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Abstract

We prove that the hitting measure is singular with respect to the Lebesgue measure for random walks driven by
finitely supported measures on cocompact, hyperelliptic Fuchsian groups. Moreover, the Hausdorff dimension of
the hitting measure is strictly less than one. Equivalently, the inequality between entropy and drift is strict. A similar
statement is proven for Coxeter groups.

1. Introduction

Let G < SLy(R) be a countable group and u be a finitely supported, generating probability measure on
G. We consider the random walk

Wp = 8182...-8n»

where each (g;) is independent and identically distributed with distribution u. Let us fix a base point
o € H?. Then the hitting measure v of the random walk on S' = 9D is

v(A) := P(nh_lgo w0 € A)

for any Borel set A € dD. The hitting measure is also the unique u-harmonic, or u-stationary, measure,
as it satisfies the convolution equation v = u * v. On the other hand, the boundary circle D = S' also
carries the Lebesgue measure, which is the unique rotationally invariant measure on S'.

In the 1970s, Furstenberg [ 19] proved that for any discrete subgroup of SL;(R), there exists a measure
u such that the hitting measure of the corresponding random walk is absolutely continuous with respect
to the Lebesgue measure. This was the first step to produce boundary maps, eventually leading to rigidity
results. However, such measures y are inherently infinitely supported, as they arise from discretisation
of Brownian motion (see also [38]). Another construction of absolutely continuous hitting measures,
still infinitely supported, on general hyperbolic groups is given by [12].

For finitely supported measures, though, the situation is quite different. For any finitely supported
measure u on SLy(Z), it is known since Guivarc’h-LeJan [27] that the hitting measure is singular.
Kaimanovich-LePrince [31] produced on any countable Zariski dense subgroup of SLy(R) examples
of finitely supported measures with singular hitting measure.

They also formulated the following singularity conjecture.
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2 P. Kosenko and G. Tiozzo

Figure 1. A symmetric hyperbolic octagon. Sides of the same colour are identified by the Fuchsian
group.

Conjecture 1.1 ([31], page 259). For any finitely supported measure pu on SLy(R) whose support
generates a discrete subgroup, the hitting measure for the random walk driven by u is singular with
respect to the Lebesgue measure.

This conjecture has been mentioned several times; see also [25, Remark 1.1], [30, page 817] and [5,
Question (vi)]. In this paper, we focus on the case d = 2. Let G < SL,(R) be the subgroup generated by
the support of u. Recall that a discrete subgroup of SL,(R) is called a Fuchsian group and is cocompact
if the quotient ¥ = D/G is compact.

If G is discrete but not cocompact (which includes the case G = SL,(Z)), the conjecture is known; in
fact, there are many approaches to this result and several generalisations in many contexts with different
proofs ([27], [7], [16], [31], [21], [22], [17], [42]), all of which exploit in various ways the fact that the
cusp subgroup is highly distorted in G.

Note that if one drops the hypothesis that G be discrete, then Conjecture 1.1 no longer holds: there
exist finitely supported measures on SL;(R) for which the hitting measure is absolutely continuous ([8],
[4]), but the group generated by their support is not discrete (see also [31, Footnote 1]).

Thus the only case still open is when G is a cocompact Fuchsian group. In this case, the hyperbolic
metric and the word metric on G are quasi-isometric to each other, and hence distortion arguments do
not work. So far, the only known examples are the recent ones from [32] and [ 1], where the singularity
of hitting measure is proven for cocompact Fuchsian groups whose fundamental domain is a regular
polygon (except for a finite number of cases with few sides). These examples form a countable family.

In this paper, we prove Conjecture 1.1 for any hyperelliptic, cocompact Fuchsian group for measures
supported on the canonical generating set.

Recall that a hyperelliptic surface is a Riemann surface X with a holomorphic involution j : ¥ — X.
Any hyperelliptic surface can be uniformised as the quotient £ = D/G, where G is a Fuchsian group
with fundamental domain a centrally symmetric hyperbolic polygon P, and generators of G are given
by hyperbolic translations joining opposite sides of P (see Figure 1 and e.g., [23], [13]). We call such
G a hyperelliptic Fuchsian group and such a generating set the canonical generating set of G. In order
for G to be discrete, P needs to satisfy the cycle condition from Poincaré’s theorem (see Definition 4.1).
The space of hyperelliptic Fuchsian groups of genus g is a complex variety of dimension 2g — 1. Our
main result is the following.

Theorem 1.2. Let P be a centrally symmetric hyperbolic polygon in the Poincaré disk D, with 2m sides,
satisfying the cycle condition, and let S := {t,t2, ..., tam} be the hyperbolic translations that identify
opposite sides of P. Then for any measure u supported on the set S, the hitting measure v on S' = 9D
is singular with respect to Lebesgue measure. Moreover, the Hausdor[f dimension of v is strictly less
than 1.
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If m is even, the above construction yields the standard presentation of a hyperelliptic Fuchsian group
of genus g = 7 if m is odd, we also obtain a discrete cocompact group of genus g = Tl

To compare with [11] and [32], the authors of [1 1] use percolation to obtain a formula for the drift of
the random walk, and then they obtain an asymptotic lower bound for the drift as the number of sides
tends to co. Kosenko [32] obtains, in the regular case, explicit lower bounds for the translation lengths
using hyperbolic geometry without resorting to approximation by percolation. When the fundamental
polygon is not regular, an explicit bound on all translation lengths is not possible, as some translation
lengths may be short, decreasing the drift. In particular, there is the risk that assigning a large probability
to an element with a short translation length may result in the dimension of the measure going to 1.
In this paper, we show that this phenomenon cannot happen, as the discreteness of the group forces at
least some generators to have a large translation length. This subtle geometric balance is given by the
inequality from Theorem 1.5.

Finally, if one replaces the random walk with a Brownian motion, then absolute continuity of
harmonic measure only holds if the underlying manifold is highly homogeneous: to be precise, on a
negatively curved surface, the hitting measure is absolutely continuous if and only if the curvature is
constant ([36], [37]).

The fundamental inequality

This problem is closely related to the following ‘numerical characteristics’ of random walks. Recall that
the entropy [2] of u is defined as

-3 "(g)log u"
b lim e H"(g)log " (g)
n—oo n
and the drift, or rate of escape, is
d n
£ = lim dia(0, wno) 0),
n—oo n

where dy denotes the hyperbolic metric and the limit exists almost surely. The drift also equals the
classical Lyapunov exponent for random matrix products [20]. Finally, the volume growth of G is

1
v :=lim sup log#{g € G : dy(o,g0) < n}.

n—o00

The inequality
h <<ty 1.1)

has been established by Guivarc’h [26] and is called the fundamental inequality by Vershik [44]. Several
authors (e.g., [44, Question A]) have asked:

Question 1.3. Under which conditions is inequality (1.1) an equality?

For discrete, cocompact actions, Question 1.3 is equivalent to Conjecture 1.1: indeed, by [7] (see
also [25] and Theorem 2.2), inequality (1.1) is strict if and only if the hitting measure is singular with
respect to the Lebesgue measure.

If one replaces the hyperbolic metric dy with a word metric d,, on G, then [25] prove that the
inequality is strict unless the group G is virtually free. Observe that cocompact Fuchsian groups are not
virtually free; however, the drift for dy and the drift for d,,, are not the same (in fact, one has 4, < €4, ),
and hence the result from [25] does not settle Question 1.3 or Conjecture 1.1. Note that for a cocompact
Fuchsian group, it is well-known that v = 1 (see, e.g., [41]).

Our result also has consequences on the Hausdorff dimension of the hitting measure. Recall that the
Hausdorft dimension of a measure v on a metric space is the infimum of the Hausdorff dimensions of
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subsets of full measure. Moreover, by [35], [43], [30], for cocompact Fuchsian groups, the Hausdorff
dimension dimg (v) of the hitting measure satisfies, for almost every x € S L

1 B(x, h
dimg (v) = lim log v(B(x,7)) =—,
r—0* logr ¢

where B(x, r) is a ball of centre x and radius r. Thus Theorem 1.2 implies:

Corollary 1.4. Under the hypotheses of Theorem 1.2, the inequality h < € is strict. Hence, the hitting
measure v has a Hausdorff dimension strictly less than one.

A geometric inequality

The approach of this paper is based on the fact that cocompactness forces at least some of the generators
to have long enough translation lengths (this is related to the collar lemma: two intersecting closed
geodesics cannot be both short at the same time; also, the quotient Riemann surface has a definite
positive area). Indeed, in Theorem 3.1, we prove a criterion for singularity in terms of the translation
lengths of the generators, and then we show the following purely geometric inequality.

Theorem 1.5. Let P be a centrally symmetric polygon with 2m sides, satisfying the cycle condition, and
let S :={g1,...,8um} bethe set of hyperbolic translations identifying opposite sides of P. Then we have

1

geS
where £(g) denotes the translation length of g in the hyperbolic metric.

Interestingly, our geometric inequality has exactly the same form as the main inequalities of [14], [1]
for free Kleinian groups. However, it is not a consequence of theirs; see Section 4.

Coxeter groups
We also prove the following version of Theorem 1.2 for reflection groups.

Theorem 1.6. Let P be a centrally symmetric, hyperbolic polygon with 2m sides and interior angles k—”L
with k; € N* for 1 <i < 2m. Let u be a probability measure supported on the set R := {ry,...,rom}
of hyperbolic reflections on the sides of P, with u(r;) = pu(riym) for all 1 < i < m. Then the hitting
measure for the random walk driven by u is singular with respect to the Lebesgue measure. Moreover,
the inequality h < € is strict, and the hitting measure v has a Hausdor[f dimension strictly less than one.

2. Preliminary results

Let u be a probability measure on a countable group G. We assume that u is generating: that is, the
semigroup generated by the support of u equals G. We define the step space as (G, u™) and the map
7:GN — GY as 1((gn)nen) := (Wn)new, with for any n

Wn =8182---8n-
The target space of 7 is denoted by Q and called the path space; as a set, it equals G and is equipped
with the measure P, := 7, (u").

Then we define the first-passage function F,,(x,y) as

Fu(x,y) =P,(3n : wyx=1y)
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for any x, y € G, and the Green metric d,, on G, introduced in [6], as

dy(x,y) = —log Fy(x,y).

The following fact is well-known.
Lemma 2.1. Let p : G — H be a group homomorphism, let u be a probability measure on G, and let
H := pxp. Then for any x,y € G,

dz(p(x), p(y)) < du(x,y).

Proof. Since p induces a map from paths in G to paths in H, we have 7" (p(g)) > u"(g) forany g € G,
any n > 0. Hence

Pa(p(x),p(y)) 2 Pu(x,y)
for any x, y € G, from which the claim follows. m

We shall use the following criterion, which relates the absolute continuity of the hitting measure to the
fundamental inequality. Recall that a group action is geometric if it is isometric, properly discontinuous
and cocompact.

Theorem 2.2 ([7, Corollary 1.4, Theorem 1.5], [43], [24]). Let I" be a non-elementary hyperbolic group
acting geometrically on H?, endowed with the geometric distance d = dy induced from the action.
Consider a generating probability measure 1 on I with finite support. Then the following conditions
are equivalent:

1. The equality h = {v holds.

2. The Hausdorff dimension of the hitting measure v on S' is equal to 1.

3. The measure v is equivalent to the Lebesgue measure on S'.

4. For any o € H?, there exists a constant C > 0 such that for any g € T, we have

|du(1,8) — du(o, go)| < C.

For each g € G, let £(g) denote its translation length, namely

£(g) := lim

n—oo

du(o,8"0)
. .

Equivalently, £(g) is the length of the corresponding closed geodesic on the quotient surface. The
mechanism to utilise Theorem 2.2 is through the following lemma, similar to the one from [32].

Lemma 2.3. Suppose that the hitting measure is absolutely continuous. Then for any g € G, we have
{(g) <du(l,g).
Proof. 1f not, then £(g) > d,(1,g) > 0, and hence g is loxodromic. Let us pick some o € H?, which

lies on the axis of g, so that dg (0, g€0) = £(g*) = kf(g) for any k. Moreover, by the triangle inequality
for the Green metric, one has d, (1, gk < kd,(1,g), and hence

dz(0.8%0) — d,(1,8%) > kt(g) — kd,(1,8) = k(€(g) — dy(1,8)):

thus, since £(g) —d,(1,g) > 0,
k ky| —
sup|diz (0, g0) — d,i(1,8")| = +oo,
keN
which contradicts Theorem 2.2. O
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Let F be a free group, freely generated by a finite set S. Recall that the (hyperbolic) boundary O F of
F is the set of infinite, reduced words in the alphabet S U S -1, Given a finite, reduced word g, we denote
as C(g) C JF the cylinder determined by g, namely the set of infinite, reduced words that start with g.

Lemma 2.4. Consider a random walk on the free group
F,, = (s]il, e s;—'”1>,

defined by a probability measure i on the generators. If we denote x; = F,,(1,s;), X; == F, (1, si‘l) and
the hitting measure on the boundary of F,, by v, then

xi(1-%;
W(Cs) = BT,
1- XiXi
A similar lemma is stated in [34, Exercise 5.14].
Proof. For any infinite word w = s 5,5, . .., there exist two possibilities:
1. There exists a subword s, ... s;, such that it equals s; in F,.

2. No subword s, ... s;, equals s;, so it belongs to the set of paths that never hit s;.

In the first case, we denote this subword by w;, and we consider w;lw; we apply the same procedure,

but replacing s; with si‘l at each subsequent step. This procedure yields the equality
v(C(si) =Pl -s;,»1D+P(1l>s5;>1>os5;» 1)+ =
= D Fu(Ls)™ Fu (157" (1= Fu(1,57)
=0

_1 > 1" x(l_%)
= F(1,5)(1 = Fu(1, 5; ))HZ_()(Fﬂ(l,si)F#(l,si )) -
3. A criterion for singularity

Theorem 3.1. Let u be a finitely supported measure on a cocompact Fuchsian group, and let S be the
support of u. Suppose that

1
—— <L 3.1
ge%‘ L+l ey

Then the hitting measure v on 0D is singular with respect to the Lebesgue measure.

Proof. Denote as (g7)!", the elements of SU S~1, let F be a free group of rank m with generators (/;) o
and let i be a measure on F with (h;) = u(g:"). Moreover, let us denote

X = Fﬁ(l,hi) = IP’,;(E!n LWy = h,‘)
%= Fz(1,h;h).

Then we have

Z(xi(l—fi) +fi(1—xi) _ 1 3.2)

pay 1 —x,')éi 1 —x,‘)fi
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Indeed, if v is the hitting measure on dF, by Lemma 2.4, the measure of the cylinder C(h;) starting
with h; is

xi(1=X%;) (C(h 1))_-xl(1 )’

v b
1 —x;X; — X;X;

v(C(hi)) =

from which, since the cylinders are disjoint and cover the boundary, equation (3.2) follows.
Then by equation (3.1), there exists an index i such that

2 xi(l-%) %l -x)
1+ et(8i) 1 —x;X; 1 —x;X; ’
which is equivalent to
el(8) 5 2 vxi Xi

and thus we obtain
€(g;) > inf{—logx;, —log X;}. 3.3)

If the hitting measure v on §' = 9D is absolutely continuous, then by Lemma 2.3 and Lemma 2.1,
we get

0(gi) < du(1,8:) < dp(1,h;) = —logx;
for any i. If we apply the same inequality to gi‘l, we also have
C(gr) = €(g7") < du(1,87") < dz(1,h7") = ~log &y,
and hence
{(g:) < inf{-logx;, —logX;},

which contradicts equation (3.3), showing that v is singular with respect to Lebesgue measure. O

4. Parametrisation of the space of polygons

Let P be a convex, compact polygon in the hyperbolic disk D, with 2m sides and interior angles
Y15 vom}

We say that P is centrally symmetric if there exists a point 0 € D so that P is invariant under
symmetry with respect to the point O. This clearly implies that opposite sides have equal length and
opposite angles are equal.

Poincaré’s theorem provides conditions to ensure that the group generated by side pairings is discrete
(see [39]). In particular, one needs a condition on the angles, which in our setting can be formulated as
follows.
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Definition 4.1. A centrally symmetric polygon P satisfies the cycle condition if there exists an integer
k > 1 such that

Let S := {g1,...,g2m} be the set of hyperbolic translations identifying opposite sides of P, with
Gitm = gi‘l. By Poincaré’s theorem [39], if the polygon P satisfies the cycle condition, then the group G
generated by S is discrete.!

More precisely, denote as g; the hyperbolic translation mapping the ith side of P to its (i + m)th side.
If m is even, there is only one equivalence class of vertices, and it is fixed by the transformation

b= gm&pt - - 8281 &m §m-1 -+ 83 &1,

which is called the cycle transformation in the language of [39]. If m is odd, then there are two
equivalence classes of vertices, fixed, respectively, by the transformations

by = gmg,_nl_1 .. .g;lg] and by = g,_nlgm,] ...gzgl_l.
Thus the presentations defining the group G are

815y 8m ¢ bk=1> if m is even
(81r--r8gm @ (b = (b2)* =1) if m is odd.

The following is our main geometric inequality.

Theorem 4.2. Let P be a centrally symmetric, hyperbolic polygon satisfying the cycle condition, with
2m sides, and let S := {g1, ..., gm} be the set of hyperbolic translations identifying opposite sides of
P. Then we have

1
Z—1+ef<g> <. 4.1)

geS

Remarks. The inequality (4.1) has the same form as the main inequality in [ 1] and [14] for free Kleinian
groups; more recently, a stronger version for free Fuchsian groups has been obtained in [28], while
generalisations in variable curvature (and any dimension) are due to [29], [3].

Equation (4.1) is also reminiscent of McShane’s identity [40], where one obtains the equality by
taking the infinite sum over all group elements of a punctured torus group. Our inequality, however, does
not follow from any of them; in fact, it is in a way stronger than these, as a cocompact surface group
can be deformed to a finite covolume group and then to a Schottky (hence free) group by increasing the
translation lengths of the generators.

It is interesting to point out that the above inequalities have an interpretation in terms of hitting
measures of stochastic processes (see, e.g., [33]). Here, we go along the opposite route: we prove the
geometric inequality (4.1), and then we use it to conclude properties about the hitting measure.

Finally, there are generating sets of G for which equation (4.1) fails. Indeed, the mechanism behind
the inequality is that since all curves corresponding to (g;)”, intersect each other, by the collar lemma,
at most one of them can be short. In general, on a surface of genus g one can choose a configuration of
3g — 3 short curves and construct a Dirichlet domain for which the corresponding side pairing does not
satisfy equation (4.1).

INote that in the usual formulation of Poincaré’s theorem, there are two cases: if m is even, all vertices of P are identified by G;
if m is odd, there are two elliptic cycles corresponding to alternate vertices of P. If m is even and k = 1, the polygon P does not
satisfy the classical version of Poincaré’s theorem; but if P is symmetric, the group generated is still discrete, so all our arguments
still apply.
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Figure 2. Angles at the centre and vertices of a symmetric hyperbolic octagon.

The proof of this inequality will take up most of the paper until Section 6. To begin with, let us note
that a way to parametrise the space of all symmetric hyperbolic polygons is to write, by [10, Example

2.2.7],

cos(y;) = —cosh(a;) cosh(a;4+1) cos(a;) + sinh(a;) sinh(a;41) 4.2)
with i = 1,...,m, where (a;) are the distances between the base point and the ith side, («;) are the
angles at the origin and (vy;) are the angles at the vertices (see Figure 2). Since €(g;) > 2a;, it is enough
to show

under the constraints 3,7, @; = mand Y7, y; = 27”
The fundamental geometric idea in our approach to Theorem 4.2 is that two intersecting curves
cannot both be short, as a consequence of the collar lemma [9]. For instance, we get:

2(m-1)

Lemma 4.3. Suppose that there exists a; such that sinh(a;) < mm=2)

singular.

Then the hitting measure is

Proof. From the collar lemma [9], we have
sinh(a;) sinh(a;) > 1

for all i # j. Recall that

1+—2 =1- tanh(a),
e2a

and hence, if we set s := sinh(a;), we obtain for i # 1 that sinh(a;) > %; thus

sinh(a;) _ 1 1

tanh(a;) = = > ,
V1 +sinh(a;)? \/1 + W V1 + 52
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and hence

m—1

s
+
VI+s2 V1+s2

Z tanh(a;) >
i=1

2(m-1)

if and only if s < =)

To actually prove Theorem 4.2, however, we need an improvement on the previous estimate. Let us
rewrite equation (4.2) above as

cos(yi)
cosh(a;) cosh(a;y1)’

cos(a;) = tanh(a;) tanh(a;41) —
and recalling that

tanh?(x) +

b}

cosh?(x) -

we obtain, by setting z; = tanh(q;),

cos(a;) = zizis1 — cOs(yi)4[1 — 2241 = 22, (4.3)

with 0 < z; < 1. Finally, we want to show

which is equivalent to
mn ?
Dlays>m-1. (4.4
i=1

Now, let us first assume that y; < 7/2 for all 1 <i < m. Then equation (4.3) yields
cos(@;) < ZiZi+l,

and hence the constraint becomes

m
Z arccos(z;zi+1) < . 4.5)
i=1
Note that z; — 0 implies cosa; < z;zo — 0 and thus ) — % and cos a,, < z;»z1 — 0 and thus
@, — 5, and hence also 2, @3, . .., @m-1 — 0, which implies 22,23, ..., 2m — 1.

5. An optimisation problem

By the above discussion, if we set x; = 1 — z;, we reduce the proof of Theorem 4.2 (at least in the case
all angles of P are acute) to the following optimisation problem (see also Figure 3).
Theorem 5.1. Let m > 3 and 0 < x; < 1 with 3,;", x; = 1. Then

m

Zarccos((l —x;))(1 = xi41)) = 7.

i=1

Moreover, equality holds if and only if there exists an index i such that x; = 1 and x; = 0 for all j #1i.

https://doi.org/10.1017/fms.2022.94 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.94

Forum of Mathematics, Sigma 11

0.0

Figure 3. The graph of f(x) := Z?:l arccos((1 — x;) (1 — x;41)) subject to the constraint Z§=1 xi=1,
compared with the constant function at height ©. The lack of convexity (or concavity) of f makes the
proof of Theorem 5.1 trickier.

In the statement of Theorem 5.1 and elsewhere from now on, all indices i are meant modulo m. The
next is the main technical lemma.

Lemma 5.2. Let m > 3 and 0 < x; < 1 with 3", x; = 1. Then

m m
Z VXi 4+ Xip1 — XiXir1 = 4|4+ 3 Z XiXitl-
i=1 i=1

Proof. Set A; := x; + xj+1 — x;Xx;i+1. Note that
A; > max{x;, xis1},
and hence

VAANAL = x4 (5.1)

Moreover, since m > 2, we have x;41 +x;42 < 37, x; = 1, and hence if we multiply by (x;11 +x;42), we
obtain

Aj = Xj + Xyl = XiXigl
> (x; +Xip1) (Xis1 + Xi32) — XiXip1

2
2 X;q tXiv1Xis2.
Similarly, we obtain

Aiyd = Xig2 + Xit3 — Xi2Xi43
> (Xi42 +Xi43) (Xig1 + Xig2) — Xi42Xi43

2
2 Xipp T Xit1Xi42-
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Thus Cauchy-Schwarz yields

2
VAivA 2 \/ il +xt+1xt+2\/ o T X1 Xig2 2 2Xi41Xi+2.

By squaring both sides, our desired inequality is equivalent to

ZA 2 \/_\/_>4+3Zx,x,+1,

I<i<j<m

thus, using 27", A; =2 — 2™, X;x;41, it is enough to prove

Z \/_\/_>1+22xxl+1

I<i<j<m

Now note that

Z \/_\/_ Z\/_l A+ M

I<i<j<m
with

M=0 ifm=3
2

M=y VAN =
i=1

m
M2 NANAL if m > 5.
i=1

Thus for m > 5, we have, using equations (5.6), (5.1) and (5.2),

DR YRS oiertive
> ;Xm + Z;memz

n
> 1+ 2in+1xi+2’
i=1

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

which yields equation (5.3) and hence completes our proof The cases m = 3 and m = 4 need to be dealt

with separately. If m = 3, we obtain, by multiplying by Zl 1 xi=1,
3
A; = xiz +x?+] + Z XiXitl,
i=1

so by Cauchy-Schwarz, we get

3
2
VANVA 2 X7 + XX + inxm,
i=1
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and hence

3 3

Z\/A_l Ayl = lez +4Z3:xl'xl'+1
i=1

i=1 i=1

300\2 3
= (Zx,-) +22xix,-+1
i=1 i=1

3

=1 +szixi+l,
i=1

which yields equation (5.3), as desired. Finally, if m = 4, then we note

3, S = Y Vi AR

1<i<j<4

and, again by Cauchy-Schwarz,

VAVA3 > \/xf + x% +X1X4 +xpc3\/x§ +xi + X1Xq + X2X3 > 2X1X4 + 2X2X3
and similarly

\/A_zx/A_4 > 2x1X2 + 2x3X4;

thus, using equation (5.1),

Z \/_\/_ le+22xx,+1—1+22xx1+1,

I<i<j<4
which is again equation (5.3). This completes the proof. O

Lemma 5.3. For 0 < x < 1, we have these inequalities:

1.
2 2 1
Zarccos(l —x) > ZVx + =x
Vs 3 3

with equality if and only if x =0 orx =1;

with equality if and only if x = 0.
Proof. For the first inequality, let f(x) := = arccos(l -x?)— —x - —x . One checks that f(0) = f(1) =

and f(\f) 5— i > 0; moreover, f’(x) has aunique zeroin [0, 1]. Hence, f(x) > Oforall0 < x < 1,
which 1rnphes (1).

To prove (2), let g(x) := 2v4 + 3x + 23X Then one checks g(0) = 2 and g’(x) = \/@ - % > 0 for
0<x< l,whichimpliesg(x) 22f0ra110$x <1 O

https://doi.org/10.1017/fms.2022.94 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.94

14 P. Kosenko and G. Tiozzo

Proof of Theorem 5.1. By setting f(x) := = arccos(l — x), our claim is equivalent to
m
Z F X+ xi1 = XiXin) 2 2
i=1

under the constraint ;" x; = 1, withm >3 and 0 <x; < 1.
Letus set A; 1= x; + X1 — X;Xi41 and 0 := 2, x;x;41. Observe that 200 < (X7, x;)%> = 1. Then we
have, by Lemma 5.3,

UJI[\.)

RN
i=1 i=1

and using Lemma 5.2 and the fact };”; A; = 2 — o, we obtain

ﬁ'ugﬂ 3

2 1
> §V4+30'+§(2—0') >2,

where in the last step, we apply Lemma 5.3 (2). This completes the proof of the inequality. By
Lemma 5.3 (1), equality implies that A; = 0, 1 for every 7, which in turn implies that x; = 0, 1 for all i.
Since )", x; = 1, this can only happen if x; = 1 for exactly one index i. O

6. The obtuse angle case

The proof in the previous section works as long as all angles y; are less than or equal to 7/2. If one of
them is obtuse, we have a geometric argument to reduce ourselves to that case.

6.1. Neutralising pairs

We call a neutralising pair for P a pair {y;, y;+1} of adjacent interior angles of P with y; + y;41 < 7.
Whenever we have a neutralising pair, we can apply the following lemma (see Figure 4).

Lemma 6.1. Let ABCDE be a hyperbolic pentagon with right angles B and E, and suppose that
C <n/2and C + D < n. Then there exist points F on the line BC and G on the line ED such that the
hyperbolic pentagon ABFGE satisfies F < /2 and G < /2.

E E

Figure 4. The hyperbolic pentagon of Lemma 6. 1.
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Proof. Let M be the midpoint of CD, and let F be the foot of the orthogonal projection of M to BC.
If the intersection, which we denote as G, of the lines FM and ED exists, then we claim that the angle
6 = DGF satisfies § < /2.

To see this, let F” be the symmetric point to ¥ with respect to M. Then CFM and DM F’ are equal
triangles. Hence EDF’ =EDM +MDF’ = EDC + -BCD < r, and hence F” lies on the segment MG.
Moreover, DF’M = CFM = 7/2, and hence § = DGM < /2.

If the lines FM and ED do not intersect, we take as G the foot of the perpendicular from M to the
line ED, and we define as F”’ the intersection of GM with the line BC. Then the hyperbolic pentagon
ABF'GE satisfies F” < /2 and G = 7/2, so the claim follows by replacing F by F”. O

We say that P has disjoint neutralising pairs if there is a set IT := {{y;, vi,+1}> - - {Vie,> Vie+1 1} Of
neutralising pairs such that each obtuse angle of P belongs to some pair in I1, and the pairs are disjoint:

that is, {y;,, ¥i.+1} N {Vi,.Vi,+1} = 0 for any r # s.
Let us use the notation

¢ 1
e(x1,x2, ..., Xm) = Z
i

0 14e2x°

Proposition 6.2. Let P be a centrally symmetric hyperbolic polygon with 2m sides and centre o, and
let €1, ..., 0y be the distances between o and the midpoints of the sides. If P has disjoint neutralising
pairs, there exists a centrally symmetric hyperbolic 2m-gon P’ with no obtuse angles and such that

(b1, b, ... ln) < @(d], 5, ..., dy),

where d] is the distance between o and the ith side of P’.

Proof. Let us denote as d; the distance between o and the ith side of P. Note that by definition, d; < ¢;
for all i.

If the polygon P only has acute angles, we take P = P’ and note that by definition, d; = d; < ¢,
which yields the claim.

Suppose now that the hyperbolic polygon P has one obtuse angle, say y;, which belongs to a
neutralising pair, and let £; correspond to the side adjacent to the obtuse angle and the other angle, say
72, in the neutralising pair. Consistently with this choice, let us denote as sy, 52, . . . , S2,, the sides of P.

Let us now consider the hyperbolic pentagon delimited by s5,,, 51, $2 and the orthogonal projections
from o to s, and s7,,. Let us call this pentagon ABCDE, where o = A, the side s is denoted DC, the
orthogonal projection from o to s, is B and the orthogonal projection from o to s, is E.

Using Lemma 6.1, let us replace P by a new polygon P’ obtained by substituting the pentagon
ABCDE by the pentagon ABFGE, which satisfies F = 7/2 and G < n/2. If we denote by dj the

distance between o = A and F G, then we have

d| =d(A,FG) < 4.

On the other hand, note that for i = 2, ..., m, the distance between o and the ith side is the same for P
and P’. That is, d; = d] fori = 2, ..., m. Hence,

(p(fl,fz,...,fm) < (p(f],dz,...,dm) < (p(di,dg,...,dm) = (,D(di,dé,,d:n)

If there is more than one neutralising pair (by symmetry, the number of neutralising pairs is even), we
can analogously replace each side adjacent to the pair by rotating it around its midpoint. This proves the
claim. O
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6.2. The general case

Let ( pi)t.zjf denote the vertices of P and (qi)l.zz”l‘ denote the midpoints of the sides, indexed so that g; lies
between p;_; and p;. Let o denote the centre of symmetry of P. Let @; = q;0q;+1 be the angles at the
origin and y; = ¢;p;qi+1 the angles at the vertices of P. By the cycle condition and symmetry, we have

m m 0
Z a; =7, Zyt = 73
i=1 i=1

where k > 1 is an integer. Note that if k > 2, at most one of the y; is obtuse, and hence P has disjoint
neutralising pairs. However, if kK = 1, P need not have disjoint neutralising pairs; in particular, it may
have three consecutive obtuse angles. To deal with this case, we need the notion of a dual polygon.

6.3. Dual polygons

Given a centrally symmetric polygon P with centre o and sum of angles 4, we construct its dual polygon
P as follows.

Let Q; be the quadrilateral delimited by o, g;, pi, gi+1. As in Figure 5, we can cut and rearrange the
Q;s with 1 < i < m as follows. Glue all vertices (p;)]", to a single point, which we now denote as v,
so that the Q;s with 1 < i < m lie in counterclockwise order around v. Since Z . vi = 2m, the copies
of Q; fit together, creating a new polygon P with m sides. By construction, the sides of P have lengths
201, ..., 20y, with &; = d(o, g;). Also by construction, the angles of P are ai, ..., &y, and hence their
sum is Z:’z’l @; =7

We define the pair (P, v) to be the dual polygon to (P, 0).

The duality relation

(P,0) & (P,v)

defines a bijective correspondence between centrally symmetric 2m-gons with sum of angles 47 and
m-gons with the sum of angles n together with a choice of a point inside them.

To see that this is a bijection, let us construct the inverse map as follows: given an m-gon Panda point
v inside it, denote as vy, . . ., v, its vertices. Decompose P as the union of m quadrilaterals Ry, ..., Ry,
by drawing the segments joining v and the midpoints of the sides of P; then take copies of the polygons
Ri,...,Ru, Ry, ..., Ry and glue them in this order by identifying all v;s to a point, which we call o.
This will create a polygon P whose sum of angles is twice the sum of internal angles of P, and hence
4. Moreover, by construction, this polygon is centrally symmetric about the point o.

Given a polygon P with 2m sides and a point o inside P, we define

|
2(P) = Z 1+e2t’

where {; are the segments connecting o and the midpoint of the itk side. Let us also define

= 1
2(P) = ; 1 +esi’
where s; are the lengths of the sides of P. Then note that we have
(P) = X(P).
In particular, £(P) does not depend on v but only on P.
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/3

i}i

Figure 5. The construction of the dual polygon. Top: the polygon P, in blue. Bottom: the dual polygon
P, in red. The angles «; at the origin in P become the angles at the vertices of P; on the other hand, the
angles vy; at the vertices of P become the angles at the point vV in the interior of P. Quadrilaterals of the
same colour are congruent. The point V is the common intersection of the four coloured regions in the

bottom picture.
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Lemma 6.3. Let P be a centrally symmetric hyperbolic polygon with 2m sides and the total sum of its
interior angles 4n. Then there exists a centrally symmetric hyperbolic polygon P’ with the same number
of sides so that X(P) = X(P’) so that P’ has at most four obtuse angles, which belong to disjoint
neutralising pairs.

Proof. Let P be the dual polygon to P, as defined above. We claim that we can pick another point v’
inside P so that at most two of the angles at v’ are obtuse.

To do this, let (r;)!", be the midpoints of the sides of P, join r{ and r3 by a segment, and pick any
point v’ in the interior of that segment. Then consider the angles y/ := r,@ riz1 wWith 1 < i < m. Since
2?:1 y{ =mand };”; ¥/ = &, at most two of the angles v/ with 1 <i < m can be obtuse.

Then we define P’ to be the dual of (13 v’). Since P and P’ have the same dual, we have X(P) = Z(P’).
By our previous choice of v/, in P’, there are at most 4 obtuse angles ylf , and there are no three consecutive
obtuse angles; hence, for all of them there exists another adjacent angle y/,, so that y; +y/ , < .
Hence, P’ has neutralising pairs. O

By putting together these reductions, we can complete the proof of Theorem 4.2. Let us see the
details.

Proof of Theorem 4.2. Let us first suppose that y; < x/2 for all i. We know by equation (4.5) that
Z;’;l arccos(z;zi4+1) < m with 0 < z; < 1. Then we need to show that Z:’il z; > m — 1. Suppose not;
then there exists z; with ", z; < m — 1. Then there exists (z)2, with 0 < z; < 7/ < 1 for all 7, so that
2z =m — 1. Then we have, by Theorem 5.1, 7 < 3772, arccos(z/z/,,) < X2, arccos(z;zi+1) < 7, and
hence 372, arccos(z/z.,,) = 7, which by the second part of Theorem 5.1 implies z; = 0 for some i, and
hence also z; = 0, which is a contradiction.

In the general case, we first apply Lemma 6.3 to reduce to the case where P has disjoint neutralising
pairs. Then by applying Proposition 6.2, we reduce to the case of P having no obtuse angles, which we
can deal with as above. This completes the proof. O

Proof of Theorem 1.2. Theorem 4.2 shows that the criterion of Theorem 3.1 holds, proving the singu-
larity of hitting measure. O

7. Coxeter groups

Let P be a centrally symmetric convex polygon with 2m sides in HZ, with each angle y; at the vertices
being equal to k—’: for some natural k; > 1, for 1 <i < 2m. Then due to [15, Theorem 6.4.3], the group
of isometries generated by hyperbolic reflections R := {ry, ..., ry,} with respect to the sides of P acts
geometrically on H?. Therefore, it is a hyperbolic group, so Theorem 2.2 can be applied to it. Such
groups are referred to as hyperbolic Coxeter groups.

Below, we will show that Theorem 1.2 can be quickly generalised to hyperbolic Coxeter groups.

Lemma 7.1. Let m > 1. Consider a random walk on the free product of 2m copies of Z/2Z
F, = <s1,...,s2m | s? = 1>,

defined by a probability measure i on the generators. If we denote x; := F,(1,s;) for 1 <i < 2m and
the hitting measure on the boundary of F; by v, then
X

V(C(s) = 75—

Proof. The proof of this lemma can be obtained similarly to the proof of Lemma 2.4 for F),, because
the Cayley graphs for F,, and F;  are isometric.
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More precisely, a sample path converges to the boundary of the cylinder C(s;) if and only if it crosses
the edge s; an odd number of times. This leads to the following computation:

v(C(si)) =Pl - s;» 1H)+P(l > s5; > 1>s5;»1)+---=

= ZF”(I,Si)an(l - Fy(l’si))
n=0

Z( ) K 1 +x;
k=1
A measure p on the set R = {ry, ..., ry,} of reflections through the sides of P is called geometrically

symmetric if u(r;) = p(rizm) foreach 1 <i < m.

Theorem 7.2. Let 1 denote a geometrically symmetric measure supported on the generators R =
{r1,...,ram} of a hyperbolic Coxeter group. Suppose that

S 1 1
ZI: 1+e[(r[r[+,,-,)/2 < E (71)
i=

Then the hitting measure v in 0D is singular with respect to the Lebesgue measure.

Proof. The proof of this theorem is quite similar to the proof of Theorem 3.1. We consider a measure

fi on a free product (hl, ey hom | hl2 = 1> of 2m copies of Z/27Z uniquely defined by fi(h;) = u(r;).
If v were to be absolutely continuous, then a similar argument would yield that

C(ririvm) < dy (L, ririgm) < dy(1, 1) +dy (1, 1i4m)
< dﬁ(l,/’li) +dﬂ(1,h,‘+m) = 20’,1(1,/’1,‘) = —210g X;.

Keep in mind that d;z(1, ;) = d;(1, hiy,,) due to fi being geometrically symmetric as well. Therefore,

Xi 1
< 9
1+x; = 1+ eltirim)/2

and due to Lemma 7.1, we obtain

= Xi - 1
1
= < _—
1 £ 1+x; _221 1+e€(riri+m)/2 < 1’
i=

3

4

1l
—_

which delivers a contradiction. O

Theorem 7.3. The hitting measure of a nearest-neighbour random walk generated by a geometrically
symmetric measure on a Coxeter group associated with a centrally symmetric polygon is singular with
respect to Lebesgue measure on 0D.

Proof. Let us recall that (g;)", denotes the translations identifying the opposite sides of P. It is easily

seen that £(r;7iym) = 20(g;) = 26(giym) for every 1 < i < m. However, we can apply Theorem 4.2,
because there are no obtuse angles, to get
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L 2 1
Z 1 + el (ririem) /2 - Z 1+ el <l
i=1 ges

We conclude the proof by applying Theorem 7.2. O
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