 ℓ(r eiθ ) dθ.
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The Green representation formula (see [Hörmander 1994, p. 119]) gives

ℓn(0)= Mn(r)−
1

2π

∫
B(0,r)

1eℓn(y) log
r
|y|

dy.

Since ℓn converges uniformly to ℓ and ℓ(0)= 0 we infer, using (5-4), that

M(r)≤
C
2π

∫
B(0,r)

ℓ(y) log
r
|y|

dy,

so that, for every r ≤ R,

M(r)≤
C R2

4
sup
[0,R]

M(t).

Choosing R2 < 4/C , we obtain that ℓ≡ 0 on the ball B(0, R). □

6. Continuity of the Jacobian

In this section we prove that the metrics gt , the harmonic maps ht and their Jaco-
bians Jt depend continuously on t , thus proving Proposition 3.7.

6A. A continuous family of metric. In Section 3, we introduced pinched Hadamard
surfaces St = (D, e2ut ghyp) with curvature Kt = (t − 1)+ t K, where −b2

≤ K ≤

−a2 < 0 (t ∈ [0, 1]). In particular, S0 = D. We have seen that all the metrics gt

are uniformly bi-Lipschitz to each other. This means that the functions ut : D → R

are uniformly bounded.
Lemma 6.1 tells us that they are uniformly bounded in norm C1 and that the map

t ∈ [0, 1] → ut ∈ C1 is continuous. Here the gradients ∇, as well as their norms,
are taken with respect to the hyperbolic metric ghyp.

Lemma 6.1. There exists a constant c such that, for every 0 ≤ t ≤ 1,

∥ut∥∞+∥∇ut∥∞ ≤ c, (6-1)

∥ut − us∥∞+∥∇(ut − us)∥∞ ≤ c |t − s|. (6-2)

Proof. We argue as in the proof of Lemma 4.1. Let us first prove (6-1). Each
conformal factor e2ut is solution of the curvature (3-2), here

1ut = (−Kt) e2ut − 1. (6-3)

Since the metrics gt are complete, and the Kt satisfy a uniform pinching condition
−B2

≤ Kt ≤−A2< 0 for all 0≤ t ≤ 1, Proposition 3.1 ensures that the functions ut

are uniformly bounded. Plugging into (6-3), we infer that the Laplacians 1ut are
also uniformly bounded. Hence the Schauder estimates (4-1) with α= 0 and v= ut

yield the uniform bound (6-1).
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We now prove (6-2). Using the curvature equations (6-3) satisfied by us and ut

(0 ≤ s < t ≤ 1), we obtain

1(ut − us)= (Ks − Kt)e2ut + Ks(e2us − e2ut )

that we rewrite as

1(ut − us)=−(t − s)(1+ K )e2ut + (−Ks) (e2ut − e2us ) . (6-4)

Since the functions ut are uniformly bounded, there exists a constant m0 > 0, such
that one has |ut − us | ≤ m0|e2ut − e2us | for all s, t in [0, 1].

The generalized maximum principle of Lemma 3.2 applied to the function
v := |ut−us | ensures the existence of a sequence (xn) in D such that v(xn)→ supS v,
and lim sup1v(xn)≤ 0. Using (6-4), one computes

1v(xn)≥−(t − s) |1+ K | e2ut (xn)+ (−Ks) |e2ut (xn)− e2us(xn)|, (6-5)

≥−(t − s)(1+ b2) e2∥u∥∞ + a2m0 |ut(xn)− us(xn)|. (6-6)

Therefore, letting n go to ∞, one finds a constant c := m−1
0 a−2(1+b2)e2∥u∥∞ such

that
∥ut − us∥∞ ≤ c |t − s| (6-7)

for every s, t in [0, 1].
Plugging (6-7) into (6-4) yields a similar bound for1(ut −us), and (6-2) follows

from the Schauder estimates (4-1) with v = ut − us . □

Remark. Since the curvature function K is smooth, one could improve Lemma 6.1
and prove that all ut are smooth and that, for all p ≥ 2, the maps t ∈ [0, 1] →
ut ∈ C p

loc(D) are continuous. But the p-th derivatives of ut might not be bounded
on D.

6B. A continuous family of harmonic maps. Recall that we have natural iden-
tifications ∂∞St ≃ S1. We fix an increasing quasi-symmetric homeomorphism
ϕ : S1

→ S1. In Section 3, we introduced the unique harmonic quasi-isometric map
ht : D → St with boundary value at infinity ∂∞ht = ϕ.

Here are the continuity properties of this family of maps ht that we used in the
proof of Theorem 1.1.

Proposition 6.2. The map t ∈ [0, 1] → ht ∈ C(D,D) is continuous. The map
t ∈ [0, 1] → Jt ∈ Cb(D,R) is continuous.

This means lims→t d(hs, ht)= 0 and lims→t∥Js − Jt∥∞ = 0, for all t ∈ [0, 1].

Proof. Assume this is not the case. Then there exist a sequence (tn) in [0, 1] and a
sequence (xn) of points in D such that

lim
n→∞

d(htn (xn), ht(xn)) > 0 or lim
n→∞

|Jtn (xn)− Jt(xn)|> 0. (6-8)
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We want to get a contradiction by applying Lemmas 4.1 and 4.2 to recentered
surfaces and recentered harmonic maps. We thus choose sequences (γn) and (γ ′

n)

of isometries of the hyperbolic disk D such that γn(xn) = 0 and γ ′
n(ht(xn)) = 0.

Let Sn = (D, gn) and S′
n = (D, g′

n) be the conformal surfaces where gn = e2un ghyp

and g′
n = e2u′

n ghyp with

un := ut ◦ γ
′

n
−1 and u′

n := utn ◦ γ
′

n
−1
.

By Lemma 4.1 we may assume, after extraction, that the sequence (un) converges
to a C1 function u∞ in the C1

loc topology, and that the limit C1 metric space
S∞ := (D, e2u∞) is a CAT space with pinched curvature −b2

≤ K∞ ≤−a2 < 0.
By Lemma 6.1, one has

lim
n→∞

∥u′

n − un∥∞+∥∇u′

n −∇un∥∞ = 0.

Hence the sequence (u′
n) also converges in the C1

loc topology to the function u∞.
We now introduce the sequence of maps

hn := γ
′

n ◦ ht ◦ γ
−1
n : D → Sn, (6-9)

h′

n := γ
′

n ◦ htn ◦ γ
−1
n : D → S′

n. (6-10)

These maps hn and h′
n are harmonic and (6-8) can be rewritten as

lim
n→∞

d(hn(0), h′

n(0)) > 0 or lim
n→∞

|Jn(0)− J ′

n(0)|> 0, (6-11)

where Jn is the Jacobian of hn and J ′
n is the Jacobian of h′

n . By Lemma 3.3,
all these maps hn and h′

n are uniformly Lipschitz and uniformly quasi-isometric.
Hence Lemma 4.2 ensures that, after extraction, the sequences (hn) and (h′

n)

converge respectively, in the C2
loc topology, to harmonic quasi-isometric maps

h∞, h′
∞

: D → S∞.
Since Lemma 3.3 also asserts that d(hn, h′

n)≤ 2 c∗ for all n, the limit harmonic
quasi-isometric maps h∞, h′

∞
: D → S∞ are within bounded distance from each

other. Then the uniqueness theorem for quasi-isometric harmonic maps in [Benoist
and Hulin 2021, Section 5] ensures that h∞ = h′

∞
. This contradicts (6-11). □

This also ends the proof of both Proposition 3.7 and Theorem 1.1.

Appendix: The injectivity theorem in constant curvature

In this appendix, we prove the injectivity theorem Theorem A.1 that we used as a
starting point in the proof of Theorem 1.1.

AA. The Li–Tam–Markovic injectivity theorem.

Theorem A.1. Let D be the hyperbolic disk. Any harmonic quasi-isometric map
h : D → D is a quasi-conformal harmonic diffeomorphism.
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This theorem is an output of Markovic solution of the Schoen conjecture in
[Markovic 2017]. It relies on a previous injectivity result in [Li and Tam 1991]
when the boundary map of h is smooth, which is Proposition A.4 below. The proof
of Li and Tam itself relies on the Schoen–Yau injectivity theorem [1978].

We would like to give a short new proof of Theorem A.1 that does not rely on
this Schoen–Yau theorem and that uses instead a continuity method combined with
a simple topological fact (Lemma A.8).

Proof. The proof will last until the end of the paper. We know (see Section 2B) that
the boundary value ϕ = ∂∞h : S1

→ S1 is a k-quasi-symmetric homeomorphism
of S1

= ∂∞D, where k depends only on the constant c of quasi-isometry of h. For
k ≥ 1, we introduce the set

Mk = {k-quasi-symmetric homeomorphism ϕ : S1
→ S1

}

equipped with the uniform distance d(ϕ1, ϕ2)= supξ∈S1 |ϕ1(ξ)−ϕ2(ξ)|.
We also know that, for all ϕ in Mk , there exists a unique harmonic quasi-

isometric map hϕ : D → D whose boundary map is ϕ. We want to prove that
all these maps hϕ are quasi-conformal diffeomorphisms. This will follow from
Lemma A.2, Proposition A.3 and Proposition A.4.

Lemma A.2. The k-quasi-symmetric C1 diffeomorphisms are dense in Mk .

Proof. Choose a smooth approximation of unity (αn) on S1. For ϕ in Mk , each
function αn ∗ ϕ is a k-quasi-symmetric C1 diffeomorphism while the sequence
(αn ∗ϕ) converges uniformly to ϕ. □

Proposition A.3. Let Fk be the set of those ϕ ∈ Mk such that hϕ is a quasi-
conformal diffeomorphism. Then Fk is a closed subset of Mk .

The proof of Proposition A.3 will be given in Appendix AC. It relies on continuity
properties of the boundary map h 7→ ∂∞h proven in Appendix AB.

Proposition A.4. When ϕ is a C1 diffeomorphism of S1, its quasi-isometric har-
monic extension hϕ : D → D is a quasi-conformal diffeomorphism.

The proof of Proposition A.4 will be given in Section AE. It uses a deformation ϕt

of ϕ starting with the identity. Let G be the group of isometries of D acting on S1.
The proof relies on the fact that the only homeomorphisms which are limits of
elements of Gϕt G belong to G. This is Lemma A.8 which will be proven in
Appendix AD.

AB. Continuity of the boundary map. Let c > 1. Endow the space Qc of c-quasi-
isometric maps f : D → D with the topology of uniform convergence on compact
sets, and the space C of continuous maps ϕ : S1

→ S1 with the topology of uniform
convergence.
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Lemma A.5. The map f ∈Qc → ∂∞ f ∈ C is continuous.

Proof. We fix a point 0 in D. Recall that the Gromov product of two points x, y
in D seen from 0 is

(x, y)0 = 1
2(d(0, x)− d(x, y)+ d(y, 0)).

We will use the quasi-invariance of the Gromov product under quasi-isometric
maps as in [Ghys and de la Harpe 1990, Proposition 5.15]. For n ∈ N∪ {∞}, let
fn ∈Qc be c-quasi-isometric maps, with boundary values at infinity ϕn . Assume
that the sequence ( fn) converges uniformly to f∞ on compact sets. In particular,
the quantity R := supn d( fn(0), 0) is finite. We want to prove that the sequence (ϕn)

converges uniformly to the boundary map ϕ∞ of f∞.
For ξ ∈ S1, denote by t ∈ [0,∞[ → x t

ξ ∈ D the geodesic ray with origin 0
and endpoint ξ . By [Ghys and de la Harpe 1990, Proposition 5.15], there exists a
constant λ > 1 such that the lower bound for the Gromov product seen from 0,

( fn(x t
ξ ), fn(x s

ξ ))0 ≥ (x
t
ξ , x s

ξ )0/λ− λ= t/λ− λ,

holds when s ≥ t > 0 and n ∈ N∪ {∞}. Letting s →∞, we obtain

( fn(x t
ξ ), ϕn(ξ))0 ≥ t/λ− λ

for n ∈N∪{∞}. Since D is δ-hyperbolic for a constant δ > 0, each Gromov product
(ϕn(ξ), ϕ∞(ξ))0 is bounded below by

min[ (ϕn(ξ), fn(x t
ξ ))0, ( fn(x t

ξ ), f∞(x t
ξ ))0, ( f∞(x t

ξ ), ϕ∞(ξ))0 ] − 2δ (A-1)

for every ξ ∈ S1 and n ∈ N (see [Ghys and de la Harpe 1990, Chapter 2]). The
sequence ( fn) converging uniformly to f∞ on compact sets, there exists, for all
t > 0, an integer nt ≥ 1 such that one has, for n ≥ nt and ξ ∈ S1,

d( fn(x t
ξ ), f∞(x t

ξ ))≤ 1
hence,

( fn(x t
ξ ), f∞(x t

ξ ))0 ≥ t/c− c− R − 1/2,

and therefore, using (A-1),

(ϕn(ξ), ϕ∞(ξ))0 ≥ min[t/λ− λ ; t/c− c− R − 1/2] − 2δ.

This proves the convergence limn→∞ minξ∈S (ϕn(ξ), ϕ∞(ξ))0 =∞. As explained
in [Ghys and de la Harpe 1990, Section 7.2], this means that the sequence (ϕn)

converges uniformly to ϕ∞. □

AC. A continuous inverse to the boundary map. The following lemma is a varia-
tion of Lemma 3.3. Fix k ≥ 1.

Lemma A.6. There exist a compact subset Lk ⊂ D and a constant ck such that the
harmonic quasi-isometric extension hϕ of any ϕ ∈ Mk is ck-quasi-isometric, the
point hϕ(0) is in Lk , and the map hϕ is ck-Lipschitz.



324 YVES BENOIST AND DOMINIQUE HULIN

Proof. We introduce the Douady–Earle extension fϕ : D → D of ϕ and we recall
some of their properties that can be found in J. Hubbard’s book [2006, Section 5.1].
By definition, the image fϕ(z) of z ∈ D is the barycenter of the measure ϕ∗(mz)

where mz is the visual measure on S1 seen from z. This map fϕ is smooth, and is
Ck-quasi-isometric for some constant that depends only on k (it is even δk-quasi-
conformal for some constant that depends only on k). The map ϕ→ fϕ is continuous
hence, since Mk is compact, the points fϕ(0) belong to a fixed compact set of D.

By the main result of [Markovic 2017] or [Benoist and Hulin 2017], the distance
d(hϕ, fϕ) is bounded by a constant Mk that depends only on Ck . The first two
claims follow. The Lipschitz continuity of hϕ then follows from Lemma 3.4. □

Corollary A.7. The map ϕ ∈ Mk → hϕ ∈ C2(D,D) is continuous in the C2
loc

topology.

Proof. Let (ϕn) be a sequence in Mk converging to ϕ. By Lemma A.6, the
harmonic maps hn := hϕn are uniformly locally bounded and uniformly Lipschitz.
By Lemma 4.2, after extraction, the sequence (hn) converges in the C2

loc topology to
a harmonic quasi-isometric map h∞ : D → D. To reach the conclusion, we need to
prove that such a limit h∞ is always equal to hϕ . Since the maps hn are uniformly
quasi-isometric, the continuity Lemma A.5 yields that the limit ϕ of the boundary
maps ϕn of hn must be the boundary map of h∞. This proves that h∞ = hϕ . □

Proof of Proposition A.3. Let (ϕn) be a sequence in Mk converging to ϕ such that
all the harmonic quasi-isometric extensions hϕn are quasi-conformal diffeomor-
phisms. We want to prove that the harmonic map hϕ is also a quasi-conformal
diffeomorphism.

Corollary A.7 ensures that the sequence (hϕn ) converges to hϕ in the C2
loc topology.

Lemma A.6 ensures that these maps hϕn are uniformly Lipschitz. Hence, by
Proposition 5.2, there exists a uniform lower bound j∗ > 0 for the Jacobians of
all these harmonic quasi-isometric diffeomorphisms hϕn . Therefore hϕ is also a
Lipschitz harmonic map whose Jacobian is bounded below by j∗. Hence, by the
injectivity criterion in Lemma 3.5, the harmonic map hϕ is also a quasi-conformal
diffeomorphism. □

AD. Orbit closure in the group of homeomorphisms of S1. Recall that D is the
hyperbolic disk and S1 is its boundary at infinity. Let G be the group of isometries
of D acting on S1. It is isomorphic to PGL(2,R).

In order to prove Proposition A.4 in Appendix AE we need the following lemma.

Lemma A.8. Let ϕn be a sequence of C1 diffeomorphisms of S1 converging in
the C1 topology to a C1 diffeomorphism ϕ∞ of S1. Let γn and γ ′

n be two un-
bounded sequences in G such that the sequence ψn := γ

′
n ◦ϕn ◦ γ

−1
n converges to a

homeomorphism ψ∞ of S1. Then this limit ψ∞ belongs to G.
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Proof. We recall the Cartan decomposition G = K A+K of G where K is the group
PO(2,R) and A+

= {diag(s, s−1)with s ≥ 1}. Since K is compact, we can assume
that both γn and γ ′

n are in A+. We write

γn = diag(s1/2
n , s−1/2

n ) and γ ′

n = diag(s ′n
1/2
, s ′n

−1/2
)

with both sn and s ′n converging to ∞. Here it will be convenient to use the identifi-
cation S1

≃ R∪ {∞} given by the upper half-plane model of D, so that, for x in R,
one has γn(x)= snx and γ ′

n(x)= s ′nx .
We notice that ϕ∞(0) = 0. Indeed, if this were not the case, we would have

ψ∞(x)=∞ for all x ∈ R, contradicting the injectivity of ψ∞.
Similarly we have ψ∞(∞) = ∞. If this were not the case, we would have

ϕ∞(x)= 0 for all x ∈ R, contradicting the injectivity of ϕ∞.
Since the sequence ϕn converges in the C1 topology to ϕ∞, we can write for all

n ≥ 1 and all x ∈ R with |x | ≤ 1,

ϕn(x)= αn + (βn + rn(x))x with lim
x→0

sup
n∈N

|rn(x)| = 0. (A-2)

Since ϕ∞(0)= 0 and β∞ := ϕ′
∞
(0) is nonzero, one has

lim
n→∞

αn = 0 and lim
n→∞

βn = β∞ > 0. (A-3)

Therefore we can write for all n ≥ 1 and all x ∈ R with |x | ≤ sn ,

ψn(x)= s ′nαn +

(
βn + rn

( x
sn

))s ′n
sn

x with lim
n→∞

|rn

( x
sn

)
| = 0. (A-4)

Since the sequences ψn(0) and ψn(1) converge, the following limits exist:

α′
∞

:= lim
n→∞

s ′nαn ∈ R and β ′

∞
:= lim

n→∞
βn

s ′n
sn
> 0. (A-5)

Hence one has ψ∞(x)= α′∞+β ′
∞

x for all x ∈ R, and ψ∞ belongs to G. □

Remark. As can be seen in the proof, the assumption on ψn can be weakened: it
is sufficient to assume that there are three points ξ0, ξ1, ξ∞ in S1 whose images
ψn(ξ0), ψn(ξ1), ψn(ξ∞) converge to three distinct points. This ensures that the
sequence ψn converges uniformly to an element ψ∞ of G. However, it is important
to assume that the limit ϕ∞ is of class C1 and that the convergence ϕn → ϕ∞ is in
the C1 topology.

Here is a direct corollary of Lemma A.8 in the spirit of [Benoist and Hulin 2018].

Corollary A.9. For all C1 diffeomorphisms ϕ of S1, one has GϕG∩Homeo(S1)=

GϕG ∪G.
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AE. When the boundary map is a C1 diffeomorphism. We now conclude the
proof of Theorem A.1 by giving the last argument:

Proof of Proposition A.4. Let ϕ be a C1 diffeomorphism of S1. We want to
prove that the harmonic quasi-isometric extension hϕ of ϕ is a quasi-conformal
diffeomorphism. For convenience we identify here S1 with R/2πZ. For t ∈ [0, 1],
we introduce the C1 diffeomorphism ϕt given by

ϕt(ξ)= ξ + (ϕ(ξ)− ξ) t, for all ξ in S1.

This is well defined since the map ξ → ϕ(ξ)− ξ lifts as a map from S1 to R.
We argue as in Section 3D. For t ∈ [0, 1], we introduce the harmonic quasi-

isometric extension ht = hϕt :D→D of ϕt . Let A be the set of parameters t ∈ [0, 1]
for which ht is a quasi-conformal diffeomorphism. By the injectivity criterion of
Lemma 3.5, one has

A = {t ∈ [0, 1] | inf
z∈D

Jt(z) > 0},

where Jt is the Jacobian of ht . We want to prove that 1 ∈ A. We already know that
0 ∈ A because h0 is the identity. Since the maps ϕt are uniformly quasi-symmetric,
Proposition A.3 tells us that A is closed. Thus it is enough to check that A is open.

Assume by contradiction that there exists a sequence tn ̸∈ A converging to t∞ ∈ A.
By assumption there exists a sequence (zn) in D such that lim infn→∞ Jtn (zn)≤ 0.
After extraction we are in one of the two cases:

First case: the sequence (zn) converges to a point z∞ ∈ D. Since the maps ϕt

are uniformly quasi-symmetric, Corollary A.7 ensures that the map t ∈ [0, 1] →
ht ∈ C2(D,D) is continuous in the C2

loc topology. Therefore, one has Jt∞(z∞)=
limn→∞ Jtn (zn)≤ 0, and t∞ is not in A. This is a contradiction.

Second case: the sequence (zn) goes to infinity. To simplify, we set ϕn = ϕtn and
hn = htn for all n ∈ N∪ {∞}. By Lemma A.6, the sequence hn(zn) goes to infinity.
We choose sequences (γn) and (γ ′

n) in G with γn(zn)= 0 and γ ′
n(hn(zn))= 0. We

introduce the harmonic maps

h′

n := γ
′

n ◦ hn ◦ γ
−1
n : D → D

and their boundary values ψn := γ
′
n ◦ϕn ◦ γ

−1
n . By construction, one has

h′

n(0)= 0 and lim inf
n→∞

J ′

n(0)≤ 0, (A-6)

where J ′
n is the Jacobian of h′

n . Moreover by Lemma A.6, these maps h′
n are

uniformly Lipschitz. Therefore, after extraction, they converge in the C2
loc topology

to a harmonic quasi-isometric map h′
∞

. By the continuity lemma, Lemma A.5, the
sequence of boundary maps ψn converge to the boundary map ψ∞ of h′

∞
. Now, by

Lemma A.8, this limit ψ∞ belongs to G. Therefore the harmonic map h′
∞

is an
isometry and its Jacobian is J ′

∞
≡ 1. This contradicts (A-6). □
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