

EuroSys ’23, May 8ś12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

Moreover, on datasets with high skewÐe.g., 90% of re-
quests accessing 10% of keysÐcoherence requests suffer from
contention, which requires expensive cache directory opera-
tions, and serializing access across multiple cores [4]. The
latency of a contended coherence request, combined with
the high probability of acquiring a cache line in an exclusive
state, can reach thousands of cycles (Figure 2).
Today’s hash tables are fundamentally limited in their

peak performance due to the decades-old design choice of
treating memory as a subsystem with a synchronous inter-
face. Despite the fact that hash tables employ a range of
optimizations to reduce the number of cache misses through
the utilization of compact, cache-friendly layouts and algo-
rithms [13, 17, 20, 24, 29, 32, 34, 40, 48, 50, 61, 68], at least
one memory miss per operation remains unavoidable due to
random accesses to the memory of hash table that is larger
than caches of the CPU. While modern CPUs are capable
of partially hiding the cost of the miss through speculative
execution, the cost of the memory stall remains high. Funda-
mentally, the latency of the memory miss defines the upper
limit on the performance of the hash table.

Our work explores the design space of hash tables aimed
at achieving optimal performance on modern hardware. Ar-
chitecting for performance, we embrace the fact that modern
machines are distributed systems with local non-uniform
memory and non-uniform cachesÐwhile the latencies of
memory controllers and the coherence protocol are much
lower than in the network, they are an order of magnitude
larger than the rest of the hash table processing path. To
hide the latencies of modern memory and coherence sub-
systems, we develop a range of optimizations typical for a
distributed system: asynchronous interface, fully-prefetched
access, batching with out-of-order completion, and parti-
tioned designwith low-overhead, scalable delegation scheme.
While many of our ideas are not new, the main engineering
challenge and contribution of our work is the ability to im-
plement these optimizations with a budget in the low tens
of cycles, in contrast to the thousands of cycles typical for
distributed systems and prior approaches.
To avoid memory misses on the critical path, we change

the interface of the hash table to support asynchronous sub-
mission of requests and out-of-order completion. This allows
us to avoid wasting the CPU cycles on accesses to cache lines
residing in memory or remote caches. In our design, the hash
table never touches unprefetched memory. The application
submits a batch of requests. The hash table computes mem-
ory addresses corresponding to the keys, and prefetches the
memory locations involved in the operations, putting re-
quests on the queue of the prefetch engine, but not touching
those addresses. After enough elements are accumulated on
the queue and enough time has passed for the prefetched
cache-lines to reach the first-level caches of the CPU, the
hash table processes the operations, potentially issuing more
prefetches for keys that require additional memory accesses

to resolve hash conflicts, i.e., reprobes. Pending reprobe re-
quests are put back on the request queue.
Out-of-order completion allows us to eliminate degrada-

tion due to requests that trigger a large number of reprobes.
The hash table interface takes a batch of requests and returns
a batch of responses, potentially out-of-order. Requests that
take very long to complete due to a large number of reprobes
are returned later in subsequent invocations.
To avoid contention for workloads with a high skew, we

extend our basic asynchronous design with support for dele-
gation and partitioning. Partitions are visible to every read-
ing thread. This allows us to process read operations locally
by any of the threads accessing the hash table. Reads require
no writes or atomic instructions, and hence, do not invalidate
the cache-lines of other readers. To avoid expensive coher-
ence conflicts on update operations, we delegate updates to
the threads responsible for managing write access to each
partition. We rely on explicit message passing to implement
a scalable delegation scheme that relays update requests to
a collection of update threads. Under contention, delegation
allows us to outperform hardware coherence protocols.

Finally, we treat the throughput of the memory subsystem
as an explicit resource. Hence we employ a range of opti-
mizations to meet the cycle budget enforced by the memory
subsystem.
Novel design decisions allow us to construct DRAMHiT,

a hash table that approaches the speed of modern multi-
channel memory subsystems. On uniform key distributions,
DRAMHiT achieves 973 Mops (reads) and 792 Mops (writes)
on dual-socket 64-thread commodity Intel servers and 1192
Mops (reads) and 1052 Mops (writes) on a two-socket 128-
thread AMD machine hence outperforming existing lock-
free designs by nearly a factor of two. DRAMHiT explicitly
trades increased latency of hash table operations for through-
put. We believe that such a tradeoff is justified for a wide
range of practical workloads. On a metagenomic benchmark,
a partitioned version of DRAMHiT outperforms the fastest
hash table equivalents by a factor of four.

2 Background

Modern hash tables have accumulated decades of algorithmic
optimizations and engineering innovation geared at improv-
ing the performance of hashing functions, optimizing utiliza-
tion of the caching hierarchy, minimizing overheads of syn-
chronization, and much more. Recent advancements in CPU
designÐincreasing core count, switching to non-uniform
memory and cache architectures, and growing memory size
and bandwidthÐchange the balance of engineering tradeoffs
required to achieve peak hash table performance.

Memory bandwidth and cycle budgets Modern servers
are non-uniform memory access (NUMA) machines. A typi-
cal server is deployed with several processor nodes (sockets)
connected with a cross-socket link, ultra-path interconnect

388

EuroSys ’23, May 8ś12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

results in two distinct sources of overhead: transfer of cache
lines between caches and contention (i.e., linearization of
concurrent accesses to the same cache line). Intel and AMD
CPUs implement a version of the MESI cache-coherence
protocol [42]. To access a cache line for read or write, the
core performs a coherence request that brings it into the
first-level cache of the core from either memory or different
levels of the caching hierarchy (i.e., local and remote L1, L2,
and L3 caches). If multiple cores are trying to request access
to the same cache line concurrently, requests are linearized
by the cache directory implemented by the caching agent
of the last-level cache [4]. The latency of acquiring a cache
line in an exclusive state grows linearly with the number of
cores requesting the cache line [4].

On modern machines, the transfer of a cache-line between
two cores takes 115-320 cycles, depending on how far away
the cache line is in the caching hierarchy from the access-
ing core [6, 43, 44, 64]. Atomicity of the updates is ensured
by temporarily “lockingž the cache line to the core, i.e., if
a coherence request from another core arrives to the core
that locked the cache line, the request is delayed until the
line is unlocked. If the cache line is already present in the
first-level cache of the core, locking is fast as it is performed
locally by the cache (locking the cache line adds an overhead
of 11-30 cycles [6]). Hence, without contention, the main
overhead comes from transferring cache lines between indi-
vidual caches or between caches and memory. However, in
the case of contended accesses, the overheads of linearization
of requests from multiple cores dominate those of cache-line
transfers.
To illustrate the impact of synchronization on the hash

table’s performance, we conduct a simple experiment that
mimics cache-line access patterns typical for traditional lock-
based and lock-free synchronization schemes. In our experi-
ment, multiple threads access individual cache lines either
inside a critical section protected by a spinlock, or with
an atomic increment instruction (Figure 2). We utilize two
datasets aimed to represent two extremes of the hash table
sizeÐsmall and largeÐand vary the skew parameter of the
Zipfian distribution from 0 (uniform) to 1.2 (at the skew value
of 1, roughly 90% of accesses touch 10% of cache lines). The
small hash table fits into the caching hierarchy of our ma-
chine, i.e., we allocate 32 MB for the hash table on a machine
that has 64 MB of last-level cache spread across two sockets.
The second dataset is 1 GB and is intended to emulate a
large hash table that fits in memory, but not in the caches of
the CPU. The experiment utilizes 64 logical threads of our
example dual-socket Intel Xeon Gold 6142 16-core Skylake
CPU.

In case of a large hash table, the majority of accesses fetch
the cache line from memory (the probability of contentionÐ
and hence, the probability that the cache line is already
present in the last-level cache or in one of the private cachesÐ
is extremely low). In the case of the small hash table, the

entire dataset is cached in the private L1 and L2 caches of
all CPUs and the two last-level caches of the two sockets. A
typical access fetches the cache-line from either the local or
the remote cache. In both cases (large and small hash tables),
the overheads of synchronization are dominated by the la-
tency of transferring the cache line to the first-level cache
of the core requesting the access (from 184 cycles from a
remote cache to 394 cycles from memory). A critical section
requires two atomic cache-line accesses: one to acquire and
one to release the lock; however, since during the second
access the cache-line is already in the modified state in the
local L1, the second access introduces only minor overhead
(the overhead of a spinlock and atomic increment differ by
only 31-95 cycles). We make the following observation:

On distributions with a small skew, the contention is
low. The overhead is dominated by coherence transfers
that fetch cache-lines from either memory or the caches
of other cores.

On a skewed distribution, the probability of accessing the
same cache line by multiple threads grows significantly. Con-
current accesses create contention, which forces coherence
requests from multiple cores to be queued by the directory.
On our 32-core (64 logical threads) dual-socket system, la-
tency reaches 16K cycles for atomic increment and 66K cycles
for a spinlock (this is consistent with papers that observe
scalability bottlenecks for workloads that contend for the
same cache line across multiple cores [4]).

On high skew, contention dominates overheads of cache-
line transfers.

Architecting for performance The above observations
shape the following design principles that are critical for
achieving peak hash table performance on modern hard-
ware:

• Minimal number of cache misses For both small
and large hash tables, the cost of a cache miss below
the L2 cache (i.e., a miss to either memory, local last-
level cache, or caches of remote cores) is prohibitive.
The hash table, therefore, has to avoid accessing un-
prefetched memory on the critical path.

• Minimal number ofmemory transactionsHash ta-
bles that do not fit in the caching hierarchy should treat
memory bandwidth as a limited resource. Additional
memory accesses can sharply degrade performance
(e.g., one additional access per hash table operation
can effectively reduce the throughput of the hash table
by half if the memory bandwidth is saturated). The
hash table has to be designed to minimize the number
of memory transactions through the choice of conflict
resolution policy, hash table organization, and data
structure layout.

390

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8ś12, 2023, Rome, Italy

100

1000

10000

100000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
y
c
le

s
 p

e
r

o
p
e
ra

ti
o
n

Skew value

spinlock 32mb
atomic inc 32mb

spinlock 1gb
atomic inc 1gb

Figure 2. Synchronization overheads for 32 MB and 1 GB datasets

• No contention On workloads with a high skew, the
overhead of contention dominates all others. To achieve
peak performance, hash tables should minimize or
avoid contention.

3 DRAMHiT Architecture

Our work, DRAMHiT, develops a new hash table that is
aimed at exploiting the performance capabilities of modern
memory subsystems. DRAMHiT utilizes the design princi-
ples that we articulated above. Specifically, it is designed to
avoid cache misses on the critical path, treat memory band-
width as a limited resource, and eliminate contention under
high skew.

Hashtable organization DRAMHiT implements the hash
table as a single contiguous array of 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 tuples and
relies on open addressing with linear probing for collision
resolution. Linear probing is one of the widely used algo-
rithms for collision resolution in a hash table. To store a
𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 tuple, the key is hashed using a hash function that
returns an index, i.e., 𝑖𝑛𝑑𝑒𝑥 = ℎ𝑎𝑠ℎ(𝑘𝑒𝑦). The index is used
as a candidate location for storing the tuple in the array. If the
candidate location is occupied, the linear probing algorithm
increments the index until it finds the first vacant position in
the linear sequence 𝑖𝑛𝑑𝑒𝑥 , 𝑖𝑛𝑑𝑒𝑥 +1, 𝑖𝑛𝑑𝑒𝑥 +2, etc., wrapping
around when the end of the array is reached.

Note that since the original hash of the key can produce an
index that is larger than the array size, we use the fastrange
function to ensure that the index is in the range [0, 𝑠𝑖𝑧𝑒) in
an approximately uniform manner [31]. Fastrange provides
a fast alternative to the modulo reduction, allowing us to
work with hash tables whose size is not limited to powers of
two.

Linear probing provides several attractive properties. First,
a combination of open addressing and linear probing allows
us to minimize the number of cache-line transactions on
the memory bus. Linear probing resolves hash conflicts by
accessing consecutive memory locations (in many cases, the
same cache line) in order to find an unoccupied hash table
slot. Our empirical observations show that on a fill factor
of 75-80%, lookup and insertion operations require only 1.3
cache line accesses per request on average (i.e., reprobes
that check consecutive memory locations access additional

cache-lines only 30% of the time). This is critical for reducing
pressure on the memory subsystem.
Second, simple conflict resolution and insertion logic al-

lows us to implement a synchronization scheme that requires
no atomic operations for reads and one atomic operation
for writes. As a result, DRAMHiT benefits from caching fre-
quently accessed elements on read-heavy workloads with a
high skew (i.e., concurrent read accesses from different cores
do not invalidate local copies cached in the “sharedž state).

Operations DRAMHiT supports the following operations:
get(), put(), delete(), and upsert(). The get() operation takes a key
as an input and returns either a found value matching the key
or None. The put() operation takes the key and the value and
inserts the value into the hash table along with the key. If the
key already exists in the hash table, put() silently overwrites
it with the new value. The upsert() operation either inserts
a constant passed as an argument into the hash table or
updates the existing value by adding the constant. Finally,
the delete() operation takes a key as input and deletes the value
associated with the key if it is found in the hash table. We
implement deletion by marking the element as a tombstone.
Note that the delete operation does not free the slot of the
hash table array. The space is freed only when the hash table
is resized (we assume that an efficient resizing scheme can
be implemented similar to Growt [35]).

Atomicity To serialize concurrent accesses, DRAMHiT im-
plements two different protocols depending on whether the
key-value tuple fits in two machine words (i.e., 8 bytes each
on x86 64bit machines) or not. To implement insertion for
tuples that are smaller than 16 bytes, DRAMHiT relies on
a double-word compare-and-swap (cas) instruction. Concur-
rent updates are atomic due to the atomicity of the cas in-
struction. DRAMHiT implements a lookup operation as two
8-byte loads without any atomic operations. It may seem that
read can observe a key-value tuple from multiple concurrent
updates (i.e., a torn read). We ensure the linearizability of
reads with respect to concurrent updates by relying on the
fact that the read operation first reads the key to check if the
element of the hash table is empty or not and then the value.
If the read operation is interrupted by a concurrent update,
i.e., an update of an already existing value, the read observes
the most recent value. Since delete() operation does not free
the element of the hash table array but rather marks its key
as a tombstone, a concurrent read operation either observes
a tombstone (i.e., key not found) or returns the old value as
if read happens before deletion.
DRAMHiT uses two values from the key space to mark

empty and deleted keys (empty and tombstone). To restore the
key space, we use two dedicated memory locations that store
values corresponding to the empty and tombstone keys.

For the key-value tuples larger than 16 bytes, we imple-
ment a simple transactional protocol that ensures the atom-
icity of reads [33, 62]. We maintain a 32-bit version along

391

EuroSys ’23, May 8ś12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

L2 adds a penalty of 10 cycles [64]). Efficient queue access
requires that at least two cache lines (current and next) are
resident in the L1 cache. With a budget of only 1-2 cache
lines per queue, the queue has to be carefully designed to
pack queue metadata into the minimal number of cache lines.

We carefully design DRAMHiT-P’s delegation mechanism
to minimize the number of cache lines per queue (Figure 4).
We group the metadata of multiple queues (i.e., a pointer
into the data area, and size of the queue) that are accessed by
one thread together in a minimal number of cache lines. The
data area is separate and is accessible through a metadata
pointer. We maintain residency of two cache lines for the
data area, which allows us to fit one queue in 2.5 cache lines.

L1 residency Consumer threads can control the ordering
of queue accesses, e.g., round-robin. Consumer prefetches
the next queue before trying to access it. Specifically, we
prefetch both the queue metadata and the actual data in the
queue ring. Producers access the queues in a random order
depending on the distribution of keys and their mapping to
hash table partitions. A cache-friendly queue organization
allows us to keep critical queue data structures in the L1
cache. We prefetch only the next line of the queue data when
we approach the end of the current cache-line and a shared
section pointer when we approach the end of the section.

3.4 Vectorization

To explore the benefits of SIMD instructions from the
AVX512 instruction set, we develop an SIMD version of
the DRAMHiT-P hash table. SIMD instructions can oper-
ate on 512 bits of data in parallel hence reducing the number
of iterations in the conflict resolution loop. Moreover, the
support for conditional operationsÐspecifically, conditional
load, store, comparison, and arithmetic instructions provided
by the AVX instruction setÐallow us to implement hash table
operations without conditional branches.
Intel SIMD extensions do not support atomic operations

like compare-and-swap. We utilize SIMD instructions only in
a partitioned version of the hash table in which each partition
is updated by a single thread, hence eliminating the need for
concurrent updates. We further rely on empirical evidence
that aligned 512-bit read accesses remain atomic in face of
concurrent writes and hence avoid torn reads [54].
AVX instructions treat the 512-bit register as a vector

of eight 8-byte values and use a mask that selects which
elements of the vector will be affected by the operation (List-
ing 1). We create a collection of masks that allow us to select
which elements of the cache-line will be affected by the op-
eration (Listing 1, lines 2ś6). For example, the second entry
(line 4) allows us to operate on three out of four keys.

To implement a branchless version of the insertion oper-
ation, we first compute the position of the key within the
cache-line, cidx (line 16). We use the position index (0-3) to
select one of the masks above, hence operating only on a

1 constexpr std::array<__mmask8, KV_PER_CACHE_LINE>

2 key_cmp_masks = {

3 KEY3 | KEY2 | KEY1 | KEY0, // cidx: 0; all key comparisons valid

4 KEY3 | KEY2 | KEY1, // cidx: 1; only last three comparisons valid

5 KEY3 | KEY2, // cidx: 2; only last two comparisons valid

6 KEY3, // cidx: 3; only last comparison valid

7 };

8 auto key_cmp = [&key_cmp_masks](__m512i cacheline,

9 __m512i key_mask, size_t cidx) {

10 __mmask8 cmp = _mm512_cmpeq_epu64_mask(cacheline, key_mask);

11 // zmm registers are compared as 8 uint64_t

12 // mask irrelevant results before returning

13 return cmp & key_cmp_masks[cidx];

14 };

15

16 const size_t cidx = idx & (KV_PER_CACHE_LINE−1);

17 __m512i cacheline = load_cacheline(cidx);

18 // load a vector of the key in all 4 positions

19 __m512i key_mask = load_key_mask();

20 __mmask8 eq_cmp = key_cmp(cacheline, key_mask, cidx);

21 // compute a mask for copying the key into an empty slot

22 // will be 0 if eq_cmp != 0 (key already exists in the cacheline)

23 __mmask16 copy_mask = key_copy_mask(cacheline, eq_cmp, cidx);

24 copy_key(cacheline, key_mask, static_cast<__mmask8>(copy_mask));

25 // write the cacheline back; just the KV pair that was modified

26 __mmask8 kv_mask = key_mask | val_mask;

27 store_cacheline(cacheline, kv_mask);

28 // prepare for possible reprobe

29 ...

Listing 1. Vectorized insertion

subset of the cache-line. We then load the cache-line con-
taining the key and value pointed by the hash function into
a 512-bit register (line 17). To compare the same key against
every element of the vector, we load it into another 512 bit
register at four different positions that match the position
of the keys in memory (one cache line can hold four key-
value pairs, line 19). To illustrate the AVX programming tech-
niques, we provide the code for the key_cmp() function (lines 8ś
14). The function first compares two 512-bit values, cacheline
and key_mask with the vectorized _mm512_cmpeq_epu64_mask()

instruction (in most cases we utilize compiler-provided in-
trinsics). After performing the parallel comparison, we select
the relevant result from the 8-bit register by using the key’s
position in the cache line, cidx (line 13).
We then use a conditional copy operation to copy the

key into the cache-line, but only if the previous comparison
was true (lines 23ś24). Similarly, we conditionally store the
cacheline back into the hash table. Note, in the regular x86
instruction set, conditional move instructions operate only
on registers, hence providing no way to conditionally store
the value back to memory. The AVX instruction set, however,
provides support for conditional stores. If the mask is false,
no memory transaction is generated.

To implement conditional reprobe when none of the keys
in the cache-line matched the requested key, we implement

394

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8ś12, 2023, Rome, Italy

15

20

25

30

35

40

1
-1

2
-2

3
-3

4
-4

5
-5

6
-6

7
-7

8
-8

9
-9

1
0

-1
0

1
1

-1
1

1
2

-1
2

1
3

-1
3

1
4

-1
4

1
5

-1
5

1
6

-1
6

1
7

-1
7

1
8

-1
8

1
9

-1
9

2
0

-2
0

2
1

-2
1

2
2

-2
2

2
3

-2
3

2
4

-2
4

2
5

-2
5

2
6

-2
6

2
7

-2
7

2
8

-2
8

2
9

-2
9

3
0

-3
0

3
1

-3
1

3
2

-3
2

O
v
e
rh

e
a
d
 (

c
y
c
le

s
/m

s
g
)

Number of producers/consumers

cycles/msg

Figure 5. Latency of delegation (Intel)

similar code that relies on the conditional move instruction
to update the queue pointer, hence inserting the new element
back into the queue or leaving it unupdated. Similarly, to
implement conditional prefetch, we either increment the
address prefetching the next cache line, or prefetch the same
cache-line again (since the cache-line is already cached, the
prefetch does not generate a memory transaction).

4 Evaluation

We conduct all experiments in the CloudLab network testbed [53]
and evaluate DRAMHiT on Intel and AMD architectures. In-
tel experiments utilize CloudLab c6420 servers configured
with two Intel XeonGold 6142 16-core Skylake CPUs running
at 2.6 GHz with 384GB of memory. AMD experiments utilize
CloudLab r6525 servers equipped with two AMD EPYC 7543
32-coreMilan CPUs running at 2.8 GHzwith 256GBmemory.
Both systems have all memory channels populated (six chan-
nels per socket on Intel with DDR4-2666MT/s and eight
channels per socket on AMD with DDR4-3200MT/s). All
systems run 64-bit Ubuntu 20.04 with a stock kernel (turbo-
boost, CPU idle states, and frequency scaling are disabled to
reduce the variance in benchmarks).

4.1 Delegation

We first evaluate the overheads of our queue-based delega-
tion mechanism. We execute a synthetic experiment that
communicates between a group of threads (Figure 5). Each
producer communicates with all consumers by repeatedly
sending 16-byte messages to each consumer in a round-robin
fashion. Consumers poll for messages and read the received
value. Each producer sends 64 million messages. We vary
the number of producers and consumers from 1 to 32. On
average, it takes 22-37 cycles to send one message. The cost
remains constant even when messages cross the boundary
of a socket or when we scale the number of queues.

4.2 Performance on Uniformly Distributed Keys

To analyze the impact of our design ideas and optimiza-
tions on the performance of the hash table, we compare
our hash tables DRAMHiT, DRAMHiT-P, and DRAMHiT-P-
SIMD (an SIMD version of DRAMHiT-P) against Folklore.
According to a recent study [35], Folklore is the fastest con-
current hash table that outperforms the closest competitors,
i.e., Junction [51], TBB [49], cuckoo [45], Facebook folly [16],

RCU [37], shunhash [58], hopscotch [20], and leahash [29].
For example, Folklore outperforms the closest competitor
shunhash [58] bymore than 30% for both insertions and finds
on a uniform distribution of 108 8-byte keys and values. In
many ways, our work uses the ideas of Folklore as a founda-
tion for performance. DRAMHiT and Folklore share the same
open addressing layout, linear probing as their conflict reso-
lution mechanism, and a CAS-based synchronization scheme
that avoids atomic instructions on the read path. DRAMHiT
and DRAMHiT-P extend Folklore with asynchronous request
completion, batching, delegation, and vectorized operations.

We execute our experiments on the hash table with 8-byte
keys and 8-byte values. In each test, we create two hash
tables: small and large. The small hash table occupies 16MB
of memory (1 million elements), and the large is 16GB (1
billion elements). The size of the small hash table is chosen
to fit into the caching hierarchy of a single socket on our
Intel server. We rely on a zipf generator with a skew of
0 to generate a uniform distribution of keys. We populate
the hash table, so it remains 75% full (the performance of
hash tables that rely on open addressing degrades sharply
at higher fill factors). CRC32 is used as the hash function.
We then vary the number of logical CPU threads involved
in the test from 1 to 64 (maximum on the Intel machine).
In our experiments, we use a batch size of 16 requests, and
uniformly distribute execution threads between socketsÐ
e.g., in a test with two threads, the threads run on different
NUMA nodes. Finally, we split the memory of the hash table
in half, and allocate each half on a different NUMA node to
ensure that the tests utilize all available memory channels.

Insertions We first perform a basic insertion test by insert-
ing 0.75 million (small hash table) and 805 million (large hash
table) unique uniformly-distributed keys into an empty hash
table such that it becomes 75% full (Figure 6a and Figure 6b).
We run DRAMHiT-P and DRAMHiT-P-SIMD with a 1-to-3
proportion between producers and consumers, e.g., 16 pro-
ducers and 48 consumers for a 64-core configuration (we
empirically found this configuration to result in the highest
throughput).
With one memory miss on the insertion path, Folklore

remains limited to the maximum of 417Mops or 50% of the
theoretical bandwidth on a large hash table. Leveraging the
prefetch engine, DRAMHiT comes close to saturating the
memory bandwidth with 792Mops. Our Intel system sup-
ports the maximum bandwidth of 1,192M cache-line transac-
tions per second per socket (2,384M for a two-socket system)
on a workload of alternating reads and writes (Table 1). The
hash table insertion requires two cache line transactionsÐ
one to read the cache line and one to write it back. However,
on average, a large hash table requires 1.3 cache line reads
due to conflicts. Additionally, every read that accesses the
memory of a remote NUMA node, i.e., half of the reads on av-
erage, results in a write-back to clear the directory bits [23].

395

EuroSys ’23, May 8ś12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

Hence, an average insertion requires 1.3 read- and 1.65 write-
cache-line transactions, limiting the theoretical throughput
to 808Mops (we confirm the number of transactions em-
pirically with the Intel VTune performance analysis tool).
Moreover, DRAMHiT comes close to saturating memory
bandwidth with only 32 cores, which allows for the possibil-
ity of doubling the number of memory channels, and hence
doubling the throughput of the hash table. On a uniform
distribution, neither DRAMHiT-P nor DRAMHiT-P-SIMD
can benefit from partitioning (contention is low), but pay the
price of delegation. DRAMHiT-P achieves a throughput of
671Mops. DRAMHiT-P-SIMD is slightly slower at 667Mops.

On the small hash table, Folklore is limited by the latency
of cache misses to remote caches (i.e., private L2 caches of
other cores that most recently accessed the hash table entry
and L3). Folklore reaches 441Mops. DRAMHiT can fully ben-
efit from prefetching capabilities and achieves an insertion
throughput of 1180Mops. DRAMHiT-P further leverages the
locality of insertions, but as it loses a fraction of the CPU
cores to producer threads, it cannot reach the performance of
DRAMHiT, staying at a maximum throughput of 975Mops
(DRAMHiT-P-SIMD reaches 885Mops).

Lookups For read-only tests, we first pre-initialize a hash
table with uniformly distributed keys and then perform the
same number of get() operations (Figure 6a and Figure 6b).
In general, reads are faster than insertions, as they require a
smaller number of coherence operations (on Intel machines,
a read from a remote NUMA memory triggers a write to
update the directory information). Hence, on average, a read
requires 1.3 read transactions (0.3 due to reprobes) and 0.65
write transactions (half of the 1.3 read transactions trigger
write-backs to remote NUMA memory). If we use an em-
pirical MLC throughput measurement for a composition of
2 random reads and 1 random write (Table 1), the maxi-
mum achievable throughput is 1.3Mops. On a large hash
table, Folklore remains bottlenecked on accesses to memory,
achieving only 451Mops. Both DRAMHiT and DRAMHiT-P
benefit from prefetching and achieve 973Mops and 951Mops,
respectively, on 64 cores. DRAMHiT-P-SIMD is slightly faster
at 1008Mops.

On a small hash table, Folklore benefits from a lean lookup
path as most of the hash table is cached in the last level cache
of each socket (1616Mops). DRAMHiT pays the price of the
prefetch engine overhead (1513Mops), and DRAMHiT-P,
the additional overhead of partition lookups (1224Mops).
DRAMHiT-P-SIMD is marginally faster (1270Mops).

Impact of individual optimizations Individual optimiza-
tions, i.e., prefetching, partitioning, and SIMD (vectoriza-
tion), have different impacts depending on the operation,
hash table size, and key distribution. Compared to Folklore,
DRAMHiT, which implements a prefetching optimization,
achieves 89-230% improvement on all configurations besides
reads of a small hash table on which the overhead of the

prefetch engine degrades the performance by 2-7%. A combi-
nation of partitioning and prefetch is only helpful on write-
dominated workloads with high skew (5-163% improvement
over prefetch) but degrades performance in all other cases.
Finally, SIMD optimizations improve the performance of the
partitioned hash table by only a few cycles on large hash
tables (1-10 cycles or 1-11% improvement over DRAMHiT-P)
but generally degrade performance on small ones (1-10%).

Impact of cache pollution To measure how performance
degrades if a hash table competes for a fraction of the cache
with the application itself, we design an experiment in which,
after every hash table operation, we pollute the cache by
prefetching several random cache lines from the memory of
a large array (Figure 6c). We vary the number of cache lines
prefetched from 0 to 512 and run our experiment on a large
hash table with a uniform distribution of keys on 64 threads.
Both AMD and Intel machines have 32 KB of L1 data cache
(512 cache lines) that is shared between two hyperthreads.

Performance of bothDRAMHiT andDRAMHiT-P degrades
gracefully until it blends with Folklore when two hyper-
threads pollute the entire cache by prefetching 256 cache
lines each.

Impact of batching To measure how the performance of
the hash tables degrades if an application cannot accumulate
a batch of requests, we vary the batch sizes and measure the
insertion and find throughput (Figure 7). We vary the batch
size from 1 to 16 in power-of-two increments and run our
experiment on a large hash table with a uniform distribution
of keys on 64 threads. Performance of both DRAMHiT and
DRAMHiT-P stays almost constant across various batch sizes
for the insert operation.
For finds, a batch size of 4 and 8 yield slightly better

throughput for DRAMHiT and DRAMHiT-P, respectively.
We observe only a difference of fewer than 10 cycles per
operation across all batch sizes.

Mixed insertions and lookups To measure the perfor-
mance of our hash tables on a mix of insertions and lookups,
we perform an experiment that uses 64 threads on both
uniform and zipfian (skew of 1.09) distributions (Figure 8c).
We first pre-initialize the hash table with the correspond-
ing distribution and then measure the throughput of mixed
insertions and finds by varying the read probability (𝑝 = 0
corresponds to all writes, and 𝑝 = 1 corresponds to all reads).
The performance of all hash tables predictably goes up as
the fraction of reads increases.

4.3 Performance on Skewed Distributions

To measure how DRAMHiT performs on distributions in
which some fraction of the keys are accessed more frequently
compared to the rest, we run a test in which we use 64 logical
cores and vary the 𝑡ℎ𝑒𝑡𝑎 parameter of the Zipf distribution
from 0 to 1.09. A 𝑡ℎ𝑒𝑡𝑎 of 0 results in a uniform distribution.
With a 𝑡ℎ𝑒𝑡𝑎 of 1.09, roughly 10% of keys are accessed by
90% of requests.

396

EuroSys ’23, May 8ś12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

on hashing with chaining but suffers from repetitive mem-
ory misses when traversing the chain [29]. While explicit
prefetching can be applied to chaining, traversing the chain
introduces additional memory transactions, and therefore,
will bottleneck on the throughput provided by the mem-
ory subsystem. Bolt develops a concurrent version of Robin
Hood hashing [24]. Due to predictable reprobe distance, Bolt
outperforms Growt but only on a relatively small 106 keys
hash table that almost fits in the last level cache of the CPU
and on a load factor of 50% (this is critical as the fast path in
Bolt relies on the absence of reprobes) [24].

Delegation and combining To avoid cache coherence and
synchronization overheads, delegation schemes designate
one thread, a server or a combiner, that executes the code
of the critical section on behalf of all other client threads.
Flat combining is a dynamic delegation scheme in which
any thread tries to acquire a basic spinlock to become a
temporary combiner [18]. Fast-flyweight delegation (FFWD)
provides an efficient NUMA-aware, static delegation scheme
which is used to implement a hash table [55]. While FFWD
(and delegation schemes in general) eliminates synchroniza-
tion overheads and suggests a cache-coherence optimized
communication protocol, the performance of one server core
does not match the throughput of a multi-threaded system.
FFWD outperforms traditional locking methods only when
contention is extreme [55]. DRAMHiT-P relies on a hybrid
technique that combines generalized, multi-server delega-
tion with efficient cross-core communication mechanisms.
In the past, CPHash explored partitioned hash table de-

sign with the goal of avoiding cross-core synchronization
overheads [39]. Unfortunately, CPHash suffers from an ineffi-
cient implementation for cross-core messaging, and a lack of
lock-free read operations required to match the performance
of modern lock-free hash tables.
Partitioned hash tables were further explored in the con-

text of network-attached key-value stores [33]. Mica relies
on hardware support from the network interface to delegate
requests via a queue handled by a specific core [33]. Simi-
lar to DRAMHiT-P, Mica serves read requests from multiple
cores, which allows scalability on read-dominated workloads.
Compared to distributed systems like Mica, DRAMHiT-P has
a much tighter cycle budget per request and hence needs
a range of novel optimizations to meet it. Arguably, opti-
mizations suggested in our work can be used to accelerate
network-attached systems as well.

Fast inter-core communication The first concurrent lock-
free queue that allowed synchronization without locks or
atomic primitives was introduced by Lamport [28]. Unfor-
tunately, despite its lock-free design, Lamport’s queue suf-
fers from constant cache thrashing of the producer and con-
sumer pointers, i.e., transfers of cache lines between pro-
ducer and consumer cores. DBLS [65], MCRingBuffer [30]
and Liberty [22] optimize Lamport’s design by adding a lazy

loading optimization that reduces the number of accesses
to the shared producer and consumer pointers. In addition,
DBLS [65] and MCRingBuffer [30], BatchQueue [52], Lib-
erty [22] introduce batching optimizations that keep en-
queue and dequeue indices updating shared control state
once per batch of enqueue operations. FastForward elimi-
nates sharing of the control state by storing a special NULL
value directly into the element of the queue after it was pro-
cessed [14]. Also, to reduce cache-line bouncing between
the cores, FastForward proposed an adaptive flow-control
algorithm ensuring that the producer and consumer do not
access the same cache line of the queue. Another batching
queue, BQueue, addresses the problem of deadlock typical
for batching queues by introducing an idea of backtracking,
i.e., probing the batch space in the power-of-two decrements
when the producer becomes idle [67]. Lynx further special-
izes the batch queue by removing the queue logic that is
responsible for checking the boundary conditions from the
critical path of the enqueue and dequeue operations [41]. To
handle queue overflow, Lynx relies on CPU exceptions (de-
livered through signal handlers) triggered when the enqueue
and dequeue code performs an access outside of the queue
area. Unfortunately, signal handling does not scale well on
commodity operating system kernels like Linux due to a
global lock in the signal delivery path. While Lynx’ demon-
strates impressive performance numbers on a single-core,
single-queue setup, our attempts to scale it were unsuccess-
ful. A large fraction of Lynx’s impressive performance is due
to aggressive compiler inlining and optimizations possible
only for a point-to-point (i.e., single queue) communicationÐ
the compiler inlines queue metadata and keeps all local state
in registers. Scaling Lynx to larger number of queues intro-
duces additional memory accesses (2-3 cycles per L1 memory
access), which negatively affects Lynx’ performance when
more than one queue is used.

6 Conclusions

Our work explores new ways of improving hash table per-
formance on modern hardware. We argue that modern ma-
chines should be treated as distributed systems with rela-
tively expensive communication channels across non-uniform
memory and caches. We develop a range of optimizations
typical for a distributed systemÐasynchronous interface,
fully-prefetched memory access, batching with out-of-order
completion, and a scalable delegation schemeÐborrowing
insights from distributed systems, but applying them in the
environment of a commodity server. These optimizations al-
low us to design a hash table that can saturate the bandwidth
of a modern memory subsystemÐarguably, the real architec-
tural bottleneck on modern machinesÐand outperform the
fastest commodity hash tables by a factor of two.

400

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8ś12, 2023, Rome, Italy

Acknowledgments

We would like to thank USENIX ATC’21 and EuroSys’23
reviewers and our shepherd, Sam H. Noh, for numerous
insights helping us to improve this work. Also, we would like
to thank Harishankar Vishwanathan, Daman Mohan Kumar,
and Nivedha Krishnakumar who contributed to various parts
of the system. This research is supported in part by the
National Science Foundation under Grant Numbers CNS-
1817120. Vikram Narayanan is partly supported by an IBM
PhD fellowship.

References

[1] Pham Nguyen Quang Anh, Rui Fan, and Yonggang Wen. Balanced

Hashing and Efficient GPU Sparse General Matrix-Matrix Multiplica-

tion. In Proceedings of the 2016 International Conference on Supercom-

puting (ICS ’16), 2016.

[2] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu.

Main-Memory Hash Joins on Multi-Core CPUs: Tuning to the Under-

lying Hardware. In 2013 IEEE 29th International Conference on Data

Engineering (ICDE 2013), pages 362ś373, April 2013.

[3] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and Evalua-

tion of Main Memory Hash Join Algorithms for Multi-Core CPUs.

In Proceedings of the 2011 ACM SIGMOD International Conference on

Management of Data (SIGMOD ’11), pages 37ś48, 2011.

[4] Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris, and Nickolai

Zeldovich. Non-scalable locks are dangerous. In Proceedings of the

Linux Symposium, pages 119ś130, 2012.

[5] Intel Corporporation. Intel® Memory Latency Checker. https:

//www.intel.com/content/www/us/en/developer/articles/tool/intelr-

memory-latency-checker.html. Accessed: 2022-05-18.

[6] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything

you always wanted to know about synchronization but were afraid to

ask. In Proceedings of the 24th ACM Symposium on Operating Systems

Principles (SOSP ’13), pages 33ś48, 2013.

[7] David J DeWitt and Robert Gerber. Multiprocessor Hash-Based Join

Algorithms. In Proceedings of the 11th International Conference on Very

Large Data Bases (VLDB ’85), pages 151ś164, 1985.

[8] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman

Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-

tao Shang, and Jinnah Dylan Hosein. Maglev: A Fast and Reliable

Software Network Load Balancer. In 13th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI ’16), pages 523ś535,

2016.

[9] Carla Schlatter Ellis. Extendible hashing for concurrent operations

and distributed data. In Proceedings of the 2nd ACM SIGACT-SIGMOD

Symposium on Principles of Database Systems (PODS ’83), pages 106ś

116, 1983.

[10] Carla Schlatter Ellis. Concurrency in linear hashing. ACM Transactions

on Database Systems, 12(2), 1987.

[11] Marius Erbert, Steffen Rechner, and Matthias Müller-Hannemann.

Gerbil: a fast and memory-efficient k-mer counter with gpu-support.

Algorithms for Molecular Biology, 12(1):9, 2017.

[12] Flux Research Group. CloudLab Web site. http://www.cloudlab.us.

[13] Hui Gao, Jan Friso Groote, and Wim H Hesselink. Lock-free dynamic

hash tables with open addressing. Distributed Computing, 18(1):21ś42,

2005.

[14] JohnGiacomoni, TippMoseley, andManish Vachharajani. FastForward

for Efficient Pipeline Parallelism: A Cache-Optimized Concurrent Lock-

Free Queue. In Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP ’08), pages 43ś52,

2008.

[15] Google. The CityHash family of hash functions. http://code.google.

com/p/cityhash/. Accessed: 2021-01-12.

[16] Google. Folly: Facebook Open-source Library. https://github.com/

facebook/folly/. Accessed: 2021-01-12.

[17] Michael Greenwald. Two-handed emulation: How to build non-

blocking implementations of complex data-structures using dcas. In

Proceedings of the 21st Annual Symposium on Principles of Distributed

Computing (PODC ’02), pages 260ś269. Association for Computing

Machinery, 2002.

[18] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat Com-

bining and the Synchronization-Parallelism Tradeoff. In Proceedings

of the 22nd Annual ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA ’10), pages 355ś364, 2010.

[19] Maurice Herlihy andNir Shavit. The Art ofMultiprocessor Programming,

chapter 13. Morgan Kaufmann Publishers, 2008.

[20] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. In

International Symposium on Distributed Computing (DISC 2008), pages

350ś364, 2008.

[21] Meichun Hsu and Wei-Pang Yang. Concurrent Operations in Ex-

tendible Hashing. In Proceedings of the 12th International Conference

on Very Large Data Bases (VLDB ’86), pages 241ś247, aug 1986.

[22] Thomas B Jablin, Yun Zhang, James A Jablin, Jialu Huang, Hanjun

Kim, and David I August. Liberty queues for epic architectures. In

Proceedings of the Eigth Workshop on Explicitly Parallel Instruction

Computer Architectures and Compiler Technology (EPIC), 2010.

[23] John McCalpin. Topology and Cache Coherence in Knights Landing

and Skylake Xeon Processors. https://www.ixpug.org/documents/

1524216121knl_skx_topology_coherence_2018-03-23.pptx. Accessed

2022-10-10.

[24] Endrias Kahssay. A fast concurrent and resizable Robin Hood hash

table, 2021.

[25] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D.

Nguyen, Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep

Dubey. Sort vs. Hash Revisited: Fast Join Implementation on Modern

Multi-Core CPUs. In Proceedings of the VLDB Endowment, volume 2,

pages 1378ś1389, Aug 2009.

[26] Marek Kokot, Maciej Długosz, and Sebastian Deorowicz. Kmc 3: count-

ing and manipulating k-mer statistics. Bioinformatics, 33(17):2759ś

2761, 2017.

[27] Vijay Kumar. Concurrent operations on extendible hashing and its

performance. Communications of the ACM, 33(6):681ś694, jun 1990.

[28] Leslie Lamport. Specifying concurrent program modules. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 5(2):190ś

222, 1983.

[29] Doug Lea. util.concurrent.ConcurrentHashMap, revision 1.3. JSR-166,

the Proposed Java ConcurrencyPackage. http://gee.cs.oswego.edu/cgi-

bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent, 2003.

[30] Patrick P. C. Lee, Tian Bu, and Girish Chandranmenon. A Lock-

Free, Cache-Efficient Shared Ring Buffer for Multi-Core Architectures.

In Proceedings of the 5th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (ANCS ’09), pages 78ś79,

2009.

[31] Daniel Lemire. fastrange: A fast alternative to the modulo reduction.

https://github.com/lemire/fastrange/. Accessed: 2023-02-20.

[32] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J.

Freedman. Algorithmic Improvements for Fast Concurrent Cuckoo

Hashing. In Proceedings of the 9th European Conference on Computer

Systems (EuroSys ’14), pages 1ś14, 2014.

[33] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-

sky. MICA: A Holistic Approach to Fast In-Memory Key-Value Storage.

In 11th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI ’14), pages 429ś444, 2014.

[34] Victor Luchangco, Mark Moir, and Nir Shavit. Nonblocking K-

Compare-Single-Swap. In Proceedings of the Fifteenth Annual ACM

401

EuroSys ’23, May 8ś12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

Symposium on Parallel Algorithms and Architectures (SPAA ’03), pages

314ś323, 2003.

[35] Tobias Maier, Peter Sanders, and Roman Dementiev. Concurrent Hash

Tables: Fast and General(?)! ACM Transactions on Parallel Computing,

5(4), February 2019.

[36] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for

efficient parallel counting of occurrences of k-mers. Bioinformatics,

27(6):764ś770, 2011.

[37] Paul E McKenney and John D Slingwine. Read-copy update: Using

execution history to solve concurrency problems. In Parallel and

Distributed Computing and Systems, volume 509518, 1998.

[38] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures:

The Basic Toolbox. Springer Science & Business Media, 2008.

[39] ZviadMetreveli, Nickolai Zeldovich, andM. Frans Kaashoek. CPHASH:

A Cache-Partitioned Hash Table. In Proceedings of the 17th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP ’12), pages 319ś320, 2012.

[40] Maged M. Michael. High Performance Dynamic Lock-Free Hash

Tables and List-Based Sets. In Proceedings of the Fourteenth Annual

ACM Symposium on Parallel Algorithms and Architectures (SPAA ’02),

pages 73ś82, 2002.

[41] Konstantina Mitropoulou, Vasileios Porpodas, Xiaochun Zhang, and

Timothy M. Jones. Lynx: Using os and hardware support for fast

fine-grained inter-core communication. In Proceedings of the 2016

International Conference on Supercomputing (ICS ’16), 2016.

[42] Daniel Molka, Daniel Hackenberg, and Robert Schöne. Main memory

and cache performance of Intel Sandy Bridge and AMD Bulldozer.

In Proceedings of the workshop on Memory Systems Performance and

Correctness, pages 1ś10, 2014.

[43] Daniel Molka, Daniel Hackenberg, and Robert Schöne. Main Memory

and Cache Performance of Intel Sandy Bridge and AMD Bulldozer.

In Proceedings of the Workshop on Memory Systems Performance and

Correctness (MSPC ’14). Association for Computing Machinery, 2014.

[44] Daniel Molka, Daniel Hackenberg, Robert Schöne, and Matthias S.

Muller. Memory Performance and Cache Coherency Effects on an Intel

Nehalem Multiprocessor System. In Proceedings of the 18th Interna-

tional Conference on Parallel Architectures and Compilation Techniques

(PACT ’09), pages 261ś270, 2009.

[45] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal

of Algorithms, 51(2):122ś144, 2004.

[46] Tony C. Pan, Sanchit Misra, and Srinivas Aluru. Optimizing High

Performance Distributed Memory Parallel Hash Tables for DNA k-mer

Counting. In International Conference for High Performance Computing,

Networking, Storage and Analysis (SC ’18), pages 135ś147, Nov 2018.

[47] Tian Bu Patrick P. C. Lee and Girish Chandranmenon. A lock-free,

cache-efficient multi-core synchronization mechanism for line-rate

network traffic monitoring. In 2010 IEEE International Symposium on

Parallel Distributed Processing (IPDPS), pages 1ś12, 2010.

[48] Paul E. McKenney. RCU vs. locking performance on different CPUs.

In Linux.Conf.Au, 2004.

[49] Chuck Pheatt. Intel® threading building blocks. Journal of Computing

Sciences in Colleges, 23(4):298ś298, 2008.

[50] Nick Piggin. ddds: "dynamic dynamic data structure" algorithm, for

adaptive dcache hash table sizing (resend). https://lwn.net/Articles/

302132/. Accessed: 2022-10-10.

[51] Jeff Preshing. Junction. https://github.com/preshing/junction/. Ac-

cessed: 2021-01-12.

[52] Thomas Preud’homme, Julien Sopena, Gael Thomas, and Bertil Folliot.

Batchqueue: Fast and memory-thrifty core to core communication. In

2010 22nd International Symposium on Computer Architecture and High

Performance Computing, pages 215ś222, 2010.

[53] Robert Ricci, Eric Eide, and The CloudLab Team. Introducing Cloud-

Lab: Scientific Infrastructure for Advancing Cloud Architectures and

Applications. ; login:: the magazine of USENIX & SAGE, 39(6):36ś38,

2014.

[54] Erik Rigtorp. Aligned AVX loads and stores are atomic. https://rigtorp.

se/isatomic/. Accessed: 2022-05-18.

[55] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. FFWD: Del-

egation is (Much) Faster than You Think. In Proceedings of the 26th

Symposium on Operating Systems Principles (SOSP ’17), pages 342ś358,

2017.

[56] Leonard D. Shapiro. Join Processing in Database Systems with Large

MainMemories. ACM Transactions on Database Systems, 11(3):239ś264,

1986.

[57] Moustafa Shokrof, C Titus Brown, and Tamer A Mansour. Mqf and

buffered mqf: Quotient filters for efficient storage of k-mers with their

counts and metadata. BMC bioinformatics, 22(1):1ś14, 2021.

[58] Julian Shun and Guy E. Blelloch. Phase-Concurrent Hash Tables for

Determinism. In Proceedings of the 26th ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA ’14), pages 96ś107, 2014.

[59] Alex Stivala, Peter J Stuckey, Maria Garcia de la Banda, Manuel

Hermenegildo, and Anthony Wirth. Lock-free parallel dynamic pro-

gramming. Journal of Parallel and Distributed Computing, 70(8):839ś

848, 2010.

[60] Tony Stornetta and Forrest Brewer. Implementation of an efficient par-

allel BDD package. In 33rd Design Automation Conference Proceedings,

1996, pages 641ś644, 1996.

[61] Josh Triplett, Paul E McKenney, and Jonathan Walpole. Resizable,

Scalable, Concurrent Hash Tables via Relativistic Programming. In

2011 USENIX Annual Technical Conference (USENIX ATC 11), 2011.

[62] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel

Madden. Speedy Transactions in Multicore In-Memory Databases.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (SOSP ’13), pages 18ś32, 2013.

[63] Freark I. van der Berg and Jaco van de Pol. Concurrent Chaining

Hash Maps for Software Model Checking. In 2019 Formal Methods in

Computer Aided Design (FMCAD), pages 46ś54, 2019.

[64] Markus Velten, Robert Schöne, Thomas Ilsche, and Daniel Hacken-

berg. Memory Performance of AMD EPYC Rome and Intel Cascade

Lake SP Server Processors. In Proceedings of the 2022 ACM/SPEC on

International Conference on Performance Engineering (ICPE ’22), pages

165ś175, 2022.

[65] Cheng Wang, Ho-seop Kim, Youfeng Wu, and Victor Ying. Compiler-

managed software-based redundant multi-threading for transient fault

detection. In International Symposium on Code Generation and Opti-

mization (CGO’07), pages 244ś258, 2007.

[66] JiananWang, Su Chen, Lili Dong, and GuohuaWang. CHTKC: a robust

and efficient k-mer counting algorithm based on a lock-free chaining

hash table. Briefings in Bioinformatics, 22(3), 05 2020.

[67] Junchang Wang, Kai Zhang, Xinan Tang, and Bei Hua. B-Queue:

Efficient and Practical Queuing for Fast Core-to-Core Communication.

International Journal of Parallel Programming, 41(1):137ś159, 2013.

[68] Herbert Xu. bridge: Add core igmp snooping support. http://git.kernel.

org/linus/eb1d16414339a6e113d89e2cca2556005d7ce919. Accessed:

2022-10-10.

A Artifact Appendix

A.1 Abstract

We release the source code of all software used in this paper
along with detailed build instructions and automated scripts
used for running the benchmarks as a collection of publicly-
hosted Git repositories.

A.2 Description & Requirements

A.2.1 How to access The artifacts are hosted at the git
repository https://github.com/mars-research/dramhit-artifacts/

402

DRAMHiT: A Hash Table Architected for the Speed of DRAM EuroSys ’23, May 8ś12, 2023, Rome, Italy

tree/esys23-ae-v1. The evaluated version of the artifact is
available at https://doi.org/10.5281/zenodo.7719328.

A.2.2 Hardware dependencies Wehave testedDRAMHiT
on the following hardware (available on CloudLab):

• Dell PowerEdge C6420 machine configured with two
Intel Xeon Gold 6142 CPUs

• Dell Poweredge R6525 machine configured with two
AMD Epyc 7543 CPUs

Though we have not tested it on other hardware, the ex-
periments should be reproducible on a range of machines as
long as all the memory channels are populated.

A.2.3 Software dependencies The DRAMHiT build in-
frastructure was tested on an x86-64 Ubuntu 22.04 LTS sys-
tem.

A.2.4 Benchmarks None

A.3 Set-up

We conduct all experiments in the openly-available CloudLab
cloud infrastructure testbed [12] and make our experimenta-
tion environment available via an open CloudLab [53] pro-
file that automatically creates the software environment re-
quired to run DRAMHiT: https://github.com/mars-research/

cloudlab-profiles/tree/kvstore-ae.

A.4 Evaluation Workflow

A.4.1 Major Claims

• (C1): DRAMHiT achieves 973Mops for reads and 792Mops
for writes on 64 threads outperforming existing lock-
free designs by nearly a factor of two. This is proven
by the experiment (E2) described in Figure 6b whose
results are discussed in Section 4.2.

A.4.2 Experiments The following experiments (E1-E3)
were evaluated by the artifact evaluation committee as our
peer-reviewed paper only had these experiments.

• Experiment (E1): Synchronization overheads [5 human-
minutes + 1 compute-hour]: measures the overheads of
various synchronization primitives such as spinlocks
and atomic increments on two different datasets (32
MB and 1 GB).
The script (under the fig2 directory) from the artifact
repository contains the necessary scripts to configure,
run and plot Figure 2.

• Experiment (E2): Hash table experiments [5 human-
minutes + 12 compute-hour]: measures the throughput
of insertions and lookups on two different distributions
(uniform and zipfian with different skews) for two
different datasets (small and large).
The script (under the ht−bench directory) from the arti-
fact repository contains the necessary scripts to con-
figure, run and plot Figure 6.

• Experiment (E3): Latency [5 human-minutes + 5
compute-hours]: measures the latency of insertion and
lookups on a 64-thread configuration.
The setup script under the latency directory builds and
runs the program to measure the latency of insertion
and lookup on folklore, DRAMHiT, and DRAMHiT-P,
and plots a cumulative distribution function (CDF) (Fig-
ure 9).

• Experiment (E4): Macro benchmark (kmer histogram)
[5 human-minutes + 5 compute-hours]: measures the
insertion throughput of k-mers for various values of
𝑘 .
The setup script under the kmer−bench directory builds
and runs the program tomeasure the insertion through-
put on folklore, DRAMHiT, andDRAMHiT-P, and com-
pares with one of the existing state-of-the-art kmer
counters that uses lock-free hash tables Figure 12.

A.4.3 Additional experiments We performed the fol-
lowing additional experiments for the camera-ready version
of the paper. The artifacts for these experiments are hosted at
the git repository https://github.com/mars-research/dramhit-

artifacts.

Set-up We use an updated profile that automatically creates
the software environment required to runDRAMHiT: https://
github.com/mars-research/cloudlab-profiles/tree/dramhit-ae.

• Experiment (E5) Hash table experiments on AMD
architecture, where we perform the same set of ex-
periments on an AMD node to understand how the
optimizations behave on a different architecture.
The script (under the ht−bench directory) from the arti-
fact repository contains the necessary scripts to con-
figure, run and plot Figures 10 and 11.

• Experiment (E6): Cache pollution [5 human-minutes
+ 6 compute-hours]: measures the impact of hash table
performance when an application competes for the
cache space.
The setup script under the pollutions directory builds
and runs folklore, DRAMHiT, and DRAMHiT-P by
polluting the cache after every operation to measure
the throughput for insertions and lookups and plots
Figure 6c.

• Experiment (E7): Mixedworkloads [5 human-minutes
+ 8 compute-hours]: measures the hash table perfor-
mance with a mix of insertions and lookups. We vary
the read probability from 0.1 to 1.0, which controls the
proportion of insert and lookup operations.
The setup script under the mixed−workloads directory
builds and runs folklore, DRAMHiT, and DRAMHiT-P
to plot the combined throughput for insertions and

403

EuroSys ’23, May 8ś12, 2023, Rome, Italy Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev

lookups in Figure 8c.

• Experiment (E8): Impact of batching [5 human-minutes
+ 8 compute-hours]: measures how the hash table per-
formance varies when the batch size is varied. We vary

the batch length in power-of-two increments from 1
to 16.
The setup script under the batching directory builds
and runs DRAMHiT, and DRAMHiT-P by varying the
batch length and plots the Figure 7.

404

	Abstract
	1 Introduction
	2 Background
	3 DRAMHiT Architecture
	3.1 Prefetch Engine
	3.2 Partitioning for High Skew
	3.3 Delegation
	3.4 Vectorization

	4 Evaluation
	4.1 Delegation
	4.2 Performance on Uniformly Distributed Keys
	4.3 Performance on Skewed Distributions
	4.4 Latency
	4.5 Alternative CPU Architecture: AMD
	4.6 Macrobenchmarks

	5 Related work
	6 Conclusions
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation Workflow

