J-STABILITY IN NON-ARCHIMEDEAN DYNAMICS
ROBERT L. BENEDETTO AND JUNGHUN LEE

ABSTRACT. Let C, be a complete, algebraically closed non-archimedean field, and let
f € Cyu(z) be a rational function of degree d > 2. If f satisfies a bounded contrac-
tion condition on its Julia set, we prove that small perturbations of f have dynamics
conjugate to those of f on their Julia sets.

1. INTRODUCTION

Fix the following notation throughout this paper.

C, an algebraically closed field of characteristic zero.

|- a nontrivial non-archimedean absolute value on C,,
with respect to which C, is complete.

N the set {1,2,3,...} of positive integers.

Ny NuU{0}.

The Berkovich projective line P! is a natural compactification of the classical pro-
jective line P*(C,) = C, U {oo}, which we describe in greater detail in Section 2.3. We
consider the dynamics of a rational function f € C,(z) on P!(C,) and on P! . That
is, writing f(2) = z and "™ = fo f" for all n € Ny, we consider the action of the
iterates f™ on P!(C,) and P! . See [BR10, Chapter 10|, [B19], or [Sil07, Chapter 5]
for more thorough treatments of such non-archimedean dynamics. We will be especially
interested in the case that two such maps f, g € C,(z) are conjugate on a subset of P! :

an?’

more precisely, there is some invertible map h : V' — V such that h o f|y = g o h|w,
where W = f~1(V) CV CP. .

A rational function f € C,(z) may be written as f = F/G for relatively prime
polynomials F, G € C,[z]. We define the degree of f to be deg f := max{deg F,deg G}.
Every point of P!(C,) has deg f preimages under f, counted with multiplicity. For any
integer d > 2, we define

Ratqy(C,) := {f € Cy(2) ’ deg f =d}

to be the set of rational functions of degree d, defined over C,,, with the topology induced
from the natural inclusion of Raty(C,) in P?*+1(C,), which maps f to the (2d + 2)-tuple
of its coefficients.

The main result of this paper is motivated by Mané, Sad, and Sullivan’s result [MSS83]
in complex dynamics. They introduced the notion of J-stability of a rational map
f € C(z), a property which, roughly speaking, means that the dynamics of all maps g
in some neighborhood of f in Rat,(C) are conjugate on their Julia sets. In particular,
they showed that a rational map is J-stable if it is expanding on its Julia set. For more
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discussion of stability in the complex setting, see also [McM94, Section 4.1] and [MS98,
Sections 7-8].

Motivated by the results of [MSS83], T. Silverman [Sil17] proved a non-archimedean
stability result for one-parameter families via a condition on the Berkovich analytifica-
tion of the appropriate moduli space. In a different direction, the second author [L.19]
investigated non-archimedean rational functions f € C,(z) acting on P*(C,), proving
that f is J-stable if it is expanding in a sense parallel to that in complex dynamics.
Specifically, as in [L19, Definition 1.1], the map f € C, is expanding on its (type I) Julia
set J; := Jan s NPYHC,) if J; is nonempty and there exist real constants ¢ > 0 and A > 1
so that

(1.1) (f”)h(z) > A" for every z € Jan s NPY(C,) and n € N,

where g* denotes the spherical derivative of g € C,(z), defined in Section 3. (See also
Remark 7.3.) In a different context [B01], the first author had previously studied a
slightly weaker version of this condition for the case that C, = C, and f is defined over
a locally compact subfield K of C,. (Specifically, such a map f is hyperbolic if for each
finite extension L/K, there exist ¢ = ¢, > 0 and A = A, > 1 such that condition (1.1)
holds for all z € J; NP'(L).) However, besides the fact that the results of [L19] apply
only to the type I Julia set Jf, both the expanding and the hyperbolic hypotheses are
unnecessarily restrictive, as we illustrate in Section 7.

In this paper, we strengthen the main result of [LL19] both by generalizing the ex-
panding hypothesis of equation (1.1) and by extending the resulting conjugacy from the
classical Julia set in P*(C,) to the Berkovich Julia set Ju,; C PL, of the map f. (See
Section 2.4 for more on the Berkovich Julia set.) Moreover, we construct our conjugacy
not only on J., s, but also on an appropriate neighborhood of Ju, y NPHC,) in PL .
As in [L19], our statement involves the spherical derivative f? of the rational function
f, but extended to the Berkovich space P! | as described in Section 3, and with a less
restrictive hypothesis. Our extension to P, also allows us to avoid the assumption that
Jan,y NPYH(C,) # & required in both [L19] and [Sil17]. On the other hand, although we
prove that our conjugacy varies continuously with the map g € Raty(C,), our method
does not yield analytic motions of Julia sets as in [Sill7], in part because we do not
consider nonclassical Berkovich points in the moduli space Rat,.

Theorem 1.1. Let f € C,(z) be a rational function of degree d > 2 with Berkovich
Julia set Jan,5. Suppose there exists 6 > 0 such that

(/M) 26 for all ¢ € Ty andn € N.

Then there exist a neighborhood W C Raty(C,) of f and an open set U C PL  containing
Jan.t NPY(C,) with the following properties. For each g € W, there is a homeomorphism
h:PL — PL  for which

(a) h is an isometry on the set PY(C,) of type I points ,

(b) h is the identity map on PL U, and

(c) ho f(C)=goh(C) for all ¢ € UU Tany-

Moreover, the map (g,¢) — h(C) is a continuous function from W x PL to P! .

Note in particular that the points of J,, s\ U are fixed by the map h of Theorem 1.1.
Hence, we have Jan f N\ U = Jany \ U, and moreover f(¢) = g(¢) for all ¢ € Ton s \ U.
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The outline of this paper is as follows. We recall some essentials from non-archimedean
analysis and dynamics in Section 2, and we describe the spherical derivative on P! in
Section 3. Next, we present several necessary lemmas in Sections 4 and 5. Section 6
is devoted to the proof of Theorem 1.1. Finally, in Section 7, we present examples of
rational maps which satisfy the hypotheses of Theorem 1.1 but which are not expanding
in the sense of [L19].

2. PRELIMINARIES

In this section, we recall some relevant facts about dynamics on P!(C,) and on PL,.
Here and in the rest of the paper, we set the following notation for disks in C,.

D(a,r) for a € C, and r > 0, the open disk {z € C, | |x — a|] < r}.

D(a,r) for a € C, and r > 0, the closed disk {z € C, | |x — a| < r}.
O the ring of integers D(0,1) = {z € C, | |2| < 1} of C,.

2.1. The chordal metric. The chordal metric is the distance function p on P*(C,)
given in homogeneous coordinates by

|zowr — zwo

pllzo als fwo i) += o o max{ [l Tnl}

Equivalently, in affine coordinates we have

|z — w| if z,w e O,
- |z — w| ) ,
p(Z,'UJ) _maX{lj‘z‘}max{l,‘w‘} — ;—E‘ le,wECU\O,
1 otherwise.

Any h € PGL(2,0) is an isometry with respect to the chordal metric. See [Sil07,
Section 2.1] or [B19, Section 5.1] for more on the chordal metric.

2.2. Weierstrass degrees of power series. Let a € C, and r > 0. A power series

F(z) =Y ci(z—a) € Cyllz —d]
=0
converges on D(a,r) if and only if

lim |e,|s" =0 foral 0<s<r.

n—oo

If F' converges on D(a,r), then the derivative of F'
F'(z) =) ici(z —a)™" € Cy[z — a]]
i=1
also converges on D(a,r). In particular, F'(a) = ¢y and F'(a) = ¢;.
The Weierstrass degree of F' on D(a,r) is defined to be the smallest n € Ny such that

|cn|r™ = sup{|ci|r* | i € No},

or oo if this supremum is never attained. If n € N is the Weierstrass degree of ' — ¢
on D(a,r), then F maps D(a,r) onto the disk D(cy,|c,|r™), and every point of the
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latter disk has n preimages in the former, counted with multiplicity. In particular, F' is
injective on D(a,r) if and only if n = 1, in which case F(D(a,r)) = D(F(a), |c1|r), and

|F(x) — F(y)| = |F'(a)||lx —y| forall z,y € D(a,r).

If F' is injective on D(a,r), then F’ has no zeros in D(a,r). However, the converse is
not necessarily true if C, has positive residue characteristic, although Lemma 4.2 shows
that F'is injective on a smaller disk in that case.

If f € Raty(C,) has no poles in D(a,r), then there exists a convergent power series
F € C,[[z — d]] on D(a,r) such that F(x) = f(z) for all x € D(a,r). Thus, the image
f(D(a,r)) is a disk of the form D(b,s), where b = f(a). Note that the Weierstrass
degree of F'— b on D(a,r) is at most d.

We refer the reader to [B19, Chapters 3,14] or [Rob00, Chapter 6] for more details on
power series over non-archimedean fields.

2.3. The Berkovich projective line. It has become clear that although a significant
amount of non-archimedean dynamics can be done on the classical projective line P!(C,),
the appropriate setting is the Berkovich projective line P} . In this section we summarize
some relevant facts about P! and its associated dynamics. For more details, see [BR10,
Chapters 1,2,9,10] or [B19, Chapters 6-8].

The Berkovich affine line Al is the set of all multiplicative seminorms on C,[z] that
extend the absolute value on C,. That is, ( = || - ||¢ is a function from C,[z] to [0, c0)
satistying [|fgllc = IFlclglle: I + glle < max{|[flc. lgllc} and [lallc = la| for all
f,g € C,lz] and a € C,. We will generally write an element of Al as ¢ when we think
of it as a point, and as || - || when we think of it as a seminorm.

There are four types of points in Al . Type I points correspond to the points of C,,
with || f|l. := |f(z)| for z € C,. Points of type II and III correspond to closed disks
D(a,r), with a € C, and r > 0, where r € |CX| gives a point of type II, and r ¢ |C|
gives a point of type III. In both cases, the corresponding point ((a,r) € Al is the
sup-norm on the disk D(a,r). Finally, type IV points correspond to descending chains
of disks D; 2 Dy 2 -+ with empty intersection. We denote by H! := Al < C, the
subset of points not of type 1.

We equip Al with the Gel'fand topology, i.e., the weakest topology such that for
every f € C,[z], the function ¢ — || f||c maps Al continuously to R. The projective line
P! may be formed either by taking the one-point compactification P, = Al U{oco} or
by gluing two copies of Al via ¢ — 1/¢. (The new point co is of type I.) Then P! is
a compact Hausdorff space which contains P*(C,), the set of type I points, as a dense
subspace.

For a € C, and r > 0, the sets

Dan(a,7) :=={C € Ay, [z —alc <7} and Du(a,r) :={C € Ay, |z —all¢ <1}

are called open and closed Berkovich disks, respectively. A type I point z € C, lies in
Dan(a,r) if and only if x € D(a,r), and it lies in D,y (a,r) if and only if 2 € D(a,7). A
type II or I1I point ¢ = (b, s) lies in Day(a,r) if and only if D(b, s) C D(a,r); and it lies
in Day(a,r) if and only if D(b,s) C D(a,r). (The one exception to the last rule is that
a type III point ((a,r) itself does not lie in Dy (a,r), even though D(a,r) = D(a,r) for
r & |CX|.) As is the case for disks in C,, if two Berkovich disks intersect, then one disk
contains the other.



J-STABILITY 5

If ¢ lies in the Berkovich disk D,,(a, ), we will sometimes abuse notation and write
Dan(a,7) as Day(¢,7), and even D(a,r) as D(¢,r). We will similarly write Doy (a,r) =
Dan(¢,7) and D(a,r) = D(C,r) if ¢ € Day(a,r).

More generally, an open connected affinoid is either P! with finitely many closed
Berkovich disks removed, or else an open Berkovich disk with finitely many closed
Berkovich disks removed. A closed connected affinoid is defined similarly, with the
roles of “open” and “closed” reversed. The open connected affinoids form a basis for the
Gel’fand topology on P! . If U is either an open or closed connected affinoid, then both
the set of type I points of U and the set of type II points of U are dense in U.

2.4. Dynamics on the Berkovich line. Any seminorm ¢ € Al extends from C,|z]
to C,(2) by defining ||F/G||¢ := || F||¢/||G]|¢, where we understand oo to be a legal value
for this expression, in case |G|l = 0. Any rational function f € C,(z) then defines a
continuous function f : P! — P!  given by

an an?

1Pl sy = R fllc,

which extends the usual action of f on the type I points of P!(C,).

Moreover, if f is a convergent power series on D(a,r), then f similarly induces a
continuous function f : D,,(a,7) — Al . For any open disks D(a,r), D(b,s) C C,, we
have

f(D(a,r)) = D(b,s) <= f(Dan(a,r)) = Dan(b, s).
Furthermore, in that case, the following are equivalent:

e f(z) — b has Weierstrass degree 1 on D(a,r).

e f:D(a,r) — D(b,s) is a bijective function.

o f:Du(a,r) = Dan(b, s) is a bijective function.

e [ has an inverse function f~! : D(b,s) — D(a,r) also given by a convergent
power series.

(The fact that bijectivity implies Weierstrass degree 1 uses our assumption that C, has
characteristic zero; that implication fails in positive characteristic for totally inseparable
maps. )

The (Berkovich) Fatou set of a rational function f € C,(z) of degree d > 2 is the set
of points ¢ € P! having a neighborhood U such that Uen f7(U) omits infinitely many
points of PL . The complement PL ~\ F,, s is the (Berkovich) Julia set Ju s of f. Both
sets are nonempty (see [B19, Corollaries 5.15 and 12.6]), and both are invariant under
f, meaning that

f_1<s7an,f) :f(jan,f) :jan,f and f_l(fan,f) :f<fan,f) :‘Fan,f‘

The Fatou set is open in P. , and the Julia set is closed (and hence compact).

The type I Fatou set Fo, y NPY(C,) consists of those points of P*(C,) having a neigh-
borhood on which the sequence of iterates {f"}>°, is equicontinuous with respect to
the chordal metric p. If a type I point x € C, is periodic, i.e., if f"(z) = x for some
(minimal) positive integer n € N, then the multiplier of x is (f™)'(z). If the multiplier
A of x satisfies |[A\| > 1, then z is said to be repelling, and we have x € J,y y. Otherwise,
i.e. if [A| <1, then x is said to be nonrepelling, and x € Fop .
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3. THE SPHERICAL DERIVATIVE

The spherical kernel is a natural extension to P. of the chordal metric p on P'(C,).
We recall its definition and some of its properties from [BR10, Section 4.3].

Definition 3.1. The spherical kernel is the unique function |-, || : P x P! — R such
that

o ||lz,yl| = p(x,y) for any z,y € P'(C,),

e ||, || is continuous on P! x P! ~ {(¢,¢) | ¢ € HL }, and

e for any (, ¢ € P!

an’

1€, €|l = limsup p(x,y)
(z,9)—=(¢,€)

where the limsup is over (z,y) € P'(C,) x P(C,).

See [BR10, Equation (4.21)] for an explicit construction of the spherical kernel. Al-
though it is not a metric, the spherical kernel has the following related properties; see
[BR10, Proposition 4.7].

Proposition 3.2. The spherical kernel is symmetric and takes values in [0,1]. More-
over, it is continuous in each variable separately, and it is upper semicontinuous as a
function of two variables.

The spherical kernel is discontinuous on the diagonal in H! xH!  but it is precisely on

a an’

this diagonal that we are most interested in it, as illustrated by the next two definitions.
Definition 3.3. The spherical diameter sphdiam(-) : P — [0,1] is defined by
sphdiam(¢) := ||, ¢||
for any ¢ € P! .
In [B19, Section 6.1.2], the diameter of ( € Al is defined as
diam(() := inf{||z — al|¢ : a € C,}
Defining |(| := ||z]|¢, we have the identity

diam(()

— 7 11 Al
max(L,cpy orAle S

an?

sphdiam(¢) =

with sphdiam(co) = 0.

Definition 3.4. Let f € C,(z) be a rational function. The spherical derivative of f on
P! s
Q. 1)
fh () := lim
= e

where the convergence ¢’ — ( is with respect to the Gel’fand topology on P! .

Our next result shows how to compute the spherical derivative in practice.

Proposition 3.5. Let f € C,(2) be a nonconstant rational function, and let { € PL .
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(a) If ¢ = x € PY(C,), then fi(x) = f#(x) is the classical spherical derivative on
PY(C,), given by
) 7)ot P S )
) =170 = I =)
where y — x in P1(C,). In particular, if z, f(x) € C,, then

5) = | (2)] - maX{l?le}

< Rzo,

(b) If ¢ € H. , then
0 sphdiam (f((’))
JQ) = sphdiam(()

Proof. By Proposition 3.2, the maps ||¢,-]| : PL, — R and ||f(¢), ] : P, — R are
continuous. Since f : P — P! is also continuous, we have

lim || £(0), S| = [1£(0), (O] = sphdiam (£(0)).

6 R>0

and
lim |¢, ¢'ll = ¢, || = sphdiam(¢).
=<
If ¢ € H! , then sphdiam(¢) > 0. Because f is nonconstant, we have f(¢) € H! as
well, and hence also sphdiam(f(¢)) > 0. Therefore,
sphdiam ( f(¢)
fiig) = Dhdm U]
sphdiam(()
Otherwise, we have C =z € P}(C,), so that f(¢) = f(z) € P}(C,), and hence
f(¢ [z f(x), f(y)
fh(() / H / H H ” — lim ( ) _ f#(x) >0
G HC C H — 5 H$ yH vor o p(2,y)
where the second and third limits are for y — = = ¢ in P!(C,), and the second equality
follows from the density of P'(C,) in P! . O

Recall that the chordal metric p is invariant under the action of PGL(2, O). Therefore,
by the third bullet point of Definition 3.1, we have

(3.1) hi(¢) =1 forall h € PGL(2,0) and ¢ € P! .

The spherical derivative also satisfies the following chain rule.

Proposition 3.6. For any rational functions f,g € C,(z) and any ¢ € PL | we have
(fo9)"(¢) = f*(9(¢)) - 4*(¢)
Proof. By continuity, we have
o o) — 1 Q) D] _ o (9©) FaO] 190 9(¢]
foal(o) = in, ||C 7l BEES Hg O REE
= [*(9(¢)) - 6°(¢) O

We close this section with the following lemma concerning a disk on which the rational
function f has Weierstrass degree 1.
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Lemma 3.7. Let f € C,(z), let a,b € C, with |al],|b| <1, and 0 < r,s < 1. Suppose
f maps D(a,r) bijectively onto D(b,s). Then f*(¢) = s/r for any ¢ € Day(a,r). In
particular, we have

sphdiam (f(C)) _ 2 sphdiam(()
r
Proof. By [B19, Proposition 3.20], we have

(3.2) |f(z) = fly)] = ;]:v —y| forall x,y € D(a,r).

Recall that p(z,y) = |z — y| for any z,y € O. Because D(a,r), D(b,s) C O, it follows
that

s
[#), f@) | = 2l gl for all 2,y € Dla, )
Therefore, by the third bullet point of Definition 3.1, we have

1£()- Ol = 2l6,¢ll - for all ¢ € Dun(a,r),

which is the desired conclusion for ¢ not of type I, by definition of the spherical di-
ameter. Finally, the conclusion for ¢ of type I is immediate from equation (3.2) and
Proposition 3.5(a). O

4. Basic LEMMAS

Lemma 4.1. Let f € C,(z). Suppose there ezists § > 0 such that

(f) () =6 for all ¢ € Juny andn € N.

Then there exist 6 > 0 and h € PGL(2,C,) such that the map g := ho foh™"! satisfies:

o [9(Q) > 1 for all ¢ € P}, with |[¢| > 1,
. (g")h((’) > ¢ for all ¢ € Jang and n € N.

Proof. By [B19, Proposition 4.2], there is a type I point a € P*(C,) that is a nonrepelling
fixed point of f. Let hy € PGL(2,O) be a Mdbius transformation satisfying hy(a) = oo.
By [B19, Proposition 4.3(c)], there is some R > 0 so that the map g; := hyo f o hy"
satisfies |g;(z)| > R for all z € P}(C,) with |z| > R; and by [B19, Theorem 4.18], we
have |g1(z)| > |z| for all such x.

Choose b € C with |b] > R, and define hy € PGL(2,C,) by ha(z) := z/b. Define
h := hyohy and g := ho foh™l. Then |g(x)| > |z| for all x € C, with |z| > 1,
implying the first conclusion by continuity. Moreover, the Fatou set Fuy g = h(Fan,f) of
g must contain P!\ D,,(0,1), and hence the Julia set Jon, = h(Jan.s) is contained in
Dan(0,1), yielding the second conclusion.

It is easy to check that

B5(C), (h3")*(¢) = min {Jb, [b| '} for all ¢ € PL,.
Therefore, by equation (3.1) and Proposition 3.6, we also have

RA(C), (h™)¥(¢) = min {[b], |b] "} for all ¢ € PL,.
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Define &' := d min{|b|?, |b| "2} > 0. For any ¢ € Jan,, again by Proposition 3.6, we have
(")) = 2 (/" (h () ) - () (1) - ()

> min {|bl, o]} - ()" (h7(0)) - min {Jo]. o'} = & 0

Define the real number
et it p >0,
T if p=0,
where p is the residue characteristic of C,. Note that 0 < k < 1, since C, itself has
characteristic zero.
If a convergent power series F' € C,[[z — al] on a disk D(a,r) has no critical points, it

is still possible that F' may not be injective on D(a,r). However, the next result shows
that F' is injective on the smaller disk D(a, kr), scaling distances by a factor of |F’(a)|.

Lemma 4.2. Fizra € C, andr > 0. Let

F(z) =) c(z—a) € Cyf[z —d]]

i=0
be a power series converging on D(a,r). If F' has no critical points in D(a,r), then F
maps D(a, kr) bijectively onto D(cy, |c1|kT).

Proof. Because F' has no critical points in D(a,r), the power series I’ has Weierstrass
degree zero on this disk, and hence

Inc,|r" !t < lei| forallm € N,
In addition, by definition of x, we have k"' < |n|, and hence
len| (k)" < |neg|kr™ < |eq|(kr)  for all n € N.

Therefore, F' — ¢y has Weierstrass degree 1 and hence is injective on D(a, xr). By [B19,
Theorem 3.15], F' maps D(a, kr) bijectively onto D(co, |c1|kT). O

Lemma 4.3. Let f € C,(z) be a nonconstant rational map. Suppose that all poles and
(type I) critical points of f lie in the Fatou set Fu,¢. Then there exists € > 0 such
that for any point a € C, for which Dy, (a, €) N Tan,f # &, we have that f maps D(a,r)
bijectively onto D(f(a),|f (a)|r) for any radius r with 0 < r <.

Proof. Denote by CP(f) the set of poles and (type I) critical points of f. Since each
c € CP(f) lies in F,, f, there is an associated radius d, > 0 such that D,y(c, d.) C Fan,s-
Because CP(f) is finite, we may define

€ :=min{d.|c € CP(f)} >0 and e:= ke > 0.

For any a € C, for which D,,(a,€) intersects Jan s, the larger disk Day(a,€p) also
intersects Jan,f, and hence cannot contain any points of CP(f). After all, if ¢ € CP(f)
lies in Dap(a, €p), then Day(a, €9) = Dan(c, €9) is contained in F, ¢, a contradiction.

For such a € C,, since f has no poles in D(a, €y), we may write f as a power series

f(z) =) ci(z—a) € Cllz—d]]

1=0
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converging on D(a, €y), with ¢y = f(a) and ¢; = f'(a). By Lemma 4.2, for 0 < r <€, we
have that f maps D(a,r) bijectively onto D(f(a),|f (a)|r). O

5. TECHNICAL LEMMAS

To prepare for the proof itself, we need to set some notation and present several
technical lemmas. Throughout this section, we assume f € C,(z) is as in Theorem 1.1.
By Lemma 4.1, we may assume that Ju, € Dan(0, 1), with |f(x)| > 1 for |z| > 1, and
such that (f™)*(¢) > § for all ¢ € Jun.y and n € N. Choose € > 0 as in Lemma 4.3; thus,
f is injective on D(a,¢€) for any a € C, for which Dyy(a, €) N Jan s # @. Without loss,
assume that d,e < 1.

For each ¢ € Jan ¢, define the real quantities

o(¢) == inf {(fEQ) [n eNo},  w(¢) = ——
and for each n € Ny,

)= AQ) el
(FEQV(O) (4o (f(0))
The function o : Jan y — R will serve as a local scaling factor with respect to which f
will be everywhere expanding on J,, ¢ (see Lemma 5.1.(b) below).

We also partition J,,, ¢ into two pieces:
T s = {C € Tuny | sphdiam(¢) > v(()}, and
Jans = {¢ € Tans | sphdiam(¢) < v(¢)}-
Moreover, for each n € N, define J ; := f~"(T} ;)-

a;

Finally, we cover ja?n’ s with open disks, by setting

Q= U Dan (Cv V(C))

CET ¢

We will multiply the radii v(¢) by the contracting factors p,(¢) to produce even smaller
neighborhoods of an f+
Lemma 5.1. For any ¢ € Jan,f, the following statements hold.

(a) § <o(¢) <1 and 5% < v(¢) < de.

(b) (o (f(C)) = a(¢).
Proof. (a). For any ¢ € Jan,f, choosing n = 0 in the definition of ¢({) yields the upper
bound ¢ (¢) < 1. The lower bound follows from the hypothesis that (f)%(¢) > ¢ for all
n € Ny. The bounds on v follow immediately.

(b). For any n € Ny, we have

FO) - (FE(FQ) = (F)©),

by Proposition 3.6. Taking the infimum over all n € Ny, we have
FQe(£(©) =t { (/)¥(Q) [ n e N}
> inf { (7)"(Q) [ € No} = (0. 0
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Lemma 5.2. For each ( € Jan s, we have

Hul for alln € N.

(b) 1= Mo(C) > p1(€) = p2(¢) >
(¢) If C € Ty g then f(C) € T -
Proof. (a). Given ¢ € Jan s and n € N, Proposition 3.6 yields
N = C)) (e (r L
[Lm(r@) = H s~ Lagmey) (L rgay)

R
= 5O <fn>h<<>"“‘"“>'

(b). For any ¢ € Jan,f, clearly 1o(¢) = 1. Observe that
pi(f(¢)) <1 forany i € N,

by Lemma 5.1(b) applied to f*(¢). Thus, part (a) of the current lemma immediately
implies part (b).

(c). For ¢ € .\ ;, we have
sphdiam (f(¢)) = f(¢) sphdiam(¢) > f*(¢)r(¢)

/ “(C) 2 d%e
= L) e > = (£(0)),
() a(f(¢)) ()
where the first equality is by definition of f%, the second and third equalities are by

definition of v, the first inequality is because ¢ € J. f, and the second inequality is by
Lemma 5.1(b). O

It is immediate from Lemma 5.2(c) that Jp, ; 2 T, 2 T f 2

Lemma 5.3. For any n € Ny,

U = | DunlCpn(Or(Q)).

SV

Moreover, we have QD f~1(Q) D f7%(Q) D

Proof. We prove the equality by induction on n. It is trivial for n = 0. Assume it holds
for some n = m € Ny; we will prove it for m + 1.
For the forward inclusion, given ¢ € f~(™*+D(Q), there exists ( € J™ ¢ such that

f(f) € Dan(Ca Mm(C)V(C)) Write
FHE) = {01, 0} C Tt
For each i = 1,...,d, Lemma 5.1(a) yields

v(fm™H(0:))

fm11(0:)v(0;) = Fiye(6;)

IA

6_
.
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Therefore, by Lemma 4.3, f is injective on each disk D.y,(6;, ptmi1(6;)v(6;)), scaling
distances by a factor of f%(6;). Hence, the points 61, . ..,60, are indeed distinct, and

f(Dan (eia,uerl(ei)V(ei))) = Dan (f(ez)a f”(&i),umﬂ(ﬁi)y(@i))

= Dan (f(ez)a :um(f(@))V(f(QZ)))

= Dan (¢, i (Q)v(€)).-

Since deg f = d, we have accounted for all preimages of D, (C, pm(¢)v(¢)). Thus, there
is some j € {1,...,d} such that

§€ Dan<9j,Mm+1(9j)V(9j)),
completing our proof of the forward inclusion.
Conversely, given ( € ja’ﬁjl and & € Dan(C, tm1(Q)v(C€)), we have

f(g) € f<Dan(<7 Nm—&-l(C)V(C))) - Dan (f(<)7 fu(g)ﬂm—i-l(C)V(C))
= Dun (O 1 (FOIV(F()) ) € £ ()

verifying the reverse inclusion.
Finally, for any n € Ny, we have fi,,11(¢) < p,(¢) for all ¢ € J™!, by Lemma 5.2(b).
Since J1 C J it follows immediately that f~"1(Q) C f~™(Q). O

Lemma 5.4. We have

N /=) Tos = Fans NC..

neNp n€Np

Moreover, for any ¢ € Jany N C,, we have lim pu,(¢) = 0.

n—oo

Proof. The inclusion (2) in the first equality is immediate from the definitions of Q and
Jan.p» and the inclusion (2) in the second equality is because sphdiam(f"(¢)) = 0 for
every point ( of type I and every n € Ny. Thus, to show these two equalities, it suffices
to show that the first set is contained in the third.

Given & € ,~, f7™(Q), by Lemma 5.3, there is a sequence of points {(,}22, such
that for every n € Ny, we have

(5.1) G € Ty and € € Dan(Guy pin(Ca)v(Gn))
Define
t :=inf {un(g“n)u(gn) ‘ n e NO} > 0.

We claim that t = 0. If not, i.e., if £ > 0, then there is some j € Ny such that
t > 0Y21;(¢;)v(¢;). There must be some m € N such that f™(Dau (¢, 1;()v(¢))) is
not contained in an open disk of radius e, or else f*(Dan((j, 115(¢)v(¢5))) € Dan(0, 1) for
all 7 € Ny, contradicting the fact that (; € Jun ¢. Let m be the smallest such integer.
Since f*(Dan (¢, 115(¢)(¢5))) is contained in Doy (f4((;), €) for every 0 < i < m, repeated
application of Lemma 4.3 shows that f™ maps Dan((j, 1t((5)v((;)) bijectively onto a disk
of radius greater than e.

Choose a point § € P! as follows. If diam(¢) > §'/2t, then choose 6 := &; otherwise,
choose 6 to be the unique boundary point of the disk Dy, (&,8'/?t). Then

sphdiam(f) = diam(0) > 6"/t > 5u;(¢)v(¢)),



J-STABILITY 13

and in addition, for every i € Ny, we have 0 € D, (¢, i (¢)v(G))-
Because 6 lies in the disk D,,({j, 1t5(¢)v(¢;)), Lemma 3.7 applied to f™ implies that

(5.2) sphdiam (f™(6)) > m - diam(0) > de > v (f™ (),

where the last inequality is by Lemma 5.1(a). However, since 6 also lies in the disk
Dan(Cma Mm(Cm)l/(Qm)), we have

£7(8) € £ (Dan (G n GV (Gn)) ) = Dan (£7(G) v (F7(G) ).

Therefore, sphdiam(f™(0)) = diam(f™(0)) < v(f™((mn)), contradicting inequality (5.2).
Our claim follows; we must have ¢t = 0.

The point ¢ is therefore contained in disks Doy (G, pin(Gr)v(En)) of arbitrarily small
positive radius. Thus, diam(§) = 0, implying that £ € C,. The points (, € Jans
accumulate at &, and hence § € Jun r N C,, as desired.

Finally, given £ € Jan s N C,, we may choose the sequence {(,}r>, of (5.1) to be the
constant sequence ¢, := &. Since the sequence {p,,(§)}5°, is decreasing by Lemma 5.2(b),
the above claim immediately yields p,(§) — 0. O

Remark 5.5. One consequence of Lemma 5.4 is that every periodic Julia point in H
belongs to «7;{1, ;- Indeed, if ¢ € T, f N Q is periodic of period ¢ > 1, then Lemma 5. 4
gives
ce () =) £"(Q) = JanysNC,,
n€Ng n€Ng
where we have also applied Lemma 5.3. In particular, there is a uniform lower bound
for the spherical diameter the set of Julia periodic points that are not of type I.

On the other hand, such a lower bound does not hold in general without the bounded
contraction hypothesis of Theorem 1.1. For instance, the map of Example 10.20 of [B19]
has an infinite sequence of attracting periodic points a,, € C, accumulating at a type I
Julia point b. Each a,, must lie in a different Fatou disk with a single type II repelling
periodic point (, as its boundary. We have (,, — b, and hence the diameters of the
type II Julia periodic points ¢, must approach zero.

Lemma 5.6. For any v > 0, there is an open subset W of Raty(C,) containing f such
that for any g € W, we have

(a) |g(z)| > 1 for any x € C, with |a:| > 1, and
(b) lg(z) — f(2)| < for all z € f~1(D(0,1)).

Proof. Write f = F/G for relatively prime polynomials F, G € C,[z], with
F(2) =agz +---+ay and G(2) = bgz? + - + by,

and write an arbitrary g € Raty(C,) as F/G, with F', G € C,[z] given by

(5.3) F(2)=Agz"+ -+ Ay and G(2) = Bgz"+---+ B,.

As we assumed at the start of this section, we have |f(x)| > 1 for any = € C, with
|z| > 1. Therefore, ag # 0, and |a;|, |b;| < |ag| for all i = 0,...,d. Let W; be the subset
of Raty(C,) defined by the (open) conditions

|A; — a;] <laq| and |B; —b;| <|aq| foralli=0,...,d
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Then any g € W1 has [g(z)| > 1 for any € C, with [z| > 1.
Let y1, ...,y denote the distinct poles of f in D(0,1), and choose a radius 0 < r < 1
so that f(D(y;,r)) € PY(C,) ~\ D(0,1) for each i. Then

|G(z)] > C forall z € D(0,1) \ (D(yl,r) u---U D(yg,r)),

where
C = min{[|Gllcray, - - |1Glleen } >0 i £ =1,
or C :=|G(0)] = ||Gl¢o,1) if £ = 0.
With notation as in equations (5.3), define W5 to be the open neighborhood of f in
Raty(C,) given by the conditions
2

C
|AZ—CLZ| < ﬁ and ‘Bz_bz’ <min{
Qq

Then any g = F//G € W, satisfies

Chy

,C’} for each 1.
|adl

2 2

‘F(m) — F(z)| < ¢ and ‘é(x) —G(z)| < min{c 7

|aql |aq|’

C’} for all z € D(0,1).

Therefore, for any g = F/G € W, and z € C, such that |f(z)] <1, we have
|G(z) — G(z)| < C < |G(z)|, andhence |G(z)|=|G(z)| > C.

Thus,
0@ (@) - F) - F@)(E) - 6e)]
o) = I Gl -16()
< — max {|ag|| F(z) — F(2)], |aq||G(z) — G(z)|}
< % max {C%y, C?v} =y
Finally, defining W := W3 N W,, we are done. U

Lemma 5.7. Let W C Raty(C,) be the open neighborhood of f from Lemma 5.6 for
some vy with 0 < v < §%¢. Then for any g € W and any € aln,fi we have f(¢) = ¢*(¢),
and

g maps D(C,ul(g)y(g)) bijectively onto D(f(C), V(f(()))
Moreover, g~ 1(Q) = f~1(Q).
Proof. Given g and ( as specified, let r := p;1(¢)r(¢), so that
diam(¢) = sphdiam(¢) < r < Je,

by Lemmas 5.1(a) and 5.2(b). Choose x € C, with ||z —z||¢ < 7, so that { € Du,(x,7) C
Q. Recall that f has no poles in 2, and hence neither does g, by the defining property
of W in Lemma 5.6(b). Thus, we may expand both f and g as power series

(e 9]

f(z) = ai(z—2)" and g(z) = Z bi(z — )"

=0
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convergent on D(z,r). Because r < e, Lemma 4.3 implies that f — aq is injective on
D(z,r) and hence has Weierstrass degree 1. That is, |a;|r" < |a;|r for all i > 1. We will
show the analogous statement for g — bg.

By the defining property of W, the power series

o0

9(z) = f(2) = Z(bz —a;)(z — )

=0
satisfies |g(y) — f(y)| < v for y € D(z,r), and hence
(5.4) |b; — a;|r* < v for all i € Ny.
On the other hand, we have |a;| = |f'(x)| = f*(¢), and therefore
jaafr = FQm(Qr(Q) = v(f(Q) = 0% > 7.
Combined with (5.4) for ¢ = 1, it follows that |b; — a;1| < |a;|, and hence
(5.5) F(¢) = |g'(@)] = [ba] = Jas| = f*()-
Furthermore, applying (5.4) for ¢ > 1, we have
|b;r" < max {|b; — a;|r", |a;|r'} < max {7,|ai|r} = |bs|r for all i > 1.

That is, g — by has Weierstrass degree 1 on D(z, ).

Thus, g maps D((,r) = D(z,r) bijectively onto D(g(x),|¢'(x)|r). However, since
|b1| = |a1| by equation (5.5), we have

lg'(@)Ir = [bi]r = |as|r = v(£(C)).
Hence,
9(y) — f(y)| <7 < e <v(f(Q) =g (x)|r forally € D(z,7).

Therefore, the image of D((,r) under g is

D(g().lg'(@)lr) = D(f(@).v(£(0))) = D(F().1(£(0))).

Lastly, we must show that ¢g~'(Q) = f~'(Q). For any ¢ € T, f, let 0,...,04 € T,

an, f
be the d preimages of ¢ under f, which we know to be distinct as in the proof of

Lemma 5.3. By the first part of the current lemma, we also know that g maps each disk
D(0;, 111(6;)v(6;)) bijectively onto D((,v(¢)), accounting for all d preimages of D({, v(())
under g. Thus,

g7 (Dan (G, #(0)) ) = Dan (01, 1 (81)(81)) U -+ U D (6, (6 (0)
= 17(Dan(¢1(0))).

Taking the union across all ¢ € J,), ;, we have ¢~ (Q) = f~1(Q). O
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6. PROOF OF THEOREM 1.1

With notation as in Section 5, we are now prepared to prove our main result, as
follows. In Step 1, we define a sequence {h,}%, of maps from subsets of Q to Q, and
we investigate properties of this sequence in Step 2. Then, in Step 3, we glue the maps
h,, to produce the desired map h : P! — Pl that is a conjugacy on f~(Q). In Steps 4
and 5, we show that i is a homeomorphism on P!  and that the conjugacy extends to

S7HQ) U Jans- Finally, in Step 6, we show that h varies continuously with g.

Proof of Theorem 1.1. Step 1. Fix a real number 0 < ¢ < 1, and let W = Wy(f) be
the neighborhood W of f given by Lemma 5.6 for v = td%¢. For the rest of this proof,
consider an arbitrary map g € W.

By Lemma 5.7, for each ( € jalmf, the map g is injective on D((, u1(¢)r(C)), with
image D(f(C),v(f(¢))). Thus, there exists a map

Ge: D(F(Q),v(F(Q)) = D(G m(Qr(©))

which is an inverse to ¢ given by a power series convergent on D(f((),v(f(¢))). Note
that if £ € J, ; lies in the same disk D(C, u1(¢)v(C)), then the power series G¢ and Gg¢

an, f

agree, since ¢ is injective on both D((, u1(¢)v(¢)) and D(&, i (§)v(§)). As usual, the
power series defining G¢ extends via continuity to

(6.1) Ge : Dan (S(Q)¥(F(Q))) = Dan (G 1 (O(Q))
We now define a sequence {h, }>2, of functions, with ho : PL, — P! and
hp: () —Q forn>1

by the following inductive method. Let hg : PL — PL by ho(¢) := ¢. For each n € N,
having already defined h,,_;, we define h,, as follows. For each ( € Ton.ps define h,, on

Dan(C, pn(O)v(C)) by
hy, = Ggohn—lofv

where G is the local inverse of g defined in (6.1).

Step 2. We will now show that for each n € Ny,
e h, is a well-defined function mapping f~"(2) bijectively onto g~"(Q2), given by a
convergent power series on each disk Do, (¢, 11, (¢)v(€)) for ¢ € T 4,
e h, is an isometry on f~"(Q)NC,, and

e for every ¢ € J,,  and x € D((, pn(¢)v(C)), we have !hn(x) - x| < tu (Q)v(Q),
with

(6.2) }hn(x) — hn_l(a:)| <tp,(Qv(¢) ifn>1,

where 0 < t < 1 is the constant we fixed at the start of Step 1.

We proceed by induction. For n = 0, all three properties hold trivially.

For n > 1, assume the three bullet points hold for n — 1. Then h,, is well-defined
because if £ lies in both D, (¢, 11 (Q)v(€)) and Dan (', 111 (¢')v(¢’)), then as we noted in
Step 1, the power series G¢ and G agree. That is, the value of h,(&) is independent of
which point ( is chosen as the center of the disk.
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For any ¢ € J,; ;, it is immediate from Proposition 3.6 and the definition of x, that

% = 1 (O ),

and hence, by Lemmas 3.7 and 4.3, f is a convergent power series on the disk U, :=

D(¢, n(C)¥(C)), mapping
D(G 1m(QU€))  bijectively onto  D( (), i1 (F(O)(£(0))).

and multiplying all distances by a factor of f%(¢). By our inductive assumptions, h,_;
acts as a power series mapping D(f(C), pn—1(f(C))v(f(¢))) isometrically onto

Vet = D(hu-1 () s -1 (FO)V(£(0)) ) € D(£(©v(F(C)).
where the inclusion is because of the inductive assumption that

A1 (f (@) = f(@)| < tua (F(Q))v(f(Q) <v(f(¢) forallz eV,

Thus, G is defined as an injective power series on the disk V,,_; = h,_1(f(U,)), mul-
tiplying all distances by (g%(¢))~" = (f%(¢))~!, where this equality is by Lemma 5.7.
Therefore, h,, = G¢ o h,,_1 o f is a power series on U,, mapping

(6.3) D(¢, pn(Q)r(€))  isometrically onto D (h,(€), (v (Q)).

We will prove h,, is an isometry on all of f~"(Q) N C, shortly, but first we prove the
third bullet point for our given n > 1. Given ¢ € J, ; and z € D((, pn(¢)v(C)), we first
claim that

Indeed, if n = 1, we have |f(z) — ( )] < t(52e < tv(f (()) by Lemmas 5.1(a) and 5.6,
yielding (6.4). If n > 2, we have g(h,—1(x)) = hn—o(f(z)), and by our inductive assump-
tion for f(x), we also have

|1 (f(2) = e (f (@) < trn-1 (FO) v (£(C)),
proving (6.4). Moreover, h,_1(f(x)) and g(h,—1(x)) both lie in D(f(¢),v(f(¢))), and
hence we may apply G¢. Recalling that G scales distances by (f#(¢))~!, we have
(6.5) () = 1 ()] < 6(f(0) ™ ptna (FO)(£(C)) = tpa(OV(©),

giving inequality (6.2). The first part of the third bullet point then follows from this
bound together with the inductive assumption, because
x) — a:|}

A (2) — x| < max { |k, (2) — hoor (@), | P
< max {1, (Q)v(C), t (O (Q) } =t (O (),

where the final equality is by Lemma 5.2(b).
As for the second bullet point, that h,, is an isometry on f~"(Q)NC,, consider arbitrary
z,y € f7(Q) NC,. Then there exist ¢, € J;, ; such that x € D(C, p1,(¢)v(¢)) and

y € D(&, pun(§)v(€)), by Lemma 5.3. Without loss, 1, (¢)v(C) > pun(&)v(§).
If |z — y| < pn(Q)v(Q), then we have |h,(x) — h,(y)| = |z — y| by (6.3). Otherwise,

}hn<x> - hn—l(x)} <t (Qr(Q) < |z —y[ = ‘hn—1($> — hn1(y)

FH OOV =

Y
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and similarly for ‘hn(y) —hn_1(y) }, where the first inequality is by (6.5), and the equality
is by our inductive assumption. Thus,

|hn(x) - hn(y)l = ‘(hn(x> - hnfl(x)) - (hn(y) - hnfl(w) + b1 () = B (y)
= |hn1(2) = hoa(v)| = |2 =yl

as desired.

[t remains to show that h, maps f~"(£2) bijectively onto ¢~"(2). Because h,, is given
locally by power series, it suffices to show that h, maps f~"(Q) N C, bijectively onto
g "(Q)NC,.

Since h,, is an isometry, we already know it is injective on f~"(Q) N C,. In addition,
for any z € f~(Q) N C,, we have f(x) € f~™Y(Q), and therefore by our inductive
assumption, we also have

b (£(2) € V().
Since each map G¢ is a local inverse of g, it follows that h,(z) € g7 ().

Finally, given y € ¢7"(Q) N C,, we have g(y) € g™ Y(Q), and hence there is some
7 € f~"=9(Q) such that h,_,(Z) = g(y), by our inductive assumption. By Lemma 5.3,
there is some ¢ € j;ljfl such that & € D(C, pn_1(Q)v(C)). Writing f~1(¢) = {04, ..., 04},
each disk

D(6;, 11 (0;)v(6;))  maps bijectively onto D (¢, v(C))
under both f and g, by Lemmas 4.3 and 5.7. Moreover, because

|9(y) = & = |ho-1(2) = 2] < tpa(Q(C) < pu(Qr(C)
by our inductive assumption, we have g(y) € D((, u1(¢)v(¢)). Therefore, there is some
j €A{l,...,d} such that y € D(6,,v(6;)), and there is some z € D(6;,v(;)) such that
f(z) = 7. Since 7 € f~"Y(Q), we have x € f~"(Q). Writing § := 6;, we have
Go(g(y)) =y, and hence h,(z) = y. Thus, h, does indeed map f~"(22) N C, bijectively
onto g~"(2) N C,, completing our induction.

Step 3. For each n € Ny, define H,, : PL — P! by the following inductive procedure.
Let Hy = hg, and for n € N and ¢ € P! | let

an’

_JH(Q) i Ce PN fTQ),
fnle)= {hn@ if ¢ € f7(Q).

Define h : Pl — P! by
h(¢) := lim Hy((),

n—o0

or equivalently

¢ if ¢ € Py~ f7H(Q),
h(E) = 4§ ha(C) if ¢ € f7(Q) N f~0(Q) for m € N,
limy, o0 hr(Q) i ¢ € Nyen f ().
For the third case, recall from Lemma 5.4 that (), .y, /7" () = Jany N C,, and that
limy, 00 £, (¢) = 0 for such ¢. Thus, by the third bullet point of Step 2, the sequence

{hn(¢)}22, is Cauchy and hence converges to h(() € QNC,. Together with Lemmas 5.3
and 5.7, as well as the first bullet point of Step 2, it follows that h is indeed a function
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from P! to itself. Moreover, by the second bullet point of Step 2, h maps f~"(Q) N C,
bijectively onto ¢~"(2) N C, for each n € Ny.

We claim that h is an isometry on C,. To see this, given x,y € C,, we consider several
cases. First, if 2,y € Jan,r, then

1) = h(y)] = | Tim (@) = ha(y)| = T [h(@) = ha(y)] = lim |2 y| = o =y,
where the third equality is because h,, is an isometry on f~"(Q)NC,, by Step 2. Second,
if 7,y € f7(Q) ~ f~™*(Q) for some n € N, or if 2,y € PL_~ f~1(Q) with n = 0, then

1) = h(y)| = [ha(2) = haly)] = |2 = yl.
Finally, suppose there is some n € Ny such that

e {Pén\fl(Q) ifn=0,

(6.6) FQ) ~ Q) i > 1,

and y € f~"*(Q). Then for every m > n for which y € f~™(Q), there is some
Cm € Tan y such that y € D (G, fm(Gm)V(Gn))- For any integer ¢ with n < £ < m, we
have (p € JY ;. By Lemma 5.2(b), we also have y € D((pm, fte(Cm)v(Cr)). Thus, it
follows from the third bullet point of Step 2 that

|he(y) = hea(y)] < pre(Gn) v (Gon)-

On the other hand, it follows from our assumption (6.6) that | — y| > tni1(Gn)V(Gn)-
Therefore,

| A (y) = ()| < max {|he(y) — he-1(y)|} < max{pe(Gn)v(Gn)}
=t (Cn)V (Cm) < |7 = y| = |hn(2) = ha(y)]

where the two maxima are over ¢ € {n + 1,...,m}, and where the first equality is by
Lemma 5.2(b). Hence,

If y € Jan,r, we obtain |h(z) — h(y)| = |x — y| by taking the limit as m — oo in (6.7).
Otherwise, we obtain |h(z) — h(y)| = |z — y| by choosing m in (6.7) to be the largest
integer for which y € f~™(Q).

Next, we claim that

(6.5) B(F(Q) = g(h(C)) for all ¢ € ().

To see this, suppose first that ¢ € f~"(Q) ~ f~"*(Q) for some n € N. Then h(¢) =

hn(C), and h(f(¢)) = hn—1(f(¢)). Hence, by the construction of h, in Step 1, we have
g(M(Q)) = g(hn(¢)) = hu-a(F(Q)) = A(f(C))-

The only other possibility is that ¢ € Jan, s N C,, in which case ¢, f(¢) € f~™(Q) for all
n € Ny. Therefore,

g(h(©)) = g( Tim ha(Q)) = lim g(ha(C)) = Tim hy 1(f(Q)) = R(F(C)),

n—o0 — 00

proving our claim.

Step 4. Our goal in this step is to show that h : PL — P! is a homeomorphism. We
already know that h fixes every point of P!~ f~'(Q2) and maps f~!(Q) bijectively onto
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itself. It follows that i : P1 — P! is bijective. Since P! is a compact Hausdorff space,
it suffices to show that h~! is continuous.

To that end, we first recall that for every n € N and every ¢ € 7, ;, both h,,_; and h,,
are power series convergent on Do, (C, pin({)v(¢)) with Weierstrass degree 1. Therefore,
it is immediate from inequality (6.2), along with the fact that h,, is an isometry on the

type I points, that

ot (Dan (¢ n(O(0)) ) = ha(Dan (G 1a(QV(Q) ) for all ¢ € T .
By the definition of H, : P, — P. from Step 3, it follows that

(6.9) H, <Dan(C, un(q)u@))) =H, (Dan(c,un(C)v(O)) for all ¢ € Ty, ;-
Second, we claim that for every a € C,, every r > 0, and every n € Ny, we have
(6.10) Hn(ﬁan(a,r)) = Ean(Hn(a),r) and Hn(Dan(a7 7“)) = Dan(Hn(a),r).

We prove equation (6.10) by induction on n; it is clearly true for n = 0, since Hy is the
identity map. For n € N, assuming equation (6.10) holds for H,_;, we now show it for
H,. Let X be the disk D,,(a,r) or D,y(a,7). If X does not intersect D, (¢, i, (C)v(€))
for any ¢ € J, ;, then X N f7"(Q) = @ by Lemma 5.3, so that H,(X) = H,1(X)
Similarly, if there are any points ¢ € J, ; for which D.n (¢, ua(¢)¥(¢)) € X, then by
equation (6.9) and the fact that H,_; and H, agree outside f~"(2), we again have

H,(X) = H,1(X). In either case, equation (6.10) follows immediately. The only
remaining case is that X C Doy (¢, 1 (¢)v(€)) for some ¢ € T ;. In that case, H,|X =

h,|X is a power series convergent on the disk X which is an isometry on the type I
points, and hence equation (6.10) holds, proving our claim.
Third, we make the same claim for hA: that for every a € C, and r > 0, we have

(6.11) h(Dan(a,7)) = Dan(h(a),r) and h(Da(a,r)) = Dan(h(a),r).

Let X be D.y(a,r) or Da(a,r), and let Y be Doy (h(a),r) or Day(h(a),r), respectively.
If there is some n € Ny such that X N f7"(Q) = @, then h(X) = H,(X), and we are
done by equation (6.10). Otherwise, by Lemma 5.3, for each n € Ny, there is some
Gn € ja?l,f such that X N Dan(Cnaﬂn@n)V(Cn)) # 2. It X C Dan(<n7ﬂn(§n)y(cn)) for
each n, then X C C, by Lemma 5.4, contradicting the fact that the Berkovich disk X
contains points of type II, for example.

Thus, there must be some m € Ny such that X O Dy (G, phn(Gn) V(). By equa-
tion (6.10) again, we have that H,(X) = Y for every n > m. To prove the current
claim, then, it suffices to show, for every £ € P! that £ € X if and only if there is some
j > m such that h(¢) € H;(X).

Consider an arbitrary point & € PL . If there is some j € Ny such that £ € f77(Q), then
h(¢) = H;(&) by the definitions of h and Hj, so that £ € X if and only if h(¢) € H;(X).
Otherwise, { € ey, f7"(R2). Therefore, by Lemma 5.4, we have & € Jun s N C,,
with lim, o 1,(§) = 0. Hence, there is some j > m such that u;(§)v(§) < r. By
equation (6.2) and the fact that h(§) = lim, . Ay (§), we have

[1(€) = Hy(©)] = | (&) = h;(§)] =
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Therefore, £ € X if and only if h(§) € H;(X), completing our proof our claimed equa-
tion (6.11).

We are now prepared to show that A~! is continuous, and hence that & is a homeo-
morphism. For any connected open affinoid V' C P! | it suffices to show that h(V) is
also open in P! . Write

V=P (Ean(al, r1) U+ U Dan(ay, Tg))
or
V = Dan(b,s) ~ (Ean(al,rl) U---UDau(ay, T’g)).
By equation (6.11) and the fact that h is bijective, we have

h(V) =PL (Ean(h(al), r1) U+ U Dy (h(ar), n))

W(V) = Dan(h(b), s) ~ <Ean(h(a1), r1) U+« U D (h(ar), rg)),

respectively. Either way, h(V) is a connected open affinoid, completing our proof that
h is a homeomorphism.

Step 5. We have shown that h : P — P! is a homeomorphism, mapping C,
bijectively and isometrically onto itself, and satisfying the conjugacy formula (6.8) on
f7HQ). Moreover, f~1(Q) = ¢7'(Q) by the final statement of Lemma 5.7. We now
extend the conjugacy to f~'(Q) U Jun,r, and we show that h(Tans) = Jang-

To this end, we first claim that

(6.12) f(¢)=g(¢) forall ¢ € f~'(Dan(0,1)) with diam (f(C)) > td%

where 0 < t < 1 is the constant we fixed at the start of Step 1. To see this, consider an ar-
bitrary such point ¢. The subset f~*(D(0, 1)) of type I points is dense in f~!(D,,(0, 1)),
whence there is a sequence {x;}22, C f~1(D(0,1)) such that lim,; ,o, z; = (. For each
such type I point z;, we have |g(x;) — f(x;)| < té%¢, by Lemma 5.6(b). Therefore,

o = Zliglo ’9(1’1) - f(l’z)| < té%e < diam (f(C))

lg = £l = lim [lg - f
Thus, for any a € C,, we have

1) = o > diam (F(O)) > lg — f

o
and hence
2= allye) = [la(z) = all, = [[(9(2) = F(2)) + (f() = @) ||, = |F(2) = alle = |2 = all )

Since this is true for all a € C,, we have f(() = ¢(¢) by [B19, Lemma 15.2(d)], proving
our claim.

Consider an arbitrary point ¢ € Jans ~ f (). Then f(¢) € Jans ~ Q, and in
particular f(¢) € ja”;’f. Hence,

diam (f(¢)) = sphdiam (f(¢)) > v(f(C)) > t&%,

where the equality is because Jun s C Dan(0, 1), the first inequality is because f(¢) €
T s and the second is by Lemma 5.1(a). Therefore, by the claim of (6.12), we have

(6.13) F(Q) =g(¢) forall ( € Tung ~ [7H(Q).
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Finally, recall that J,y, s is a nonempty compact set, and hence so is its homeomorphic
image A(Jan,f). In addition, the functions ho f and g o h coincide on J,, r, whence the
functions ho f o h™' and g coincide on A(Jan,r). Thus,

9 (W Tang)) = h(f " (Tanis)) = P(Tanz)-

Therefore, by [B19, Theorem 8.15(d)], it follows that h(Jun.f) 2 Jang, since h(Jan s) is
closed in P} . Furthermore, because of this inclusion, we have h™*og = foh ™ on Jan 4,
and hence we may apply the same argument to the image of the compact set Jn 4 under
the homeomorphism h™!, to obtain A~ (JTang) 2 Jan,s, or equivalently, A(Tan.f) C Janyg-
Combining these two inclusions yields the desired equality A(Jan,r) = Jan,g-

Step 6. It remains to show that h varies continuously with g. More precisely, for any
g € W, write h? for the map h constructed in Steps 1-3 for ¢ in place of g, and let h?
denote the auxiliary functions constructed along the way. We wish to show that

A (q,¢) = h9(C)

is a continuous function from W x P! to P! . To this end, given any £ € P! and an
open connected affinoid U C P}, with h9(§) € U, we will find an open set W/ C W
containing ¢ and an open connected affinoid V' C P! containing ¢ such that A maps
W' x V into U.

Since h = h9 : P! — P! is a homeomorphism satisfying equation (6.11), we may
write U as one of the two forms h(V') given at the end of Step 4, and then define
V := h7Y(U) as in the same step. Let u := min{ry,...,r,, 1/2}, so that 0 < u < 1.
Define W, (g) C Raty(C,) to be the neighborhood W of g given by Lemma 5.6 for g in
place of f, with v = ué?c. Let W’ := W N W,(g). For each (¢,{) € W' x V| we must
show h9(¢) € U. By the continuity of A7 (from Step 4), we may assume that ( = x lies in
V' NC,. Because each x € VNC, has h(z) € U, with D(h(x),u) C U and D(z,u) CV,
it suffices to show that

(6.14) |h%(z) — h(z)| <u forall (¢,2) € W x C,.

For each ¢ € W', consider the homeomorphism h?%9 : P! — P! constructed ac-
cording to Steps 1-3 when using ¢ in place of f as the original function. Let Gg :

Dan(9(¢), ¥(9(C))) = Dan(C, 1 (C)(C)) and AL - g7 () — ¢7"(2) denote the auxiliary
functions constructed along the way. We claim that

(6.15) hi = h%90oh, foralln e Ny,

which we now prove by induction. Equation (6.15) certainly holds for n = 0 because
all three maps are the identity map. For n > 1, assuming the equation holds for n — 1,
then on any disk D(¢, p1(¢)v(¢)), we have

hi9 o hy = GLoh%d, 0 g0 Geohyyof = Gloht? oh, 1of=Glohl_of=h,

where the second equality is because G¢ is a local inverse of g, and the third is by our
inductive assumption. Having proven the claim of equation (6.15), it follows immediately
that h? = h%9 o h.

On the other hand, by the third bullet point of Step 2 — still with g, ¢, and u in
place of f, g, and t, respectively — we have |h%9(y) — y| < up()v(¢) < u for every
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n € N, every ¢ € J,,,, and every y € D((, un(C)v(¢)). The construction of h*9 in
Step 3 therefore yields
‘hq’g(y) - y} <u forallyeC,.

Applying this bound to y := h(z), along with the identity h? = h?9 o h that followed
from equation (6.15), we have

|hi(z) — h(z)| = |h? (h(z)) — h(z)| <u for all z € C,.
We have proven the bound (6.14), and hence A is indeed continuous, i.e., h varies

continuously with g. O

7. EXAMPLES

We now present examples of rational functions satisfying the hypotheses of Theo-
rem 1.1 but which are not expanding in the sense of equation (1.1).

Example 7.1. Assume the residue characteristic of C, is 0, and fix ¢ € C, with 0 <
lc| < 1. Define

f(2) = (z + C)Z(z +1)

which is a rational function of degree d = 2. A straightforward calculation shows that
|f(z) = (z+1)| <1 forall z€C, with |z| > 1,

:z+(c+1)+§€@,(z),

and therefore
(7.1)  f maps D,y(z, 1) bijectively onto D,(z +1,1) for all 2 € C, with |z| > 1.

It follows that P! ~\ D,n(0,1) C Fany, and that D,,(n,1) C Faus for every positive
integer n € N. Further simple calculations show that

F(Dan(0,[c])) € Py~ Dan(0,1)  and  f(Dan(0,1) N\ Dan(0, [¢])) € Dan(1,1).
Combining these facts, it follows that
(7.2) Tong S {CE P[] =1 or [¢] = [e]}.

Conversely, Jan s is nonempty, and by [B19, Theorem 7.34], we have f(D,,(0,1)) = PL .
Therefore, by (7.1), a simple induction shows

Dan(—1,1) N Tan,y # @ for all n € N.

Thus, f is not expanding in the sense of equation (1.1), since for any n € N, there is
some ( € Dyy(—n,1) N Jan, but equation (7.1) together with Lemma 3.7 shows that
(fH%(¢) =1forall 0 <i < n.

On the other hand, we have f(cw) = w41+ c(w + 1), and hence

(7.3) f maps Dgy,(z,|c|) bijectively onto D,y (E +1, 1) for all x € C, with |z| = |¢],
x

whence f%(¢) = |¢|™! for all ¢ € PL with || = |¢[. Combining this fact with equa-
tions (7.1) and (7.2), as well as Lemma 3.7 again, shows that

(fM)%¢) =1 forall ( € Juns and n € N.

That is, even though f is not expanding, it satisfies the hypotheses of Theorem 1.1 and
hence is J-stable in the moduli space Rats.
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Example 7.2. Choose an integer m > 2 such that |m| = 1, i.e., such that m is not
divisible by the residue characteristic of C,. Fix ¢ € C, with 0 < |¢| < 1. Define

f(2) = cz™ 2™ = 2™(cz 4+ 1) € C,2],

which is a polynomial of degree d =m + 1 > 3. Then
|f(z)| = |c||z|™" > |z| for all x € C, with |z| > |c|™*
and
|f(z)| = |=|™ < |z| for all z € C, with |z| < 1.

It follows that f maps both PL \ D, (0, |c[™!) and D,y (0, 1) into themselves, and hence

Dan(0,1) U (Pyy ~ Dan(0, €] ™)) S Fans-
Furthermore, it is not difficult to check that
(7.4) FHD, el ™)) € D(O, le| ™) U D(—c !, |e| ")
by writing f(2) = cz™(z + ¢ 1). (In fact, we have equality in (7.4).)

Therefore, we have J,, f € X UY, where
X:={CeP, |1<[(< |c|_1/m} and Y := Dyy(—c 7, |c|™?).

For any x € X N C,, writing f as a power series centered at z, it is straightforward to
check that f maps D(x, |z|) bijectively onto D(z™, |z|™). Thus, (the proof of) Lemma 3.7
shows that for any ( € X, we have

i I max1LFOR) | SO
¢l max{1, |} <12
Similarly, because f maps the disk Y (of diameter |c|™~?) bijectively onto Dy (0, |¢|™}),
Lemma 3.7 shows that for any ¢ € Y with f(¢) € X UY, we have
- i (LAY WlFOF | OP
je[=2 max{L,[([*} CI? CI?
Combining these two bounds, and using the fact that J,, r € X UY, we have

n 2
Iq
Thus, f satisfies the hypotheses of Theorem 1.1 and hence is J-stable in the moduli
space Rat,, 1.
On the other hand, the Newton polygon of the equation f(z) — z = 0 reveals that
f has a fixed point ay € C, with |ag| = |¢|™'. By inclusion (7.4), we must have ag €
D(—c71,|c|™2). Since

f'(z)=(m+1)cz™ +mz""" =2""((m+ 1)cz + m),

> |c[* forall ¢ € Juny and n € N.

we have |f’(ag)| = |¢|/'™™ > 1, and hence ag is repelling and therefore lies in Jop s
For each b € C, with 1 < |b| < |¢|™™, the Newton polygon of the equation f(z) —b =
0 shows that b has m preimages ai,...,q, with |a;| = [b|'/™. Applying this fact

inductively starting with b = ag, and choosing only one such preimage each time, there
is an infinite sequence {a,}>, in C, with

|an| = |C|71/mn and f(a,) =a, 1 foralln €N,
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Each point a,, eventually maps to ay and hence lies in J,y, f, with

fﬂ(an) — |f/(an)| X max{l, ’f(a’n>|2}

max{1, |a,|?}

_ |an|m—1 . |an|2m _ ‘C|_3(m—1)/m"‘

Thus,
(") (@) = [T £*(an) = Il

where

3(m—1 3(m—1 3(m—1 1
m mn m m
Hence, (f™)%(a,) < |¢|=® for every n > 1, and as in Example 7.1, f is not expanding

in the sense of equation (1.1).

Remark 7.3. Motivated by condition (1.1), let us call a rational function f : P! — PL
uniformly expanding on its Julia set if there exist ¢ > 0 and A > 1 such that for any
ne€Nand ¢ € Jans, (fM)(C) > cA™

Any uniformly expanding rational functions clearly satisfies the assumption of Theo-
rem 1.1 and hence is J-stable in the moduli space Rat;. However, although this condition
is appropriate in complex dynamics, the above examples show that uniform expansion
is too restrictive a condition in the non-archimedean setting.

In fact, any uniformly expanding rational function has Julia set consisting only of
type I points, as we now prove. Suppose there is ¢ € Jun sNHL,. Then by Proposition 3.5,

we have
sphdiam (f”(())
sphdiam(()

= (f")*(¢) = A"

for any n € Ny. Therefore,
lim sphdiam (f"(¢)) > sphdiam(¢) - lim A" = oo,
n—oo

n—o0

contradicting the fact that sphdiam(¢) € [0, 1] for any £ € PL .

Remark 7.4. In light of Remark 7.3, one may ask whether the bounded contraction
hypothesis of Theorem 1.1 implies non-uniform exponential expansion (f")%(¢) > cA"
for type I Julia points (, i.e., with ¢ and A depending on (. The answer is no, as we now
illustrate by revisiting the map f(z) = (2 4+ ¢)(z + 1)/z of Example 7.1.

Let {N;}2, € N be any sequence of positive integers, and define {M;}°, by M; :=
Ny + -+ N;. We now construct a nested sequence Dy 2 Dy 2 Dy D --- of Berkovich
open disks satisfying

e D; is of the form D; = D,,(a;, |c[') for each i € N,

o M maps D; bijectively onto Dy for each i € Ny, and

o (fM)5(¢) = |c| ™ for any ¢ € D; and each i € N.
To this end, we first define Dy := D,,,(0, 1), which clearly satisfies the above bullet points.
Proceeding inductively, having already constructed the disk D; 1 = D,u(a;_1, |c|"™"),
observe by equation (7.1) that f~i=* maps D,,(1— N, 1) bijectively onto Dy. Moreover,
by equation (7.3), f maps D, (z,|c|) © Dy bijectively onto D,,(1 — N;, 1), where z =
—c/N;. Thus, fN maps D, (z, |c|) bijectively onto Dy, and we have (fNi)5(¢) = ||~}
for all € Dun(z,|c|), by Lemma 3.7.
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Because D,y (z,|c|) € Dy, and fMi-t maps D;_; bijectively onto Dy, it follows from
[B19, Proposition 3.20] that there is an open disk D; C D, ; such that fMi = fNio
fMi-1 maps D; onto Dy. By Proposition 3.6 and our inductive assumptions, we have
(fMHE(C) = |e|™* for all ¢ € D;, and by [B19, Proposition 3.20] again, it follows that
D; = D.u(ay,|c|’) € D;_; for some type I point a; € D;_;. We have verified the bullet
points above for D;, completing our inductive construction.

Because the radii of the disks Dy 2 Dy 2 Dy D - -+ decrease to 0, their intersection is
a single type I point b € C,. Any open set U containing b contains the disk D; for some
i, and by the bullet points, we have f™Mi(U) D f1*Mi(D;) = f(Dy) = PL . (Recall that
we verified the last equality in Example 7.1.) Thus, b is a type I point in J,, ¢.

However, if we had chosen the sequence { N;}5°, to increase very fast, then the spherical
derivatives (f")%(b) increase slowly. For example, by choosing N := [|c|™}] > 2, N; :=
N, and N, := Nt — N for each i > 2, we obtain

(f")E(b) < fef~Hoen™H < fe| =t
for any n € N, yielding only linear rather than exponential growth.
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