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Abstract
We prove that the hitting measure is singular with respect to the Lebesgue measure for random walks driven by
finitely supported measures on cocompact, hyperelliptic Fuchsian groups. Moreover, the Hausdorff dimension of
the hitting measure is strictly less than one. Equivalently, the inequality between entropy and drift is strict. A similar
statement is proven for Coxeter groups.

1. Introduction

Let 𝐺 < 𝑆𝐿2 (R) be a countable group and 𝜇 be a finitely supported, generating probability measure on
G. We consider the random walk

𝑤𝑛 := 𝑔1𝑔2 . . . 𝑔𝑛,

where each (𝑔𝑖) is independent and identically distributed with distribution 𝜇. Let us fix a base point
𝑜 ∈ H2. Then the hitting measure 𝜈 of the random walk on 𝑆1 = 𝜕D is

𝜈(𝐴) := P
(

lim
𝑛→∞

𝑤𝑛𝑜 ∈ 𝐴
)

for any Borel set 𝐴 ⊆ 𝜕D. The hitting measure is also the unique 𝜇-harmonic, or 𝜇-stationary, measure,
as it satisfies the convolution equation 𝜈 = 𝜇 ★ 𝜈. On the other hand, the boundary circle 𝜕D = 𝑆1 also
carries the Lebesgue measure, which is the unique rotationally invariant measure on 𝑆1.

In the 1970s, Furstenberg [19] proved that for any discrete subgroup of 𝑆𝐿2 (R), there exists a measure
𝜇 such that the hitting measure of the corresponding random walk is absolutely continuous with respect
to the Lebesgue measure. This was the first step to produce boundary maps, eventually leading to rigidity
results. However, such measures 𝜇 are inherently infinitely supported, as they arise from discretisation
of Brownian motion (see also [38]). Another construction of absolutely continuous hitting measures,
still infinitely supported, on general hyperbolic groups is given by [12].

For finitely supported measures, though, the situation is quite different. For any finitely supported
measure 𝜇 on 𝑆𝐿2 (Z), it is known since Guivarc’h-LeJan [27] that the hitting measure is singular.
Kaimanovich-LePrince [31] produced on any countable Zariski dense subgroup of 𝑆𝐿𝑑 (R) examples
of finitely supported measures with singular hitting measure.

They also formulated the following singularity conjecture.
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Figure 1. A symmetric hyperbolic octagon. Sides of the same colour are identified by the Fuchsian
group.

Conjecture 1.1 ([31], page 259). For any finitely supported measure 𝜇 on 𝑆𝐿𝑑 (R) whose support
generates a discrete subgroup, the hitting measure for the random walk driven by 𝜇 is singular with
respect to the Lebesgue measure.

This conjecture has been mentioned several times; see also [25, Remark 1.1], [30, page 817] and [5,
Question (vi)]. In this paper, we focus on the case 𝑑 = 2. Let 𝐺 < 𝑆𝐿2 (R) be the subgroup generated by
the support of 𝜇. Recall that a discrete subgroup of 𝑆𝐿2 (R) is called a Fuchsian group and is cocompact
if the quotient Σ = D/𝐺 is compact.

If G is discrete but not cocompact (which includes the case𝐺 = 𝑆𝐿2 (Z)), the conjecture is known; in
fact, there are many approaches to this result and several generalisations in many contexts with different
proofs ([27], [7], [16], [31], [21], [22], [17], [42]), all of which exploit in various ways the fact that the
cusp subgroup is highly distorted in G.

Note that if one drops the hypothesis that G be discrete, then Conjecture 1.1 no longer holds: there
exist finitely supported measures on 𝑆𝐿2 (R) for which the hitting measure is absolutely continuous ([8],
[4]), but the group generated by their support is not discrete (see also [31, Footnote 1]).

Thus the only case still open is when G is a cocompact Fuchsian group. In this case, the hyperbolic
metric and the word metric on G are quasi-isometric to each other, and hence distortion arguments do
not work. So far, the only known examples are the recent ones from [32] and [11], where the singularity
of hitting measure is proven for cocompact Fuchsian groups whose fundamental domain is a regular
polygon (except for a finite number of cases with few sides). These examples form a countable family.

In this paper, we prove Conjecture 1.1 for any hyperelliptic, cocompact Fuchsian group for measures
supported on the canonical generating set.

Recall that a hyperelliptic surface is a Riemann surface Σ with a holomorphic involution 𝑗 : Σ → Σ.
Any hyperelliptic surface can be uniformised as the quotient Σ = D/𝐺, where G is a Fuchsian group
with fundamental domain a centrally symmetric hyperbolic polygon P, and generators of G are given
by hyperbolic translations joining opposite sides of P (see Figure 1 and e.g., [23], [13]). We call such
G a hyperelliptic Fuchsian group and such a generating set the canonical generating set of G. In order
for G to be discrete, P needs to satisfy the cycle condition from Poincaré’s theorem (see Definition 4.1).
The space of hyperelliptic Fuchsian groups of genus g is a complex variety of dimension 2𝑔 − 1. Our
main result is the following.

Theorem 1.2. Let P be a centrally symmetric hyperbolic polygon in the Poincaré diskD, with 2𝑚 sides,
satisfying the cycle condition, and let 𝑆 := {𝑡1, 𝑡2, . . . , 𝑡2𝑚} be the hyperbolic translations that identify
opposite sides of P. Then for any measure 𝜇 supported on the set S, the hitting measure 𝜈 on 𝑆1 = 𝜕D
is singular with respect to Lebesgue measure. Moreover, the Hausdorff dimension of 𝜈 is strictly less
than 1.
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If m is even, the above construction yields the standard presentation of a hyperelliptic Fuchsian group
of genus 𝑔 = 𝑚

2 ; if m is odd, we also obtain a discrete cocompact group of genus 𝑔 = 𝑚−1
2 .

To compare with [11] and [32], the authors of [11] use percolation to obtain a formula for the drift of
the random walk, and then they obtain an asymptotic lower bound for the drift as the number of sides
tends to ∞. Kosenko [32] obtains, in the regular case, explicit lower bounds for the translation lengths
using hyperbolic geometry without resorting to approximation by percolation. When the fundamental
polygon is not regular, an explicit bound on all translation lengths is not possible, as some translation
lengths may be short, decreasing the drift. In particular, there is the risk that assigning a large probability
to an element with a short translation length may result in the dimension of the measure going to 1.
In this paper, we show that this phenomenon cannot happen, as the discreteness of the group forces at
least some generators to have a large translation length. This subtle geometric balance is given by the
inequality from Theorem 1.5.

Finally, if one replaces the random walk with a Brownian motion, then absolute continuity of
harmonic measure only holds if the underlying manifold is highly homogeneous: to be precise, on a
negatively curved surface, the hitting measure is absolutely continuous if and only if the curvature is
constant ([36], [37]).

The fundamental inequality

This problem is closely related to the following ‘numerical characteristics’ of random walks. Recall that
the entropy [2] of 𝜇 is defined as

ℎ := lim
𝑛→∞

−
∑

𝑔∈𝐺 𝜇
𝑛 (𝑔) log 𝜇𝑛 (𝑔)
𝑛

and the drift, or rate of escape, is

ℓ := lim
𝑛→∞

𝑑H(𝑜, 𝑤𝑛𝑜)
𝑛

,

where 𝑑H denotes the hyperbolic metric and the limit exists almost surely. The drift also equals the
classical Lyapunov exponent for random matrix products [20]. Finally, the volume growth of G is

𝑣 := lim sup
𝑛→∞

1
𝑛

log #{𝑔 ∈ 𝐺 : 𝑑H(𝑜, 𝑔𝑜) ≤ 𝑛}.

The inequality

ℎ ≤ ℓ𝑣 (1.1)

has been established by Guivarc’h [26] and is called the fundamental inequality by Vershik [44]. Several
authors (e.g., [44, Question A]) have asked:
Question 1.3. Under which conditions is inequality (1.1) an equality?

For discrete, cocompact actions, Question 1.3 is equivalent to Conjecture 1.1: indeed, by [7] (see
also [25] and Theorem 2.2), inequality (1.1) is strict if and only if the hitting measure is singular with
respect to the Lebesgue measure.

If one replaces the hyperbolic metric 𝑑H with a word metric 𝑑𝑤 on G, then [25] prove that the
inequality is strict unless the group G is virtually free. Observe that cocompact Fuchsian groups are not
virtually free; however, the drift for 𝑑H and the drift for 𝑑𝑤 are not the same (in fact, one has ℓ𝑑H < ℓ𝑑𝑤 ),
and hence the result from [25] does not settle Question 1.3 or Conjecture 1.1. Note that for a cocompact
Fuchsian group, it is well-known that 𝑣 = 1 (see, e.g., [41]).

Our result also has consequences on the Hausdorff dimension of the hitting measure. Recall that the
Hausdorff dimension of a measure 𝜈 on a metric space is the infimum of the Hausdorff dimensions of
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subsets of full measure. Moreover, by [35], [43], [30], for cocompact Fuchsian groups, the Hausdorff
dimension dim𝐻 (𝜈) of the hitting measure satisfies, for almost every 𝑥 ∈ 𝑆1,

dim𝐻 (𝜈) = lim
𝑟→0+

log 𝜈(𝐵(𝑥, 𝑟))
log 𝑟

=
ℎ

ℓ
,

where 𝐵(𝑥, 𝑟) is a ball of centre x and radius r. Thus Theorem 1.2 implies:

Corollary 1.4. Under the hypotheses of Theorem 1.2, the inequality ℎ < ℓ is strict. Hence, the hitting
measure 𝜈 has a Hausdorff dimension strictly less than one.

A geometric inequality

The approach of this paper is based on the fact that cocompactness forces at least some of the generators
to have long enough translation lengths (this is related to the collar lemma: two intersecting closed
geodesics cannot be both short at the same time; also, the quotient Riemann surface has a definite
positive area). Indeed, in Theorem 3.1, we prove a criterion for singularity in terms of the translation
lengths of the generators, and then we show the following purely geometric inequality.

Theorem 1.5. Let P be a centrally symmetric polygon with 2𝑚 sides, satisfying the cycle condition, and
let 𝑆 := {𝑔1, . . . , 𝑔2𝑚} be the set of hyperbolic translations identifying opposite sides of P. Then we have∑

𝑔∈𝑆

1
1 + 𝑒ℓ (𝑔)

< 1, (1.2)

where ℓ(𝑔) denotes the translation length of g in the hyperbolic metric.

Interestingly, our geometric inequality has exactly the same form as the main inequalities of [14], [1]
for free Kleinian groups. However, it is not a consequence of theirs; see Section 4.

Coxeter groups

We also prove the following version of Theorem 1.2 for reflection groups.

Theorem 1.6. Let P be a centrally symmetric, hyperbolic polygon with 2𝑚 sides and interior angles 𝜋
𝑘𝑖

,
with 𝑘𝑖 ∈ N+ for 1 ≤ 𝑖 ≤ 2𝑚. Let 𝜇 be a probability measure supported on the set 𝑅 := {𝑟1, . . . , 𝑟2𝑚}
of hyperbolic reflections on the sides of P, with 𝜇(𝑟𝑖) = 𝜇(𝑟𝑖+𝑚) for all 1 ≤ 𝑖 ≤ 𝑚. Then the hitting
measure for the random walk driven by 𝜇 is singular with respect to the Lebesgue measure. Moreover,
the inequality ℎ < ℓ is strict, and the hitting measure 𝜈 has a Hausdorff dimension strictly less than one.

2. Preliminary results

Let 𝜇 be a probability measure on a countable group G. We assume that 𝜇 is generating: that is, the
semigroup generated by the support of 𝜇 equals G. We define the step space as (𝐺N, 𝜇N) and the map
𝜋 : 𝐺N → 𝐺N as 𝜋((𝑔𝑛)𝑛∈N) := (𝑤𝑛)𝑛∈N, with for any n

𝑤𝑛 := 𝑔1𝑔2 . . . 𝑔𝑛.

The target space of 𝜋 is denoted by Ω and called the path space; as a set, it equals 𝐺N and is equipped
with the measure P𝜇 := 𝜋★(𝜇N).

Then we define the first-passage function 𝐹𝜇 (𝑥, 𝑦) as

𝐹𝜇 (𝑥, 𝑦) := P𝜇 (∃𝑛 : 𝑤𝑛𝑥 = 𝑦)
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for any 𝑥, 𝑦 ∈ 𝐺, and the Green metric 𝑑𝜇 on G, introduced in [6], as

𝑑𝜇 (𝑥, 𝑦) := − log 𝐹𝜇 (𝑥, 𝑦).

The following fact is well-known.

Lemma 2.1. Let 𝑝 : 𝐺 → 𝐻 be a group homomorphism, let 𝜇 be a probability measure on G, and let
𝜇 := 𝑝★𝜇. Then for any 𝑥, 𝑦 ∈ 𝐺,

𝑑𝜇 (𝑝(𝑥), 𝑝(𝑦)) ≤ 𝑑𝜇 (𝑥, 𝑦).

Proof. Since p induces a map from paths in G to paths in H, we have 𝜇𝑛 (𝑝(𝑔)) ≥ 𝜇𝑛 (𝑔) for any 𝑔 ∈ 𝐺,
any 𝑛 ≥ 0. Hence

P𝜇 (𝑝(𝑥), 𝑝(𝑦)) ≥ P𝜇 (𝑥, 𝑦)

for any 𝑥, 𝑦 ∈ 𝐺, from which the claim follows. �

We shall use the following criterion, which relates the absolute continuity of the hitting measure to the
fundamental inequality. Recall that a group action is geometric if it is isometric, properly discontinuous
and cocompact.

Theorem 2.2 ([7, Corollary 1.4, Theorem 1.5], [43], [24]). Let Γ be a non-elementary hyperbolic group
acting geometrically on H2, endowed with the geometric distance 𝑑 = 𝑑H induced from the action.
Consider a generating probability measure 𝜇 on Γ with finite support. Then the following conditions
are equivalent:

1. The equality ℎ = ℓ𝑣 holds.
2. The Hausdorff dimension of the hitting measure 𝜈 on 𝑆1 is equal to 1.
3. The measure 𝜈 is equivalent to the Lebesgue measure on 𝑆1.
4. For any 𝑜 ∈ H2, there exists a constant 𝐶 > 0 such that for any 𝑔 ∈ Γ, we have

|𝑑𝜇 (1, 𝑔) − 𝑑H(𝑜, 𝑔𝑜) | ≤ 𝐶.

For each 𝑔 ∈ 𝐺, let ℓ(𝑔) denote its translation length, namely

ℓ(𝑔) := lim
𝑛→∞

𝑑H(𝑜, 𝑔𝑛𝑜)
𝑛

.

Equivalently, ℓ(𝑔) is the length of the corresponding closed geodesic on the quotient surface. The
mechanism to utilise Theorem 2.2 is through the following lemma, similar to the one from [32].

Lemma 2.3. Suppose that the hitting measure is absolutely continuous. Then for any 𝑔 ∈ 𝐺, we have

ℓ(𝑔) ≤ 𝑑𝜇 (1, 𝑔).

Proof. If not, then ℓ(𝑔) > 𝑑𝜇 (1, 𝑔) ≥ 0, and hence g is loxodromic. Let us pick some 𝑜 ∈ H2, which
lies on the axis of g, so that 𝑑H(𝑜, 𝑔𝑘𝑜) = ℓ(𝑔𝑘 ) = 𝑘ℓ(𝑔) for any k. Moreover, by the triangle inequality
for the Green metric, one has 𝑑𝜇 (1, 𝑔𝑘 ) ≤ 𝑘𝑑𝜇 (1, 𝑔), and hence

𝑑H(𝑜, 𝑔𝑘𝑜) − 𝑑𝜇 (1, 𝑔𝑘 ) ≥ 𝑘ℓ(𝑔) − 𝑘𝑑𝜇 (1, 𝑔) = 𝑘 (ℓ(𝑔) − 𝑑𝜇 (1, 𝑔));

thus, since ℓ(𝑔) − 𝑑𝜇 (1, 𝑔) > 0,

sup
𝑘∈N

��𝑑H(𝑜, 𝑔𝑘𝑜) − 𝑑𝜇 (1, 𝑔𝑘 )�� = +∞,

which contradicts Theorem 2.2. �
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Let F be a free group, freely generated by a finite set S. Recall that the (hyperbolic) boundary 𝜕𝐹 of
F is the set of infinite, reduced words in the alphabet 𝑆 ∪ 𝑆−1. Given a finite, reduced word g, we denote
as 𝐶 (𝑔) ⊆ 𝜕𝐹 the cylinder determined by g, namely the set of infinite, reduced words that start with g.

Lemma 2.4. Consider a random walk on the free group

𝐹𝑚 =
〈
𝑠±1

1 , . . . , 𝑠
±1
𝑚

〉
,

defined by a probability measure 𝜇 on the generators. If we denote 𝑥𝑖 := 𝐹𝜇 (1, 𝑠𝑖), 𝑥𝑖 := 𝐹𝜇 (1, 𝑠−1
𝑖 ) and

the hitting measure on the boundary of 𝐹𝑚 by 𝜈, then

𝜈(𝐶 (𝑠𝑖)) =
𝑥𝑖 (1 − 𝑥𝑖)
1 − 𝑥𝑖𝑥𝑖

.

A similar lemma is stated in [34, Exercise 5.14].

Proof. For any infinite word 𝑤 = 𝑠 𝑗1 𝑠 𝑗2 𝑠 𝑗3 . . . , there exist two possibilities:

1. There exists a subword 𝑠 𝑗1 . . . 𝑠 𝑗𝑘 such that it equals 𝑠𝑖 in 𝐹𝑚.
2. No subword 𝑠 𝑗1 . . . 𝑠 𝑗𝑘 equals 𝑠𝑖 , so it belongs to the set of paths that never hit 𝑠𝑖 .

In the first case, we denote this subword by 𝑤1, and we consider 𝑤−1
1 𝑤; we apply the same procedure,

but replacing 𝑠𝑖 with 𝑠−1
𝑖 at each subsequent step. This procedure yields the equality

𝜈(𝐶 (𝑠𝑖)) = P(1 → 𝑠𝑖 � 1) + P(1 → 𝑠𝑖 → 1 → 𝑠𝑖 � 1) + · · · =

=
∞∑
𝑛=0

𝐹𝜇 (1, 𝑠𝑖)𝑛+1𝐹𝜇 (1, 𝑠−1
𝑖 )𝑛 (1 − 𝐹𝜇 (1, 𝑠−1

𝑖 ))

= 𝐹𝜇 (1, 𝑠𝑖) (1 − 𝐹𝜇 (1, 𝑠−1
𝑖 ))

∞∑
𝑛=0

(
𝐹𝜇 (1, 𝑠𝑖)𝐹𝜇 (1, 𝑠−1

𝑖 )
)𝑛

=
𝑥𝑖 (1 − 𝑥𝑖)
1 − 𝑥𝑖𝑥𝑖

.

�

3. A criterion for singularity

Theorem 3.1. Let 𝜇 be a finitely supported measure on a cocompact Fuchsian group, and let S be the
support of 𝜇. Suppose that ∑

𝑔∈𝑆∪𝑆−1

1
1 + 𝑒ℓ (𝑔)

< 1. (3.1)

Then the hitting measure 𝜈 on 𝜕D is singular with respect to the Lebesgue measure.

Proof. Denote as (𝑔±𝑖 )𝑚𝑖=1 the elements of 𝑆∪𝑆−1, let F be a free group of rank m with generators (ℎ𝑖)𝑚𝑖=1,
and let 𝜇 be a measure on F with 𝜇(ℎ±𝑖 ) = 𝜇(𝑔±𝑖 ). Moreover, let us denote

𝑥𝑖 := 𝐹𝜇 (1, ℎ𝑖) = P𝜇 (∃𝑛 : 𝑤𝑛 = ℎ𝑖)
𝑥𝑖 := 𝐹𝜇 (1, ℎ−1

𝑖 ).

Then we have

𝑚∑
𝑖=1

(
𝑥𝑖 (1 − 𝑥𝑖)
1 − 𝑥𝑖𝑥𝑖

+ 𝑥𝑖 (1 − 𝑥𝑖)
1 − 𝑥𝑖𝑥𝑖

)
= 1. (3.2)
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Indeed, if 𝜈̃ is the hitting measure on 𝜕𝐹, by Lemma 2.4, the measure of the cylinder 𝐶 (ℎ𝑖) starting
with ℎ𝑖 is

𝜈̃(𝐶 (ℎ𝑖)) =
𝑥𝑖 (1 − 𝑥𝑖)
1 − 𝑥𝑖𝑥𝑖

, 𝜈̃(𝐶 (ℎ−1
𝑖 )) = 𝑥𝑖 (1 − 𝑥𝑖)

1 − 𝑥𝑖𝑥𝑖
,

from which, since the cylinders are disjoint and cover the boundary, equation (3.2) follows.
Then by equation (3.1), there exists an index i such that

2
1 + 𝑒ℓ (𝑔𝑖)

<
𝑥𝑖 (1 − 𝑥𝑖)
1 − 𝑥𝑖𝑥𝑖

+ 𝑥𝑖 (1 − 𝑥𝑖)
1 − 𝑥𝑖𝑥𝑖

,

which is equivalent to

𝑒ℓ (𝑔𝑖 ) >
2 − 𝑥𝑖 − 𝑥𝑖

𝑥𝑖 + 𝑥𝑖 − 2𝑥𝑖𝑥𝑖
.

Finally, an algebraic computation yields

2 − 𝑥𝑖 − 𝑥𝑖
𝑥𝑖 + 𝑥𝑖 − 2𝑥𝑖𝑥𝑖

≥ min
{

1
𝑥𝑖
,

1
𝑥𝑖

}
,

and thus we obtain

ℓ(𝑔𝑖) > inf{− log 𝑥𝑖 ,− log 𝑥𝑖}. (3.3)

If the hitting measure 𝜈 on 𝑆1 = 𝜕D is absolutely continuous, then by Lemma 2.3 and Lemma 2.1,
we get

ℓ(𝑔𝑖) ≤ 𝑑𝜇 (1, 𝑔𝑖) ≤ 𝑑𝜇 (1, ℎ𝑖) = − log 𝑥𝑖

for any i. If we apply the same inequality to 𝑔−1
𝑖 , we also have

ℓ(𝑔𝑖) = ℓ(𝑔−1
𝑖 ) ≤ 𝑑𝜇 (1, 𝑔−1

𝑖 ) ≤ 𝑑𝜇 (1, ℎ−1
𝑖 ) = − log 𝑥𝑖 ,

and hence

ℓ(𝑔𝑖) ≤ inf{− log 𝑥𝑖 ,− log 𝑥𝑖},

which contradicts equation (3.3), showing that 𝜈 is singular with respect to Lebesgue measure. �

4. Parametrisation of the space of polygons

Let P be a convex, compact polygon in the hyperbolic disk D, with 2𝑚 sides and interior angles
{𝛾1, . . . , 𝛾2𝑚}.

We say that P is centrally symmetric if there exists a point 𝑜 ∈ D so that P is invariant under
symmetry with respect to the point O. This clearly implies that opposite sides have equal length and
opposite angles are equal.

Poincaré’s theorem provides conditions to ensure that the group generated by side pairings is discrete
(see [39]). In particular, one needs a condition on the angles, which in our setting can be formulated as
follows.
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Definition 4.1. A centrally symmetric polygon P satisfies the cycle condition if there exists an integer
𝑘 ≥ 1 such that

𝑚∑
𝑖=1
𝛾2𝑖 =

𝑚∑
𝑖=1
𝛾2𝑖−1 =

2𝜋
𝑘
.

Let 𝑆 := {𝑔1, . . . , 𝑔2𝑚} be the set of hyperbolic translations identifying opposite sides of P, with
𝑔𝑖+𝑚 = 𝑔−1

𝑖 . By Poincaré’s theorem [39], if the polygon P satisfies the cycle condition, then the group G
generated by S is discrete.1

More precisely, denote as 𝑔𝑖 the hyperbolic translation mapping the ith side of P to its (𝑖 +𝑚)th side.
If m is even, there is only one equivalence class of vertices, and it is fixed by the transformation

𝑏 := 𝑔𝑚𝑔−1
𝑚−1 . . . 𝑔2𝑔

−1
1 𝑔

−1
𝑚 𝑔𝑚−1 . . . 𝑔

−1
2 𝑔1,

which is called the cycle transformation in the language of [39]. If m is odd, then there are two
equivalence classes of vertices, fixed, respectively, by the transformations

𝑏1 := 𝑔𝑚𝑔−1
𝑚−1 . . . 𝑔

−1
2 𝑔1 and 𝑏2 := 𝑔−1

𝑚 𝑔𝑚−1 . . . 𝑔2𝑔
−1
1 .

Thus the presentations defining the group G are

〈𝑔1, . . . , 𝑔𝑚 : 𝑏𝑘 = 1〉 if 𝑚 is even
〈𝑔1, . . . , 𝑔𝑚 : (𝑏1)𝑘 = (𝑏2)𝑘 = 1〉 if 𝑚 is odd.

The following is our main geometric inequality.

Theorem 4.2. Let P be a centrally symmetric, hyperbolic polygon satisfying the cycle condition, with
2𝑚 sides, and let 𝑆 := {𝑔1, . . . , 𝑔2𝑚} be the set of hyperbolic translations identifying opposite sides of
P. Then we have ∑

𝑔∈𝑆

1
1 + 𝑒ℓ (𝑔)

< 1. (4.1)

Remarks. The inequality (4.1) has the same form as the main inequality in [1] and [14] for free Kleinian
groups; more recently, a stronger version for free Fuchsian groups has been obtained in [28], while
generalisations in variable curvature (and any dimension) are due to [29], [3].

Equation (4.1) is also reminiscent of McShane’s identity [40], where one obtains the equality by
taking the infinite sum over all group elements of a punctured torus group. Our inequality, however, does
not follow from any of them; in fact, it is in a way stronger than these, as a cocompact surface group
can be deformed to a finite covolume group and then to a Schottky (hence free) group by increasing the
translation lengths of the generators.

It is interesting to point out that the above inequalities have an interpretation in terms of hitting
measures of stochastic processes (see, e.g., [33]). Here, we go along the opposite route: we prove the
geometric inequality (4.1), and then we use it to conclude properties about the hitting measure.

Finally, there are generating sets of G for which equation (4.1) fails. Indeed, the mechanism behind
the inequality is that since all curves corresponding to (𝑔𝑖)𝑚𝑖=1 intersect each other, by the collar lemma,
at most one of them can be short. In general, on a surface of genus g one can choose a configuration of
3𝑔 − 3 short curves and construct a Dirichlet domain for which the corresponding side pairing does not
satisfy equation (4.1).

1Note that in the usual formulation of Poincaré’s theorem, there are two cases: if m is even, all vertices of P are identified by G;
if m is odd, there are two elliptic cycles corresponding to alternate vertices of P. If m is even and 𝑘 = 1, the polygon P does not
satisfy the classical version of Poincaré’s theorem; but if P is symmetric, the group generated is still discrete, so all our arguments
still apply.
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o

𝛾1

𝛾2𝛼1
𝛼2

Figure 2. Angles at the centre and vertices of a symmetric hyperbolic octagon.

The proof of this inequality will take up most of the paper until Section 6. To begin with, let us note
that a way to parametrise the space of all symmetric hyperbolic polygons is to write, by [10, Example
2.2.7],

cos(𝛾𝑖) = − cosh(𝑎𝑖) cosh(𝑎𝑖+1) cos(𝛼𝑖) + sinh(𝑎𝑖) sinh(𝑎𝑖+1) (4.2)

with 𝑖 = 1, . . . , 𝑚, where (𝑎𝑖) are the distances between the base point and the ith side, (𝛼𝑖) are the
angles at the origin and (𝛾𝑖) are the angles at the vertices (see Figure 2). Since ℓ(𝑔𝑖) ≥ 2𝑎𝑖 , it is enough
to show

𝑚∑
𝑖=1

1
1 + 𝑒2𝑎𝑖

<
1
2

under the constraints
∑𝑚

𝑖=1 𝛼𝑖 = 𝜋 and
∑𝑚

𝑖=1 𝛾𝑖 =
2𝜋
𝑘 .

The fundamental geometric idea in our approach to Theorem 4.2 is that two intersecting curves
cannot both be short, as a consequence of the collar lemma [9]. For instance, we get:

Lemma 4.3. Suppose that there exists 𝑎𝑖 such that sinh(𝑎𝑖) ≤ 2(𝑚−1)
𝑚(𝑚−2) . Then the hitting measure is

singular.

Proof. From the collar lemma [9], we have

sinh(𝑎𝑖) sinh(𝑎 𝑗 ) ≥ 1

for all 𝑖 ≠ 𝑗 . Recall that

2
1 + 𝑒2𝑎 = 1 − tanh(𝑎),

and hence, if we set 𝑠 := sinh(𝑎1), we obtain for 𝑖 ≠ 1 that sinh(𝑎𝑖) ≥ 1
𝑠 ; thus

tanh(𝑎𝑖) =
sinh(𝑎𝑖)√

1 + sinh(𝑎𝑖)2
=

1√
1 + 1

sinh(𝑎𝑖 )2

≥ 1
√

1 + 𝑠2
,
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and hence
𝑚∑
𝑖=1

tanh(𝑎𝑖) ≥
𝑠

√
1 + 𝑠2

+ 𝑚 − 1
√

1 + 𝑠2
> 𝑚 − 1

if and only if 𝑠 < 2(𝑚−1)
𝑚(𝑚−2) . �

To actually prove Theorem 4.2, however, we need an improvement on the previous estimate. Let us
rewrite equation (4.2) above as

cos(𝛼𝑖) = tanh(𝑎𝑖) tanh(𝑎𝑖+1) −
cos(𝛾𝑖)

cosh(𝑎𝑖) cosh(𝑎𝑖+1)
;

and recalling that

tanh2(𝑥) + 1
cosh2(𝑥)

= 1,

we obtain, by setting 𝑧𝑖 = tanh(𝑎𝑖),

cos(𝛼𝑖) = 𝑧𝑖𝑧𝑖+1 − cos(𝛾𝑖)
√

1 − 𝑧2𝑖
√

1 − 𝑧2𝑖+1 (4.3)

with 0 ≤ 𝑧𝑖 ≤ 1. Finally, we want to show

𝑚∑
𝑖=1

1
1 + 𝑒2𝑎𝑖

=
𝑚∑
𝑖=1

1 − 𝑧𝑖
2

?
<

1
2
,

which is equivalent to

𝑚∑
𝑖=1
𝑧𝑖

?
> 𝑚 − 1. (4.4)

Now, let us first assume that 𝛾𝑖 ≤ 𝜋/2 for all 1 ≤ 𝑖 ≤ 𝑚. Then equation (4.3) yields

cos(𝛼𝑖) ≤ 𝑧𝑖𝑧𝑖+1,

and hence the constraint becomes
𝑚∑
𝑖=1

arccos(𝑧𝑖𝑧𝑖+1) ≤ 𝜋. (4.5)

Note that 𝑧1 → 0 implies cos𝛼1 ≤ 𝑧1𝑧2 → 0 and thus 𝛼1 → 𝜋
2 , and cos𝛼𝑚 ≤ 𝑧𝑚𝑧1 → 0 and thus

𝛼𝑚 → 𝜋
2 , and hence also 𝛼2, 𝛼3, . . . , 𝛼𝑚−1 → 0, which implies 𝑧2, 𝑧3, . . . , 𝑧𝑚 → 1.

5. An optimisation problem

By the above discussion, if we set 𝑥𝑖 = 1 − 𝑧𝑖 , we reduce the proof of Theorem 4.2 (at least in the case
all angles of P are acute) to the following optimisation problem (see also Figure 3).
Theorem 5.1. Let 𝑚 ≥ 3 and 0 ≤ 𝑥𝑖 ≤ 1 with

∑𝑚
𝑖=1 𝑥𝑖 = 1. Then

𝑚∑
𝑖=1

arccos((1 − 𝑥𝑖) (1 − 𝑥𝑖+1)) ≥ 𝜋.

Moreover, equality holds if and only if there exists an index i such that 𝑥𝑖 = 1 and 𝑥 𝑗 = 0 for all 𝑗 ≠ 𝑖.
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Figure 3. The graph of 𝑓 (𝑥) :=
∑3

𝑖=1 arccos((1 − 𝑥𝑖) (1 − 𝑥𝑖+1)) subject to the constraint
∑3

𝑖=1 𝑥𝑖 = 1,
compared with the constant function at height 𝜋. The lack of convexity (or concavity) of f makes the
proof of Theorem 5.1 trickier.

In the statement of Theorem 5.1 and elsewhere from now on, all indices i are meant modulo m. The
next is the main technical lemma.

Lemma 5.2. Let 𝑚 ≥ 3 and 0 ≤ 𝑥𝑖 ≤ 1 with
∑𝑚

𝑖=1 𝑥𝑖 = 1. Then

𝑚∑
𝑖=1

√
𝑥𝑖 + 𝑥𝑖+1 − 𝑥𝑖𝑥𝑖+1 ≥

√√
4 + 3

𝑚∑
𝑖=1
𝑥𝑖𝑥𝑖+1.

Proof. Set Δ 𝑖 := 𝑥𝑖 + 𝑥𝑖+1 − 𝑥𝑖𝑥𝑖+1. Note that

Δ 𝑖 ≥ max{𝑥𝑖 , 𝑥𝑖+1},

and hence √
Δ 𝑖

√
Δ 𝑖+1 ≥ 𝑥𝑖+1. (5.1)

Moreover, since 𝑚 ≥ 2, we have 𝑥𝑖+1 + 𝑥𝑖+2 ≤
∑𝑚

𝑖=1 𝑥𝑖 = 1, and hence if we multiply by (𝑥𝑖+1 + 𝑥𝑖+2), we
obtain

Δ 𝑖 = 𝑥𝑖 + 𝑥𝑖+1 − 𝑥𝑖𝑥𝑖+1

≥ (𝑥𝑖 + 𝑥𝑖+1) (𝑥𝑖+1 + 𝑥𝑖+2) − 𝑥𝑖𝑥𝑖+1

≥ 𝑥2
𝑖+1 + 𝑥𝑖+1𝑥𝑖+2.

Similarly, we obtain

Δ 𝑖+2 = 𝑥𝑖+2 + 𝑥𝑖+3 − 𝑥𝑖+2𝑥𝑖+3

≥ (𝑥𝑖+2 + 𝑥𝑖+3) (𝑥𝑖+1 + 𝑥𝑖+2) − 𝑥𝑖+2𝑥𝑖+3

≥ 𝑥2
𝑖+2 + 𝑥𝑖+1𝑥𝑖+2.
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Thus Cauchy-Schwarz yields√
Δ 𝑖

√
Δ 𝑖+2 ≥

√
𝑥2
𝑖+1 + 𝑥𝑖+1𝑥𝑖+2

√
𝑥2
𝑖+2 + 𝑥𝑖+1𝑥𝑖+2 ≥ 2𝑥𝑖+1𝑥𝑖+2. (5.2)

By squaring both sides, our desired inequality is equivalent to

𝑚∑
𝑖=1

Δ 𝑖 + 2
∑

1≤𝑖< 𝑗≤𝑚

√
Δ 𝑖

√
Δ 𝑗 ≥ 4 + 3

𝑚∑
𝑖=1
𝑥𝑖𝑥𝑖+1;

thus, using
∑𝑚

𝑖=1 Δ 𝑖 = 2 −
∑𝑚

𝑖=1 𝑥𝑖𝑥𝑖+1, it is enough to prove

∑
1≤𝑖< 𝑗≤𝑚

√
Δ 𝑖

√
Δ 𝑗 ≥ 1 + 2

𝑚∑
𝑖=1
𝑥𝑖𝑥𝑖+1. (5.3)

Now note that ∑
1≤𝑖< 𝑗≤𝑚

√
Δ 𝑖

√
Δ 𝑗 =

𝑚∑
𝑖=1

√
Δ 𝑖

√
Δ 𝑖+1 + 𝑀

with

𝑀 = 0 if 𝑚 = 3 (5.4)

𝑀 =
2∑
𝑖=1

√
Δ 𝑖

√
Δ 𝑖+2 if 𝑚 = 4 (5.5)

𝑀 ≥
𝑚∑
𝑖=1

√
Δ 𝑖

√
Δ 𝑖+2 if 𝑚 ≥ 5. (5.6)

Thus for 𝑚 ≥ 5, we have, using equations (5.6), (5.1) and (5.2),

∑
1≤𝑖< 𝑗≤𝑚

√
Δ 𝑖

√
Δ 𝑗 ≥

𝑚∑
𝑖=1

√
Δ 𝑖

√
Δ 𝑖+1 +

𝑚∑
𝑖=1

√
Δ 𝑖

√
Δ 𝑖+2

≥
𝑚∑
𝑖=1
𝑥𝑖+1 + 2

𝑚∑
𝑖=1
𝑥𝑖+1𝑥𝑖+2

≥ 1 + 2
𝑚∑
𝑖=1
𝑥𝑖+1𝑥𝑖+2,

which yields equation (5.3) and hence completes our proof. The cases 𝑚 = 3 and 𝑚 = 4 need to be dealt
with separately. If 𝑚 = 3, we obtain, by multiplying by

∑3
𝑖=1 𝑥𝑖 = 1,

Δ 𝑖 = 𝑥
2
𝑖 + 𝑥2

𝑖+1 +
3∑
𝑖=1
𝑥𝑖𝑥𝑖+1,

so by Cauchy-Schwarz, we get

√
Δ 𝑖

√
Δ 𝑖+1 ≥ 𝑥2

𝑖+1 + 𝑥𝑖𝑥𝑖+2 +
3∑
𝑖=1
𝑥𝑖𝑥𝑖+1,
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and hence

3∑
𝑖=1

√
Δ 𝑖

√
Δ 𝑖+1 ≥

3∑
𝑖=1
𝑥2
𝑖 + 4

3∑
𝑖=1
𝑥𝑖𝑥𝑖+1

=

( 3∑
𝑖=1
𝑥𝑖

)2

+ 2
3∑
𝑖=1
𝑥𝑖𝑥𝑖+1

= 1 + 2
3∑
𝑖=1
𝑥𝑖𝑥𝑖+1,

which yields equation (5.3), as desired. Finally, if 𝑚 = 4, then we note

∑
1≤𝑖< 𝑗≤4

√
Δ 𝑖

√
Δ 𝑗 =

4∑
𝑖=1

√
Δ 𝑖

√
Δ 𝑖+1 +

2∑
𝑖=1

√
Δ 𝑖

√
Δ 𝑖+2

and, again by Cauchy-Schwarz,√
Δ1

√
Δ3 ≥

√
𝑥2

1 + 𝑥
2
2 + 𝑥1𝑥4 + 𝑥2𝑥3

√
𝑥2

3 + 𝑥
2
4 + 𝑥1𝑥4 + 𝑥2𝑥3 ≥ 2𝑥1𝑥4 + 2𝑥2𝑥3

and similarly √
Δ2

√
Δ4 ≥ 2𝑥1𝑥2 + 2𝑥3𝑥4;

thus, using equation (5.1),

∑
1≤𝑖< 𝑗≤4

√
Δ 𝑖

√
Δ 𝑗 ≥

4∑
𝑖=1
𝑥𝑖 + 2

4∑
𝑖=1
𝑥𝑖𝑥𝑖+1 = 1 + 2

4∑
𝑖=1
𝑥𝑖𝑥𝑖+1,

which is again equation (5.3). This completes the proof. �

Lemma 5.3. For 0 ≤ 𝑥 ≤ 1, we have these inequalities:

1.

2
𝜋

arccos(1 − 𝑥) ≥ 2
3
√
𝑥 + 1

3
𝑥

with equality if and only if 𝑥 = 0 or 𝑥 = 1;
2.

2
3
√

4 + 3𝑥 + 2 − 𝑥
3

≥ 2

with equality if and only if 𝑥 = 0.

Proof. For the first inequality, let 𝑓 (𝑥) := 2
𝜋 arccos(1−𝑥2) − 2

3𝑥−
1
3𝑥

2. One checks that 𝑓 (0) = 𝑓 (1) = 0
and 𝑓 ( 1√

2
) = 1

2 −
√

2
3 > 0; moreover, 𝑓 ′(𝑥) has a unique zero in [0, 1]. Hence, 𝑓 (𝑥) ≥ 0 for all 0 ≤ 𝑥 ≤ 1,

which implies (1).
To prove (2), let 𝑔(𝑥) := 2

3
√

4 + 3𝑥 + 2−𝑥
3 . Then one checks 𝑔(0) = 2 and 𝑔′(𝑥) = 1√

4+3𝑥
− 1

3 > 0 for
0 ≤ 𝑥 ≤ 1, which implies 𝑔(𝑥) ≥ 2 for all 0 ≤ 𝑥 ≤ 1. �
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Proof of Theorem 5.1. By setting 𝑓 (𝑥) := 2
𝜋 arccos(1 − 𝑥), our claim is equivalent to

𝑚∑
𝑖=1

𝑓 (𝑥𝑖 + 𝑥𝑖+1 − 𝑥𝑖𝑥𝑖+1) ≥ 2

under the constraint
∑𝑚

𝑖=1 𝑥𝑖 = 1, with 𝑚 ≥ 3 and 0 ≤ 𝑥𝑖 ≤ 1.
Let us set Δ 𝑖 := 𝑥𝑖 + 𝑥𝑖+1 − 𝑥𝑖𝑥𝑖+1 and 𝜎 :=

∑𝑚
𝑖=1 𝑥𝑖𝑥𝑖+1. Observe that 2𝜎 ≤ (

∑𝑚
𝑖=1 𝑥𝑖)2 = 1. Then we

have, by Lemma 5.3,

𝑚∑
𝑖=1

𝑓 (Δ 𝑖) ≥
2
3

𝑚∑
𝑖=1

√
Δ 𝑖 +

1
3

𝑚∑
𝑖=1

Δ 𝑖

and using Lemma 5.2 and the fact
∑𝑚

𝑖=1 Δ 𝑖 = 2 − 𝜎, we obtain

≥ 2
3
√

4 + 3𝜎 + 1
3
(2 − 𝜎) ≥ 2,

where in the last step, we apply Lemma 5.3 (2). This completes the proof of the inequality. By
Lemma 5.3 (1), equality implies that Δ 𝑖 = 0, 1 for every i, which in turn implies that 𝑥𝑖 = 0, 1 for all i.
Since

∑𝑚
𝑖=1 𝑥𝑖 = 1, this can only happen if 𝑥𝑖 = 1 for exactly one index i. �

6. The obtuse angle case

The proof in the previous section works as long as all angles 𝛾𝑖 are less than or equal to 𝜋/2. If one of
them is obtuse, we have a geometric argument to reduce ourselves to that case.

6.1. Neutralising pairs

We call a neutralising pair for P a pair {𝛾𝑖 , 𝛾𝑖+1} of adjacent interior angles of P with 𝛾𝑖 + 𝛾𝑖+1 ≤ 𝜋.
Whenever we have a neutralising pair, we can apply the following lemma (see Figure 4).

Lemma 6.1. Let 𝐴𝐵𝐶𝐷𝐸 be a hyperbolic pentagon with right angles 𝐵 and 𝐸 , and suppose that
𝐶 < 𝜋/2 and 𝐶 + 𝐷 ≤ 𝜋. Then there exist points F on the line 𝐵𝐶 and G on the line 𝐸𝐷 such that the
hyperbolic pentagon 𝐴𝐵𝐹𝐺𝐸 satisfies 𝐹 ≤ 𝜋/2 and 𝐺 ≤ 𝜋/2.

E

A

B

C
F

G
D

𝛼

𝛾1

𝛾2
𝛿

M

E

A

B

C
F

G
D

𝛼

𝛾1

𝛾2

M

F’

Figure 4. The hyperbolic pentagon of Lemma 6.1.
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Proof. Let M be the midpoint of 𝐶𝐷, and let F be the foot of the orthogonal projection of M to 𝐵𝐶.
If the intersection, which we denote as G, of the lines 𝐹𝑀 and 𝐸𝐷 exists, then we claim that the angle
𝛿 = 𝐷𝐺𝐹 satisfies 𝛿 ≤ 𝜋/2.

To see this, let 𝐹 ′ be the symmetric point to F with respect to M. Then 𝐶𝐹𝑀 and 𝐷𝑀𝐹 ′ are equal
triangles. Hence 𝐸𝐷𝐹 ′ = 𝐸𝐷𝑀 +𝑀𝐷𝐹 ′ = 𝐸𝐷𝐶 + 𝐵𝐶𝐷 ≤ 𝜋, and hence 𝐹 ′ lies on the segment 𝑀𝐺.
Moreover, 𝐷𝐹̂ ′𝑀 = 𝐶𝐹𝑀 = 𝜋/2, and hence 𝛿 = 𝐷𝐺𝑀 ≤ 𝜋/2.

If the lines 𝐹𝑀 and 𝐸𝐷 do not intersect, we take as G the foot of the perpendicular from M to the
line 𝐸𝐷, and we define as 𝐹 ′′ the intersection of 𝐺𝑀 with the line 𝐵𝐶. Then the hyperbolic pentagon
𝐴𝐵𝐹 ′𝐺𝐸 satisfies 𝐹 ′′ < 𝜋/2 and 𝐺 = 𝜋/2, so the claim follows by replacing F by 𝐹 ′′. �

We say that P has disjoint neutralising pairs if there is a set Π := {{𝛾𝑖1 , 𝛾𝑖1+1}, . . . , {𝛾𝑖𝑘 , 𝛾𝑖𝑘+1}} of
neutralising pairs such that each obtuse angle of P belongs to some pair in Π, and the pairs are disjoint:
that is, {𝛾𝑖𝑟 , 𝛾𝑖𝑟+1} ∩ {𝛾𝑖𝑠 , 𝛾𝑖𝑠+1} = ∅ for any 𝑟 ≠ 𝑠.

Let us use the notation

𝜑(𝑥1, 𝑥2, . . . , 𝑥𝑚) :=
𝑚∑
𝑖=1

1
1 + 𝑒2𝑥𝑖

.

Proposition 6.2. Let P be a centrally symmetric hyperbolic polygon with 2𝑚 sides and centre o, and
let ℓ1, . . . , ℓ𝑚 be the distances between o and the midpoints of the sides. If P has disjoint neutralising
pairs, there exists a centrally symmetric hyperbolic 2𝑚-gon 𝑃′ with no obtuse angles and such that

𝜑(ℓ1, ℓ2, . . . , ℓ𝑚) ≤ 𝜑(𝑑 ′1, 𝑑
′
2, . . . , 𝑑

′
𝑚),

where 𝑑 ′𝑖 is the distance between o and the ith side of 𝑃′.

Proof. Let us denote as 𝑑𝑖 the distance between o and the ith side of P. Note that by definition, 𝑑𝑖 ≤ ℓ𝑖
for all i.

If the polygon P only has acute angles, we take 𝑃 = 𝑃′ and note that by definition, 𝑑 ′𝑖 = 𝑑𝑖 ≤ ℓ𝑖 ,
which yields the claim.

Suppose now that the hyperbolic polygon P has one obtuse angle, say 𝛾1, which belongs to a
neutralising pair, and let ℓ1 correspond to the side adjacent to the obtuse angle and the other angle, say
𝛾2, in the neutralising pair. Consistently with this choice, let us denote as 𝑠1, 𝑠2, . . . , 𝑠2𝑚 the sides of P.

Let us now consider the hyperbolic pentagon delimited by 𝑠2𝑚, 𝑠1, 𝑠2 and the orthogonal projections
from o to 𝑠2 and 𝑠2𝑚. Let us call this pentagon 𝐴𝐵𝐶𝐷𝐸 , where 𝑜 = 𝐴, the side 𝑠1 is denoted 𝐷𝐶, the
orthogonal projection from o to 𝑠2 is B and the orthogonal projection from o to 𝑠2𝑚 is E.

Using Lemma 6.1, let us replace P by a new polygon 𝑃′ obtained by substituting the pentagon
𝐴𝐵𝐶𝐷𝐸 by the pentagon 𝐴𝐵𝐹𝐺𝐸 , which satisfies 𝐹 = 𝜋/2 and 𝐺 ≤ 𝜋/2. If we denote by 𝑑 ′1 the
distance between 𝑜 = 𝐴 and 𝐹𝐺, then we have

𝑑 ′1 = 𝑑 (𝐴, 𝐹𝐺) ≤ ℓ1.

On the other hand, note that for 𝑖 = 2, . . . , 𝑚, the distance between o and the ith side is the same for P
and 𝑃′. That is, 𝑑𝑖 = 𝑑 ′𝑖 for 𝑖 = 2, . . . , 𝑚. Hence,

𝜑(ℓ1, ℓ2, . . . , ℓ𝑚) ≤ 𝜑(ℓ1, 𝑑2, . . . , 𝑑𝑚) ≤ 𝜑(𝑑 ′1, 𝑑2, . . . , 𝑑𝑚) = 𝜑(𝑑 ′1, 𝑑
′
2, . . . , 𝑑

′
𝑚).

If there is more than one neutralising pair (by symmetry, the number of neutralising pairs is even), we
can analogously replace each side adjacent to the pair by rotating it around its midpoint. This proves the
claim. �
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6.2. The general case

Let (𝑝𝑖)2𝑚
𝑖=1 denote the vertices of P and (𝑞𝑖)2𝑚

𝑖=1 denote the midpoints of the sides, indexed so that 𝑞𝑖 lies
between 𝑝𝑖−1 and 𝑝𝑖 . Let o denote the centre of symmetry of P. Let 𝛼𝑖 = 𝑞𝑖𝑜𝑞𝑖+1 be the angles at the
origin and 𝛾𝑖 = 𝑞𝑖 𝑝𝑖𝑞𝑖+1 the angles at the vertices of P. By the cycle condition and symmetry, we have

𝑚∑
𝑖=1
𝛼𝑖 = 𝜋,

𝑚∑
𝑖=1
𝛾𝑖 =

2𝜋
𝑘
,

where 𝑘 ≥ 1 is an integer. Note that if 𝑘 ≥ 2, at most one of the 𝛾𝑖 is obtuse, and hence P has disjoint
neutralising pairs. However, if 𝑘 = 1, P need not have disjoint neutralising pairs; in particular, it may
have three consecutive obtuse angles. To deal with this case, we need the notion of a dual polygon.

6.3. Dual polygons

Given a centrally symmetric polygon P with centre o and sum of angles 4𝜋, we construct its dual polygon
𝑃 as follows.

Let 𝑄𝑖 be the quadrilateral delimited by 𝑜, 𝑞𝑖 , 𝑝𝑖 , 𝑞𝑖+1. As in Figure 5, we can cut and rearrange the
𝑄𝑖s with 1 ≤ 𝑖 ≤ 𝑚 as follows. Glue all vertices (𝑝𝑖)𝑚𝑖=1 to a single point, which we now denote as v,
so that the 𝑄𝑖s with 1 ≤ 𝑖 ≤ 𝑚 lie in counterclockwise order around v. Since

∑𝑚
𝑖=1 𝛾𝑖 = 2𝜋, the copies

of 𝑄𝑖 fit together, creating a new polygon 𝑃 with m sides. By construction, the sides of 𝑃 have lengths
2ℓ1, . . . , 2ℓ𝑚, with ℓ𝑖 = 𝑑 (𝑜, 𝑞𝑖). Also by construction, the angles of 𝑃 are 𝛼1, . . . , 𝛼𝑚, and hence their
sum is

∑𝑚
𝑖=1 𝛼𝑖 = 𝜋.

We define the pair (𝑃, 𝑣) to be the dual polygon to (𝑃, 𝑜).
The duality relation

(𝑃, 𝑜) ↔ (𝑃, 𝑣)

defines a bijective correspondence between centrally symmetric 2𝑚-gons with sum of angles 4𝜋 and
m-gons with the sum of angles 𝜋 together with a choice of a point inside them.

To see that this is a bijection, let us construct the inverse map as follows: given an m-gon 𝑃 and a point
v inside it, denote as 𝑣1, . . . , 𝑣𝑚 its vertices. Decompose 𝑃 as the union of m quadrilaterals 𝑅1, . . . , 𝑅𝑚
by drawing the segments joining v and the midpoints of the sides of 𝑃; then take copies of the polygons
𝑅1, . . . , 𝑅𝑚, 𝑅1, . . . , 𝑅𝑚 and glue them in this order by identifying all 𝑣𝑖s to a point, which we call o.
This will create a polygon P whose sum of angles is twice the sum of internal angles of 𝑃, and hence
4𝜋. Moreover, by construction, this polygon is centrally symmetric about the point o.

Given a polygon P with 2𝑚 sides and a point o inside P, we define

Σ(𝑃) :=
𝑚∑
𝑖=1

1
1 + 𝑒2ℓ𝑖

,

where ℓ𝑖 are the segments connecting o and the midpoint of the 𝑖𝑡ℎ side. Let us also define

Σ̂(𝑃) :=
𝑚∑
𝑖=1

1
1 + 𝑒𝑠𝑖 ,

where 𝑠𝑖 are the lengths of the sides of P. Then note that we have

Σ(𝑃) = Σ̂(𝑃).

In particular, Σ(𝑃) does not depend on v but only on 𝑃.
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Figure 5. The construction of the dual polygon. Top: the polygon P, in blue. Bottom: the dual polygon
𝑃, in red. The angles 𝛼𝑖 at the origin in P become the angles at the vertices of 𝑃; on the other hand, the
angles 𝛾𝑖 at the vertices of P become the angles at the point 𝑣̂ in the interior of 𝑃. Quadrilaterals of the
same colour are congruent. The point 𝑣̂ is the common intersection of the four coloured regions in the
bottom picture.
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Lemma 6.3. Let P be a centrally symmetric hyperbolic polygon with 2𝑚 sides and the total sum of its
interior angles 4𝜋. Then there exists a centrally symmetric hyperbolic polygon 𝑃′ with the same number
of sides so that Σ(𝑃) = Σ(𝑃′) so that 𝑃′ has at most four obtuse angles, which belong to disjoint
neutralising pairs.

Proof. Let 𝑃 be the dual polygon to P, as defined above. We claim that we can pick another point 𝑣′
inside 𝑃 so that at most two of the angles at 𝑣′ are obtuse.

To do this, let (𝑟𝑖)𝑚𝑖=1 be the midpoints of the sides of 𝑃; join 𝑟1 and 𝑟3 by a segment, and pick any
point 𝑣′ in the interior of that segment. Then consider the angles 𝛾′𝑖 := 𝑟𝑖𝑣′𝑟𝑖+1 with 1 ≤ 𝑖 ≤ 𝑚. Since∑2

𝑖=1 𝛾
′
𝑖 = 𝜋 and

∑𝑚
𝑖=3 𝛾

′
𝑖 = 𝜋, at most two of the angles 𝛾′𝑖 with 1 ≤ 𝑖 ≤ 𝑚 can be obtuse.

Then we define 𝑃′ to be the dual of (𝑃, 𝑣′). Since P and 𝑃′ have the same dual, we haveΣ(𝑃) = Σ(𝑃′).
By our previous choice of 𝑣′, in 𝑃′, there are at most 4 obtuse angles 𝛾′𝑖 , and there are no three consecutive
obtuse angles; hence, for all of them there exists another adjacent angle 𝛾′𝑖±1 so that 𝛾′𝑖 + 𝛾′𝑖±1 < 𝜋.
Hence, 𝑃′ has neutralising pairs. �

By putting together these reductions, we can complete the proof of Theorem 4.2. Let us see the
details.

Proof of Theorem 4.2. Let us first suppose that 𝛾𝑖 ≤ 𝜋/2 for all i. We know by equation (4.5) that∑𝑚
𝑖=1 arccos(𝑧𝑖𝑧𝑖+1) ≤ 𝜋 with 0 < 𝑧𝑖 < 1. Then we need to show that

∑𝑚
𝑖=1 𝑧𝑖 > 𝑚 − 1. Suppose not;

then there exists 𝑧𝑖 with
∑𝑚

𝑖=1 𝑧𝑖 ≤ 𝑚 − 1. Then there exists (𝑧′𝑖)𝑚𝑖=1 with 0 ≤ 𝑧𝑖 ≤ 𝑧′𝑖 ≤ 1 for all i, so that∑
𝑧′𝑖 = 𝑚 − 1. Then we have, by Theorem 5.1, 𝜋 ≤

∑𝑚
𝑖=1 arccos(𝑧′𝑖𝑧′𝑖+1) ≤

∑𝑚
𝑖=1 arccos(𝑧𝑖𝑧𝑖+1) ≤ 𝜋, and

hence
∑𝑚

𝑖=1 arccos(𝑧′𝑖𝑧′𝑖+1) = 𝜋, which by the second part of Theorem 5.1 implies 𝑧′𝑖 = 0 for some i, and
hence also 𝑧𝑖 = 0, which is a contradiction.

In the general case, we first apply Lemma 6.3 to reduce to the case where P has disjoint neutralising
pairs. Then by applying Proposition 6.2, we reduce to the case of P having no obtuse angles, which we
can deal with as above. This completes the proof. �

Proof of Theorem 1.2. Theorem 4.2 shows that the criterion of Theorem 3.1 holds, proving the singu-
larity of hitting measure. �

7. Coxeter groups

Let P be a centrally symmetric convex polygon with 2𝑚 sides in H2, with each angle 𝛾𝑖 at the vertices
being equal to 𝜋

𝑘𝑖
for some natural 𝑘𝑖 > 1, for 1 ≤ 𝑖 ≤ 2𝑚. Then due to [15, Theorem 6.4.3], the group

of isometries generated by hyperbolic reflections 𝑅 := {𝑟1, . . . , 𝑟2𝑚} with respect to the sides of P acts
geometrically on H2. Therefore, it is a hyperbolic group, so Theorem 2.2 can be applied to it. Such
groups are referred to as hyperbolic Coxeter groups.

Below, we will show that Theorem 1.2 can be quickly generalised to hyperbolic Coxeter groups.

Lemma 7.1. Let 𝑚 > 1. Consider a random walk on the free product of 2𝑚 copies of Z/2Z

𝐹 ′
2𝑚 =

〈
𝑠1, . . . , 𝑠2𝑚 | 𝑠2𝑖 = 1

〉
,

defined by a probability measure 𝜇 on the generators. If we denote 𝑥𝑖 := 𝐹𝜇 (1, 𝑠𝑖) for 1 ≤ 𝑖 ≤ 2𝑚 and
the hitting measure on the boundary of 𝐹 ′

2𝑚 by 𝜈, then

𝜈(𝐶 (𝑠𝑖)) =
𝑥𝑖

1 + 𝑥𝑖
.

Proof. The proof of this lemma can be obtained similarly to the proof of Lemma 2.4 for 𝐹𝑚 because
the Cayley graphs for 𝐹𝑚 and 𝐹 ′

2𝑚 are isometric.
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More precisely, a sample path converges to the boundary of the cylinder𝐶 (𝑠𝑖) if and only if it crosses
the edge 𝑠𝑖 an odd number of times. This leads to the following computation:

𝜈(𝐶 (𝑠𝑖)) = P(1 → 𝑠𝑖 � 1) + P(1 → 𝑠𝑖 → 1 → 𝑠𝑖 � 1) + · · · =

=
∞∑
𝑛=0

𝐹𝜇 (1, 𝑠𝑖)2𝑛+1(1 − 𝐹𝜇 (1, 𝑠𝑖))

=
∞∑
𝑘=1

(−1)𝑘+1𝑥𝑘𝑖 =
𝑥𝑖

1 + 𝑥𝑖
. �

A measure 𝜇 on the set 𝑅 = {𝑟1, . . . , 𝑟2𝑚} of reflections through the sides of P is called geometrically
symmetric if 𝜇(𝑟𝑖) = 𝜇(𝑟𝑖+𝑚) for each 1 ≤ 𝑖 ≤ 𝑚.

Theorem 7.2. Let 𝜇 denote a geometrically symmetric measure supported on the generators 𝑅 =
{𝑟1, . . . , 𝑟2𝑚} of a hyperbolic Coxeter group. Suppose that

𝑚∑
𝑖=1

1
1 + 𝑒ℓ (𝑟𝑖𝑟𝑖+𝑚)/2 <

1
2
. (7.1)

Then the hitting measure 𝜈 in 𝜕D is singular with respect to the Lebesgue measure.

Proof. The proof of this theorem is quite similar to the proof of Theorem 3.1. We consider a measure
𝜇̃ on a free product

〈
ℎ1, . . . , ℎ2𝑚 | ℎ2

𝑖 = 1
〉

of 2𝑚 copies of Z/2Z uniquely defined by 𝜇̃(ℎ𝑖) = 𝜇(𝑟𝑖).
If 𝜈 were to be absolutely continuous, then a similar argument would yield that

ℓ(𝑟𝑖𝑟𝑖+𝑚) ≤ 𝑑𝜇 (1, 𝑟𝑖𝑟𝑖+𝑚) ≤ 𝑑𝜇 (1, 𝑟𝑖) + 𝑑𝜇 (1, 𝑟𝑖+𝑚)
≤ 𝑑 𝜇̃ (1, ℎ𝑖) + 𝑑 𝜇̃ (1, ℎ𝑖+𝑚) = 2𝑑 𝜇̃ (1, ℎ𝑖) = −2 log 𝑥𝑖 .

Keep in mind that 𝑑 𝜇̃ (1, ℎ𝑖) = 𝑑 𝜇̃ (1, ℎ𝑖+𝑚) due to 𝜇̃ being geometrically symmetric as well. Therefore,

𝑥𝑖
1 + 𝑥𝑖

≤ 1
1 + 𝑒ℓ (𝑟𝑖𝑟𝑖+𝑚)/2 ,

and due to Lemma 7.1, we obtain

1 =
2𝑚∑
𝑖=1

𝑥𝑖
1 + 𝑥𝑖

≤ 2
𝑚∑
𝑖=1

1
1 + 𝑒ℓ (𝑟𝑖𝑟𝑖+𝑚)/2 < 1,

which delivers a contradiction. �

Theorem 7.3. The hitting measure of a nearest-neighbour random walk generated by a geometrically
symmetric measure on a Coxeter group associated with a centrally symmetric polygon is singular with
respect to Lebesgue measure on 𝜕D.

Proof. Let us recall that (𝑔𝑖)𝑚𝑖=1 denotes the translations identifying the opposite sides of P. It is easily
seen that ℓ(𝑟𝑖𝑟𝑖+𝑚) = 2ℓ(𝑔𝑖) = 2ℓ(𝑔𝑖+𝑚) for every 1 ≤ 𝑖 ≤ 𝑚. However, we can apply Theorem 4.2,
because there are no obtuse angles, to get
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𝑚∑
𝑖=1

2
1 + 𝑒ℓ (𝑟𝑖𝑟𝑖+𝑚)/2 =

∑
𝑔∈𝑆

1
1 + 𝑒ℓ (𝑔)

< 1.

We conclude the proof by applying Theorem 7.2. �
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