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By their very nature, rare event probabilities are expensive to compute; they are also delicate to estimate as their value
strongly depends on distributional assumptions on the model parameters. Hence, understanding the sensitivity of the
computed rare event probabilities to the hyper-parameters that define the distribution law of the model parameters
is crucial. We show that by (i) accelerating the calculation of rare event probabilities through subset simulation and
(ii) approximating the resulting probabilities through a polynomial chaos expansion, the global sensitivity of such
problems can be analyzed through a double-loop sampling approach. The resulting method is conceptually simple and
computationally efficient; its performance is illustrated on a subsurface flow application and on an analytical example.

KEY WORDS: global sensitivity analysis, rare event simulation, polynomial chaos, high-dimensional
methods

1. INTRODUCTION

Quantifying rare event probabilities is often needed when modeling under uncertainty [1–4]. Rare events are com-
monly associated with system failures or anomalies which pose a risk; it is thus imperative that rare event probabili-
ties be computed reliably. For the sake of concreteness, we consider q to be a scalar-valued quantity of interest (QoI)
whose inputs are drawn from the sample space Θ ⊆ Rd with associated sigma algebra F and probability measure P.
For a given threshold τ̄, the corresponding rare event probability is defined as

Pτ̄ = P(q(θ) > τ̄), (1)

where θ ∈ Θ is a random vector whose entries represent uncertain model parameters. Rare event probabilities are
notoriously challenging to compute; indeed, basic Monte Carlo simulations of Eq. (1) are inefficient in this context for
the simple reason that few samples actually hit the rare event domain. Several methods have been proposed to compute
Pτ̄ more efficiently, ranging from importance sampling and Taylor series approximations to subset simulation, the
latter of which we use in this article; see for instance [3] and Section 3.

The evaluation of the rare event probability (1) requires the distribution law governing the model parameters θ.
In practice, such a law is typically assumed. Clearly, Pτ̄ depends on these assumptions; should they be misguided,
the resulting rare event probability is likely be misleading. We let ξ denote a set of hyper-parameters characterizing
the distribution law of θ. It is crucial to understand the sensitivity of Pτ̄ to ξ. In this article, we develop an efficient
method to quantify, through global sensitivity analysis (GSA), the robustness of Pτ̄ to the choice of hyper-parameters
characterizing the distribution law of the model parameters. To account for the uncertainty in ξ, we model the corre-
sponding hyper-parameters as random variables. The rare event probability takes the form

Pτ̄(ξ) = P({q(θ) > τ̄} | ξ). (2)
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For a generic QoI p(ξ), GSA aims at ascribing to any entry of ξ (or any group of entries) its relative “importance”
in determining p; the importance measures built within GSA do not just consider p locally at a given ξ? (as in local
sensitivity analysis) but instead take into account the full range of values ξ. In their simplest form, Sobol’ indices
[5–8] attach to each entry of ξ its relative contribution to the variance of p. In other words, in the context of Sobol’
indices, the variance is taken as a proxy for uncertainty; the approach benefits from the nice algebraic properties of
the variance and can be derived from the ANOVA decomposition of p. GSA using Sobol’ indices has been utilized in
a wide range of applications such as porous media flow [9–11], ocean modeling [12,13], chemical kinetics [14–16],
epidemiology [17,18], and neuroscience [19], to name a few; see also, [20, Chap. 6], for a list of applications. For a
generic QoI, computing Sobol’ indices requires costly Monte Carlo integrations; the associated costs are a significant
bottleneck of the approach. To increase their range of applicability, Sobol’ indices are often applied in practice to a
surrogate p̂ of p where p̂ is chosen such that its indices can be computed cheaply (or for free); this is the approach we
use below. We refer the reader to [21] for more background on GSA.

A number of recent studies have considered how to assess the sensitivity of rare event estimation procedures to
uncertain inputs and/or to the distributions of these inputs. There is a general consensus that the naive double-loop
approach—whereby for each realization of ξ multiple samples of θ are used to estimate Pτ̄—is infeasible but for
the simplest of problems. An early work [4] combines rare event estimation techniques with the traditional Monte
Carlo approach for GSA of the hyper-parameters. Several studies introduce new sensitivity measures [22–25] which
are tailored to make the rare event SA process more tractable. Others perform sensitivity analysis in the joint space
of both input parameters and hyper-parameters [22,25–27]. These methods increase computational efficiency through
use of local SA methods [22], surrogate models [25], kernel density estimates [26], and kriging [27]. A thorough
overview of current methods at the intersection of SA and rare event simulation can be found in [28].

Our main contribution is to show that a double-loop approach can in fact be not only feasible but computationally
expedient in order to perform GSA of Pτ̄(ξ) with respect to ξ. This may seem counterintuitive since, while informa-
tive, this type of second level sensitivity analysis is expensive. We propose an approach that addresses this challenge
through a combination of fast methods for rare event simulations together with the use of surrogate models. Specifi-
cally, we rely on subset simulation [3] to estimate rare event probabilities and approximate Pτ̄(ξ) using a polynomial
chaos expansion (PCE); see, respectively, in Sections 3 and 4. GSA is performed through a variance-based approach:
crucially, the Sobol’ indices for appropriate approximations to Pτ̄(ξ) can then be obtained “for free” through analyt-
ical formulæ. By using sparse regression to construct the PCE, our approach is able to perform accurate GSA of the
rare event probability, while mitigating the noise incurred from inexpensive approximations of Pτ̄(ξ). As an added
benefit, our approach is structurally simpler than most of the previously cited work.

To demonstrate the efficiency gains of the proposed method, we present an illustrative example in Section 2 and
deploy our approach on it in Section 5.1. In Section 5.2, we apply the method to a Darcy flow problem requiring
multiple estimates of the rare event probability to show feasibility in a more computationally demanding framework.
We discuss additional challenges, perspectives and future work in Section 6.

2. A MOTIVATING EXAMPLE

We consider the following illustrative example [3,29,30] throughout the article,

q(θ) = − 1√
d

d∑

i=1

θi, (3)

where q is the QoI in Eq. (1) and θ =
[
θ1 . . . θd

]> with independent normally distributed entries θi ∼ N (µi, σ
2
i ),

i = 1, . . . , d. It is elementary to check that, for any values of the hyper-parameters ξ =
[
µ1 . . . µd σ2

1 . . . σ2
d

]>,

q ∼ N (µ̄, σ̄2) with





µ̄ = − 1√
d

d∑

i=1

µi

σ̄2 =
1
d

d∑

i=1

σ2
i

. (4)
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For a given ξ, the rare event probability is simply

Pτ̄(ξ) =
1
2
− 1
2

erf
(

τ̄− µ̄√
2σ̄

)
. (5)

We model the uncertainty in the hyper-parameters by considering them as independent uniformly distributed
random variables with a 10% perturbation around their respective nominal values. Figure 1 illustrates the case d = 5
with ξnom =

[
1 2 3 4 5 10 8 6 4 2

]> as the nominal value for ξ. In particular, Fig. 1, right, shows
how the uncertainty in Pτ̄ changes as τ̄ varies. As τ̄ increases, i.e., as the event becomes rarer, the uncertainty in
Pτ̄—measured through its coefficient of variation—increases. We contend that this latter behavior is generic for rare
event simulations, establishing the need for methods allowing the quantification of the effects of hyper-parameter
choices on the uncertainty in Pτ̄.

To provide qualitative insight, we present a rough estimate for the decrease in the coefficient of variation of Pτ̄,
as the event becomes less rare. We consider a generic Pτ̄(ξ) as defined in Eq. (2) and assume Pτ̄ is a random variable
(i.e., a measurable function of ξ). Let µ = E(Pτ̄) and σ2 = V(Pτ̄) be the mean and variance of Pτ̄. Recall that
the coefficient of variation of Pτ̄ is given by δ(Pτ̄) = σ/µ. Note that for every ξ, we have 0 ≤ Pτ̄(ξ) ≤ 1; thus,
Pτ̄(ξ) ≥ Pτ̄(ξ)2 and

σ2 = E(P 2
τ̄) − µ2 ≤ µ − µ2 = µ(1− µ). (6)

Therefore, δ2(Pτ̄) = σ2/µ2 ≤ µ(1 − µ)/µ2 = (1 − µ)/µ. Note that as the event becomes less rare, µ will grow
resulting in the diminishing of the bound on the coefficient of variation. We point out that the inequality (6) can be
obtained directly from the more general Bhatia–Davis inequality [31].

3. RARE EVENT SIMULATION

Monte Carlo simulation is a standard way of approximating the rare event probability Pτ̄ defined in Eq. (1). Observe
that

Pτ̄ = E[χτ̄] =
∫

Θ

χτ̄(θ)π(θ) dθ, (7)

where χτ̄ denotes the indicator function of the set {θ ∈ Θ : q(θ) > τ̄} and π(θ) is the PDF of θ. This leads to the
following Monte Carlo (MC) estimator,

P̂MC
τ̄ =

1
N

N∑

i=1

χτ̄(θ(i)), (8)

where θ(i), i = 1, . . . , N , are (independent) realizations of θ.
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FIG. 1: Left: Probability distribution function (PDF) of q from Eq. (3) with the rare event threshold τ̄ = 3 indicated by a vertical
line; middle: PDF of P3(ξ); note that from Eq. (5), P3(ξnom) ≈ 3.69 × 10−5; right: coefficient of variation of Pτ̄(ξ) (ratio of
standard deviation to mean) as τ̄ varies
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In the case of rare events, i.e., of small probabilities Pτ̄, the basic MC estimator (8) becomes computationally
inefficient. Indeed, consider the coefficient of variation δ(P̂MC

τ̄ ) of the above estimator and observe

δ2
(
P̂MC

τ̄

)
=
V

(
P̂MC

τ̄

)

E
[
P̂MC

τ̄

]2 =
1− Pτ̄

NPτ̄
≈ 1

NPτ̄
if 0 < Pτ̄ ¿ 1. (9)

In other words, ensuring a given accuracy requires N ≈ 1/(Pτ̄δ2). For increasingly rare events, i.e., small Pτ̄, the
error in Eq. (8) will increase accordingly. Standard MC methods are thus poor candidates for rare event estimation.

3.1 The Subset Simulation Method

We rely on the subset simulation (SS) method [32,33] to accelerate rare event computation. This approach decomposes
the rare event estimation problem into a series of “frequent event” estimation problems that are more tractable; it has
been observed that this may reduce the coefficient of variation by more than an order of magnitude over standard
MC [3,32,33]. This corresponds to a substantially lower computational burden for estimating rare event probabilities.

Consider the rare event domain F = {θ ∈ Θ | q(θ) > τ̄} and a sequence of nested subsets of F ,

F = FL ⊂ · · · ⊂ F2 ⊂ F1,

where Fi = {θ ∈ Θ | q(θ) > τi}, i = 1, . . . , L with τ1 < τ2 < · · · < τL = τ̄. The rare event probability Pτ̄ can
thus be decomposed into a product of conditional probabilities,

Pτ̄ = P(F ) = P

(
L⋂

i=1

Fi

)
=

L∏

i=1

P(Fi | Fi−1), (10)

with, by convention, F0 = Θ. Computing Pτ̄ according to Eq. (10) requires an efficient and accurate method for
estimating the L conditional probabilities. We use a modification of the Metropolis-Hastings algorithm to accomplish
this [32]. This modified Metropolis algorithm (MMA), which belongs to the family of Markov chain Monte Carlo
(MCMC) methods, draws samples from a conditional distribution and either accepts or rejects the samples based on a
chosen acceptance parameter. One uses samples that belong to Fi−1 as seeds for estimating the conditional probability
P(Fi|Fi−1). We refer the interested reader to [3], which provides a high level discussion of MMA as well as other
variants of SS; a more thorough analysis of MMA and MCMC algorithms can be found in [30].

Choosing a proper sequence of thresholds {τi}L
i=1 is a major challenge of the SS method. Since one has little

prior knowledge of the PDF of q(θ), it is often not feasible to prescribe the sequence of thresholds a priori. Instead,
one may require that P(Fi | Fi−1) = p0, i = 1, . . . , L− 1, for some chosen quantile probability p0 [32]. We can then
iteratively estimate the proper threshold at each “level” of the algorithm; the SS estimator of Eq. (10) takes the form

Pτ̄ ≈ P̂ SS
τ̄ = pL−1

0 P(FL | FL−1), (11)

where the final conditional probability P(FL | FL−1) is estimated via the MMA procedure mentioned earlier. Al-
though p0 = 0.1 is a standard choice in engineering applications, there has been significant work done to determine
optimal values for p0; this, in general, depends on the QoI under consideration. It has been shown that, for practical
purposes, the optimal p0 lies in the interval [0.1, 0.3] and that, within this interval, the efficiency of SS is insensitive
to the particular choice of p0 [34]. With the approach for computing the sequence of thresholds in Eq. (10), each
τi is a random variable, estimated via a finite number of conditional samples. Consequently the number of levels or
iterations necessary to terminate SS is also random. For a sufficiently large number of samples, the number of levels
is given in [29] as

L − 1 =
⌊

log Pτ̄

log p0

⌋
. (12)
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3.2 Implementation of Subset Simulation

For completeness, we provide an algorithm outline for the SS method in Algorithm 1. We assume Gaussian inputs in
the examples considered in this article; the SS method can, however, be applied to non-Gaussian input distributions;
see Appendix B of [35] for details. Additional information on the implementation of the SS algorithm, including
the MMA implementation, is, for instance, available in [1,29,32]. As this MCMC implementation reuses the input
parameters from each previous level to estimate the threshold for the next level, this method does not require any
burn-in samples to draw from the conditional distribution; it begins by sampling from the previous rare event domain.
On the theoretical side, the SS algorithm is asymptotically unbiased and P̂ SS

τ̄ converges almost surely to the true rare
event probability, Pτ̄. For a detailed convergence analysis of SS and derivation of its statistical properties, see [32].

3.3 Computational Cost

We turn now to the computational cost of estimating Pτ̄ using SS. The computational cost is measured in terms of
the number of function evaluations required to run the algorithm. As the number of levels L is random, so is the
computational cost associated with SS. For simplicity, we assume for our cost analysis that a sufficient number of
samples has been used so that L does not vary. The total number of QoI evaluations required by SS is L ·NSS, where
NSS is a user-defined parameter that determines the number of samples per intermediate level of the iteration. Say,
for example, the true rare event probability is 10−6 and we wish to estimate Pτ̄ with a coefficient of variation within
δ = 0.1. For standard MC sampling, we would need N ≥ 1/(δ2 · Pτ̄) = 108 samples of the QoI. Take the SS
method with a quantile probability of p0 = 0.1. Then, according to Eq. (12), we would have L = 7, corresponding to
seven levels of conditional probabilities. The coefficient of variation for each of the conditional probabilities is more
difficult to quantify, however, as in the case of the standard MC estimator, they are proportional to 1/p0; see [32]. In
this case, one would expect to see a significant reduction in the cost of estimating Pτ̄ with SS.

We lastly emphasize the power of SS for estimating rare event probabilities in the context of QoIs with high-
dimensional inputs. Not only does SS improve upon the slow convergence rates of standard MC by a wide margin, it
also inherits the property of having a convergence rate independent of input dimension.

4. SURROGATES FOR GSA OF RARE EVENT PROBABILITIES

We seek to apply variance-based GSA to Pτ̄(ξ), defined in Eq. (2), with respect to components of ξ. To mitigate the
computational expense of performing such analysis, we combine the SS algorithm and surrogate models, in the form

Algorithm 1: Subset simulation
Input: Rare event threshold, τ̄; samples per level, NSS; quantile probability, p0; routine that evaluates QoI, q(θ)
Output: Estimate of rare event probability: P̂ SS

τ̄

1 Draw NSS samples of θ from appropriate distribution
2 Compute NSS samples of the QoI; compute τ1 as the p0 quantile
3 Save the bNSS · p0c inputs such that q(θ) > τ1 as seeds for the next level
4 i ← 1 // i indicates the current level
5 while τi < τ̄ do
6 i ← i + 1
7 Sample θ by creatingbNSS· p0cMarkov Chains, each with length bp−1

0 c // For details, see [32]
8 Using MCMC seeds, evaluate the QoI and compute τi as the p0 quantile
9 Save the bNSS · p0c inputs such that q(θ) > τi as seeds for the next level
10 end
11 Using seeds from FL−1, sample the QoI and estimate P(FL | FL−1) using MC
12 Evaluate P̂ SS

τ̄ = pi
0 P(FL | FL−1)
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of polynomial chaos expansions (PCEs). We assume ξ to be an M -dimensional vector with independent entries. The
procedure, which amounts to double-loop sampling, is outlined below:

• Generate hyper-parameter samples {ξ(j)}NSAMP
j=1 .

• For each j ∈ {1, . . . ,NSAMP}, estimate Pτ̄(ξ(j)) using SS; denote these estimates by P
(j)
τ̄ = SS(Pτ̄(ξ(j))).

• Use the (noisy) function evaluations {P (j)
τ̄ }NSAMP

j=1 to compute a surrogate model P̃τ̄(ξ) ≈ Pτ̄(ξ).

• Compute the Sobol’ indices of P̃τ̄(ξ).

Instead of using SS for computing Pτ̄(ξ(j)), one may be tempted to apply a surrogate further “upstream” by
computing a surrogate model q̃ξ(j)(θ) for q(θ) from samples {q(θ(k))}n

k=1 drawn from the law of θ as determined
by ξ(j). This surrogate model of q can then be used for fast approximation of the rare event probability Pτ̄(ξ(j)). This
procedure, however, has two major pitfalls: (i) an expensive surrogate modeling procedure must be carried out for
each j ∈ {1, . . . ,NSAMP} and, more importantly, (ii) surrogate models are typically poorly suited to the task of rare
event estimation. Indeed, surrogates typically fail to capture the tail behavior of the distribution of the QoI q, making
them unsuitable for rare event simulations. This shortcoming is well-documented in the uncertainty quantification
literature [36,37] although efforts are being made to tailor the surrogate model construction process for the efficient
estimation of rare event probabilities [37–42].

4.1 PCE Surrogate for Rare Event Probability

Our approach leverages the properties of PCE surrogates for fast estimation of Sobol’ indices [43,44]; it also takes
advantage of the regularity of the mapping ξ 7→ Pτ̄(ξ). Specifically, assuming the PDF of ξ satisfies certain (mild)
differentiability and integrability conditions, one can show that Pτ̄(ξ) is a differentiable function of ξ; see [45,
Proposition 3.5].

The PCE of Pτ̄(ξ) is defined as

P̃τ̄(ξ) =
NPC∑

k=0

βkΨk(ξ), (13)

whereΨ0, . . . , ΨNPC belong to a family of orthogonal polynomials and β0, . . . , βNPC are the (scalar) PCE coefficients.
The specific family of polynomials is chosen to guarantee orthogonality with respect to the PDF of ξ; see, e.g., [43].
We use a total order truncation scheme for the PCE: the multivariate polynomial basis contains all possible polynomial
basis elements up to a total polynomial order r. In this case, NPC in Eq. (13) satisfies

NPC + 1 =
(M + r)!

M !r!
.

The coefficients β0, . . . , βNPC can be computed in a number of ways, including nonintrusive spectral projection or
regression [43,44,46]. A regression-based approach is preferred here because the evaluations of Pτ̄ are noisy due to
sampling errors incurred in the SS procedure. We estimate the vector β = [β0, β1, . . . , βNPC ] from function evalua-
tions P

(j)
τ̄ = SS(Pτ̄(ξ(j))), j = 1, . . . ,NSAMP, by solving the penalized least-squares problem:

minβ

NSAMP∑

j=1

[
P

(j)
τ̄ −

NPC∑

k=0

βkΨk(ξ(j))
]2 s.t. ||β||1 ≤ λ. (14)

In Eq. (14), the penalty parameter λ acts as a sparsity control on the recovered PCE coefficients. We generate the
realizations {ξ(j)}NSAMP

j=1 of the hyper-parameter vector through Latin hypercube sampling; for further details on the
implementation of sparse regression for PCE; see [47,48]. The numerical results in Section 5 are obtained using the
SPGL1 solver [49].
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4.2 GSA of Pτ̄ Using the PCE Surrogate

As is well-known, the Sobol’ indices of a PCE surrogate can be computed analytically. For example, the first-order
Sobol’ indices, Si(Pτ̄), i = 1, . . . , M , of Pτ̄ can be approximated as follows:

Si(Pτ̄) ≈ Si(P̃τ̄) =

∑
k∈Ki

β2
k E[Ψ2

k]
∑NPC

k=1 β2
k E[Ψ2

k]
, (15)

where Ki denotes the set of all PCE terms that depend only on ξi. Sobol’ indices for arbitrary subsets of variables,
as well as total indices, can be computed in an analogous manner [43,50]. In practice, PCE surrogates with modest
accuracy are often sufficient to obtain reliable estimates of Sobol’ indices.

While the above approach for GSA of Pτ̄ does require repeated simulations of the QoI q during the calls to the SS
algorithm, it still provides orders of magnitude speedup over the standard “pick and freeze” MC methods, also known
as Saltelli sampling, for computing the Sobol’ indices of Pτ̄ [51]. Indeed, a fixed sample {ξ(j)}NSAMP

j=1 with modest
NSAMP is sufficient to compute the PCE surrogate from which the Sobol’ indices can be computed at a negligible
computational cost. Moreover, the sparse regression approach for estimating PCE coefficients is forgiving of noisy
function evaluations. Therefore, large sample sizes are not needed in the calls to the SS algorithm. We demonstrate
the merits of the proposed approach in our computational results presented in Section 5.

5. NUMERICAL RESULTS

We summarize, in Section 5.1, the computational results for the motivating example from Section 2; a more challeng-
ing model problem involving flow through porous media is considered in Section 5.2.

5.1 Results for the Analytic Test Problem

We consider the example from Section 5.1 and study Pτ̄ with τ̄ = 3. To establish a baseline for the values of the
Sobol’ indices of Pτ̄(ξ), we compute the total order Sobol’ indices directly from Eq. (5) using Saltelli sampling.
The reference Sobol’ indices are computed with 106 samples for each of the conditional terms; convergence was
numerically verified. We plot the reference total indices in Fig. 2 for comparison. We now compare the reference
indices with those obtained through the PCE surrogate when Pτ̄(ξ) is computed analytically using Eq. (5). We
allocate 103 samples of Pτ̄(ξ) each for the Saltelli sampling method and sparse regression PCE method. The Saltelli
method requires N(d + 1) samples [51] and so we divide the budget of 103 samples equally among each conditional
term. Each PCE coefficient can be estimated using the full set of 103 samples. For a fair comparison, we use Latin
hypercube sampling for both the PCE and Saltelli method. We also use a total PCE order of 3 and the penalty
parameter λ = 5 × 10−2. Given that the set of total indices is computed, in each method, using a finite number of
samples, each index is a random variable with an associated distribution. We compare the standard deviation of each
total index for the two GSA methods. In each case, we compute 103 realizations of the full set of total indices and
compare their respective standard deviations in Fig. 2.

Figure 2 illustrates the higher accuracy, or lower variance, of PCE with sparse regression over Saltelli sampling:
the standard deviation of the largest Sobol’ index is roughly 3 times smaller with sparse regression than it is with
Saltelli sampling. This gap in accuracy appears to diminish for smaller indices, although the methods do not show
comparable accuracy until the indices are below 0.1. As Pτ̄ can be expressed analytically, there may be additional
benefits of the sparse regression method to be seen when one considers performing GSA on a rare event probability
with noise due to sampling. We note that the total order of the PCE basis and the penalty parameter λ, which are
user-defined parameters, can be changed without the need for additional runs of SS. These parameters can be cross
validated in a post-processing step after the rare event simulation step, providing flexibility in this approach without
adding any significant computational burden.

When combining PCE-based GSA with SS for estimating Pτ̄(ξ), there is a trade-off between the inner loop cost
of estimating Pτ̄ via SS and the outer loop of aggregating Pτ̄ samples to build the PCE. In Fig. 3, we separately vary
NSS and NSAMP and examine the resulting distribution of the total Sobol’ indices, computed via sparse regression
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FIG. 2: Total Sobol’ indices of Pτ̄, with τ̄ = 3, from Eq. (5); the error bars illustrate the variability of the two sampling methods
(Saltelli sampling and sparse regression PCE) around the reference values
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FIG. 3: Mean Total Sobol’ indices, varying the computational cost of SS and the PCE construction. Each plot varies NSAMP and
each colored bar varies NSS, with the final bar of each index corresponding to the analytic Pτ̄.
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PCE. For a fixed NSAMP, we compute multiple realizations of the total indices for several values of NSS. Figure 3(a)
displays the expected value of the total indices for NSAMP = 100. Regardless of how accurately we estimate Pτ̄, the
indices do not approach their true values because the PCE is built using an inadequate number of samples, resulting
in a poor surrogate. By contrast, Fig. 3(b) shows that for NSAMP = 103, we only need a modest NSS to approximate
the Sobol’ indices. Indeed, for NSS = 500, we are able to resolve the total indices very well. We also examine the
case of NSAMP = 104 in Fig. 3(c). Again, we are able to resolve the total indices well using only NSS = 500 and are
able to achieve the correct ordering for as little as NSS = 100.

These results indicate that (i) a modest number of samples allocated to SS is enough to get a rough estimate of Pτ̄

and (ii) a moderate number of realizations of Pτ̄(ξ) is then sufficient for accurate GSA. In other words, given rather
poor estimations of Pτ̄, we are still able to extract accurate GSA results, due to the fact that the sparse regression
technique is robust to noisy QoI evaluations.

5.2 Subsurface Flow Application

We consider the equations for single-phase, steady-state flow in a square domain D = [0, 1]2:

−∇·
(

κ

µ
∇p

)
= 0 in D,

p = 1 on Γ1,

p = 0 on Γ2,

∇p·n = 0 on Γ3,

(16)

where κ is the permeability, µ is the viscosity, and p is the pressure. The boundaries Γ1, Γ2, and Γ3 indicate the
left boundary, the right boundary, and the top/bottom boundaries, respectively. The Darcy velocity is defined as v =
−(κ/µ)∇p. In the present study, we let µ = 1. The source of uncertainty in this problem is in the permeability field,
which we model as a random field. We consider the flow of particles through the medium and focus on determining
the probability that said particles do not reach the outflow boundary in a given amount of time. This problem has been
used previously as a test problem for rare event estimation in [1] as it pertains to the long-term reliability of nuclear
waste repositories. Our goal is to perform GSA with respect to the hyper-parameters that define the distribution law
of the permeability field.

5.3 The Statistical Model for the Permeability Field

Following standard practice [1,52], we model the permeability field as a log-Gaussian random field:

log κ(x, ω) = a(x, ω) = ā(x) + σaz(x, ω), (17)

where x ∈ D and ω belongs to sample space that carries the random process. Here, ā is the mean of the random field,
σa is a scalar which controls the pointwise variance of the field, and z is a centered (zero-mean) random process. We
let the covariance function of z be given by

cz(x, y) = exp
(
−|x1 − y1|

`x
− |x2 − y2|

`y

)
, x, y ∈ D, (18)

where `x and `y denote the correlation lengths in horizontal and vertical directions. The random field is represented
via a truncated Karhunan-Loève expansion (KLE):

a(x, ω) ≈ ā(x) +
NKL∑

k=1

√
λk θk(ω) ek(x). (19)

In this representation, θ1, . . . , θNKL are independent standard normal random variables and (λi, ek), k = 1, . . . ,NKL,
are the leading eigenpairs of the covariance operator of the process. Our setup for the uncertain log-permeability
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field follows the one in [52]: we use permeability data from the Society for Petroleum Engineers [53] to define ā.
Once we truncate the KLE, the random vector θ = [θ1 θ2 . . . θNKL ]> fully describes the uncertainty in the
log-permeability field.

To ensure that the KLE accurately models the variability of the infinite-dimensional field, we examine the eigen-
value decay of the covariance operator with the goal to truncate the KLE so that at least 90% of the average variance
of the field is maintained. For `x = `y = 0.4, which are the smallest correlation lengths considered in the present
study, we require at least NKL = 126. The number of retained KL modes then determines the dimensionality of
the rare event estimation problem, and is henceforth fixed at 126. The dimension independent properties of SS are
advantageous in this regime.

For illustration, we plot two realizations of the random field, with the corresponding pressure and velocity fields
obtained by solving the governing PDE (16), in Fig. 4. In our computations, we solve the PDE using piecewise linear
finite elements in MATLAB’s finite element toolbox with 50 mesh points in each direction.

5.4 The QoI and Rare Events under Study

The position x of a particle moving with the flow through the medium is determined by the following ODE,

dx

dt
= v,

x(0) = x0,
(20)

where v is the Darcy velocity. We consider a single particle with initial position at x0 =
[
0
0.5

]
. The solution x

of Eq. (20) depends not only on time but also on θ due to dependence of v on θ, i.e., x = x(t, θ). We take the QoI q
as the hitting time, i.e., the time it takes a particle to travel through the medium from left to right:

FIG. 4: Left: plots showing two realizations of the log permeability field. Right: the corresponding pressure solution and arrows
indicating the resulting Darcy velocity field.
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q(θ) = {t : x1(t, θ) = 1}.
We aim to determine the rare event probability Pτ̄ = P(q > τ̄). The parameters `x, `y , and σa parametrize the
uncertainty in the permeability field; we consider them as hyper-parameters and set ξ = [`x `y σa]>. We set
the nominal values of the hyper-parameters ξnom = [0.4 0.4 0.8]>. We simulate realizations of the permeability
field at these nominal hyper-parameters and plot the distribution of q. Each of these realizations requires one PDE
solve and one ODE solve. As illustrated in Fig. 5, the distribution for q corresponds to a heavy-tailed distribution. We
select as the threshold τ̄ = 4.5 and consider quantifying the sensitivity of Pτ̄(ξ) with respect to the hyper-parameters
defining the KLE.

5.5 Rare Event Probabilities and GSA

In our first set of experiments, we use SS with NSS = 103 samples per intermediate level; each of these samples
corresponds to one solution of the full subsurface flow problem, including a PDE and ODE solve. For each evaluation
of SS, approximately five intermediate levels are used, resulting in approximately 5 × 103 function evaluations.
Our hyper-parameters are drawn from a uniform distribution centered at ξnom with a spread of plus or minus 10% of
ξnom. We use these SS estimations of Pτ̄(ξ) in order to build the corresponding PCE surrogate, where the polynomial
basis is truncated at a total polynomial order of 5. Note the decision of where to truncate the PCE basis does not need
to be made prior to estimating the set of Pτ̄(ξ) samples.

The samples for the hyper-parameters are drawn using a Latin hypercube sampling scheme. We use 103 estima-
tions of Pτ̄(ξ) to construct the PCE surrogate. Again, we use sparse regression to recover the PCE coefficients, while
promoting sparsity in the set of PCE coefficients, and so mitigate the effects of noise induced by SS. In Fig. 6, we
use two different values of λ when promoting sparsity in order to illustrate the effect of λ on the results. Note that
when λ is made smaller, the PCE coefficients decrease in magnitude, promoting a sparser PCE spectrum. In both
cases, the ordering of the total Sobol’ indices remains consistent and, thus, conclusions with respect to parameter
sensitivity are unaffected. For this experiment, we therefore conclude that choosing λ by trial and error is sufficient.
Should one encounter a scenario where the GSA results are more sensitive to λ, more systematic approaches are
possible [46,48].

We lastly return to the key point made in Section 5.1, that the proposed method is capable of producing reliable
GSA results, while using a modest number of inner and outer loop samples (NSS and NSAMP, respectively). In Fig. 7,
we report results corresponding to NSS = 500. In the left panel of the figure we study the effect of NSAMP on the
PDF of the PCE surrogate. In the right panel, we plot the Sobol’ indices corresponding to each of the computed
surrogates. The results in Fig. 7 should also be compared with those in Fig. 6, where larger values of NSS and NSAMP

were used. This experiment indicates that Pτ̄ and the Sobol’ indices themselves can be well-approximated with a

FIG. 5: Left: Histogram of q for nominal hyper-parameters. Vertical line indicates rare event threshold of τ̄ = 4.5. Right: histogram
of the rare event probability, estimated via SS with uniformly distributed hyper-parameters.
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FIG. 6: Left: total Sobol’ indices for Pτ̄(ξ) computed from recovered PCE coefficients; results are reported with regularization
constant λ = 1 and λ = 5 × 10−2. Right: PDF of PCE surrogate compared with Pτ̄ evaluation histogram. NSAMP = 104 is used
for better resolution of distributions.

FIG. 7: Distributions of Pτ̄ for NSS = 500 and varying values of NSAMP. For each NSAMP, we build the PCE surrogate and
approximate its PDF with 105 samples. The set of Pτ̄ samples used for differing NSAMP is nested within sets of larger samples.
Corresponding total indices are included, computed directly from the PCE surrogates.

modest number of samples in both the inner and outer loops. In this case, using both NSS and NSAMP on the order of
102 is sufficient for obtaining accurate GSA results. The combined cost of this method is thus reduced by a significant
margin compared with the similar results in Fig. 6. The efficiency gains of this method indicate the potential for
deployment on problems which would otherwise be intractable.

6. CONCLUSION AND FUTURE WORK

We have shown that the feasibility of the standard double-loop approach for GSA of rare event probabilities can be
significantly extended beyond simple applications. This requires appropriate acceleration methods; in our case, this
is achieved through subset simulation and the choice of a surrogate model allowing for the analytical calculation of
Sobol’ indices. This approach is conceptually simple and does not require the development of new, ad hoc sensitivity
concepts. While we have extended the range of applicability of the double-loop approach, we acknowledge that more
research is needed to deal with computationally expensive, high-dimensional problems.
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The efficiency of our method crucially depends on working with surrogate models for which sensitivity measures
—here, Sobol’ indices—can be computed cheaply or “for free”; this clearly and strongly limits the type of GSA
which can be carried out by the approach. More generally, if q is the original QoI and if q̃ is the resulting QoI for a
given surrogate model, more work is needed to understand the relationship between the approximation error q − q̃
and the resulting GSA error S(q) − S(q̃) where S(·) is some sensitivity measure; more explicitly, there may be
room for the development of “cheap” surrogate models with moderate approximation errors and small GSA errors.
Additionally, both our sensitivity analysis method as well as surrogate modeling approach rely on the assumption that
the hyper-parameters are independent. In some cases one might be interested in GSA of rare event probabilities to both
hyper-parameters and additional parameters in a model that might be uncertain and possibly correlated. Therefore,
another interesting line of inquiry is to consider GSA of rare event probability with respect to correlated parameters.
Further study may also include extensions of our approach to other moment-based QoIs (e.g., cumulative distribution
function approximation, skewness, kurtosis) and the use of perturbation-based methods for GSA [23] as opposed to
considering a discrete set of hyper-parameters.
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