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Harmonic quasi-isometries
of pinched Hadamard surfaces are injective

Yves Benoist and Dominique Hulin

We prove that a harmonic quasi-isometric map between pinched Hadamard
surfaces is a quasi-conformal diffeomorphism.

1. Introduction

1A. Main result. The main result of this paper is the following.

Theorem 1.1. Let h: S| — S, be a harmonic quasi-isometric map between pinched
Hadamard surfaces. Then, h is a quasi-conformal diffeomorphism.

A pinched Hadamard manifold is a complete simply connected Riemannian
manifold whose curvature satisfies —b?> < K < —a? for some positive constants
0 < a < b. For instance, the hyperbolic disk D is a pinched Hadamard surface with
constant curvature —1.

A map f: M| — M; between two metric spaces is quasi-isometric if there exists
a constant ¢ > 1 such that, for every x, x’ € My,

cldx,x)—c<d(f(x), f(x)) <cd(x,x)+c. (1-1)

A smooth map h : M| — M, between Riemannian manifolds is harmonic if it is
a critical point for the Dirichlet energy integral E(h) = [ | Dh|>dvyy, with respect
to variations with compact support.

A diffeomorphism & : M| — M, between n-dimensional Riemannian manifolds
is quasi-conformal, if there exists a constant C > 0 such that || Dh||" < C|Jac(h)|
where Jac(h) := det(Dh) is the Jacobian of A.

1B. A few comments. The special case of Theorem 1.1 where both S; and S, are
the hyperbolic disk D, is due to [Li and Tam 1991] and [Markovic 2017].

The main issue in Theorem 1.1 is the injectivity of 4. The quasi-conformality
of h is but our way to prove injectivity.

MSC2020: primary 53C43; secondary 30C62, 58E20.
Keywords: harmonic map, quasi-isometric map, boundary map, negative curvature, quasi-conformal
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In Theorem 1.1 we only deal with surfaces. Indeed the analog in higher dimen-
sions is not true. A counterexample due to Farrell, Ontaneda and Raghunathan is
given in [Farrell et al. 2000].

Given two pinched Hadamard surfaces S; and S,, there exist many harmonic
quasi-isometric maps from S; to S, (see [Benoist and Hulin 2021] or Theorem 2.2).
Theorem 1.1 asserts that all these maps are injective.

Theorem 1.1 extends the Schoen—Yau injectivity theorem [1978] which says that
a harmonic map between two compact Riemannian surfaces with negative curvature,
when homotopic to a diffeomorphism, is also a diffeomorphism. This injectivity
theorem is used in the parametrization due to J. Sampson and M. Wolf of the Teich-
miiller space by the Hopf quadratic differentials; see [Wolf 1989] and [Jost 1997].

From a historical point of view, the first injectivity theorem for harmonic maps
is due to Rado, Kneser and Choquet, almost 100 years ago. It states that, in the
Euclidean plane, the harmonic extension of an homeomorphism of the unit circle
is a diffeomorphism of the unit disk; see [Hubbard 2006, Lemma 5.1.10]. The
analog statement in dimension d > 3 is not true. A counterexample is given by
R. Laugesen [1996]. Later on, injective harmonic maps between surfaces were
studied by H. Lewy [1936] who proved that their Jacobian does not vanish, by
R. Heinz [1956] and by J. Jost and H. Karcher in [Jost 1984, Chapter 7] who found
a lower bound for their Jacobian. There is also an extension of the Schoen—Yau
injectivity theorem by Jost and R. Schoen that allows some positive curvature in
[Jost 1984, Chapter 11].

1C. Structure of the paper. In Section 2, we recall classical facts concerning
Hadamard surfaces, quasi-isometric maps and harmonic maps between surfaces.
We will see that we can assume that the source S is the hyperbolic disk D. Recall
that the special case of Theorem 1.1 where the target S, is the hyperbolic disk D is
due to Li and Tam and to Markovic.

In Section 3 we give an overview of the proof of Theorem 1.1. This proof uses
a deformation (g;) of the metric on S, starting with the hyperbolic metric, and a
deformation (%,) of the harmonic map /4. The key point will be to obtain a uniform
upper bound for the norm of the differential of 4, and a uniform lower bound for
the Jacobian of 4;.

In Section 4, we gather compactness results for Hadamard surfaces and harmonic
maps.

In Section 5, we obtain a uniform lower bound for the Jacobian of harmonic
quasi-conformal diffeomorphisms.

In Section 6, we prove that the family (&) varies continuously with ¢ and we
complete the proof of Theorem 1.1.

In Section 6B, we include a short new proof of the special case of Theorem 1.1
where $1 = S5, =D.



HARMONIC QUASI-ISOMETRIES OF PINCHED HADAMARD SURFACES 309

This paper is as self-contained as possible, the main tools being the Bland—Kalka
uniformization theorem [1986], the Bochner equations for harmonic maps between
surfaces in [Jost 1997], the existence and uniqueness of quasi-isometric harmonic
maps in [Benoist and Hulin 2021], and the PDE elliptic regularity in [Gilbarg and
Trudinger 2001].

2. Background

We recall well-known properties of pinched Hadamard surfaces, quasi-isometric
maps and harmonic maps between surfaces.

2A. Pinched Hadamard surfaces. The first example of a pinched Hadamard sur-
face is the hyperbolic disk ) = (D, gnyp), where D = {|z| < 1} C C is the unit
disk equipped with the hyperbolic metric gpy, = p?(z)|dz|> with conformal factor
0% =4(1 —|z|/»~% It is a Hadamard manifold with constant curvature —1.

Any pinched Hadamard surface is conformal to the disk, namely, reads as
(D, 02(2)|dz|*). Moreover the conformal factors p? and o are in a bounded
ratio: if the curvature K of this surface satisfies —b> < K < —a® < 0, then
a’c? < ,o2 < b%52 See Proposition 3.1.

Also observe that, for maps defined on a Riemannian surface Sy, the Dirichlet
energy functional is invariant under a conformal change of metric on S;. Hence, the
harmonicity of such a map depends only on the conformal class of the source surface.

We infer from this discussion that, to prove Theorem 1.1, we can assume that S}
is the hyperbolic disk D.

2B. Quasi-isometric maps. Let S = (D, 0%(z)|dz|?) be a pinched Hadamard sur-
face. It is a proper Gromov hyperbolic space (a general reference for Gromov
hyperbolic spaces is [Ghys and de la Harpe 1990]). The boundary at infinity 0.0
of S is defined as the set of equivalence classes of geodesic rays, where two geodesic
rays are identified whenever they remain within bounded distance from each other.
The union S = S U 80 S provides a compactification of S (see [Ballmann 1995]).

The boundary at infinity 9,0 naturally identifies with the boundary S' =
{z€C, |z]=1} of D. Since the identity map Id: D — D is a quasi-isometry between
the hyperbolic disk D = (D, p?(z)|dz|?) and the surface S = (D, 0>(z)|dz|?), the
boundary at infinity .S also identifies canonically with 3,,D = S'.

A quasi-isometric map f : D — § admits a boundary value at infinity 0 f :
ds) = 905, that we read as 9y f : S! — S! through the above identifications.
Two quasi-isometric maps share the same boundary value at infinity if and only if
they remain within bounded distance from each other. By the Ahlfors—Beurling
theorem, the maps ¢ : S' — S' that appear as boundary values at infinity of quasi-
isometric maps f : D — S are exactly the quasi-symmetric homeomorphisms. See
[Benoist and Hulin 2017, Fact 1.4] for a short historical account of these facts. We
will often identify S' with R/27Z.
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Definition 2.1. Let k > 1. A homeomorphism ¢ : S! — S! is a k-quasi-symmetric
map if
O +a)— (8)
k= @(0) — (0 —Ot)

holds for every 8, o with 0 < o < .

(2-1)

Note that any quasi-isometric map f :[D — § is actually a quasi-isometry. Namely,
one has SUPyeg d(y, f(D)) < oo. Here is a first short proof: the inverse ¢! of
its boundary map is also a quasi-symmetric homeomorphism, hence ¢! is the
boundary map of a quasi-isometric map f’:S — D, and the map fo f': S — Sis
within bounded distance from the identity map. Here is another sketch of proof: the
hyperbolic disc D is not quasi-isometric to one of its proper convex subsets because
the boundary S! of the disc is not homeomorphic to one of its proper subsets.

In a previous paper, we studied harmonic quasi-isometric maps between pinched
Hadamard manifolds. Our result, when specialized to surfaces, asserts that any
quasi-isometric map f : D — § has the same boundary value at infinity as a unique
harmonic quasi-isometric map. In other words, the following holds.

Theorem 2.2 [Benoist and Hulin 2021]. Let S = (D, 0%(z)|dz|?) be a pinched
Hadamard surface and ¢ : S' — S! be a quasi-symmetric map. Then, there exists
a unique harmonic quasi-isometric map h : D — § such that d.ch = ¢.

2C. Harmonic maps between surfaces. We introduce some notation that will be
used throughout the paper, and recall some classical results concerning harmonic
maps between surfaces. A general reference for this section is [Jost 1997].

Let 4 : D — S be a smooth map from the hyperbolic disk D = (D, p2(2)|dz|?) to
a pinched Hadamard surface S = (D, 02(2)|dz|*) with pinching condition —b* <
K < —a? < 0. Recall that the curvature K of S is given by

K=—-0"2A,logo,

where A, = 40,0; is the Euclidean Laplacian. For such a map %, we introduce as
usual the functions A, h; : D — C defined by

h, = (hy —ihy), hz=2Lt(he+ihy),

where the conformal parameter reads as z = x iy, and the subscript x or y indicates
a directional derivative. The map 4 is holornorphlc (or antiholomorphic) if h; =0
(or h; = 0). It is worth noting that h = h

Proposition 2.3 [Jost 1997, Section 3.6]. The map h : D — S is harmonic if and
only if it satisfies

hs +2(% o h)hzhz —0.

o
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If the map £ is either holomorphic or antiholomorphic, then it is harmonic.
Introduce the square norms of the complex derivatives of A:

aloh
02

oloh
02

H = ||3h|*:= lh.|* and L= |dh|*:= |hz|?,

so that one has || Dh||> = H + L. Observe that A is a local diffeomorphism if the
Jacobian J = H — L does not vanish, and is moreover orientation-preserving if
J > 0.

Lemma 2.4 [Jost 1997, Section 3.10]. Let h : D — S be a harmonic map. On the
open subsets where they are non zero, the functions H and L satisfy the Bochner
equations

(1/2) AlogH =(—Koh)J —1, (2-2)
(1/2) AlogL=(Koh)J —1. (2-3)
Here A =4 p~29.9: is the Laplace operator relative to the hyperbolic metric.

On the open set 2 := {h, # 0}, we introduce the conformal distortion @ : 2 — C
by letting hz = ph;, so that one has the useful equalities

1—|M|2: J
L+ |ul*> DRI

w*=L/H, 1—|u*=J/H and (2-4)

3. A family of metrics and harmonic maps

In this section we explain the continuity method we will use to prove Theorem 1.1.

Let S = (D, 6%(z)|dz|?) be a pinched Hadamard surface, with curvature bounds
—b?> < K < —a? < 0. Choose an increasing quasi-symmetric homeomorphism
¢:S!' - Sl andlet h: D — S be the unique harmonic quasi-isometric map with
boundary value at infinity d,o/ = ¢. We want to prove that & is a quasi-conformal
diffeomorphism.

In case the surface S is the hyperbolic disk, that is, for a harmonic quasi-isometric
map & : D — D, the result is due to Li and Tam and to Markovic (see Section 6B
for a proof). To prove it for a harmonic map /# : D — S with values in a general
pinched Hadamard surface S, we use the method of continuity, involving a family of
pinched Hadamard surfaces S, = (D, ez“’ghyp), for 0 <t <1, starting with Sy =D
and such that §; = S.

3A. Construction of the metrics g,. We construct the metric g, by prescribing its
curvature.

More specifically, we introduce for 0 < ¢ < 1 the unique complete conformal
metric g, = e ghyp On the unit disk D with curvature K; := —(1 — 1) + tK.
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Each function K; being pinched between two negative constants, the existence and
uniqueness of such a metric is granted by the following.

Proposition 3.1 [Bland and Kalka 1986]. Let Sy = (D, go) be a pinched Hadamard
surface with curvature —bg <ky < —a(z) < 0. Let k be a smooth function on Sy
such that —ﬂz <k < —a? for some constants 0 < a < B. Then, there exists a
unique complete conformal metric g = e* gy on D with curvature k. Moreover, the
conformal factor e*" is controlled, with

aj/B* < e < b}, (3-1)
Sketch of proof. The sub-supersolution method for the curvature equation
Aou = —k e + ko, (3-2)

where Ay is the Laplace operator for gg, proves existence and uniqueness.

The upper bound in (3-1) relies on the generalized maximum principle of Yau
applied to the bounded function v :=1/(1 +e7%); see [ Yau 1975] or Lemma 3.2.
For the lower bound, exchange the roles of g and go. We only need a light form of
this maximum principle that reads as follows. (]

Lemma 3.2. Let v : S — R be a smooth function defined on a pinched Hadamard
surface S. Assume that v is bounded above.
Then, there exists a sequence (x,) in S such that

v(x,) = supv, |Vv|(x,) >0 and limsup Av(x,) <O. (3-3)
N

Proof. We can assume that supg v =1. We fix a point x¢ € S where this supremum is
not achieved and we introduce the function v, on S given by v, (x) = v(x) e—dx.xo)/n,
This function is smooth, except maybe at xg, and it achieves its supremum at a
point x, # xo for n large. This sequence (x,) satisfies (3-3) since v,(x,) — 1,
Vu,(x;) =0and Av,(x,) <0. O

3B. Construction of the harmonic maps h;. We construct the harmonic map 5,
by prescribing its boundary map.

By construction, one has D = (D, go) and S = (D, g1). For 0 <t <1, we let
hy : D — S; be the unique harmonic quasi-isometric map whose boundary value at
infinity is ¢ : S — S Recall that the existence and uniqueness of those /; are
granted by Theorem 2.2.

Here is some basic information concerning these harmonic maps 4. For 0 <
s,t <1,letd(hy, h;) :==sup,.p d(hy(z), h;(z)) denote the uniform distance between
these two maps, where the distance is taken with respect to the hyperbolic metric
&nyp On the target.
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Lemma 3.3. There exists c, > 0 such that, for all t € [0, 1], the map h; is c,-quasi-
isometric, one has d(h;, hy) < c, and the map h; is c.-Lipschitz.

Remark that, since the functions u, are uniformly bounded (Proposition 3.1), it
was not really necessary to specify with respect to which one of the metrics g, the
above distances were being estimated.

Proof. As explained in Section 2B, there exists a c-quasi-isometric map f : D — D
whose boundary value at infinity is our quasi-symmetric map d f = ¢. By taking
a larger constant ¢, we may assume that each map f : D — §; (that is, the same
map f now seen with values in one of the Riemannian surfaces S;, with ¢ € [0, 1])
is c-quasi-isometric.

Thus the main result of [Benoist and Hulin 2021] asserts that there exists a
constant C > 0 such that d(f, h;) < C. This constant C depends only on ¢ and on
the pinching constants a and b, hence it does not depend on ¢ € [0, 1]. Thus the
first two claims hold if ¢, > 2¢ + 2C.

The map f being c-quasi-isometric, each harmonic map #, : D — S; sends
any ball B(z, 1) C D with radius 1 inside the ball B(h,(z), R) C S; with radius
R =2c¢+2C. Now the uniform Lipschitz continuity of the maps /, follows from
the Cheng lemma, which we recall below. O

Lemma 3.4 [Cheng 1980]. Let S be a Hadamard surface with —b?> <K <0. There
exists a constant k , that depends only on b, such that if a harmonic map h : D — §
satisfies h(B(z, 1)) C B(h(z), R) for some radius R, then

DR (2)| <k R.

3C. An injectivity criterion. The following lemma tells us that a uniform lower
bound for the Jacobian J, = Jac(h,) is enough to ensure that /4, is a quasi-conformal
diffeomorphism.

Lemma 3.5. Ifinf,cp J;(z) > O then h, is a quasi-conformal diffeomorphism.

Proof. By assumption, the Jacobian J; does not vanish, hence the map #; : D — S;
is a local diffeomorphism. By construction, the map /4, is quasi-isometric, so it is a
proper map. It thus follows that /4, is a covering map. Since S is simply connected,
the map #; is a diffeomorphism. By Lemma 3.4, &, is Lipschitz, so the lower bound
for its Jacobian J; ensures that /4, is quasi-conformal. O

3D. Strategy of proof of Theorem 1.1. We will need the following two proposi-
tions.

Proposition 3.6. There exists j. > 0 such that, for all t € [0, 1] for which h; is a
quasi-conformal diffeomorphism, one has J; > .
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Proposition 3.6 is a straightforward consequence of Proposition 5.2 that will be
proven in Section 5. Indeed Lemma 3.3 ensures that the maps /4, are c,-Lipschitz.
Let Cp(D, R) be the space of bounded continuous functions ¥ endowed with

the sup norm: || ||cc = sup,cpl¥ (2)].
Proposition 3.7. The map t € [0, 1] — J, € Cp(D, R) is continuous.

Proposition 3.7 will be proven in Section 6 as part of Proposition 6.2 .

Proof of Theorem 1.1 using Propositions 3.6 and 3.7. Let A be the set of parameters
t € [0, 1] such that the harmonic map s, : D — S, is a quasi-conformal diffeo-
morphism. We want to prove that 1 € A. We already know that 0 € A (this is
Theorem A.1 due to Li and Tam and to Markovic). It is enough to check that A is
open and closed. Let j be the function on [0, 1] given by

j () == inf J;(z) € R.
zeD

By Proposition 3.7 the function j is continuous. By Lemma 3.5 and Proposition 3.6,
one has both A = j_l(]O, oo[) and A = j_l([j*, oo[). Hence A is both open and
closed. (]

4. Sequences of metrics and harmonic maps

In order to obtain the uniform lower bounds in Section 5, or the continuity properties
in Section 6, we will have to consider sequences of conformal metrics on the unit
disk D, and sequences of harmonic maps. In this section, we state compactness
results for such sequences.

These compactness results also hold in higher dimension (see [Petersen 2016],
or [Benoist and Hulin 2021]). Since we will only deal here with conformal metrics
on the disk D, the complex parameter z € D naturally provides a global harmonic
chart for these metrics so that the statements and the proofs are more elementary.

4A. Sequence of Hadamard surfaces. Let us begin with sequences of conformal
Riemannian structures on the unit disk D.

The convergence in the following lemma is nothing but a special case of the
Gromov—Hausdorff convergence for isometry classes of pointed proper metric
spaces using the base point 0 € D. See [Benoist and Hulin 2021, Section 5.3] or
[Burago et al. 2001] for a short introduction to this notion.

Lemma 4.1. Let g, = ' ghyp be a sequence of complete conformal metrics on
the unit disk D with curvature —b* < K, < —a? < 0. Then there is a subsequence
of (uy) that converges to a C' function us in the CllOC topology.
The limit metric goo = €**>gpyp, is a C' complete conformal metric on D, and
8 Ehyp P
Seo := (D, goo) is a CAT-space with curvature between —b* and —a®.
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Proof. Proposition 3.1 ensures that the logarithms u,, : D — R of the conformal
factors are uniformly bounded. The curvature equation

Au, = (—K,) e¥ — 1 ((3-2)n)

for g, ensures that the Laplacians Au,, are also uniformly bounded.

Pick 0 < o < 1. We may now apply to the sequence (u,) the following first
Schauder estimates (see [Gilbarg and Trudinger 2001, Theorem 3.9] or [Petersen
2016, Theorem 70]). These estimates state that there exists a constant ¢ such that,
for any smooth function v : D — R on the hyperbolic disk, the inequality

lvllcrecs,y < calllAvIIcopy) + IVIlcocr,)) 4-1)

holds for any pair of concentric hyperbolic balls By C B, C D with respective radii
1 and 2. This provides a uniform local bound for the norms |u,||c1.«. Going if
necessary to a subsequence, we may thus assume that the sequence (u,,) converges in
the C lloc topology. Let uso =limu, and g, = 2o Shyp and introduce Soo = (D, goo).
As a limit of such, the length space S, is a CAT-space with curvature between —b?
and —a? (see [Bridson and Haefliger 1999, Corollary I1.3.10] and [Burago et al.
2001, Theorem 10.7.1]). ([

Remark. Under the hypothesis of Lemma 4.1, after extraction, the sequence of
bounded functions K, : D — R converges weakly to a bounded measurable function
Koo : D — R with —b? < Ko, < —a? and the C! function u is a weak solution of

Ao = (—Koo) €2 — 1. ((3-2)x0)

4B. Sequence of harmonic maps. Now turn to sequences of maps between such
Riemannian surfaces.

Lemma 4.2. Ler S, = (D, g,) be a sequence converging to Soc = (D, g) as
in Lemma 4.1. Let ¢ > 0, and let h, : D — S, be c-Lipschitz maps satisfying
d,(h,(0),0) < c. Then there is a subsequence of (hy,) that converges locally
uniformly to a c-Lipschitz map heo : D — Seo.

(a) If all the maps h,, are C-quasi-isometric, then h, is C-quasi-isometric.

(b) If all the maps h,, are harmonic, then hoo is C* and is harmonic too.

Proof. Observe that, on any fixed compact set, the maps &, : D — Sy are c,-
Lipschitz for some constants ¢, converging to c. Indeed these are the initial maps 4,
albeit with the limit metric on the target. Since we assumed that d, (h,(0), 0) <c,
these maps h,, are locally uniformly bounded (this means locally in z and uniformly
in n). It thus follows from the Ascoli lemma that we may assume the sequence (h;,)
to converge uniformly on compact sets to a c-Lipschitz map fqo : D — Seo-
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(a) Ifall h, : D — S, are C-quasi-isometric, then, on any fixed compact set, the
maps h, : D — S are C,-quasi-isometric for some constant C,, converging to C,
and so h i1s C-quasi-isometric.

(b) Now assume that each map &, : D — S, is harmonic, namely, that each function
h, : D — D C C satisfies the equation

(hn)zz +2 ((Un)z 0 hy) (hn)z(hy)z =0. (4-2)
We want to prove that /14, is harmonic, namely, that it is C? and satisfies
(Moo)zz +2 ((oo)z 0 heo) (hoo)z (hoo)z = 0. (4-3)

The maps 4, : D — S,, are c-Lipschitz, so that all the derivatives (h,), and (h,)z
are locally uniformly bounded. We have seen in the proof of Lemma 4.1 that the
gradients Vu,, are locally uniformly bounded, hence (u,), oh, are locally uniformly
bounded. Then (4-2) ensures the functions A/, are also locally uniformly bounded.
We apply the first Schauder estimates (4-1) to the functions v = h,,. This implies
that, for 0 < o < 1, the functions #,, are uniformly bounded in the Cllo’g topology.

Plugging this information into (4-2), and recalling from the proof of Lemma 4.1
that the gradients Vu, are also uniformly bounded in the C; . topology, we see
that the functions A#h,, are uniformly bounded in the C}7 . topology. We will now
apply the second Schauder estimates to the functions v = h,, (see [Petersen 2016,
Theorem 70]). With the same notation as (4-1), these estimates state

Ivllc2ep,) < ca(lAV]Ico(By) + VI co,))- (4-4)

Hence the functions &, are uniformly bounded in the cx® topology.

loc
Therefore (h,) admits a subsequence which converges in the C120C topology. This
proves that A is C? and going to the limit in (4-2) ensures that the limit map /oo

is harmonic, as claimed. O

5. A lower bound for the Jacobian

In this section we provide a lower bound for the Jacobian J; of &, when 4, is a
quasi-conformal diffeomorphism (Proposition 3.6).
The notation is that of Section 2C: § is a pinched Hadamard surface and 4 :
D — S is a harmonic map. We assume moreover that / is an orientation-preserving
diffeomorphism. The Jacobian of A, whichis J = H — L with H := l8k]* and
L:=|9h|>3 is positive. The function w := %log H satisfies (2-2), which we may
also write as
Aw=(—Koh)(1—|u*e™ -1, (5-1)

where p := hz/h; is the conformal distortion. By (2-4) the diffeomorphism # is
quasi-conformal if and only if there exists a § < 1 such that || <é.
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5A. Controlling the norm of the differential. The next lemma tells us that the
norm of the differential || Dh|| of a harmonic quasi-conformal diffeomorphism is
uniformly bounded below (see also [Wan 1992]).

Lemma 5.1. Let h: D — S be a quasi-conformal harmonic diffeomorphism, where
S is a pinched Hadamard surface with curvature —b%* < K < —a? <0. Then one
has e** > b2

Proof. Introduce the conformal metric § = ¢?? Shyp 0N D. We first prove that g is
complete with pinched negative curvature. Proposition 3.1 will then provide the
lower bound on w.

Let S=(D, 0%(z)|dz|?). The map h : D — S being a diffeomorphism and S being
complete, the pull-back metric G = h*(0%(z)|dz|?) is complete. This pull-back met-
ric reads as G = (6% o h)|h,|?|dz + udz|* Since one has g = (6> o h)|h,|*|dz|* and
|| < 1, one easily checks that G < 4g. This ensures that the metric g is complete.

Comparison of (5-1) satisfied by w and the curvature (3-2) yields that the metric g
has curvature K = (K o h)(1 — ||?). It follows that —b* < K < —a*(1-8% <0,
where 8 := ||it]loo < 1. Proposition 3.1 thus ensures that w satisfies b2 < e?¥ <
a 2(1-8»"L 0

5B. Controlling the Jacobian. The following proposition tells us that the Jaco-
bian of a harmonic quasi-conformal diffeomorphism is controlled by its Lipschitz
constant.

Proposition 5.2. Let 0 <a <b. Then, for every c > 0, there exists j. = j.(a, b, c) >0
such that, if S is a pinched Hadamard surface with curvature —b* < K < —d? the
Jacobian J of any c-Lipschitz quasi-conformal harmonic diffeomorphism h : D — S
satisfies J > j.

Proof. Assume by contradiction that there exist a sequence of pinched Hadamard sur-
faces S, = (D, e* Shyp) With curvatures —b?*<K,<—-d%a sequence /i, : D — §,
of c-Lipschitz harmonic quasi-conformal diffeomorphisms and a sequence (x,) of
points of D such that the Jacobian J, of h, satisfy J,,(x,) — O.

Choosing sequences (y,) and (y,) of isometries of the hyperbolic disk such that
Yu(x,) =0 and y,(h, (x,)) = 0, and replacing u, by u, 0y, " and h, by y,h,y, ",
we can assume that x,, =0 and 4,,(x,) = 0.

By Lemmas 4.1 and 4.2, going to a subsequence, one may assume that

o the sequence (u,) converges to a C' function u, in the ClloC topology,
« the sequence (4,) converges to a C> map A in the ClzOC topology.
Recall from (2-4) that J, = (1 — |u,|?)e*"» where w, = (h,):/(h,). is the

conformal distortion and where ¢**» = ||dh, >~ Lemma 5.1 ensures that

e?V> = lim " > b2, (5-2)
n—oo
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Thus (4~ ), does not vanish. Hence the functions u, also converge to a C ! func-
tion U in the CllOC topology, and one has ||fteol|loc = 1 and |eo(0)| = 1.

First step: we claim that || = 1. We introduce the nonnegative C ! functions
¢, :=—log|u,|* defined on 2, := {11, # 0} and their limit £+, := — log| /40| Which
is defined on Q4 := {too 7# 0}. By assumption, the function ¢, is a nonnegative
function that achieves its minimum £, (0) = O at the origin. We will prove that the
set {€oo = 0} is open in Q, so that £,, = 0 as claimed.

The function £, satisfies the equation on €2,,, the difference of (2-2) and (2-3):

Aly, =4 (=K, 0hy) (1 —e ) en, (5-3)
Since |K,| < b% 1—e b < ¢, and €2¥n < ¢2 we infer that
AL, <4b*c* e,
Hence ¢, is a C' function on Q4 that satisfies in the weak sense
Al < 4b*c? o
In particular, one has bounds A.f < Cgf on compact sets K of Q. and, by

Lemma 5.3 below, the set {€,, = 0} is open. This proves |ueo| = 1.

Second step: we seek a contradiction. We recall that the functions w, satisfy (5-1),
namely,
Awy = (=K 0 hy) (1= | |?) €3 — 1.

Since the functions (— K, 0h,) and e** are uniformly bounded and lim,,_, oo |4, | =1,
the limit function ws, =lim w,, satisfies Aws, = —1 in the weak sense. In particular
Woo 18 smooth. Note also that (5-2) yields the lower bound 2w, > log b2

In conclusion, ws, is a smooth function on D which is bounded below and
satisfies Awy, = —1. By the generalized maximum principle of Lemma 3.2, such
a function ws does not exist. This is a contradiction. O

In the previous proof we have used the following lemma as in [Heinz 1956].

Lemma 5.3. Let C > 0 and £ be a nonnegative continuous function on an open set
U C R? such that AL < Ct weakly. Then the set {£ = 0} is open.

Proof. We can assume that £(0) = 0. By a standard convolution argument, in a small
ball B(0, R) C €2, we can write £ as a uniform limit of nonnegative C2-functions £,
that also satisfy

Ay, <Cly. (5-4)

We introduce the mean values of £, and £ on circles of radius r < R,

My (r) = 2 [T €,(re®)d0  and M(r):= 5 [77 £(rei?) do.
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The Green representation formula (see [Hérmander 1994, p. 119]) gives

1
a@=mm——f Acln(y) log — dy.
27 JB,r) [y

Since ¢, converges uniformly to £ and £(0) = O we infer, using (5-4), that

c
Mmf—/ £(y) log — dy,
21 JBo.r [yl

so that, for every r < R,

C R?
M(r) < sup M (1).
[0,R]
Choosing R? < 4/C, we obtain that £ = 0 on the ball B(0, R). O

6. Continuity of the Jacobian

In this section we prove that the metrics g;, the harmonic maps 4, and their Jaco-
bians J; depend continuously on ¢, thus proving Proposition 3.7.

6A. A continuous family of metric. In Section 3, we introduced pinched Hadamard
surfaces S; = (D, ezufghyp) with curvature K, = (t — 1) + K, where —b*> < K <
—a®> <0 (t€[0,1]). In particular, So = D. We have seen that all the metrics g,
are uniformly bi-Lipschitz to each other. This means that the functions u, : D — R
are uniformly bounded.

Lemma 6.1 tells us that they are uniformly bounded in norm C! and that the map
t €[0,1] = u; € C' is continuous. Here the gradients V, as well as their norms,
are taken with respect to the hyperbolic metric gpyy.

Lemma 6.1. There exists a constant ¢ such that, for every 0 <t <1,

lurlloo + 1Vutrlloo < c, (6-1)

llur — uslloo + 11V —ug)lloo < |t —s]. (6-2)

Proof. We argue as in the proof of Lemma 4.1. Let us first prove (6-1). Each

2uy

conformal factor e~* is solution of the curvature (3-2), here

Au, = (—K,) e® —1. (6-3)

Since the metrics g; are complete, and the K, satisfy a uniform pinching condition
—B*< K, <—A%<0forall 0 <t < 1, Proposition 3.1 ensures that the functions u;
are uniformly bounded. Plugging into (6-3), we infer that the Laplacians Au, are
also uniformly bounded. Hence the Schauder estimates (4-1) with « =0 and v = u;
yield the uniform bound (6-1).
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We now prove (6-2). Using the curvature equations (6-3) satisfied by u; and u,
(0<s <t <1), weobtain

Ay —ug) = (Ky — Kp)e™ + K (e — e*'r)
that we rewrite as
Ay —ug) = — (1 —5)(1+ K)e? + (—K,) (2 — &%) . (6-4)

Since the functions u, are uniformly bounded, there exists a constant mg > 0, such
that one has |u; — ug| < mg|e? — e?*s| for all s, ¢ in [0, 1].

The generalized maximum principle of Lemma 3.2 applied to the function
v = |u; —ug| ensures the existence of a sequence (x,) in D such that v(x,) — supg v,
and lim sup Av(x,) < 0. Using (6-4), one computes

AV(xy) > —(t — ) |1+ K| X5 4 (= Ky) e — g2us )|, (6-5)
> —(t —$)(1+ b 21l 1 amg Ju, (x,) — s (x)|- (6-6)

Therefore, letting n go to co, one finds a constant ¢ := mala_z(l +b?)e?lullo such
that
s —uslloo <t — s (6-7)

for every s, t in [0, 1].
Plugging (6-7) into (6-4) yields a similar bound for A (u,; —uy), and (6-2) follows
from the Schauder estimates (4-1) with v = u; — u;. O

Remark. Since the curvature function K is smooth, one could improve Lemma 6.1
and prove that all u, are smooth and that, for all p > 2, the maps ¢ € [0, 1] —
u; € C{;C(D) are continuous. But the p-th derivatives of u#; might not be bounded
on D.

6B. A continuous family of harmonic maps. Recall that we have natural iden-
tifications 9,S; ~ S'. We fix an increasing quasi-symmetric homeomorphism
@ :S' — Sl In Section 3, we introduced the unique harmonic quasi-isometric map
h; : D — S, with boundary value at infinity dooh; = .

Here are the continuity properties of this family of maps #, that we used in the
proof of Theorem 1.1.

Proposition 6.2. The map t € [0,1] — h, € C(D, D) is continuous. The map
te€[0,1] = J, € Cp(D, R) is continuous.

This means limg_,, d(hy, h;) = 0 and lim,_,,||J; — J;|looc = 0, for all ¢ € [0, 1].

Proof. Assume this is not the case. Then there exist a sequence (¢,) in [0, 1] and a
sequence (x,) of points in D such that

lim d(hy (xp), he(xn)) > 0 or lim |J, (x,) — Jy (xa)] > O. (6-8)
n—oo n—oo
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We want to get a contradiction by applying Lemmas 4.1 and 4.2 to recentered
surfaces and recentered harmonic maps. We thus choose sequences (y,) and (y,)
of isometries of the hyperbolic disk D such that y, (x,) = 0 and y, (h,(x,)) = 0.
Let S, = (D, g,) and S, = (D, g,,) be the conformal surfaces where g, = ez“"ghyp
and g/, = e?*n gpy, with

Un=u;oy. " and u :=u, oy .
By Lemma 4.1 we may assume, after extraction, that the sequence (u,) converges
to a C' function u in the ClloC topology, and that the limit C!' metric space
Seo 1= (D, 62”00) is a CAT space with pinched curvature b2 <Ko <—a?<0.
By Lemma 6.1, one has

lim [|lu,, — tnlloo + Vit = Vity [loo = 0.
n—oo

Hence the sequence (u),) also converges in the CllOC topology to the function u ..
We now introduce the sequence of maps
hy =y ohoy ' :D— S, (6-9)
B =y oh, oy ' :D—S. (6-10)
These maps %, and A, are harmonic and (6-8) can be rewritten as

lim d(h,(0), h,(0)) >0or lim |J,(0)—J (0)| >0, (6-11)

where J, is the Jacobian of A, and J, is the Jacobian of 4),. By Lemma 3.3,
all these maps h, and h,, are uniformly Lipschitz and uniformly quasi-isometric.
Hence Lemma 4.2 ensures that, after extraction, the sequences (h,) and (h))
converge respectively, in the ClzOC topology, to harmonic quasi-isometric maps
hoos Wiy : D — Seo.

Since Lemma 3.3 also asserts that d(h,, h,) <2 c, for all n, the limit harmonic
quasi-isometric maps h, i, : D — Sy are within bounded distance from each
other. Then the uniqueness theorem for quasi-isometric harmonic maps in [Benoist
and Hulin 2021, Section 5] ensures that &1, = h_. This contradicts (6-11). U

This also ends the proof of both Proposition 3.7 and Theorem 1.1.

Appendix: The injectivity theorem in constant curvature

In this appendix, we prove the injectivity theorem Theorem A.1 that we used as a
starting point in the proof of Theorem 1.1.
AA. The Li-Tam—Markovic injectivity theorem.

Theorem A.1. Let D be the hyperbolic disk. Any harmonic quasi-isometric map
h: D — D is a quasi-conformal harmonic diffeomorphism.
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This theorem is an output of Markovic solution of the Schoen conjecture in
[Markovic 2017]. It relies on a previous injectivity result in [Li and Tam 1991]
when the boundary map of % is smooth, which is Proposition A.4 below. The proof
of Li and Tam itself relies on the Schoen—Yau injectivity theorem [1978].

We would like to give a short new proof of Theorem A.1 that does not rely on
this Schoen—Yau theorem and that uses instead a continuity method combined with
a simple topological fact (Lemma A.8).

Proof. The proof will last until the end of the paper. We know (see Section 2B) that
the boundary value ¢ = d,h : S! — S! is a k-quasi-symmetric homeomorphism
of S' = 9., where k depends only on the constant ¢ of quasi-isometry of /. For
k > 1, we introduce the set

My = {k-quasi-symmetric homeomorphism ¢ : S! — S'}

equipped with the uniform distance d(¢;, ¢2) = SUPgest ¢1(8) — v (&)].

We also know that, for all ¢ in My, there exists a unique harmonic quasi-
isometric map h, : D — [ whose boundary map is ¢. We want to prove that
all these maps h, are quasi-conformal diffeomorphisms. This will follow from
Lemma A.2, Proposition A.3 and Proposition A.4.

Lemma A.2. The k-quasi-symmetric C' diffeomorphisms are dense in M.

Proof. Choose a smooth approximation of unity (c,) on S!. For ¢ in M, each
function «, * ¢ is a k-quasi-symmetric C' diffeomorphism while the sequence
(ot * @) converges uniformly to ¢. (]

Proposition A.3. Let Fi be the set of those ¢ € My such that hy, is a quasi-
conformal diffeomorphism. Then Fi is a closed subset of M.

The proof of Proposition A.3 will be given in Appendix AC. It relies on continuity
properties of the boundary map h + dooh proven in Appendix AB.

Proposition A.4. When ¢ is a C' diffeomorphism of S', its quasi-isometric har-
monic extension hy : D — D is a quasi-conformal diffeomorphism.

The proof of Proposition A.4 will be given in Section AE. It uses a deformation ¢,
of ¢ starting with the identity. Let G be the group of isometries of [D acting on S'.
The proof relies on the fact that the only homeomorphisms which are limits of
elements of Gg,;G belong to G. This is Lemma A.8 which will be proven in
Appendix AD.

AB. Continuity of the boundary map. Let ¢ > 1. Endow the space O, of c-quasi-
isometric maps f : D — D with the topology of uniform convergence on compact
sets, and the space C of continuous maps ¢ : S' — S! with the topology of uniform
convergence.



HARMONIC QUASI-ISOMETRIES OF PINCHED HADAMARD SURFACES 323

Lemma A.5. The map f € Q. — 000 f € C is continuous.

Proof. We fix a point 0 in . Recall that the Gromov product of two points x, y
in D seen from O is
(¥, y)o = 3(d(0, x) —d(x, y) +d(y, 0)).

We will use the quasi-invariance of the Gromov product under quasi-isometric
maps as in [Ghys and de la Harpe 1990, Proposition 5.15]. For n € NU {oo}, let
fa € Q¢ be c-quasi-isometric maps, with boundary values at infinity ¢,. Assume
that the sequence ( f;,) converges uniformly to f,, on compact sets. In particular,
the quantity R :=sup, d(f,(0), 0) is finite. We want to prove that the sequence (¢;)
converges uniformly to the boundary map ¢ of f.

For £ € S!, denote by ¢ € [0, oo — xé € D the geodesic ray with origin 0
and endpoint £. By [Ghys and de la Harpe 1990, Proposition 5.15], there exists a
constant A > 1 such that the lower bound for the Gromov product seen from 0,

(fa Gl FuxD)o = (xby xDo/A = A =1/h— A,
holds when s > ¢ > 0 and n € NU {oo}. Letting s — 0o, we obtain
(faxD), @n(E))o = 1/ — A

for n e NU{oo}. Since D is §-hyperbolic for a constant § > 0, each Gromov product
(@n(§), 9oo(&))o is bounded below by

min[ (¢n (), fu(x£)o, (fa(xg), foo (X))o, (foo(X5), Poo(€))01 =28 (A-1)

for every £ € S' and n € N (see [Ghys and de la Harpe 1990, Chapter 2]). The
sequence ( f,) converging uniformly to f,, on compact sets, there exists, for all
t > 0, an integer n, > 1 such that one has, for n > n, and £ € st

d(fa(xg), foo(xg)) <1

(fa 6D, froGD)o = 1/c —c— R—1/2,
and therefore, using (A-1),
(@n(€), ¥oo(§))0 = min[t/A —4; t/c—c— R—1/2]—23.
This proves the convergence lim,,_, oo minges (¢, (§), Yoo (§))o = 00. As explained

in [Ghys and de la Harpe 1990, Section 7.2], this means that the sequence (¢;)
converges uniformly to ¢uo. U

hence,

AC. A continuous inverse to the boundary map. The following lemma is a varia-
tion of Lemma 3.3. Fix k > 1.

Lemma A.6. There exist a compact subset Ly C D and a constant cy such that the
harmonic quasi-isometric extension hy, of any ¢ € My is ci-quasi-isometric, the
point hy(0) is in Ly, and the map hy, is cg-Lipschitz.
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Proof. We introduce the Douady—Earle extension f, : D — D of ¢ and we recall
some of their properties that can be found in J. Hubbard’s book [2006, Section 5.1].
By definition, the image f,(z) of z € D is the barycenter of the measure ¢, (m;)
where m, is the visual measure on S'! seen from z. This map fy 1s smooth, and is
Cr-quasi-isometric for some constant that depends only on k (it is even §¢-quasi-
conformal for some constant that depends only on k). The map ¢ — f, is continuous
hence, since M is compact, the points f,(0) belong to a fixed compact set of D.

By the main result of [Markovic 2017] or [Benoist and Hulin 2017], the distance
d(hgy, fy,) is bounded by a constant M; that depends only on Ci. The first two
claims follow. The Lipschitz continuity of s, then follows from Lemma 3.4. [J

2
loc

Corollary A.7. The map ¢ € My — hy € C*(D, D) is continuous in the C
topology.

Proof. Let (¢,) be a sequence in M converging to ¢. By Lemma A.6, the
harmonic maps h,, := h, are uniformly locally bounded and uniformly Lipschitz.
By Lemma 4.2, after extraction, the sequence (h,,) converges in the C120C topology to
a harmonic quasi-isometric map %o, : D — D. To reach the conclusion, we need to
prove that such a limit s, is always equal to h,. Since the maps h,, are uniformly
quasi-isometric, the continuity Lemma A.5 yields that the limit ¢ of the boundary

maps ¢, of h, must be the boundary map of /. This proves that hoo = hy. [

Proof of Proposition A.3. Let (p,) be a sequence in M} converging to ¢ such that
all the harmonic quasi-isometric extensions h, are quasi-conformal diffeomor-
phisms. We want to prove that the harmonic map h,, is also a quasi-conformal
diffeomorphism.

Corollary A.7 ensures that the sequence (h,, ) converges to A, in the Cﬁ)c topology.
Lemma A.6 ensures that these maps h,, are uniformly Lipschitz. Hence, by
Proposition 5.2, there exists a uniform lower bound j, > O for the Jacobians of
all these harmonic quasi-isometric diffeomorphisms h, . Therefore h,, is also a
Lipschitz harmonic map whose Jacobian is bounded below by j.. Hence, by the
injectivity criterion in Lemma 3.5, the harmonic map 4, is also a quasi-conformal
diffeomorphism. O

AD. Orbit closure in the group of homeomorphisms of S'. Recall that D is the
hyperbolic disk and S' is its boundary at infinity. Let G be the group of isometries
of D acting on S'. It is isomorphic to PGL(2, R).

In order to prove Proposition A.4 in Appendix AE we need the following lemma.

Lemma A.8. Let ¢, be a sequence of C' diffeomorphisms of S' converging in
the C' topology to a C' diffeomorphism ¢ of S'. Let y, and v, be two un-
bounded sequences in G such that the sequence V, :=y, o ¢, o yn_l converges to a
homeomorphism Yo, of S'. Then this limit W, belongs to G.
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Proof. We recall the Cartan decomposition G = K AT K of G where K is the group
PO2,R) and A" = {diag(s, s~ 1) with s > 1}. Since K is compact, we can assume
that both y, and y, are in A*. We write

yo = diag(s}/%, 5, and y, = diag(s,"?, 5,7

n ’sl’l n

with both s, and s/, converging to co. Here it will be convenient to use the identifi-
cation S' ~ R U {oo} given by the upper half-plane model of [, so that, for x in R,
one has y,(x) = s,x and y, (x) = s, x.

We notice that ¢, (0) = 0. Indeed, if this were not the case, we would have
Yoo(x) = 0o for all x € R, contradicting the injectivity of .

Similarly we have ¥ (co0) = oo. If this were not the case, we would have
¥oo(x) =0 for all x € R, contradicting the injectivity of @uo.

Since the sequence g, converges in the C! topology to ¢, We can write for all
n>1and all x € R with |x| <1,

@n(x) = an + (Bn +ra(x))x - with lim sup |r, (x)] = 0. (A-2)

X—=>UneN

Since @0 (0) =0 and B := ¢, (0) is nonzero, one has
lim o, =0 and Ilim B, = B > 0. (A-3)
n—oo

n—oo

Therefore we can write for all n > 1 and all x € R with |x| < s,,

/
Va0 =i+ (But (55 )52 with  tim pn(5)1=0. (A-4)

Since the sequences v, (0) and v, (1) converge, the following limits exist:

/

. . s,
o, = Jim spo, €R - and Bl = lim g, 3% > 0. (A-5)
Hence one has oo (x) = o, + Bl x for all x € R, and v/« belongs to G. O

Remark. As can be seen in the proof, the assumption on ¥, can be weakened: it
is sufficient to assume that there are three points &y, &, £x in S' whose images
Yn(€0), Vn(€1), Yn(€s) converge to three distinct points. This ensures that the
sequence ¥, converges uniformly to an element ¥, of G. However, it is important
to assume that the limit ¢, is of class C' and that the convergence ¢, — ¢ is in
the C! topology.

Here is a direct corollary of Lemma A.8 in the spirit of [Benoist and Hulin 2018].

Corollary A.9. For all C! diffeomorphisms ¢ of S', one has GoG NHomeo(S') =
GoGUG.
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AE. When the boundary map is a C' diffeomorphism. We now conclude the
proof of Theorem A.1 by giving the last argument:

Proof of Proposition A.4. Let ¢ be a C' diffeomorphism of S!. We want to
prove that the harmonic quasi-isometric extension h, of ¢ is a quasi-conformal
diffeomorphism. For convenience we identify here S! with R/27Z. For ¢ € [0, 1],
we introduce the C'! diffeomorphism ¢, given by

0 (&) =E+ (p&)—£&)t, forall £in S

This is well defined since the map & — ¢ (&) — £ lifts as a map from S! to R.

We argue as in Section 3D. For ¢ € [0, 1], we introduce the harmonic quasi-
isometric extension i; = hy, : D — D of ¢;. Let A be the set of parameters 7 € [0, 1]
for which 4, is a quasi-conformal diffeomorphism. By the injectivity criterion of
Lemma 3.5, one has

A={r€0.1]] inf J;(z) > 0).

where J; is the Jacobian of /,. We want to prove that 1 € A. We already know that
0 € A because hy is the identity. Since the maps ¢, are uniformly quasi-symmetric,
Proposition A.3 tells us that A is closed. Thus it is enough to check that A is open.

Assume by contradiction that there exists a sequence t, ¢ A converging to fo, € A.
By assumption there exists a sequence (z,) in D such that liminf,,_, ~ J;, (z,) <O.
After extraction we are in one of the two cases:

First case: the sequence (z,) converges to a point 7o, € D. Since the maps ¢;
are uniformly quasi-symmetric, Corollary A.7 ensures that the map ¢ € [0, 1] —
h, € C*(D, D) is continuous in the C120C topology. Therefore, one has J; _(zo0) =
lim,, o Jt,(z) <0, and o is not in A. This is a contradiction.

Second case: the sequence (z,) goes to infinity. To simplify, we set ¢, = ¢;, and
hy = h,, for all n € NU {oo}. By Lemma A.6, the sequence £, (z,) goes to infinity.
We choose sequences (y,,) and (y,) in G with y,(z,) =0 and y, (h,(z,)) = 0. We
introduce the harmonic maps

B =y ohyoy, ' :D—D
and their boundary values ¥, :=y, o @, o yn_l. By construction, one has

h(0)=0 and liminfJ,(0) <O, (A-6)

where J; is the Jacobian of ). Moreover by Lemma A.6, these maps k), are
uniformly Lipschitz. Therefore, after extraction, they converge in the ClzoC topology
to a harmonic quasi-isometric map .. By the continuity lemma, Lemma A.5, the
sequence of boundary maps ,, converge to the boundary map ¥, of 4. Now, by
Lemma A.8, this limit ¥, belongs to G. Therefore the harmonic map & is an

isometry and its Jacobian is J/, = 1. This contradicts (A-6). O
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