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ROBERT L. BENEDETTO AND JUNGHUN LEE

Abstract. Let Cv be a complete, algebraically closed non-archimedean field, and let
f 2 Cv(z) be a rational function of degree d � 2. If f satisfies a bounded contrac-
tion condition on its Julia set, we prove that small perturbations of f have dynamics
conjugate to those of f on their Julia sets.

1. Introduction

Fix the following notation throughout this paper.

Cv an algebraically closed field of characteristic zero.
| · | a nontrivial non-archimedean absolute value on Cv,

with respect to which Cv is complete.
N the set {1, 2, 3, . . .} of positive integers.
N0 N [ {0}.

The Berkovich projective line P
1
an is a natural compactification of the classical pro-

jective line P
1(Cv) = Cv [ {1}, which we describe in greater detail in Section 2.3. We

consider the dynamics of a rational function f 2 Cv(z) on P
1(Cv) and on P

1
an. That

is, writing f
0(z) = z and f

n+1 = f � f
n for all n 2 N0, we consider the action of the

iterates f
n on P

1(Cv) and P
1
an. See [BR10, Chapter 10], [B19], or [Sil07, Chapter 5]

for more thorough treatments of such non-archimedean dynamics. We will be especially
interested in the case that two such maps f, g 2 Cv(z) are conjugate on a subset of P1

an;
more precisely, there is some invertible map h : V ! V such that h � f |W = g � h|W ,
where W = f

�1(V ) ✓ V ✓ P
1
an.

A rational function f 2 Cv(z) may be written as f = F/G for relatively prime
polynomials F,G 2 Cv[z]. We define the degree of f to be deg f := max{degF, degG}.
Every point of P1(Cv) has deg f preimages under f , counted with multiplicity. For any
integer d � 2, we define

Ratd(Cv) :=
�
f 2 Cv(z)

�� deg f = d
 

to be the set of rational functions of degree d, defined over Cv, with the topology induced
from the natural inclusion of Ratd(Cv) in P

2d+1(Cv), which maps f to the (2d+2)-tuple
of its coe�cients.

The main result of this paper is motivated by Mañé, Sad, and Sullivan’s result [MSS83]
in complex dynamics. They introduced the notion of J-stability of a rational map
f 2 C(z), a property which, roughly speaking, means that the dynamics of all maps g
in some neighborhood of f in Ratd(C) are conjugate on their Julia sets. In particular,
they showed that a rational map is J-stable if it is expanding on its Julia set. For more
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discussion of stability in the complex setting, see also [McM94, Section 4.1] and [MS98,
Sections 7–8].

Motivated by the results of [MSS83], T. Silverman [Sil17] proved a non-archimedean
stability result for one-parameter families via a condition on the Berkovich analytifica-
tion of the appropriate moduli space. In a di↵erent direction, the second author [L19]
investigated non-archimedean rational functions f 2 Cv(z) acting on P

1(Cv), proving
that f is J-stable if it is expanding in a sense parallel to that in complex dynamics.
Specifically, as in [L19, Definition 1.1], the map f 2 Cv is expanding on its (type I) Julia
set Jf := Jan,f \P

1(Cv) if Jf is nonempty and there exist real constants c > 0 and � > 1
so that

(1.1)
�
f
n
�\
(z) � c�

n for every z 2 Jan,f \ P
1(Cv) and n 2 N,

where g
\ denotes the spherical derivative of g 2 Cv(z), defined in Section 3. (See also

Remark 7.3.) In a di↵erent context [B01], the first author had previously studied a
slightly weaker version of this condition for the case that Cv = Cp and f is defined over
a locally compact subfield K of Cv. (Specifically, such a map f is hyperbolic if for each
finite extension L/K, there exist c = cL > 0 and � = �L > 1 such that condition (1.1)
holds for all z 2 Jf \ P

1(L).) However, besides the fact that the results of [L19] apply
only to the type I Julia set Jf , both the expanding and the hyperbolic hypotheses are
unnecessarily restrictive, as we illustrate in Section 7.

In this paper, we strengthen the main result of [L19] both by generalizing the ex-
panding hypothesis of equation (1.1) and by extending the resulting conjugacy from the
classical Julia set in P

1(Cv) to the Berkovich Julia set Jan,f ✓ P
1
an of the map f . (See

Section 2.4 for more on the Berkovich Julia set.) Moreover, we construct our conjugacy
not only on Jan,f , but also on an appropriate neighborhood of Jan,f \ P

1(Cv) in P
1
an.

As in [L19], our statement involves the spherical derivative f
\ of the rational function

f , but extended to the Berkovich space P
1
an, as described in Section 3, and with a less

restrictive hypothesis. Our extension to P
1
an also allows us to avoid the assumption that

Jan,f \ P
1(Cv) 6= ? required in both [L19] and [Sil17]. On the other hand, although we

prove that our conjugacy varies continuously with the map g 2 Ratd(Cv), our method
does not yield analytic motions of Julia sets as in [Sil17], in part because we do not
consider nonclassical Berkovich points in the moduli space Ratd.

Theorem 1.1. Let f 2 Cv(z) be a rational function of degree d � 2 with Berkovich
Julia set Jan,f . Suppose there exists � > 0 such that

�
f
n
�\
(⇣) � � for all ⇣ 2 Jan,f and n 2 N.

Then there exist a neighborhood W ✓ Ratd(Cv) of f and an open set U ✓ P
1
an containing

Jan,f \P
1(Cv) with the following properties. For each g 2 W , there is a homeomorphism

h : P1
an ! P

1
an for which

(a) h is an isometry on the set P1(Cv) of type I points ,
(b) h is the identity map on P

1
an r U , and

(c) h � f(⇣) = g � h(⇣) for all ⇣ 2 U [ Jan,f .

Moreover, the map (g, ⇣) 7! h(⇣) is a continuous function from W ⇥ P
1
an to P

1
an.

Note in particular that the points of Jan,f rU are fixed by the map h of Theorem 1.1.
Hence, we have Jan,f r U = Jan,g r U , and moreover f(⇣) = g(⇣) for all ⇣ 2 Jan,f r U .
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The outline of this paper is as follows. We recall some essentials from non-archimedean
analysis and dynamics in Section 2, and we describe the spherical derivative on P

1
an in

Section 3. Next, we present several necessary lemmas in Sections 4 and 5. Section 6
is devoted to the proof of Theorem 1.1. Finally, in Section 7, we present examples of
rational maps which satisfy the hypotheses of Theorem 1.1 but which are not expanding
in the sense of [L19].

2. Preliminaries

In this section, we recall some relevant facts about dynamics on P
1(Cv) and on P

1
an.

Here and in the rest of the paper, we set the following notation for disks in Cv.

D(a, r) for a 2 Cv and r > 0, the open disk {x 2 Cv | |x� a| < r}.
D(a, r) for a 2 Cv and r > 0, the closed disk {x 2 Cv | |x� a|  r}.
O the ring of integers D(0, 1) = {z 2 Cv | |z|  1} of Cv.

2.1. The chordal metric. The chordal metric is the distance function ⇢ on P
1(Cv)

given in homogeneous coordinates by

⇢
�
[z0 : z1], [w0 : w1]

�
:=

|z0w1 � z1w0|

max{|z0|, |w0|}max{|z1|, |w1|}
.

Equivalently, in a�ne coordinates we have

⇢
�
z, w

�
=

|z � w|

max{1, |z|}max{1, |w|}
=

8
>>><

>>>:

|z � w| if z, w 2 O,

����
1

z
�

1

w

���� if z, w 2 Cv rO,

1 otherwise.

Any h 2 PGL(2,O) is an isometry with respect to the chordal metric. See [Sil07,
Section 2.1] or [B19, Section 5.1] for more on the chordal metric.

2.2. Weierstrass degrees of power series. Let a 2 Cv and r > 0. A power series

F (z) =
1X

i=0

ci(z � a)i 2 Cv[[z � a]]

converges on D(a, r) if and only if

lim
n!1

|cn|s
n = 0 for all 0 < s < r.

If F converges on D(a, r), then the derivative of F

F
0(z) =

1X

i=1

ici(z � a)i�1
2 Cv[[z � a]]

also converges on D(a, r). In particular, F (a) = c0 and F
0(a) = c1.

The Weierstrass degree of F on D(a, r) is defined to be the smallest n 2 N0 such that

|cn|r
n = sup{|ci|r

i
| i 2 N0},

or 1 if this supremum is never attained. If n 2 N is the Weierstrass degree of F � c0

on D(a, r), then F maps D(a, r) onto the disk D(c0, |cn|rn), and every point of the
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latter disk has n preimages in the former, counted with multiplicity. In particular, F is
injective on D(a, r) if and only if n = 1, in which case F (D(a, r)) = D(F (a), |c1|r), and

|F (x)� F (y)| = |F
0(a)||x� y| for all x, y 2 D(a, r).

If F is injective on D(a, r), then F
0 has no zeros in D(a, r). However, the converse is

not necessarily true if Cv has positive residue characteristic, although Lemma 4.2 shows
that F is injective on a smaller disk in that case.

If f 2 Ratd(Cv) has no poles in D(a, r), then there exists a convergent power series
F 2 Cv[[z � a]] on D(a, r) such that F (x) = f(x) for all x 2 D(a, r). Thus, the image
f(D(a, r)) is a disk of the form D(b, s), where b = f(a). Note that the Weierstrass
degree of F � b on D(a, r) is at most d.

We refer the reader to [B19, Chapters 3,14] or [Rob00, Chapter 6] for more details on
power series over non-archimedean fields.

2.3. The Berkovich projective line. It has become clear that although a significant
amount of non-archimedean dynamics can be done on the classical projective line P1(Cv),
the appropriate setting is the Berkovich projective line P1

an. In this section we summarize
some relevant facts about P1

an and its associated dynamics. For more details, see [BR10,
Chapters 1,2,9,10] or [B19, Chapters 6–8].

The Berkovich a�ne line A
1
an is the set of all multiplicative seminorms on Cv[z] that

extend the absolute value on Cv. That is, ⇣ = k · k⇣ is a function from Cv[z] to [0,1)
satisfying kfgk⇣ = kfk⇣kgk⇣ , kf + gk⇣  max{kfk⇣ , kgk⇣}, and kak⇣ = |a| for all
f, g 2 Cv[z] and a 2 Cv. We will generally write an element of A1

an as ⇣ when we think
of it as a point, and as k · k⇣ when we think of it as a seminorm.

There are four types of points in A
1
an. Type I points correspond to the points of Cv,

with kfkx := |f(x)| for x 2 Cv. Points of type II and III correspond to closed disks
D(a, r), with a 2 Cv and r > 0, where r 2 |C

⇥
v | gives a point of type II, and r 62 |C

⇥
v |

gives a point of type III. In both cases, the corresponding point ⇣(a, r) 2 A
1
an is the

sup-norm on the disk D(a, r). Finally, type IV points correspond to descending chains
of disks D1 ) D2 ) · · · with empty intersection. We denote by H

1
an := A

1
an r Cv the

subset of points not of type I.
We equip A

1
an with the Gel’fand topology, i.e., the weakest topology such that for

every f 2 Cv[z], the function ⇣ 7! kfk⇣ maps A1
an continuously to R. The projective line

P
1
an may be formed either by taking the one-point compactification P

1
an = A

1
an [ {1} or

by gluing two copies of A1
an via ⇣ 7! 1/⇣. (The new point 1 is of type I.) Then P

1
an is

a compact Hausdor↵ space which contains P
1(Cv), the set of type I points, as a dense

subspace.
For a 2 Cv and r > 0, the sets

Dan(a, r) := {⇣ 2 A
1
an | kz � ak⇣ < r} and Dan(a, r) := {⇣ 2 A

1
an | kz � ak⇣  r}

are called open and closed Berkovich disks, respectively. A type I point x 2 Cv lies in
Dan(a, r) if and only if x 2 D(a, r), and it lies in Dan(a, r) if and only if x 2 D(a, r). A
type II or III point ⇣ = ⇣(b, s) lies in Dan(a, r) if and only if D(b, s) ✓ D(a, r); and it lies
in Dan(a, r) if and only if D(b, s) ✓ D(a, r). (The one exception to the last rule is that
a type III point ⇣(a, r) itself does not lie in Dan(a, r), even though D(a, r) = D(a, r) for
r 62 |C

⇥
v |.) As is the case for disks in Cv, if two Berkovich disks intersect, then one disk

contains the other.
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If ⇣ lies in the Berkovich disk Dan(a, r), we will sometimes abuse notation and write
Dan(a, r) as Dan(⇣, r), and even D(a, r) as D(⇣, r). We will similarly write Dan(a, r) =
Dan(⇣, r) and D(a, r) = D(⇣, r) if ⇣ 2 Dan(a, r).

More generally, an open connected a�noid is either P
1
an with finitely many closed

Berkovich disks removed, or else an open Berkovich disk with finitely many closed
Berkovich disks removed. A closed connected a�noid is defined similarly, with the
roles of “open” and “closed” reversed. The open connected a�noids form a basis for the
Gel’fand topology on P

1
an. If U is either an open or closed connected a�noid, then both

the set of type I points of U and the set of type II points of U are dense in U .

2.4. Dynamics on the Berkovich line. Any seminorm ⇣ 2 A
1
an extends from Cv[z]

to Cv(z) by defining kF/Gk⇣ := kFk⇣/kGk⇣ , where we understand 1 to be a legal value
for this expression, in case kGk⇣ = 0. Any rational function f 2 Cv(z) then defines a
continuous function f : P1

an ! P
1
an, given by

khkf(⇣) := kh � fk⇣ ,

which extends the usual action of f on the type I points of P1(Cv).
Moreover, if f is a convergent power series on D(a, r), then f similarly induces a

continuous function f : Dan(a, r) ! A
1
an. For any open disks D(a, r), D(b, s) ✓ Cv, we

have

f
�
D(a, r)

�
= D(b, s) () f

�
Dan(a, r)

�
= Dan(b, s).

Furthermore, in that case, the following are equivalent:

• f(z)� b has Weierstrass degree 1 on D(a, r).
• f : D(a, r) ! D(b, s) is a bijective function.
• f : Dan(a, r) ! Dan(b, s) is a bijective function.
• f has an inverse function f

�1 : D(b, s) ! D(a, r) also given by a convergent
power series.

(The fact that bijectivity implies Weierstrass degree 1 uses our assumption that Cv has
characteristic zero; that implication fails in positive characteristic for totally inseparable
maps.)

The (Berkovich) Fatou set of a rational function f 2 Cv(z) of degree d � 2 is the set
of points ⇣ 2 P

1
an having a neighborhood U such that

S
n2N f

n(U) omits infinitely many
points of P1

an. The complement P1
an rFan,f is the (Berkovich) Julia set Jan,f of f . Both

sets are nonempty (see [B19, Corollaries 5.15 and 12.6]), and both are invariant under
f , meaning that

f
�1(Jan,f ) = f(Jan,f ) = Jan,f and f

�1(Fan,f ) = f(Fan,f ) = Fan,f .

The Fatou set is open in P
1
an, and the Julia set is closed (and hence compact).

The type I Fatou set Fan,f \P
1(Cv) consists of those points of P1(Cv) having a neigh-

borhood on which the sequence of iterates {f
n
}
1
n=0 is equicontinuous with respect to

the chordal metric ⇢. If a type I point x 2 Cv is periodic, i.e., if fn(x) = x for some
(minimal) positive integer n 2 N, then the multiplier of x is (fn)0(x). If the multiplier
� of x satisfies |�| > 1, then x is said to be repelling, and we have x 2 Jan,f . Otherwise,
i.e. if |�|  1, then x is said to be nonrepelling, and x 2 Fan,f .
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3. The spherical derivative

The spherical kernel is a natural extension to P
1
an of the chordal metric ⇢ on P

1(Cv).
We recall its definition and some of its properties from [BR10, Section 4.3].

Definition 3.1. The spherical kernel is the unique function k·, ·k : P1
an ⇥ P

1
an ! R such

that

• kx, yk = ⇢(x, y) for any x, y 2 P
1(Cv),

• k·, ·k is continuous on P
1
an ⇥ P

1
an r {(⇣, ⇣) | ⇣ 2 H

1
an}, and

• for any ⇣, ⇠ 2 P
1
an,

k⇣, ⇠k = lim sup
(x,y)!(⇣,⇠)

⇢(x, y)

where the lim sup is over (x, y) 2 P
1(Cv)⇥ P

1(Cv).

See [BR10, Equation (4.21)] for an explicit construction of the spherical kernel. Al-
though it is not a metric, the spherical kernel has the following related properties; see
[BR10, Proposition 4.7].

Proposition 3.2. The spherical kernel is symmetric and takes values in [0, 1]. More-
over, it is continuous in each variable separately, and it is upper semicontinuous as a
function of two variables.

The spherical kernel is discontinuous on the diagonal in H
1
an⇥H

1
an, but it is precisely on

this diagonal that we are most interested in it, as illustrated by the next two definitions.

Definition 3.3. The spherical diameter sphdiam(·) : P1
an ! [0, 1] is defined by

sphdiam(⇣) := k⇣, ⇣k

for any ⇣ 2 P
1
an.

In [B19, Section 6.1.2], the diameter of ⇣ 2 A
1
an is defined as

diam(⇣) := inf{kz � ak⇣ : a 2 Cv}

Defining |⇣| := kzk⇣ , we have the identity

sphdiam(⇣) =
diam(⇣)

max{1, |⇣|2}
for all ⇣ 2 A

1
an,

with sphdiam(1) = 0.

Definition 3.4. Let f 2 Cv(z) be a rational function. The spherical derivative of f on
P
1
an is

f
\(⇣) := lim

⇣0!⇣

��f(⇣), f(⇣ 0)
��

k⇣, ⇣ 0k

where the convergence ⇣
0
! ⇣ is with respect to the Gel’fand topology on P

1
an.

Our next result shows how to compute the spherical derivative in practice.

Proposition 3.5. Let f 2 Cv(z) be a nonconstant rational function, and let ⇣ 2 P
1
an.
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(a) If ⇣ = x 2 P
1(Cv), then f

\(x) = f
#(x) is the classical spherical derivative on

P
1(Cv), given by

f
\(x) = f

#(x) := lim
y!x

⇢
�
f(x), f(y)

�

⇢(x, y)
2 R�0,

where y ! x in P
1(Cv). In particular, if x, f(x) 2 Cv, then

f
\(x) = |f

0(x)| ·
max{1, |x|2}

max{1, |f(x)|2}
.

(b) If ⇣ 2 H
1
an, then

f
\(⇣) =

sphdiam
�
f(⇣)

�

sphdiam(⇣)
2 R>0.

Proof. By Proposition 3.2, the maps k⇣, ·k : P
1
an ! R and kf(⇣), ·k : P

1
an ! R are

continuous. Since f : P1
an ! P

1
an is also continuous, we have

lim
⇣0!⇣

��f(⇣), f(⇣ 0)
�� =

��f(⇣), f(⇣)
�� = sphdiam

�
f(⇣)

�
,

and
lim
⇣0!⇣

k⇣, ⇣
0
k = k⇣, ⇣k = sphdiam(⇣).

If ⇣ 2 H
1
an, then sphdiam(⇣) > 0. Because f is nonconstant, we have f(⇣) 2 H

1
an as

well, and hence also sphdiam(f(⇣)) > 0. Therefore,

f
\(⇣) =

sphdiam
�
f(⇣)

�

sphdiam(⇣)
> 0.

Otherwise, we have ⇣ = x 2 P
1(Cv), so that f(⇣) = f(x) 2 P

1(Cv), and hence

f
\(⇣) = lim

⇣0!⇣

��f(⇣), f(⇣ 0)
��

k⇣, ⇣ 0k
= lim

y!x

��f(x), f(y)
��

kx, yk
= lim

y!x

⇢
�
f(x), f(y)

�

⇢(x, y)
= f

#(x) � 0,

where the second and third limits are for y ! x = ⇣ in P
1(Cv), and the second equality

follows from the density of P1(Cv) in P
1
an. ⇤

Recall that the chordal metric ⇢ is invariant under the action of PGL(2,O). Therefore,
by the third bullet point of Definition 3.1, we have

(3.1) h
\(⇣) = 1 for all h 2 PGL(2,O) and ⇣ 2 P

1
an.

The spherical derivative also satisfies the following chain rule.

Proposition 3.6. For any rational functions f, g 2 Cv(z) and any ⇣ 2 P
1
an, we have

(f � g)\(⇣) = f
\
�
g(⇣)

�
· g

\(⇣)

Proof. By continuity, we have

(f � g)\(⇣) = lim
⇣0!⇣

��f
�
g(⇣)

�
, f
�
g(⇣ 0)

���
k⇣, ⇣ 0k

= lim
⇣0!⇣

��f
�
g(⇣)

�
, f
�
g(⇣ 0)

���
��g(⇣), g(⇣ 0)

�� · lim
⇣0!⇣

��g(⇣), g(⇣ 0)
��

k⇣, ⇣ 0k

= f
\
�
g(⇣)

�
· g

\(⇣) ⇤
We close this section with the following lemma concerning a disk on which the rational

function f has Weierstrass degree 1.
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Lemma 3.7. Let f 2 Cv(z), let a, b 2 Cv with |a|, |b|  1, and 0 < r, s  1. Suppose
f maps D(a, r) bijectively onto D(b, s). Then f

\(⇣) = s/r for any ⇣ 2 Dan(a, r). In
particular, we have

sphdiam
�
f(⇣)

�
=

s

r
sphdiam(⇣)

Proof. By [B19, Proposition 3.20], we have

(3.2)
��f(x)� f(y)

�� = s

r
|x� y| for all x, y 2 D(a, r).

Recall that ⇢(x, y) = |x � y| for any x, y 2 O. Because D(a, r), D(b, s) ✓ O, it follows
that ��f(x), f(y)

�� =
s

r
kx, yk for all x, y 2 D(a, r).

Therefore, by the third bullet point of Definition 3.1, we have
��f(⇣), f(⇣)

�� =
s

r
k⇣, ⇣k for all ⇣ 2 Dan(a, r),

which is the desired conclusion for ⇣ not of type I, by definition of the spherical di-
ameter. Finally, the conclusion for ⇣ of type I is immediate from equation (3.2) and
Proposition 3.5(a). ⇤

4. Basic Lemmas

Lemma 4.1. Let f 2 Cv(z). Suppose there exists � > 0 such that
�
f
n
�\
(⇣) � � for all ⇣ 2 Jan,f and n 2 N.

Then there exist �0 > 0 and h 2 PGL(2,Cv) such that the map g := h � f � h
�1 satisfies:

• |g(⇣)| > 1 for all ⇣ 2 P
1
an with |⇣| > 1,

• Jan,g ✓ Dan(0, 1), and

•
�
g
n
�\
(⇣) � �

0 for all ⇣ 2 Jan,g and n 2 N.

Proof. By [B19, Proposition 4.2], there is a type I point ↵ 2 P
1(Cv) that is a nonrepelling

fixed point of f . Let h1 2 PGL(2,O) be a Möbius transformation satisfying h1(↵) = 1.
By [B19, Proposition 4.3(c)], there is some R > 0 so that the map g1 := h1 � f � h

�1
1

satisfies |g1(x)| > R for all x 2 P
1(Cv) with |x| > R; and by [B19, Theorem 4.18], we

have |g1(x)| � |x| for all such x.
Choose b 2 C

⇥
v with |b| � R, and define h2 2 PGL(2,Cv) by h2(z) := z/b. Define

h := h2 � h1 and g := h � f � h
�1. Then |g(x)| � |x| for all x 2 Cv with |x| > 1,

implying the first conclusion by continuity. Moreover, the Fatou set Fan,g = h(Fan,f ) of
g must contain P

1
an rDan(0, 1), and hence the Julia set Jan,g = h(Jan,f ) is contained in

Dan(0, 1), yielding the second conclusion.
It is easy to check that

h
\
2(⇣),

�
h
�1
2

�\
(⇣) � min

�
|b|, |b|

�1
 

for all ⇣ 2 P
1
an.

Therefore, by equation (3.1) and Proposition 3.6, we also have

h
\(⇣),

�
h
�1
�\
(⇣) � min

�
|b|, |b|

�1
 

for all ⇣ 2 P
1
an.
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Define �
0 := �min{|b|2, |b|�2

} > 0. For any ⇣ 2 Jan,g, again by Proposition 3.6, we have
�
g
n
�\
(⇣) = h

\
⇣
f
n
�
h
�1(⇣)

�⌘
·
�
f
n
�\�

h
�1(⇣)

�
·
�
h
�1
�\
(⇣)

� min
�
|b|, |b|

�1
 
·
�
f
n
�\�

h
�1(⇣)

�
·min

�
|b|, |b|

�1
 
� �

0
. ⇤

Define the real number

 :=

(
|p|

1/(p�1) if p > 0,

1 if p = 0,

where p is the residue characteristic of Cv. Note that 0 <   1, since Cv itself has
characteristic zero.

If a convergent power series F 2 Cv[[z� a]] on a disk D(a, r) has no critical points, it
is still possible that F may not be injective on D(a, r). However, the next result shows
that F is injective on the smaller disk D(a,r), scaling distances by a factor of |F 0(a)|.

Lemma 4.2. Fix a 2 Cv and r > 0. Let

F (z) =
1X

i=0

ci(z � a)i 2 Cv[[z � a]]

be a power series converging on D(a, r). If F has no critical points in D(a, r), then F

maps D(a,r) bijectively onto D(c0, |c1|r).

Proof. Because F has no critical points in D(a, r), the power series F 0 has Weierstrass
degree zero on this disk, and hence

|ncn|r
n�1

 |c1| for all n 2 N.

In addition, by definition of , we have 
n�1

 |n|, and hence

|cn|(r)
n
 |ncn|r

n
 |c1|(r) for all n 2 N.

Therefore, F � c0 has Weierstrass degree 1 and hence is injective on D(a,r). By [B19,
Theorem 3.15], F maps D(a,r) bijectively onto D(c0, |c1|r). ⇤
Lemma 4.3. Let f 2 Cv(z) be a nonconstant rational map. Suppose that all poles and
(type I) critical points of f lie in the Fatou set Fan,f . Then there exists ✏ > 0 such
that for any point a 2 Cv for which Dan(a, ✏) \ Jan,f 6= ?, we have that f maps D(a, r)
bijectively onto D(f(a), |f 0(a)|r) for any radius r with 0 < r  ✏.

Proof. Denote by CP(f) the set of poles and (type I) critical points of f . Since each
c 2 CP(f) lies in Fan,f , there is an associated radius �c > 0 such that Dan(c, �c) ✓ Fan,f .
Because CP(f) is finite, we may define

✏0 := min{�c | c 2 CP(f)} > 0 and ✏ := ✏0 > 0.

For any a 2 Cv for which Dan(a, ✏) intersects Jan,f , the larger disk Dan(a, ✏0) also
intersects Jan,f , and hence cannot contain any points of CP(f). After all, if c 2 CP(f)
lies in Dan(a, ✏0), then Dan(a, ✏0) = Dan(c, ✏0) is contained in Fan,f , a contradiction.

For such a 2 Cv, since f has no poles in D(a, ✏0), we may write f as a power series

f(z) =
1X

i=0

ci(z � a)i 2 Cv[[z � a]]
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converging on D(a, ✏0), with c0 = f(a) and c1 = f
0(a). By Lemma 4.2, for 0 < r  ✏, we

have that f maps D(a, r) bijectively onto D(f(a), |f 0(a)|r). ⇤

5. Technical Lemmas

To prepare for the proof itself, we need to set some notation and present several
technical lemmas. Throughout this section, we assume f 2 Cv(z) is as in Theorem 1.1.
By Lemma 4.1, we may assume that Jan,f ✓ Dan(0, 1), with |f(x)| > 1 for |x| > 1, and
such that (fn)\(⇣) � � for all ⇣ 2 Jan,f and n 2 N. Choose ✏ > 0 as in Lemma 4.3; thus,
f is injective on D(a, ✏) for any a 2 Cv for which Dan(a, ✏) \ Jan,f 6= ?. Without loss,
assume that �, ✏ < 1.

For each ⇣ 2 Jan,f , define the real quantities

�(⇣) := inf
�
(fn)\(⇣)

��n 2 N0

 
, ⌫(⇣) :=

�
2
✏

�(⇣)
,

and for each n 2 N0,

µn(⇣) :=
⌫
�
f
n(⇣)

�

(fn)\(⇣)⌫(⇣)
=

�(⇣)

(fn)\(⇣)�
�
fn(⇣)

� .

The function � : Jan,f ! R will serve as a local scaling factor with respect to which f

will be everywhere expanding on Jan,f (see Lemma 5.1.(b) below).
We also partition Jan,f into two pieces:

J
+
an,f := {⇣ 2 Jan,f | sphdiam(⇣) � ⌫(⇣)}, and

J
0
an,f := {⇣ 2 Jan,f | sphdiam(⇣) < ⌫(⇣)}.

Moreover, for each n 2 N, define J
n
an,f := f

�n(J 0
an,f ).

Finally, we cover J 0
an,f with open disks, by setting

⌦ :=
[

⇣2J 0
an,f

Dan

�
⇣, ⌫(⇣)

�

We will multiply the radii ⌫(⇣) by the contracting factors µn(⇣) to produce even smaller
neighborhoods of J n

an,f .

Lemma 5.1. For any ⇣ 2 Jan,f , the following statements hold.

(a) �  �(⇣)  1 and �
2
✏  ⌫(⇣)  �✏.

(b) f
\(⇣)�

�
f(⇣)

�
� �(⇣).

Proof. (a). For any ⇣ 2 Jan,f , choosing n = 0 in the definition of �(⇣) yields the upper
bound �(⇣)  1. The lower bound follows from the hypothesis that (fn)\(⇣) � � for all
n 2 N0. The bounds on ⌫ follow immediately.

(b). For any n 2 N0, we have

f
\(⇣) · (fn)\

�
f(⇣)

�
=
�
f
n+1

�\
(⇣),

by Proposition 3.6. Taking the infimum over all n 2 N0, we have

f
\(⇣)�

�
f(⇣)

�
= inf

n�
f
n
�\
(⇣)

���n 2 N

o

� inf
n�

f
n
�\
(⇣)

���n 2 N0

o
= �(⇣). ⇤
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Lemma 5.2. For each ⇣ 2 Jan,f , we have

(a) µn(⇣) =
n�1Y

i=0

µ1

�
f
i(⇣)

�
for all n 2 N.

(b) 1 = µ0(⇣) � µ1(⇣) � µ2(⇣) � · · · .
(c) If ⇣ 2 J

+
an,f , then f(⇣) 2 J

+
an,f .

Proof. (a). Given ⇣ 2 Jan,f and n 2 N, Proposition 3.6 yields

n�1Y

i=0

µ1

�
f
i(⇣)

�
=

n�1Y

i=0

�
�
f
i(⇣)

�

f \
�
f i(z)

�
�
�
f i+1(z)

� =

✓ n�1Y

i=0

�
�
f
i(⇣)

�

�
�
f i+1(⇣)

�
◆
·

✓ n�1Y

i=0

1

f \
�
f i(z)

�
◆

=
�(⇣)

�
�
fn(⇣)

� ·
1

(fn)\(⇣)
= µn(⇣).

(b). For any ⇣ 2 Jan,f , clearly µ0(⇣) = 1. Observe that

µ1

�
f
i(⇣)

�
 1 for any i 2 N0,

by Lemma 5.1(b) applied to f
i(⇣). Thus, part (a) of the current lemma immediately

implies part (b).

(c). For ⇣ 2 J
+
an,f , we have

sphdiam
�
f(⇣)

�
= f

\(⇣) sphdiam(⇣) � f
\(⇣)⌫(⇣)

=
f
\(⇣)

�(⇣)
· �

2
✏ �

�
2
✏

�
�
f(⇣)

� = ⌫
�
f(⇣)

�
,

where the first equality is by definition of f \, the second and third equalities are by
definition of ⌫, the first inequality is because ⇣ 2 J

+
an,f , and the second inequality is by

Lemma 5.1(b). ⇤

It is immediate from Lemma 5.2(c) that J 0
an,f ◆ J

1
an,f ◆ J

2
an,f ◆ · · · .

Lemma 5.3. For any n 2 N0,

f
�n(⌦) =

[

⇣2J n
an,f

Dan

�
⇣, µn(⇣)⌫(⇣)

�
.

Moreover, we have ⌦ ◆ f
�1(⌦) ◆ f

�2(⌦) ◆ · · · .

Proof. We prove the equality by induction on n. It is trivial for n = 0. Assume it holds
for some n = m 2 N0; we will prove it for m+ 1.

For the forward inclusion, given ⇠ 2 f
�(m+1)(⌦), there exists ⇣ 2 J

m
an,f such that

f(⇠) 2 Dan(⇣, µm(⇣)⌫(⇣)). Write

f
�1(⇣) = {✓1, . . . , ✓d} ✓ J

m+1
an,f .

For each i = 1, . . . , d, Lemma 5.1(a) yields

µm+1(✓i)⌫(✓i) =
⌫
�
f
m+1(✓i)

�

(fm+1)\(✓i)


�✏

�
= ✏.
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Therefore, by Lemma 4.3, f is injective on each disk Dan(✓i, µm+1(✓i)⌫(✓i)), scaling
distances by a factor of f \(✓i). Hence, the points ✓1, . . . , ✓d are indeed distinct, and

f

⇣
Dan

�
✓i, µm+1(✓i)⌫(✓i)

�⌘
= Dan

�
f(✓i), f

\(✓i)µm+1(✓i)⌫(✓i)
�

= Dan

⇣
f(✓i), µm

�
f(✓i)

�
⌫
�
f(✓i)

�⌘

= Dan

�
⇣, µm(⇣)⌫(⇣)

�
.

Since deg f = d, we have accounted for all preimages of Dan(⇣, µm(⇣)⌫(⇣)). Thus, there
is some j 2 {1, . . . , d} such that

⇠ 2 Dan

�
✓j, µm+1(✓j)⌫(✓j)

�
,

completing our proof of the forward inclusion.
Conversely, given ⇣ 2 J

m+1
an,f and ⇠ 2 Dan(⇣, µm+1(⇣)⌫(⇣)), we have

f(⇠) 2 f

⇣
Dan

�
⇣, µm+1(⇣)⌫(⇣)

�⌘
= Dan

�
f(⇣), f \(⇣)µm+1(⇣)⌫(⇣)

�

= Dan

⇣
f(⇣), µm

�
f(⇣)

�
⌫
�
f(⇣)

�⌘
✓ f

�m(⌦),

verifying the reverse inclusion.
Finally, for any n 2 N0, we have µn+1(⇣)  µn(⇣) for all ⇣ 2 J

n+1
an , by Lemma 5.2(b).

Since J
n+1
an ✓ J

n
an, it follows immediately that f�n�1(⌦) ✓ f

�n(⌦). ⇤
Lemma 5.4. We have \

n2N0

f
�n(⌦) =

\

n2N0

J
n
an,f = Jan,f \ Cv.

Moreover, for any ⇣ 2 Jan,f \ Cv, we have lim
n!1

µn(⇣) = 0.

Proof. The inclusion (◆) in the first equality is immediate from the definitions of ⌦ and
J

n
an,f , and the inclusion (◆) in the second equality is because sphdiam(fn(⇣)) = 0 for

every point ⇣ of type I and every n 2 N0. Thus, to show these two equalities, it su�ces
to show that the first set is contained in the third.

Given ⇠ 2
T1

n=0 f
�n(⌦), by Lemma 5.3, there is a sequence of points {⇣n}

1
n=0 such

that for every n 2 N0, we have

(5.1) ⇣n 2 J
n
an,f and ⇠ 2 Dan

�
⇣n, µn(⇣n)⌫(⇣n)

�

Define
t := inf

�
µn(⇣n)⌫(⇣n)

��n 2 N0

 
� 0.

We claim that t = 0. If not, i.e., if t > 0, then there is some j 2 N0 such that
t > �

1/2
µj(⇣j)⌫(⇣j). There must be some m 2 N such that f

m(Dan(⇣j, µj(⇣j)⌫(⇣j))) is
not contained in an open disk of radius ✏, or else f i(Dan(⇣j, µj(⇣j)⌫(⇣j))) ✓ Dan(0, 1) for
all i 2 N0, contradicting the fact that ⇣j 2 Jan,f . Let m be the smallest such integer.
Since f i(Dan(⇣j, µj(⇣j)⌫(⇣j))) is contained in Dan(f i(⇣j), ✏) for every 0  i < m, repeated
application of Lemma 4.3 shows that fm maps Dan(⇣j, µj(⇣j)⌫(⇣j)) bijectively onto a disk
of radius greater than ✏.

Choose a point ✓ 2 P
1
an as follows. If diam(⇠) � �

1/2
t, then choose ✓ := ⇠; otherwise,

choose ✓ to be the unique boundary point of the disk Dan(⇠, �1/2t). Then

sphdiam(✓) = diam(✓) � �
1/2

t > �µj(⇣j)⌫(⇣j),
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and in addition, for every i 2 N0, we have ✓ 2 Dan(⇣i, µi(⇣i)⌫(⇣i)).
Because ✓ lies in the disk Dan(⇣j, µj(⇣j)⌫(⇣j)), Lemma 3.7 applied to f

m implies that

(5.2) sphdiam
�
f
m(✓)

�
>

✏

µj(⇣j)⌫(⇣j)
· diam(✓) > �✏ � ⌫

�
f
m(⇣m)

�
,

where the last inequality is by Lemma 5.1(a). However, since ✓ also lies in the disk
Dan(⇣m, µm(⇣m)⌫(⇣m)), we have

f
m(✓) 2 f

m
⇣
Dan

�
⇣m, µm(⇣m)⌫(⇣m)

�⌘
= Dan

⇣
f
m(⇣m), ⌫

�
f
m(⇣m)

�⌘
.

Therefore, sphdiam(fm(✓)) = diam(fm(✓))  ⌫(fm(⇣m)), contradicting inequality (5.2).
Our claim follows; we must have t = 0.

The point ⇠ is therefore contained in disks Dan(⇣n, µn(⇣n)⌫(⇣n)) of arbitrarily small
positive radius. Thus, diam(⇠) = 0, implying that ⇠ 2 Cv. The points ⇣n 2 Jan,f

accumulate at ⇠, and hence ⇠ 2 Jan,f \ Cv, as desired.
Finally, given ⇠ 2 Jan,f \ Cv, we may choose the sequence {⇣n}

1
n=0 of (5.1) to be the

constant sequence ⇣n := ⇠. Since the sequence {µn(⇠)}1n=0 is decreasing by Lemma 5.2(b),
the above claim immediately yields µn(⇠) ! 0. ⇤
Remark 5.5. One consequence of Lemma 5.4 is that every periodic Julia point in H

1
an

belongs to J
+
an,f . Indeed, if ⇣ 2 J

0
an,f \ ⌦ is periodic of period ` � 1, then Lemma 5.4

gives

⇣ 2

\

n2N0

f
�n`(⌦) =

\

n2N0

f
�n(⌦) = Jan,f \ Cv,

where we have also applied Lemma 5.3. In particular, there is a uniform lower bound
for the spherical diameter the set of Julia periodic points that are not of type I.

On the other hand, such a lower bound does not hold in general without the bounded
contraction hypothesis of Theorem 1.1. For instance, the map of Example 10.20 of [B19]
has an infinite sequence of attracting periodic points an 2 Cv accumulating at a type I
Julia point b. Each an must lie in a di↵erent Fatou disk with a single type II repelling
periodic point ⇣n as its boundary. We have ⇣n ! b, and hence the diameters of the
type II Julia periodic points ⇣n must approach zero.

Lemma 5.6. For any � > 0, there is an open subset W of Ratd(Cv) containing f such
that for any g 2 W , we have

(a) |g(x)| > 1 for any x 2 Cv with |x| > 1, and
(b) |g(x)� f(x)| < � for all x 2 f

�1(D(0, 1)).

Proof. Write f = F/G for relatively prime polynomials F,G 2 Cv[z], with

F (z) = adz
d + · · ·+ a0 and G(z) = bdz

d + · · ·+ b0,

and write an arbitrary g 2 Ratd(Cv) as F̃ /G̃, with F̃ , G̃ 2 Cv[z] given by

(5.3) F̃ (z) = Adz
d + · · ·+ A0 and G̃(z) = Bdz

d + · · ·+B0.

As we assumed at the start of this section, we have |f(x)| > 1 for any x 2 Cv with
|x| > 1. Therefore, ad 6= 0, and |ai|, |bi|  |ad| for all i = 0, . . . , d. Let W1 be the subset
of Ratd(Cv) defined by the (open) conditions

|Ai � ai| < |ad| and |Bi � bi| < |ad| for all i = 0, . . . , d.
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Then any g 2 W1 has |g(x)| > 1 for any x 2 Cv with |x| > 1.
Let y1, . . . , y` denote the distinct poles of f in D(0, 1), and choose a radius 0 < r < 1

so that f(D(yi, r)) ✓ P
1(Cv)rD(0, 1) for each i. Then

|G(x)| � C for all x 2 D(0, 1)r
�
D(y1, r) [ · · · [D(y`, r)

�
,

where

C := min{kGk⇣(y1,r), . . . , kGk⇣(y`,r)} > 0 if ` � 1,

or C := |G(0)| = kGk⇣(0,1) if ` = 0.
With notation as in equations (5.3), define W2 to be the open neighborhood of f in

Ratd(Cv) given by the conditions

|Ai � ai| <
C

2
�

|ad|
and |Bi � bi| < min

⇢
C

2
�

|ad|
, C

�
for each i.

Then any g = F̃ /G̃ 2 W2 satisfies

��F̃ (x)� F (x)
�� < C

2
�

|ad|
and

��G̃(x)�G(x)
�� < min

⇢
C

2
�

|ad|
, C

�
for all x 2 D(0, 1).

Therefore, for any g = F̃ /G̃ 2 W2 and x 2 Cv such that |f(x)|  1, we have
��G̃(x)�G(x)

�� < C  |G(x)|, and hence
��G̃(x)

�� = |G(x)| � C.

Thus,

��g(x)� f(x)
�� =

��G(x)
�
F̃ (x)� F (x)

�
� F (x)

�
G̃(x)�G(x)

���

|G(x)| · |G̃(x)|


1

C2
max

�
|ad||F̃ (x)� F (x)|, |ad||G̃(x)�G(x)|

 

<
1

C2
max

�
C

2
�, C

2
�
 
= �

Finally, defining W := W1 \W2, we are done. ⇤
Lemma 5.7. Let W ✓ Ratd(Cv) be the open neighborhood of f from Lemma 5.6 for
some � with 0 < � < �

2
✏. Then for any g 2 W and any ⇣ 2 J

1
an,f , we have f

\(⇣) = g
\(⇣),

and

g maps D
�
⇣, µ1(⇣)⌫(⇣)

�
bijectively onto D

⇣
f(⇣), ⌫

�
f(⇣)

�⌘
.

Moreover, g�1(⌦) = f
�1(⌦).

Proof. Given g and ⇣ as specified, let r := µ1(⇣)⌫(⇣), so that

diam(⇣) = sphdiam(⇣) < r  �✏,

by Lemmas 5.1(a) and 5.2(b). Choose x 2 Cv with kz�xk⇣ < r, so that ⇣ 2 Dan(x, r) ✓
⌦. Recall that f has no poles in ⌦, and hence neither does g, by the defining property
of W in Lemma 5.6(b). Thus, we may expand both f and g as power series

f(z) =
1X

i=0

ai(z � x)i and g(z) =
1X

i=0

bi(z � x)i
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convergent on D(x, r). Because r  ✏, Lemma 4.3 implies that f � a0 is injective on
D(x, r) and hence has Weierstrass degree 1. That is, |ai|ri  |a1|r for all i � 1. We will
show the analogous statement for g � b0.

By the defining property of W , the power series

g(z)� f(z) =
1X

i=0

(bi � ai)(z � x)i

satisfies |g(y)� f(y)| < � for y 2 D(x, r), and hence

(5.4)
��bi � ai

��ri  � for all i 2 N0.

On the other hand, we have |a1| = |f
0(x)| = f

\(⇣), and therefore

|a1|r = f
\(⇣)µ1(⇣)⌫(⇣) = ⌫

�
f(⇣)

�
� �

2
✏ > �.

Combined with (5.4) for i = 1, it follows that |b1 � a1| < |a1|, and hence

(5.5) g
\(⇣) = |g

0(x)| = |b1| = |a1| = f
\(⇣).

Furthermore, applying (5.4) for i � 1, we have

|bi|r
i
 max

���bi � ai

��ri, |ai|ri
 
 max

�
�, |a1|r

 
= |b1|r for all i � 1.

That is, g � b0 has Weierstrass degree 1 on D(x, r).
Thus, g maps D(⇣, r) = D(x, r) bijectively onto D(g(x), |g0(x)|r). However, since

|b1| = |a1| by equation (5.5), we have

|g
0(x)|r = |b1|r = |a1|r = ⌫

�
f(⇣)

�
.

Hence,
��g(y)� f(y)

�� < �  �
2
✏  ⌫

�
f(⇣)

�
=
��g0(x)

��r for all y 2 D(x, r).

Therefore, the image of D(⇣, r) under g is

D
�
g(x), |g0(x)|r

�
= D

⇣
f(x), ⌫

�
f(⇣)

�⌘
= D

⇣
f(⇣), ⌫

�
f(⇣)

�⌘
.

Lastly, we must show that g�1(⌦) = f
�1(⌦). For any ⇣ 2 J

0
an,f , let ✓1, . . . , ✓d 2 J

1
an,f

be the d preimages of ⇣ under f , which we know to be distinct as in the proof of
Lemma 5.3. By the first part of the current lemma, we also know that g maps each disk
D(✓i, µ1(✓i)⌫(✓i)) bijectively onto D(⇣, ⌫(⇣)), accounting for all d preimages of D(⇣, ⌫(⇣))
under g. Thus,

g
�1
⇣
Dan

�
⇣, ⌫(⇣)

�⌘
= Dan

�
✓1, µ1(✓1)⌫(✓1)

�
[ · · · [Dan

�
✓d, µ1(✓d)⌫(✓d)

�

= f
�1
⇣
Dan

�
⇣, ⌫(⇣)

�⌘
.

Taking the union across all ⇣ 2 J
0
an,f , we have g

�1(⌦) = f
�1(⌦). ⇤
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6. Proof of Theorem 1.1

With notation as in Section 5, we are now prepared to prove our main result, as
follows. In Step 1, we define a sequence {hn}

1
n=0 of maps from subsets of ⌦ to ⌦, and

we investigate properties of this sequence in Step 2. Then, in Step 3, we glue the maps
hn to produce the desired map h : P1

an ! P
1
an that is a conjugacy on f

�1(⌦). In Steps 4
and 5, we show that h is a homeomorphism on P

1
an, and that the conjugacy extends to

f
�1(⌦) [ Jan,f . Finally, in Step 6, we show that h varies continuously with g.

Proof of Theorem 1.1. Step 1. Fix a real number 0 < t < 1, and let W = Wt(f) be
the neighborhood W of f given by Lemma 5.6 for � = t�

2
✏. For the rest of this proof,

consider an arbitrary map g 2 W .
By Lemma 5.7, for each ⇣ 2 J

1
an,f , the map g is injective on D(⇣, µ1(⇣)⌫(⇣)), with

image D(f(⇣), ⌫(f(⇣))). Thus, there exists a map

G⇣ : D
⇣
f(⇣), ⌫

�
f(⇣)

�⌘
! D

�
⇣, µ1(⇣)⌫(⇣)

�

which is an inverse to g given by a power series convergent on D(f(⇣), ⌫(f(⇣))). Note
that if ⇠ 2 J

1
an,f lies in the same disk D(⇣, µ1(⇣)⌫(⇣)), then the power series G⇣ and G⇠

agree, since g is injective on both D(⇣, µ1(⇣)⌫(⇣)) and D(⇠, µ1(⇠)⌫(⇠)). As usual, the
power series defining G⇣ extends via continuity to

(6.1) G⇣ : Dan

⇣
f(⇣), ⌫

�
f(⇣)

�⌘
! Dan

�
⇣, µ1(⇣)⌫(⇣)

�

We now define a sequence {hn}
1
n=0 of functions, with h0 : P1

an ! P
1
an and

hn : f�n(⌦) ! ⌦ for n � 1

by the following inductive method. Let h0 : P1
an ! P

1
an by h0(⇣) := ⇣. For each n 2 N,

having already defined hn�1, we define hn as follows. For each ⇣ 2 J
n
an,f , define hn on

Dan(⇣, µn(⇣)⌫(⇣)) by

hn := G⇣ � hn�1 � f,

where G⇣ is the local inverse of g defined in (6.1).

Step 2. We will now show that for each n 2 N0,

• hn is a well-defined function mapping f
�n(⌦) bijectively onto g

�n(⌦), given by a
convergent power series on each disk Dan(⇣, µn(⇣)⌫(⇣)) for ⇣ 2 J

n
an,f ,

• hn is an isometry on f
�n(⌦) \ Cv, and

• for every ⇣ 2 J
n
an,f and x 2 D(⇣, µn(⇣)⌫(⇣)), we have

��hn(x) � x
�� < tµ1(⇣)⌫(⇣),

with

(6.2)
��hn(x)� hn�1(x)

�� < tµn(⇣)⌫(⇣) if n � 1,

where 0 < t < 1 is the constant we fixed at the start of Step 1.

We proceed by induction. For n = 0, all three properties hold trivially.
For n � 1, assume the three bullet points hold for n � 1. Then hn is well-defined

because if ⇠ lies in both Dan(⇣, µ1(⇣)⌫(⇣)) and Dan(⇣ 0, µ1(⇣ 0)⌫(⇣ 0)), then as we noted in
Step 1, the power series G⇣ and G⇣0 agree. That is, the value of hn(⇠) is independent of
which point ⇣ is chosen as the center of the disk.
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For any ⇣ 2 J
n
an,f , it is immediate from Proposition 3.6 and the definition of µn that

f
\(⇣)µn(⇣)⌫(⇣) =

⌫
�
f
n(⇣)

�

(fn�1)\
�
f(⇣)

� = µn�1

�
f(⇣)

�
⌫
�
f(⇣)

�
,

and hence, by Lemmas 3.7 and 4.3, f is a convergent power series on the disk Un :=
D(⇣, µn(⇣)⌫(⇣)), mapping

D
�
⇣, µn(⇣)⌫(⇣)

�
bijectively onto D

⇣
f(⇣), µn�1

�
f(⇣)

�
⌫
�
f(⇣)

�⌘
,

and multiplying all distances by a factor of f \(⇣). By our inductive assumptions, hn�1

acts as a power series mapping D(f(⇣), µn�1(f(⇣))⌫(f(⇣))) isometrically onto

Vn�1 := D

⇣
hn�1

�
f(⇣)

�
, µn�1

�
f(⇣)

�
⌫
�
f(⇣)

�⌘
✓ D

⇣
f(⇣), ⌫

�
f(⇣)

�⌘
,

where the inclusion is because of the inductive assumption that
��hn�1

�
f(x)

�
� f(x)

�� < tµ1

�
f(⇣)

�
⌫
�
f(⇣)

�
< ⌫

�
f(⇣)

�
for all x 2 Vn�1.

Thus, G⇣ is defined as an injective power series on the disk Vn�1 = hn�1(f(Un)), mul-
tiplying all distances by (g\(⇣))�1 = (f \(⇣))�1, where this equality is by Lemma 5.7.
Therefore, hn = G⇣ � hn�1 � f is a power series on Un, mapping

(6.3) D
�
⇣, µn(⇣)⌫(⇣)

�
isometrically onto D

�
hn(⇣), µn(⇣)⌫(⇣)

�
.

We will prove hn is an isometry on all of f�n(⌦) \ Cv shortly, but first we prove the
third bullet point for our given n � 1. Given ⇣ 2 J

n
an,f and x 2 D(⇣, µn(⇣)⌫(⇣)), we first

claim that

(6.4)
��hn�1

�
f(x)

�
� g

�
hn�1(x)

��� < tµn�1

�
f(⇣)

�
⌫
�
f(⇣)

�
.

Indeed, if n = 1, we have |f(x) � g(x)| < t�
2
✏  t⌫(f(⇣)) by Lemmas 5.1(a) and 5.6,

yielding (6.4). If n � 2, we have g(hn�1(x)) = hn�2(f(x)), and by our inductive assump-
tion for f(x), we also have

��hn�1

�
f(x)

�
� hn�2

�
f(x)

��� < tµn�1

�
f(⇣)

�
⌫
�
f(⇣)

�
,

proving (6.4). Moreover, hn�1(f(x)) and g(hn�1(x)) both lie in D(f(⇣), ⌫(f(⇣))), and
hence we may apply G⇣ . Recalling that G⇣ scales distances by (f \(⇣))�1, we have

(6.5)
��hn(x)� hn�1(x)

�� < t(f \(⇣))�1
µn�1

�
f(⇣)

�
⌫
�
f(⇣)

�
= tµn(⇣)⌫(⇣),

giving inequality (6.2). The first part of the third bullet point then follows from this
bound together with the inductive assumption, because

��hn(x)� x
��  max

���hn(x)� hn�1(x)
��,
��hn�1(x)� x

�� 

< max
�
tµn(⇣)⌫(⇣), tµ1(⇣)⌫(⇣)

 
= tµ1(⇣)⌫(⇣),

where the final equality is by Lemma 5.2(b).
As for the second bullet point, that hn is an isometry on f

�n(⌦)\Cv, consider arbitrary
x, y 2 f

�n(⌦) \ Cv. Then there exist ⇣, ⇠ 2 J
n
an,f such that x 2 D(⇣, µn(⇣)⌫(⇣)) and

y 2 D(⇠, µn(⇠)⌫(⇠)), by Lemma 5.3. Without loss, µn(⇣)⌫(⇣) � µn(⇠)⌫(⇠).
If |x� y| < µn(⇣)⌫(⇣), then we have |hn(x)� hn(y)| = |x� y| by (6.3). Otherwise,

��hn(x)� hn�1(x)
�� < tµn(⇣)⌫(⇣) < |x� y| =

��hn�1(x)� hn�1(y)
��,
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and similarly for
��hn(y)�hn�1(y)

��, where the first inequality is by (6.5), and the equality
is by our inductive assumption. Thus,

��hn(x)� hn(y)
�� =

���
�
hn(x)� hn�1(x)

�
�
�
hn(y)� hn�1(y)

�
+ hn�1(x)� hn�1(y)

���

=
��hn�1(x)� hn�1(y)

�� = |x� y|,

as desired.
It remains to show that hn maps f�n(⌦) bijectively onto g

�n(⌦). Because hn is given
locally by power series, it su�ces to show that hn maps f

�n(⌦) \ Cv bijectively onto
g
�n(⌦) \ Cv.
Since hn is an isometry, we already know it is injective on f

�n(⌦) \ Cv. In addition,
for any x 2 f

�n(⌦) \ Cv, we have f(x) 2 f
�(n�1)(⌦), and therefore by our inductive

assumption, we also have
hn�1

�
f(x)

�
2 g

�(n�1)(⌦).

Since each map G⇣ is a local inverse of g, it follows that hn(x) 2 g
�n(⌦).

Finally, given y 2 g
�n(⌦) \ Cv, we have g(y) 2 g

�(n�1)(⌦), and hence there is some
x̃ 2 f

�(n�1)(⌦) such that hn�1(x̃) = g(y), by our inductive assumption. By Lemma 5.3,
there is some ⇣ 2 J

n�1
an,f such that x̃ 2 D(⇣, µn�1(⇣)⌫(⇣)). Writing f

�1(⇣) = {✓1, . . . , ✓d},
each disk

D
�
✓i, µ1(✓i)⌫(✓i)

�
maps bijectively onto D

�
⇣, ⌫(⇣)

�

under both f and g, by Lemmas 4.3 and 5.7. Moreover, because
��g(y)� x̃

�� =
��hn�1(x̃)� x̃

�� < tµ1(⇣)⌫(⇣) < µ1(⇣)⌫(⇣)

by our inductive assumption, we have g(y) 2 D(⇣, µ1(⇣)⌫(⇣)). Therefore, there is some
j 2 {1, . . . , d} such that y 2 D(✓j, ⌫(✓j)), and there is some x 2 D(✓j, ⌫(✓j)) such that
f(x) = x̃. Since x̃ 2 f

�(n�1)(⌦), we have x 2 f
�n(⌦). Writing ✓ := ✓j, we have

G✓(g(y)) = y, and hence hn(x) = y. Thus, hn does indeed map f
�n(⌦) \ Cv bijectively

onto g
�n(⌦) \ Cv, completing our induction.

Step 3. For each n 2 N0, define Hn : P1
an ! P

1
an by the following inductive procedure.

Let H0 = h0, and for n 2 N and ⇣ 2 P
1
an, let

Hn(⇣) :=

(
Hn�1(⇣) if ⇣ 2 P

1
an r f

�n(⌦),

hn(⇣) if ⇣ 2 f
�n(⌦).

Define h : P1
an ! P

1
an by

h(⇣) := lim
n!1

Hn(⇣),

or equivalently

h(⇣) =

8
><

>:

⇣ if ⇣ 2 P
1
an r f

�1(⌦),

hn(⇣) if ⇣ 2 f
�n(⌦)r f

�(n+1)(⌦) for n 2 N,

limn!1 hn(⇣) if ⇣ 2
T

n2N f
�n(⌦).

For the third case, recall from Lemma 5.4 that
T

n2N0
f
�n(⌦) = Jan,f \ Cv, and that

limn!1 µn(⇣) = 0 for such ⇣. Thus, by the third bullet point of Step 2, the sequence
{hn(⇣)}1n=0 is Cauchy and hence converges to h(⇣) 2 ⌦\Cv. Together with Lemmas 5.3
and 5.7, as well as the first bullet point of Step 2, it follows that h is indeed a function
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from P
1
an to itself. Moreover, by the second bullet point of Step 2, h maps f�n(⌦) \ Cv

bijectively onto g
�n(⌦) \ Cv for each n 2 N0.

We claim that h is an isometry on Cv. To see this, given x, y 2 Cv, we consider several
cases. First, if x, y 2 Jan,f , then
��h(x)� h(y)

�� =
��� lim
n!1

hn(x)� hn(y)
��� = lim

n!1

��hn(x)� hn(y)
�� = lim

n!1
|x� y| = |x� y|,

where the third equality is because hn is an isometry on f
�n(⌦)\Cv, by Step 2. Second,

if x, y 2 f
�n(⌦)r f

�(n+1)(⌦) for some n 2 N, or if x, y 2 P
1
an r f

�1(⌦) with n = 0, then
��h(x)� h(y)

�� =
��hn(x)� hn(y)

�� = |x� y|.

Finally, suppose there is some n 2 N0 such that

(6.6) x 2

(
P
1
an r f

�1(⌦) if n = 0,

f
�n(⌦)r f

�(n+1)(⌦) if n � 1,

and y 2 f
�(n+1)(⌦). Then for every m > n for which y 2 f

�m(⌦), there is some
⇣m 2 J

m
an,f such that y 2 D(⇣m, µm(⇣m)⌫(⇣m)). For any integer ` with n < `  m, we

have ⇣m 2 J
`
an,f . By Lemma 5.2(b), we also have y 2 D(⇣m, µ`(⇣m)⌫(⇣m)). Thus, it

follows from the third bullet point of Step 2 that
��h`(y)� h`�1(y)

�� < µ`(⇣m)⌫(⇣m).

On the other hand, it follows from our assumption (6.6) that |x� y| � µn+1(⇣m)⌫(⇣m).
Therefore,

��hm(y)� hn(y)
��  max

���h`(y)� h`�1(y)
�� < max{µ`(⇣m)⌫(⇣m)}

= µn+1(⇣m)⌫(⇣m)  |x� y| =
��hn(x)� hn(y)

��

where the two maxima are over ` 2 {n + 1, . . . ,m}, and where the first equality is by
Lemma 5.2(b). Hence,

(6.7)
��Hm(x)�Hm(y)

�� =
��hn(x)� hm(y)

�� =
��hn(x)� hn(y)

�� = |x� y|.

If y 2 Jan,f , we obtain |h(x) � h(y)| = |x � y| by taking the limit as m ! 1 in (6.7).
Otherwise, we obtain |h(x) � h(y)| = |x � y| by choosing m in (6.7) to be the largest
integer for which y 2 f

�m(⌦).
Next, we claim that

(6.8) h
�
f(⇣)

�
= g

�
h(⇣)

�
for all ⇣ 2 f

�1(⌦).

To see this, suppose first that ⇣ 2 f
�n(⌦) r f

�(n+1)(⌦) for some n 2 N. Then h(⇣) =
hn(⇣), and h(f(⇣)) = hn�1(f(⇣)). Hence, by the construction of hn in Step 1, we have

g
�
h(⇣)

�
= g

�
hn(⇣)

�
= hn�1

�
f(⇣)

�
= h

�
f(⇣)

�
.

The only other possibility is that ⇣ 2 Jan,f \ Cv, in which case ⇣, f(⇣) 2 f
�n(⌦) for all

n 2 N0. Therefore,

g
�
h(⇣)

�
= g

⇣
lim
n!1

hn(⇣)
⌘
= lim

n!1
g
�
hn(⇣)

�
= lim

n!1
hn�1

�
f(⇣)

�
= h

�
f(⇣)

�
,

proving our claim.

Step 4. Our goal in this step is to show that h : P1
an ! P

1
an is a homeomorphism. We

already know that h fixes every point of P1
an r f

�1(⌦) and maps f�1(⌦) bijectively onto
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itself. It follows that h : P1
an ! P

1
an is bijective. Since P1

an is a compact Hausdor↵ space,
it su�ces to show that h�1 is continuous.

To that end, we first recall that for every n 2 N and every ⇣ 2 J
n
an,f , both hn�1 and hn

are power series convergent on Dan(⇣, µn(⇣)⌫(⇣)) with Weierstrass degree 1. Therefore,
it is immediate from inequality (6.2), along with the fact that hn is an isometry on the
type I points, that

hn�1

⇣
Dan

�
⇣, µn(⇣)⌫(⇣)

�⌘
= hn

⇣
Dan

�
⇣, µn(⇣)⌫(⇣)

�⌘
for all ⇣ 2 J

n
an,f .

By the definition of Hn : P1
an ! P

1
an from Step 3, it follows that

(6.9) Hn�1

⇣
Dan

�
⇣, µn(⇣)⌫(⇣)

�⌘
= Hn

⇣
Dan

�
⇣, µn(⇣)⌫(⇣)

�⌘
for all ⇣ 2 J

n
an,f .

Second, we claim that for every a 2 Cv, every r > 0, and every n 2 N0, we have

(6.10) Hn

�
Dan(a, r)

�
= Dan

�
Hn(a), r

�
and Hn

�
Dan(a, r)

�
= Dan

�
Hn(a), r

�
.

We prove equation (6.10) by induction on n; it is clearly true for n = 0, since H0 is the
identity map. For n 2 N, assuming equation (6.10) holds for Hn�1, we now show it for
Hn. Let X be the disk Dan(a, r) or Dan(a, r). If X does not intersect Dan(⇣, µn(⇣)⌫(⇣))
for any ⇣ 2 J

n
an,f , then X \ f

�n(⌦) = ? by Lemma 5.3, so that Hn(X) = Hn�1(X)
Similarly, if there are any points ⇣ 2 J

n
an,f for which Dan(⇣, µn(⇣)⌫(⇣)) ✓ X, then by

equation (6.9) and the fact that Hn�1 and Hn agree outside f
�n(⌦), we again have

Hn(X) = Hn�1(X). In either case, equation (6.10) follows immediately. The only
remaining case is that X ✓ Dan(⇣, µn(⇣)⌫(⇣)) for some ⇣ 2 J

n
an,f . In that case, Hn|X =

hn|X is a power series convergent on the disk X which is an isometry on the type I
points, and hence equation (6.10) holds, proving our claim.

Third, we make the same claim for h: that for every a 2 Cv and r > 0, we have

(6.11) h
�
Dan(a, r)

�
= Dan

�
h(a), r

�
and h

�
Dan(a, r)

�
= Dan

�
h(a), r

�
.

Let X be Dan(a, r) or Dan(a, r), and let Y be Dan(h(a), r) or Dan(h(a), r), respectively.
If there is some n 2 N0 such that X \ f

�n(⌦) = ?, then h(X) = Hn(X), and we are
done by equation (6.10). Otherwise, by Lemma 5.3, for each n 2 N0, there is some
⇣n 2 J

n
an,f such that X \ Dan(⇣n, µn(⇣n)⌫(⇣n)) 6= ?. If X ✓ Dan(⇣n, µn(⇣n)⌫(⇣n)) for

each n, then X ✓ Cv by Lemma 5.4, contradicting the fact that the Berkovich disk X

contains points of type II, for example.
Thus, there must be some m 2 N0 such that X ◆ Dan(⇣m, µm(⇣m)⌫(⇣m)). By equa-

tion (6.10) again, we have that Hn(X) = Y for every n � m. To prove the current
claim, then, it su�ces to show, for every ⇠ 2 P

1
an, that ⇠ 2 X if and only if there is some

j � m such that h(⇠) 2 Hj(X).
Consider an arbitrary point ⇠ 2 P

1
an. If there is some j 2 N0 such that ⇠ 62 f

�j(⌦), then
h(⇠) = Hj(⇠) by the definitions of h and Hj, so that ⇠ 2 X if and only if h(⇠) 2 Hj(X).
Otherwise, ⇠ 2

T
n2N0

f
�n(⌦). Therefore, by Lemma 5.4, we have ⇠ 2 Jan,f \ Cv,

with limn!1 µn(⇠) = 0. Hence, there is some j � m such that µj(⇠)⌫(⇠) < r. By
equation (6.2) and the fact that h(⇠) = limn!1 hn(⇠), we have

��h(⇠)�Hj(⇠)
�� =

��h(⇠)� hj(⇠)
�� =

����
1X

n=j

�
hn+1(⇠)� hn(⇠)

����� < r.
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Therefore, ⇠ 2 X if and only if h(⇠) 2 Hj(X), completing our proof our claimed equa-
tion (6.11).

We are now prepared to show that h�1 is continuous, and hence that h is a homeo-
morphism. For any connected open a�noid V ✓ P

1
an, it su�ces to show that h(V ) is

also open in P
1
an. Write

V = P
1
an r

�
Dan(a1, r1) [ · · · [Dan(a`, r`)

�

or
V = Dan(b, s)r

�
Dan(a1, r1) [ · · · [Dan(a`, r`)

�
.

By equation (6.11) and the fact that h is bijective, we have

h(V ) = P
1
an r

⇣
Dan

�
h(a1), r1

�
[ · · · [Dan

�
h(a`), r`

�⌘

or

h(V ) = Dan

�
h(b), s

�
r

⇣
Dan

�
h(a1), r1

�
[ · · · [Dan

�
h(a`), r`

�⌘
,

respectively. Either way, h(V ) is a connected open a�noid, completing our proof that
h is a homeomorphism.

Step 5. We have shown that h : P
1
an ! P

1
an is a homeomorphism, mapping Cv

bijectively and isometrically onto itself, and satisfying the conjugacy formula (6.8) on
f
�1(⌦). Moreover, f�1(⌦) = g

�1(⌦) by the final statement of Lemma 5.7. We now
extend the conjugacy to f

�1(⌦) [ Jan,f , and we show that h(Jan,f ) = Jan,g.
To this end, we first claim that

(6.12) f(⇣) = g(⇣) for all ⇣ 2 f
�1
�
Dan(0, 1)

�
with diam

�
f(⇣)

�
> t�

2
✏

where 0 < t < 1 is the constant we fixed at the start of Step 1. To see this, consider an ar-
bitrary such point ⇣. The subset f�1(D(0, 1)) of type I points is dense in f

�1(Dan(0, 1)),
whence there is a sequence {xi}

1
i=0 ✓ f

�1(D(0, 1)) such that limi!1 xi = ⇣. For each
such type I point xi, we have |g(xi)� f(xi)| < t�

2
✏, by Lemma 5.6(b). Therefore,

��g � f
��
⇣
= lim

i!1

��g � f
��
xi
= lim

i!1

��g(xi)� f(xi)
��  t�

2
✏ < diam

�
f(⇣)

�
.

Thus, for any a 2 Cv, we have
��f(z)� a

��
⇣
� diam

�
f(⇣)

�
>
��g � f

��
⇣
,

and hence

kz � akg(⇣) =
��g(z)� a

��
⇣
=
���g(z)� f(z)

�
+
�
f(z)� a

���
⇣
=
��f(z)� ak⇣ = kz � akf(⇣).

Since this is true for all a 2 Cv, we have f(⇣) = g(⇣) by [B19, Lemma 15.2(d)], proving
our claim.

Consider an arbitrary point ⇣ 2 Jan,f r f
�1(⌦). Then f(⇣) 2 Jan,f r ⌦, and in

particular f(⇣) 2 J
+
an,f . Hence,

diam
�
f(⇣)

�
= sphdiam

�
f(⇣)

�
� ⌫

�
f(⇣)

�
> t�

2
✏,

where the equality is because Jan,f ✓ Dan(0, 1), the first inequality is because f(⇣) 2

J
+
an,f , and the second is by Lemma 5.1(a). Therefore, by the claim of (6.12), we have

(6.13) f(⇣) = g(⇣) for all ⇣ 2 Jan,f r f
�1(⌦).
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Finally, recall that Jan,f is a nonempty compact set, and hence so is its homeomorphic
image h(Jan,f ). In addition, the functions h � f and g � h coincide on Jan,f , whence the
functions h � f � h

�1 and g coincide on h(Jan,f ). Thus,

g
�1
�
h(Jan,f )

�
= h

�
f
�1(Jan,f )

�
= h(Jan,f ).

Therefore, by [B19, Theorem 8.15(d)], it follows that h(Jan,f ) ◆ Jan,g, since h(Jan,f ) is
closed in P

1
an. Furthermore, because of this inclusion, we have h�1

� g = f �h
�1 on Jan,g,

and hence we may apply the same argument to the image of the compact set Jan,g under
the homeomorphism h

�1, to obtain h
�1(Jan,g) ◆ Jan,f , or equivalently, h(Jan,f ) ✓ Jan,g.

Combining these two inclusions yields the desired equality h(Jan,f ) = Jan,g.

Step 6. It remains to show that h varies continuously with g. More precisely, for any
q 2 W , write h

q for the map h constructed in Steps 1–3 for q in place of g, and let hq
n

denote the auxiliary functions constructed along the way. We wish to show that

⇤ : (q, ⇣) 7! h
q(⇣)

is a continuous function from W ⇥ P
1
an to P

1
an. To this end, given any ⇠ 2 P

1
an and an

open connected a�noid U ✓ P
1
an with h

g(⇠) 2 U , we will find an open set W
0
✓ W

containing g and an open connected a�noid V ✓ P
1
an containing ⇠ such that ⇤ maps

W
0
⇥ V into U .

Since h = h
g : P1

an ! P
1
an is a homeomorphism satisfying equation (6.11), we may

write U as one of the two forms h(V ) given at the end of Step 4, and then define
V := h

�1(U) as in the same step. Let u := min{r1, . . . , r`, 1/2}, so that 0 < u < 1.
Define Wu(g) ✓ Ratd(Cv) to be the neighborhood W of g given by Lemma 5.6 for g in
place of f , with � = u�

2
✏. Let W 0 := W \Wu(g). For each (q, ⇣) 2 W

0
⇥ V , we must

show h
q(⇣) 2 U . By the continuity of hq (from Step 4), we may assume that ⇣ = x lies in

V \Cv. Because each x 2 V \Cv has h(x) 2 U , with D(h(x), u) ✓ U and D(x, u) ✓ V ,
it su�ces to show that

(6.14)
��hq(x)� h(x)

�� < u for all (q, x) 2 W
0
⇥ Cv.

For each q 2 W
0, consider the homeomorphism h

q,g : P
1
an ! P

1
an constructed ac-

cording to Steps 1–3 when using g in place of f as the original function. Let G
q
⇣ :

Dan(g(⇣), ⌫(g(⇣))) ! Dan(⇣, µ1(⇣)⌫(⇣)) and h
q,g
n : g�n(⌦) ! q

�n(⌦) denote the auxiliary
functions constructed along the way. We claim that

(6.15) h
q
n = h

q,g
n � hn for all n 2 N0,

which we now prove by induction. Equation (6.15) certainly holds for n = 0 because
all three maps are the identity map. For n � 1, assuming the equation holds for n� 1,
then on any disk D(⇣, µ1(⇣)⌫(⇣)), we have

h
q,g
n � hn = G

q
⇣ � h

q,g
n�1 � g �G⇣ � hn�1 � f = G

q
⇣ � h

q,g
n�1 � hn�1 � f = G

q
⇣ � h

q
n�1 � f = h

q
n,

where the second equality is because G⇣ is a local inverse of g, and the third is by our
inductive assumption. Having proven the claim of equation (6.15), it follows immediately
that hq = h

q,g
� h.

On the other hand, by the third bullet point of Step 2 — still with g, q, and u in
place of f , g, and t, respectively — we have |h

q,g
n (y) � y| < uµ1(⇣)⌫(⇣) < u for every
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n 2 N, every ⇣ 2 J
n
an,g, and every y 2 D(⇣, µn(⇣)⌫(⇣)). The construction of hq,g in

Step 3 therefore yields ��hq,g(y)� y
�� < u for all y 2 Cv.

Applying this bound to y := h(x), along with the identity h
q = h

q,g
� h that followed

from equation (6.15), we have
��hq(x)� h(x)

�� =
��hq,g

�
h(x)

�
� h(x)

�� < u for all x 2 Cv.

We have proven the bound (6.14), and hence ⇤ is indeed continuous, i.e., h varies
continuously with g. ⇤

7. Examples

We now present examples of rational functions satisfying the hypotheses of Theo-
rem 1.1 but which are not expanding in the sense of equation (1.1).

Example 7.1. Assume the residue characteristic of Cv is 0, and fix c 2 Cv with 0 <

|c| < 1. Define

f(z) :=
(z + c)(z + 1)

z
= z + (c+ 1) +

c

z
2 Cv(z),

which is a rational function of degree d = 2. A straightforward calculation shows that
��f(x)� (x+ 1)

�� < 1 for all x 2 Cv with |x| � 1,

and therefore

(7.1) f maps Dan(x, 1) bijectively onto Dan(x+ 1, 1) for all x 2 Cv with |x| � 1.

It follows that P
1
an r Dan(0, 1) ✓ Fan,f , and that Dan(n, 1) ✓ Fan,f for every positive

integer n 2 N. Further simple calculations show that

f
�
Dan(0, |c|)

�
✓ P

1
an rDan(0, 1) and f

�
Dan(0, 1)rDan(0, |c|)

�
✓ Dan(1, 1).

Combining these facts, it follows that

(7.2) Jan,f ✓
�
⇣ 2 P

1
an

�� |⇣| = 1 or |⇣| = |c|
 
.

Conversely, Jan,f is nonempty, and by [B19, Theorem 7.34], we have f(Dan(0, 1)) = P
1
an.

Therefore, by (7.1), a simple induction shows

Dan(�n, 1) \ Jan,f 6= ? for all n 2 N.

Thus, f is not expanding in the sense of equation (1.1), since for any n 2 N, there is
some ⇣ 2 Dan(�n, 1) \ Jan, but equation (7.1) together with Lemma 3.7 shows that
(f i)\(⇣) = 1 for all 0  i  n.

On the other hand, we have f(cw) = w
�1 + 1 + c(w + 1), and hence

(7.3) f maps Dan(x, |c|) bijectively onto Dan

✓
c

x
+1, 1

◆
for all x 2 Cv with |x| = |c|,

whence f
\(⇣) = |c|

�1 for all ⇣ 2 P
1
an with |⇣| = |c|. Combining this fact with equa-

tions (7.1) and (7.2), as well as Lemma 3.7 again, shows that
�
f
n
�\
(⇣) � 1 for all ⇣ 2 Jan,f and n 2 N.

That is, even though f is not expanding, it satisfies the hypotheses of Theorem 1.1 and
hence is J-stable in the moduli space Rat2.
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Example 7.2. Choose an integer m � 2 such that |m| = 1, i.e., such that m is not
divisible by the residue characteristic of Cv. Fix c 2 Cv with 0 < |c| < 1. Define

f(z) := cz
m+1 + z

m = z
m(cz + 1) 2 Cv[z],

which is a polynomial of degree d = m+ 1 � 3. Then

|f(x)| = |c||x|
m+1

> |x| for all x 2 Cv with |x| > |c|
�1

and
|f(x)| = |x|

m
< |x| for all x 2 Cv with |x| < 1.

It follows that f maps both P
1
anrDan(0, |c|�1) and Dan(0, 1) into themselves, and hence

Dan(0, 1) [
�
P
1
an rDan(0, |c|

�1)
�
✓ Fan,f .

Furthermore, it is not di�cult to check that

(7.4) f
�1
�
D(0, |c|�1)

�
✓ D(0, |c|�1/m) [D(�c

�1
, |c|

m�2)

by writing f(z) = cz
m(z + c

�1). (In fact, we have equality in (7.4).)
Therefore, we have Jan,f ✓ X [ Y , where

X :=
�
⇣ 2 P

1
an

�� 1  |⇣|  |c|
�1/m

 
and Y := Dan(�c

�1
, |c|

m�2).

For any x 2 X \ Cv, writing f as a power series centered at x, it is straightforward to
check that f mapsD(x, |x|) bijectively ontoD(xm

, |x|
m). Thus, (the proof of) Lemma 3.7

shows that for any ⇣ 2 X, we have

f
\(⇣) =

|⇣|
m

|⇣|
·
max{1, |f(⇣)|2}

max{1, |⇣|2}
�

|f(⇣)|2

|⇣|2
.

Similarly, because f maps the disk Y (of diameter |c|m�2) bijectively onto Dan(0, |c|�1),
Lemma 3.7 shows that for any ⇣ 2 Y with f(⇣) 2 X [ Y , we have

f
\(⇣) =

|c|
�1

|c|m�2
·
max{1, |f(⇣)|2}

max{1, |⇣|2}
= |c|

1�m |f(⇣)|2

|⇣|2
�

|f(⇣)|2

|⇣|2
.

Combining these two bounds, and using the fact that Jan,f ✓ X [ Y , we have

�
f
n
�\
(⇣) �

|f
n(⇣)|2

|⇣|2
� |c|

2 for all ⇣ 2 Jan,f and n 2 N.

Thus, f satisfies the hypotheses of Theorem 1.1 and hence is J-stable in the moduli
space Ratm+1.

On the other hand, the Newton polygon of the equation f(z) � z = 0 reveals that
f has a fixed point a0 2 Cv with |a0| = |c|

�1. By inclusion (7.4), we must have a0 2

D(�c
�1
, |c|

m�2). Since

f
0(z) = (m+ 1)czm +mz

m�1 = z
m�1

�
(m+ 1)cz +m

�
,

we have |f
0(a0)| = |c|

1�m
> 1, and hence a0 is repelling and therefore lies in Jan,f .

For each b 2 Cv with 1 < |b| < |c|
�m, the Newton polygon of the equation f(z)� b =

0 shows that b has m preimages ↵1, . . . ,↵m with |↵i| = |b|
1/m. Applying this fact

inductively starting with b = a0, and choosing only one such preimage each time, there
is an infinite sequence {an}

1
n=0 in Cv with

|an| = |c|
�1/mn

and f(an) = an�1 for all n 2 N.
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Each point an eventually maps to a0 and hence lies in Jan,f , with

f
\(an) = |f

0(an)| ·
max{1, |f(an)|2}

max{1, |an|2}
= |an|

m�1
·
|an|

2m

|an|
2

= |c|
�3(m�1)/mn

.

Thus,
�
f
n
�\
(an) =

n�1Y

i=0

f
\(an) = |c|

�e
,

where

e =
3(m� 1)

mn
+

3(m� 1)

mn�1
+ · · ·+

3(m� 1)

m
= 3

✓
1�

1

mn

◆
< 3.

Hence, (fn)\(an) < |c|
�3 for every n � 1, and as in Example 7.1, f is not expanding

in the sense of equation (1.1).

Remark 7.3. Motivated by condition (1.1), let us call a rational function f : P1
an ! P

1
an

uniformly expanding on its Julia set if there exist c > 0 and � > 1 such that for any
n 2 N and ⇣ 2 Jan,f , (fn)\(⇣) � c�

n
.

Any uniformly expanding rational functions clearly satisfies the assumption of Theo-
rem 1.1 and hence is J-stable in the moduli space Ratd. However, although this condition
is appropriate in complex dynamics, the above examples show that uniform expansion
is too restrictive a condition in the non-archimedean setting.

In fact, any uniformly expanding rational function has Julia set consisting only of
type I points, as we now prove. Suppose there is ⇣ 2 Jan,f\H

1
an. Then by Proposition 3.5,

we have
sphdiam

�
f
n(⇣)

�

sphdiam(⇣)
= (fn)\(⇣) � c�

n

for any n 2 N0. Therefore,

lim
n!1

sphdiam
�
f
n(⇣)

�
� sphdiam(⇣) · lim

n!1
c�

n = 1,

contradicting the fact that sphdiam(⇠) 2 [0, 1] for any ⇠ 2 P
1
an.

Remark 7.4. In light of Remark 7.3, one may ask whether the bounded contraction
hypothesis of Theorem 1.1 implies non-uniform exponential expansion (fn)\(⇣) � c�

n

for type I Julia points ⇣, i.e., with c and � depending on ⇣. The answer is no, as we now
illustrate by revisiting the map f(z) = (z + c)(z + 1)/z of Example 7.1.

Let {Ni}
1
i=1 ✓ N be any sequence of positive integers, and define {Mi}

1
i=0 by Mi :=

N1 + · · · +Ni. We now construct a nested sequence D0 ) D1 ) D2 ) · · · of Berkovich
open disks satisfying

• Di is of the form Di = Dan(ai, |c|i) for each i 2 N0,
• f

Mi maps Di bijectively onto D0 for each i 2 N0, and
• (fMi)\(⇣) = |c|

�i for any ⇣ 2 Di and each i 2 N0.

To this end, we first defineD0 := Dan(0, 1), which clearly satisfies the above bullet points.
Proceeding inductively, having already constructed the disk Di�1 = Dan(ai�1, |c|

i�1),
observe by equation (7.1) that fNi�1 maps Dan(1�Ni, 1) bijectively onto D0. Moreover,
by equation (7.3), f maps Dan(x, |c|) ( D0 bijectively onto Dan(1 � Ni, 1), where x =
�c/Ni. Thus, fNi maps Dan(x, |c|) bijectively onto D0, and we have (fNi)\(⇣) = |c|

�1

for all ⇣ 2 Dan(x, |c|), by Lemma 3.7.
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Because Dan(x, |c|) ( D0, and f
Mi�1 maps Di�1 bijectively onto D0, it follows from

[B19, Proposition 3.20] that there is an open disk Di ✓ Di�1 such that f
Mi = f

Ni �

f
Mi�1 maps Di onto D0. By Proposition 3.6 and our inductive assumptions, we have

(fMi)\(⇣) = |c|
�i for all ⇣ 2 Di, and by [B19, Proposition 3.20] again, it follows that

Di = Dan(ai, |c|i) ( Di�1 for some type I point ai 2 Di�1. We have verified the bullet
points above for Di, completing our inductive construction.

Because the radii of the disks D0 ) D1 ) D2 ) · · · decrease to 0, their intersection is
a single type I point b 2 Cv. Any open set U containing b contains the disk Di for some
i, and by the bullet points, we have f 1+Mi(U) ◆ f

1+Mi(Di) = f(D0) = P
1
an. (Recall that

we verified the last equality in Example 7.1.) Thus, b is a type I point in Jan,f .
However, if we had chosen the sequence {Ni}

1
i=1 to increase very fast, then the spherical

derivatives (fn)\(b) increase slowly. For example, by choosing N := d|c|
�1
e � 2, N1 :=

N , and Ni+1 := N
i+1

�N
i for each i � 2, we obtain

(fn)\(b)  |c|
�blogN (n)+1c

 |c|
�1
n

for any n 2 N, yielding only linear rather than exponential growth.
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