
E. Costa et al. Res. Number Theory (2023) 9:1
https://doi.org/10.1007/s40993-022-00397-8

RESEARCH

Counting points on smooth plane quartics
Edgar Costa1* , David Harvey2 and Andrew V. Sutherland1

*Correspondence:
edgarc@mit.edu|https://edgarcosta.org/
1Department of Mathematics,
Massachusetts Institute of
Technology, 77 Massachusetts
Ave., Cambridge, MA 02139, USA
Full list of author information is
available at the end of the article
T.C.: ANTS XV. Edgar Costa and
Andrew V. Sutherland were
supported by Simons
Foundation grant 550033. David
Harvey was supported by the
Australian Research Council
(Grant FT160100219)

Abstract

We present efficient algorithms for counting points on a smooth plane quartic curve X
modulo a prime p. We address both the case where X is defined over Fp and the case
where X is defined over Q and p is a prime of good reduction. We consider two
approaches for computing #X (Fp), one which runs in O(p log p log log p) time using
O(log p) space and one which runs in O(p1/2 log2 p) time using O(p1/2 log p) space.
Both approaches yield algorithms that are faster in practice than existing methods. We
also present average polynomial-time algorithms for X/Q that compute #X (Fp) for
good primes p � N in O(N log3 N) time using O(N) space. These are the first practical
implementations of average polynomial-time algorithms for curves that are not cyclic
covers of P1, which in combination with previous results addresses all curves of genus
g � 3. Our algorithms also compute Cartier–Manin/Hasse–Witt matrices that may be of
independent interest.

1 Introduction
Let X/Q be a smooth projective curve of genus g . The L-function L(X, s) = ∑

n�1 ann−s

is a Dirichlet series that is defined by an Euler product
∏

p Lp(p−s)−1, where Lp(T) is
an integer polynomial of degree at most 2g . For primes p of good reduction for X the
polynomial Lp(T) is the numerator of the zeta function

Zp(T):= exp

⎛

⎝
∑

r�1
#X(Fpr)

Tr

r

⎞

⎠ = Lp(T)
(1 − T)(1 − pT)

(1.1)

of the reduction of X modulo p. The L-function L(X, s) and its coefficients an are the
subject of many outstanding conjectures, including the connection to automorphic forms
predicted by the Langlands program, generalizations of the Sato–Tate conjecture, the
Lang–Trotter conjecture, and the conjecture of Birch and Swinnerton-Dyer, as well as
conjectures about the zeros and special values of L(X, s). To numerically investigate these
conjectures one needs to compute the Dirichlet coefficients an for n up to some boundN
that one would like to make as large as possible, and at a minimum, larger than the square
root of the conductor of L(X, s) by a significant constant factor.
Since L(X, s) is defined by an Euler product, its coefficients an for n � N are determined

by the coefficients ape for prime powers pe � N , almost all of which are Frobenius traces

ap = p + 1 − #X(Fp)

123 © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40993-022-00397-8&domain=pdf
http://orcid.org/0000-0003-1367-7785
http://creativecommons.org/licenses/by/4.0/

1 Page 2 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

at primes p of good reduction for X . From a computational perspective, the problem
of computing the integers an for n � N is overwhelmingly dominated by the cost of
computing Frobenius traces ap for good primes p � N , equivalently, counting points on
X modulo primes p � N of good reduction, which is the problem we consider here.
There are two existing algorithms that can compute ap for good primes p � N in

time Õ(N), which is optimal up to logarithmic factors, since it is quasilinear in the size
of the output. The first is Pila’s generalization of Schoof’s algorithm [2,27,31], which can
compute each ap in time (log p)O(1), leading to a total time of N (logN)O(1). The second is
Harvey’s average polynomial-time algorithm [17], which can compute ap for good p � N
in time O(N log3N). Neither of these algorithms is meant to be practical for g > 1, but
the second has the distinct advantage that the implicit constant (which increases with g)
is not in the exponent of the complexity bound. For g = 1 both algorithms are practical,
but the Õ(N 5/4) generic group algorithm described in [24] is faster for all practical values
of N .
The case g = 2 is efficiently addressed by the practical implementation of Harvey’s

algorithm for hyperelliptic curves given in [21] and improved in [22]. Prior work has
addressed the case g = 3 in various special cases, including when X is hyperelliptic, either
as a degree-2 cover of P

1 [22] or as a degree-2 cover of a pointless conic [20], and when
X is superelliptic, including Picard curves and cyclic 4-covers of P

1 [35]. But the generic
case of a smooth plane quartic is not efficiently addressed by any prior work we are aware
of.
In this article we consider three practical average polynomial-time algorithms for com-

puting the Frobenius traces ap of a smooth plane quartic X/Q at good primes p � N .
As with the average polynomial-time algorithms mentioned above, they all involve the
computation of partial products of a sequence of r × r integer matrices M0, . . . ,MN−1
reduced modulo coprime integers m0, . . . , mN−1 that include the primes p � N . This
can be accomplished in O(r2N log3N) time using O(r2N logN) space via an accumu-
lating remainder tree, and one can improve the constant factors in the time complexity
and reduce the space complexity to O(r2N) using the accumulating remainder forest
described in [21,22]; see Theorem 5.21 for a precise statement. As with other average
polynomial-time algorithms, one can alternatively use these matrices to count points
modulo a particular prime p in two ways: one runs in O(r2p log p log log p) time using
O(r2 log p) space and the other runs in O(r2p1/2 log2 p) time using O(r2p1/2 log p) space,
assuming r = O(log p).
Our restriction to genus 3 curves effectively fixes r, so r2 becomes a constant factor

that is hidden in our complexity bounds. But r takes different values in each of the three
algorithms we present, and this has a significant impact on their relative running times.
Constant factors related to the size of the matrix coefficients size also play a role, but they
are less significant; see § 6 for a detailed discussion and a performance comparison of the
three algorithms.
Our algorithms compute the trace of Frobenius ap by computing the trace of theCartier–

Manin matrix Ap ∈ F
3×3
p of the smooth plane quartic Xp : f (x0, x1, x2) = 0 over Fp

given by reducing X modulo p. The precise definition of Ap is recalled in §2, but its
entries consist of nine particular coefficients of f p−1 and its trace is congruent to ap
modulo p, which uniquely determines ap for p > 144. TheCartier–Maninmatrix provides
additional information about Xp, including the p-rank of its Jacobian and the reduction of

E. Costa et al. Res. Number Theory (2023) 9:1 Page 3 of 32 1

Lp(T) modulo p, which constrains Lp(T) to O(p1/2) possibilities. These possibilities can
be distinguished in Õ(p1/4) time using a probabilistic generic group algorithm working
in the Jacobian of X ; see [24,32,33] for details of the algorithm and see [13] for efficient
implementation of the groupoperation. This does not yield an average polynomial time for
computing Lp(T) for good p � N , it would have complexity Õ(N 5/4), but for the practical
range of N this approach is faster in practice than using the average polynomial-time
algorithm in [17], which can compute Lp(T) for good p � N in O(N log3N) time.
The key differences among the three algorithms we consider lie in the relations that are

used to define the matrices Mi and the sizes of these matrices; in particular the value of
r may be 66, 28, or 16. The relations used in [17] are based on a deformation approach
that in the case of a plane quartic curve X :=f (x0, x1, x2) = 0 introduces an auxiliary
polynomial g(x0, x1, x2) = x40 + x41 + x42 and derives relations between the coefficients
that appear in the terms of the binomial expansion of (f + tg)p−1, where t is an auxiliary
parameter. These relations yield 66 × 66 matrices Mi. Rather than using the general
algorithm given in [17], which does not not require X to be smooth or even a curve (it can
be any hypersurface), one can use these matrices to directly compute the coefficients of
f p−1 that appear in the Cartier–Manin matrix Ap via [17, Thm. 4.1], as we explain in §5.
With appropriate optimizations the resulting algorithm is quite practical and faster than
previous approaches, as demonstrated by the timings in Table 1.
However, the main focus of this paper is deriving new relations that yield smaller matri-

cesMi. In contrast to [17], which uses relations that involve coefficients ofmth-powers of
the homogeneous polynomial F that defines X , where the parametermmay vary, here we
fix m. This forces us to impose nondegeneracy conditions on F that are not required in
[17], but it yields 28 × 28 matrices, and the resulting algorithms for computing Cartier–
Manin matrices, either for a single prime p or all good p � N are substantially faster
in practice than those that use the 66 × 66 matrices based on [17]. The relations we
obtain are not independent, and we develop tools that allow us to compress them. This
yields 16× 16 matrices of full rank with slightly larger coefficients that provides a further
substantial improvement in practical running times; see Tables 1–3.
Our algorithms for smooth plane quartics are not as fast as those that have been devel-

oped for genus 3 curves of a special form, such as hyperelliptic or superelliptic curves;
see Table 4 for a comparison. Nevertheless, for general genus 3 curve the algorithms we
present substantially extend the practical range of N one may consider. This played a
key role in [11,12] where a preliminary version of our algorithm was used to compute
Sato–Tate distributions, and in computing the L-functions of the nonhyperelliptic genus
3 curves tabulated in [34].
We conclude this introduction with an outline of the paper. After briefly recalling the

definition of the Cartier–Manin matrix and some of its properties in Sect. 2, we devote
Sects. 3 and 4 to developing the recurrences that determine the matricesMi used by our
algorithms; the main result used to define the 28× 28 matricesMi appears in Lemma 4.4,
and the result that allows us to compress them to 16×16matrices appears in Lemma 3.13.
The algorithms themselves are presented in Sect. 5, along with an analysis of their com-
plexity, and Sect. 6 compares the performance of our algorithms to each other and to
existing approaches for counting points on smooth plane quartics, as well as to previously
developed average polynomial-time algorithms for hyperelliptic and superelliptic genus 3
curves.

1 Page 4 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

2 The Cartier matrix of a smooth plane curve
In this section we recall the definition of the Cartier matrix of a smooth plane curve,
following [35]. Let k be a perfect field of characteristic p > 0, let K be a function field
of transcendence degree one with field of constants k , and let �K denote its module of
differentials, which we identify with its module ofWeil differentials via [29, Def. 4.17] and
[29, Rm. 4.3.7]. Let x ∈ K be a separating element, so that K/k(x) is a finite separable
extension, and let Kp denote the subfield of pth powers. Then (1, x, . . . , xp−1) is a basis
for K as a Kp-vector space, and every z ∈ K has a unique representation of the form

z = zp0 + zp1x + · · · + zpp−1x
p−1,

with zi ∈ K . Each rational differential form ω = zdx can then be written uniquely as

ω = (zp0 + zp1x + · · · zpp−1x
p−1)dx.

The (modified) Cartier operator C : �K → �K is then defined by

C(ω):=zp−1dx.

It maps regular differentials to regular differentials and thus restricts to an operator on
the space �K (0):={ω ∈ �K : ω = 0 or div(ω) � 0}, which is a k-vector space whose
dimension g is the genus of K . See [29, Ex. 4.12-17] for these and other standard facts
about the Cartier operator.

Definition 2.1 Let ω:=(ω1, . . . ,ωg) be a basis for �K (0) and define aij ∈ k via

C(ωj) =
g∑

i=1
aijωi.

The Cartier–Maninmatrix of K (with respect to ω) is the matrix A:=[aij] ∈ kg×g .

If X/k is a smooth projective curve with function field K , we also call A the Cartier–
Manin matrix of X . This matrix is closely related to the Hasse–Wittmatrix B of X , which
is defined as the matrix of the p-power Frobenius operator acting on H1(X,OX) with
respect to some basis. As explained in [1], the matrices A and B are related by Serre
duality, and for a suitable choice of basis one finds that B = [apij]

T . In the case of interest
to us k = Fp is a prime field and the Cartier–Manin and Hasse–Witt matrices are simply
transposes, hence have the same rank and characteristic polynomials. But we shall follow
the warning/request of [1] and call A the Cartier–Manin matrix, although one can find
examples in the literature where A is called the Hasse–Witt matrix (see [1] for a list).
Following Stöhr–Voloch [30] we write K as k(x)[y]/(F), where x ∈ X is a separating

element and y is an integral generator for the finite separable extension K/k(x) with
minimal polynomial F ∈ k[x][y]. We now define the differential operator

∇ := ∂2p−2

∂xp−1∂yp−1 ,

whichmaps x(i+1)p−1y(j+1)p−1 to xipyjp and annihilatesmonomials not of this form; it thus
defines a semilinear map ∇ : K → Kp. Writing Fy for ∂

∂yF ∈ k[x, y], for any h ∈ K we
have

C
(

h
dx
Fy

)

= (∇(Fp−1h)
)1/p dx

Fy
, (2.2)

E. Costa et al. Res. Number Theory (2023) 9:1 Page 5 of 32 1

by [30, Thm. 1.1]. If we choose a basis for�X (0) using regular differentials of the form hdx
Fy ,

we can compute the action of the Cartier operator on this basis via (2.2). To construct
such a basis, we use differentials of the form

ωk�:=xk−1y�−1 dx
Fy

(k, � � 1, k + � � deg(F) − 1). (2.3)

Writing F (x, y)p−1 = ∑
i,j F

p−1
ij xiyj (defining Fp−1

i,j ∈ k for all i, j ∈ Z), for k, � � 1 we have

∇
⎛

⎝
∑

i,j�0
Fp−1
ij xi+k−1yj+�−1

⎞

⎠ =
∑

i,j�1
Fp−1
ip−k, jp−�

x(i−1)py(j−1)p. (2.4)

Now Fp−1
ip−k, jp−�

is nonzero only when (i + j)p − (k + �) � (p − 1) deg(F), and k + � �
deg(F) − 1, so we can restrict the sum on the RHS to i + j � deg(F) − 1. From (2.2) and
(2.4) we obtain

C(ωk�) =
∑

i,j�1

(
Fp−1
ip−k, jp−�

)1/p
ωij . (2.5)

When X is a smooth plane curve the complete set of ωij defined in (2.3) is a basis
for �K (0) and we can read off the entries of the Cartier–Manin matrix A of X directly
from (2.5). Following the convention in [35], we order our basis ω:=(ωij) for �k (0) in
increasing order by j and then i, so that ω = (ω11,ω21, . . . ,ω12, . . .), and we view the
Cartier–Manin matrix as acting on the column vector ωT, so that we may express (2.5) as
C(ωT) = AωT.
If X : f (x0, x1, x2) = 0 is a smooth plane quartic curve with f (0, 1, 0) �= 0 (an assumption

that will hold under non-degeneracy constraints we impose on X), then we may write its
function field as k(x)[y]/(F (x, y)) with x = x0/x2 and y = x1/x2 so that its Cartier–Manin
matrix with respect to the basis in (2.3) is

A =
⎡

⎢
⎣

f p−1
p−1, p−1, 2p−2 f p−1

2p−1, p−1, p−2 f p−1
p−1, 2p−1,p−2

f p−1
p−2, p−1, 2p−1 f p−1

2p−2, p−1, p−1 f p−1
p−2, 2p−1,p−1

f p−1
p−1, p−2, 2p−1 f p−1

2p−1, p−2, p−1 f p−1
p−1, 2p−2,p−1

⎤

⎥
⎦ , (2.6)

where f p−1
i,j,k denotes the coefficient of the term xi0x

j
1x

k
2 in f (x0, x1, x2)p−1.

An essential property of the Cartier–Manin matrix is the identity

det(I − TA) ≡ Lp(T) mod p, (2.7)

where Lp(T) is the numerator of the zeta function of X defined in (1.1); see [23, Thm. 3.1]
and [26, Thm. 1]. In particular, we have trA ≡ ap mod p, where ap is the trace of Frobe-
nius. TheWeil bounds imply |ap| � 2g√p, which allows us to derive #X(Fp) = p+1−ap
from trA for all p > 16g2 = 144 (for g = 3).

Remark 2.8 All of our algorithms compute #X(Fp) = p + 1 − ap by computing the
Cartier–Manin matrix A and lifting trA ∈ Z/pZ to the unique ap ∈ Z with |ap| � 6√p
when p > 144. For p � 144 we are happy to count points naïvely via (6.1).

3 Setup
Throughout this section, R denotes one of the rings Z or Fp. Many of the results we use
hold in greater generality, but we make no attempt to generalize them beyond the cases
of interest to us here.

1 Page 6 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

WewriteR[x±] for the Laurent polynomial ringR[x0, x−1
0 , . . . , xn, x−1

n] in n+1 variables.
We use multi-index notation: for v:=(v0, . . . , vn) ∈ Z

n+1, we write xv for the monomial
xv00 · · · xvnn . For G ∈ R[x±] we write Gv for the coefficient of G at the monomial xv . We
also define the degree of v ∈ Z

n+1 to be deg v:= deg xv = ∑n
i=0 vi.

For � ∈ Z, we write R[x±]� for the R-submodule of R[x±] generated by the monomials
of degree �. More generally, for any subset S ⊆ Z

n+1, we define R[x±]S to be the R-
submodule of Laurent polynomials supported on S, consisting of all G ∈ R[x±] such that
Gv = 0 for v /∈ S. We typically use this notation in the case that S corresponds to a finite
set of monomials, all of the same degree. For G ∈ R[x±] we define G|S , the restriction of

G to S, to be the polynomial
∑

v∈S Gvxv ∈ R[x±]S .
For anyR-submoduleM ⊆ R[x±], we putM�:=M∩R[x±]�. In particular, letR[x] denote

the subring R[x0, . . . , xn]; then R[x]� is the submodule of homogeneous polynomials of
degree �, or the zero submodule if � < 0. More generally, if I is a homogeneous ideal of
R[x], then I� is the R-submodule consisting of homogeneous polynomials of degree � in
I . The monomials generating R[x]� are indexed by the set D�:={v ∈ Z

n+1
�0 : deg v = �} of

cardinality #D� = dimR R[x]� = (
�+n
n

)
for � � 0, with D� = ∅ for � < 0.

We denote by K the fraction field of R, which is either Q or Fp. All of the definitions for
R[x±] above may be extended in the obvious way to K [x±]. We write P

n
K = ProjK [x] for

projective n-space over K .
For the rest of the section we fix a homogeneous polynomial F ∈ R[x]d of degree

d � 2. We always assume that d �= 0 in R; in particular, if R = Fp, then we require that
p � d. Our goal is to establish a framework for efficiently computing individual coefficients
Fm
u :=(Fm)u, for a prescribed integerm � 0, without computing the entire polynomial Fm.

Our strategy will be to observe that Fm satisfies certain partial differential equations (see
(3.7)), which imply various relations between nearby coefficients of Fm.

Definition 3.1 For � ∈ Z�0 and v ∈ Z
n+1 we define D(v, �):={v − w : w ∈ D�} ⊆ Z

n+1.
The set D(v, �) may be thought of as an inverted simplex of size � centered at v.

We will study the vectors of coefficients of Fm|D(v,�), for certain small integers � and
v ∈ Z

n+1 with deg v = dm + �. As we will see, the differential equations lead naturally to
relations among these vectors, for fixedm, as we vary v.

Remark 3.2 When n = 2 and F defines a smooth plane curveX inP
2
Fp

of genus g = (d−1
2

)
,

the Cartier–Manin matrix of X consists of g2 coefficients Fp−1
u with u ∈ D(v, �) for g

particular choices of v of degree d(p − 1) + � with � = d − 3. It turns out to be more
convenient to usem = p − 2, as we will eventually want d(m+ 1) �= 0 in Fp, and to use v
of degree d(p − 2)+ � with � = 2d − 2. For smooth plane quartics we have n = 2, d = 4,
and � = nd − n = 6, values the reader may find useful to keep in mind.

Let IF be thehomogeneous ideal 〈∂0F, . . . , ∂nF〉 inK [x], where ∂i is the degree-preserving
differential operator ∂i:=xi ∂

∂xi . For � ∈ Z, the K -vector space K [x]�/(IF)� is spanned by
the monomials {xβ : β ∈ D�}, so we may choose a subset B� ⊆ D� such that {xβ : β ∈ B�}
projects to a basis of K [x]�/(IF)�. For the rest of the discussion, we assume a choice for B�

has been fixed for each �. Note that for � < d we have (IF)� = 0, in which case B� = D�.

E. Costa et al. Res. Number Theory (2023) 9:1 Page 7 of 32 1

Definition 3.3 Let b�:= dimK K [x]�/(IF)� = #B� � #D�. For v ∈ Z
n+1 we define the

set B(v, �):={v − β : β ∈ B�} ⊆ D(v, �) ⊆ Z
n+1. We also define the K -vector spaces

Dv,�:=K [x±]D(v,�) and Bv,�:=K [x±]B(v,�) ⊆ Dv,�.

We recall the following Hilbert series computation due to Macaulay [25].

Lemma 3.4 Let h0, . . . , hn be homogeneous polynomials in K [x], of positive degree with
no common zeros in P

n
K . For � � 0, let

δ�:= dimK K [x]�/〈h0, . . . , hn〉�.
Then, in Z[t] we have the identity

∑

��0
δ�t� =

n∏

i=0
(1 + t + · · · + tdeg hi−1).

Proof See Theorem 58 in [25, pp. 64–66].
�
Recall that the discriminant �d(F) of F ∈ R[x]d is determined up to sign by the formula

�d(F) = ±d((−1)n+1−(d−1)n+1)/d Resd−1
(∂F

∂x0
, . . . ,

∂F
∂xn

)
,

where Rese(h0, . . . , hn) is the resultant, the irreducible integer polynomial in the (n +
1)

(e+n
n

)
coefficients of h0, . . . , hn ∈ R[x]e that vanishes if and only if h0, . . . , hn have a

common zero in P
n
K and satisfies Rese(xe0, . . . , xen) = 1; see [15, pp. 433–435] for details.

The hypersurface defined by F ∈ R[x]d is smooth if and only if ∂F/∂x0, . . . , ∂F/∂xn
have no common zeros in P

n
K , that is, if and only if �d(F) �= 0. (Note that any common

zero of the ∂F/∂xi is automatically a zero of F by Euler’s identity d · F = ∑
i ∂iF , since

d �= 0 in R.) We say that F is nondegenerate if ∂0F, . . . , ∂nF have no common zeros in P.
Nondegeneracy of F is equivalent to requiring that the intersection of the hypersurface
defined by F with every set of coordinate hyperplanes is smooth (see [3, Prop. 4.6], [6,
Prop. 1.2]); this implies that the hypersurface defined by F is smooth, but it is a stronger
condition. If we let Dd(S):={v ∈ Dd : vi = 0 for i ∈ S} and define

�∗
d(F):=

∏

S�{0,...,n}
�d

(
F |Dd (S)

)
, (3.5)

where the discriminants on the right are taken with respect to the variables not in S, then
we see that F is nondegenerate if and only if �∗

d(F) �= 0.
For n = 1we have�∗

d(F) = ±F0,dFd,0�d(F) = ±F0,dFd,0 disc F (t, 1), where disc denotes
the usual discriminant of a univariate polynomial in R[t]. For n = 2 we have

�∗
d(F) = ±F0,0,dF0,d,0Fd,0,0 disc F (t, 1, 0) disc F (t, 0, 1) disc F (0, t, 1)�d(F).

Let HF (t):= ∑
��0 b�t� ∈ Z[t] denote the Hilbert series of the quotient ring K [x]/IF .

Corollary 3.6 If F ∈ R[x]d is nondegenerate then

HF (t):=
∑

��0
b�t� = (

1 + t + · · · + td−1)n+1,

and we have
∑

�≡k mod d b� = dn for any integer k.

Proof The first claim follows from Lemma 3.4. For the second, fix k ∈ Z and let ζ be a
primitive dth root of unity. We have

d−1∑

i=0
HF (ζ i)ζ−ki =

d−1∑

i=0

∑

��0
b�ζ

(�−k)i = d
∑

�≡k mod d
b�,

1 Page 8 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

and also
d−1∑

i=0
HF (ζ i)ζ−ki =

d−1∑

i=0
(1 + ζ i + · · · + (ζ i)d−1)n+1ζ−ki = dn+1.

Comparing these two expressions yields the desired result.
�
Letm � 0 and consider the system of differential equations for G ∈ K [x±]dm given by

∂i(FG) = (m + 1)(∂iF)G, i = 0, . . . , n. (3.7)

The scalar multiples of Fm are solutions to (3.7). Note that the Euler identity
n∑

i=0
∂i(FG) = d(m + 1)FG = (m + 1)

n∑

i=0
(∂iF)G (3.8)

implies that one of these n+1 equations is redundant, so for many purposes wemay treat
it as a system of only n equations.
We now show that (3.7) defines a system of linear equations on the coefficients of G.

For any w ∈ Z
n+1 of degree dm + d, equating coefficients in (3.7) for the monomial xw

gives rise to the system of linear equations

wi
∑

t∈Dd

FtGw−t = (m + 1)
∑

t∈Dd

tiFtGw−t , i = 0, . . . , n. (3.9)

Via (3.8) wemay view this as a system of n equations in #Dd unknownsGu for u ∈ D(w, d).
More generally, for any � � d and v ∈ Z

n+1 of degreedm+�wemay consider the system
of linear equations involving the coefficientsGu for u ∈ D(v, �), obtained by including the
equations (3.9) for eachw ∈ D(v, �−d). Here we are using the fact thatD(v, �) is the union
of the sets D(w, d) as w ranges over D(v, � − d). Explicitly, these equations are given by

(vi − si)
∑

t∈Dd

FtGv−s−t = (m + 1)
∑

t∈Dd

tiFtGv−s−t , s ∈ D�−d, i = 0, . . . , n. (3.10)

Via (3.8) we view this as a systemof n#D�−d equations in #D� unknownsGu foru ∈ D(v, �).

Definition 3.11 Let Ev,� denote the K -vector subspace of Dv,� = K [x±]D(v,�) consisting
of those Laurent polynomials G ∈ Dv,� satisfying the system (3.10).

Note that Ev,� is only defined when deg v is of the form dm + � for some m � 0. The
value ofm is implicitly defined by v and �: we always havem = (deg v − �)/d, so a choice
of v and � determines a choice ofm.
Since Fm satisfies the original differential equations (3.7), we see immediately that

Fm|D(v,�) ∈ Ev,�.
We also have the following basic result concerning inclusions of sets of the formD(v, �).

Lemma 3.12 Let �, �′ � d and let v, v′ ∈ Z
n+1 havedegrees dm+�anddm+�′ respectively.

Assume thatD(v, �) ⊆ D(v′, �′). Then the restrictionmapDv′ ,�′ � Dv,�, G �→ G|D(v,�),maps
Ev′ ,�′ into Ev,�.
Proof The equations defining Ev,� are a subset of those defining Ev′ ,�′ .
�
In the remainder of this section we develop further properties of the vector spaces Ev,�.

In particular, we compute their dimension and give explicit bases for certain cases of
interest.

E. Costa et al. Res. Number Theory (2023) 9:1 Page 9 of 32 1

Lemma 3.13 Let � � d, and let v ∈ Z
n+1 be of degree dm+ �. Consider the K-linear map

πv,� : Dv,� Bv,� ⊕ Dv,�−d,

G G|B(v,�) + (
FG

)|D(v,�−d).

The map πv,� may be represented by a matrix whose entries lie in R and are independent
of v.
Moreover, there exists a nonzero constant λ� ∈ R and a K-linear map

ψv,� : Bv,� ⊕ Dv,�−d Dv,�

such that the composition

ψv,� ◦ πv,� : Dv,� → Dv,�

restricts to scalar multiplication by (m + 1)λ� on Ev,�. The map ψv,� may be represented
by a matrix whose entries are R-linear combinations of 1, v0, . . . , vn and m, which we may
view as polynomials in R[v,m] = R[v0, . . . , vn,m] of degree at most 1.

Note that when using matrices to represent maps such as πv,� and ψv,�, we always work
with respect to the obvious monomial bases. For example, the columns of πv,� are indexed
by D�, and its rows are indexed by the concatenation of B� and D�−d . For this purpose we
assume that some ordering of the monomials of each degree has been chosen, such as the
lexicographical ordering.

Remark 3.14 One may think of πv,� as “compressing” a vector of length #D� into a vector
of length #B� + #D�−d . If the input vector lies in the subspace Ev,�, i.e., satisfies the
appropriate differential equations, then no information is lost in the compression, and
ψv,� “decompresses” the result to recover the original vector (multiplied by a certain
scalar).

Proof We observe that πv,� may be represented by a matrix in which the rows corre-
sponding toBv,� have entries in {0, 1}, and the entries of the rows corresponding toDv,�−d
are either zero or of the form Fu for some u ∈ Dd with (FG)v−w = ∑

u∈Dd
FuGv−w−u for

w ∈ D(v, � − d). This matrix is the same for every v ∈ Z
n+1 of degree dm + �.

We now explain how to construct ψv,�. Our task is to construct a formula that recovers
a polynomial G ∈ Ev,� from knowledge of G|B(v,�) and (FG)|D(v,�−d).
First, it follows from the definition of B� that for any u ∈ D� we may write

λ�xu =
n∑

i=0
hu,i∂iF +

∑

β∈B�

cu,βxβ , (3.15)

for some λ�, cu,β ∈ R (λ� �= 0) and hu,i ∈ R[x]�−d . (For u ∈ B� ⊆ D� we may take hu,i = 0,
cu,u = λ�, and cu,β = 0 for β �= u.)
Now suppose that G ∈ Ev,�. Multiplying both sides of (3.15) by (m + 1)G and equating

coefficients of xv yields

(m + 1)λ�Gv−u =
n∑

i=0

∑

s∈D�−d

(m + 1)(hu,i)s
(
(∂iF)G

)
v−s + (m + 1)

∑

β∈B�

cu,βGv−β

for each u ∈ D�. By assumption G satisfies (3.10), so

(m + 1)((∂iF)G)v−s = (∂i(FG))v−s = (vi − si)(FG)v−s (3.16)

1 Page 10 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

for all s ∈ D�−d and i = 0, . . . , n. Therefore, for each u ∈ D�,

(m + 1)λ�Gv−u =
n∑

i=0

∑

s∈D�−d

(vi − si)(hu,i)s(FG)v−s + (m + 1)
∑

β∈B�

cu,βGv−β . (3.17)

The right hand side of (3.17) involves the coefficients of FG on D(v, � − d) and the
coefficients of G on B(v, �), so we may use this expression to define ψv,�. Explicitly, for
H ∈ Bv,� and J ∈ Dv,�−d we define ψv,�(H + J) ∈ Dv,� via

ψv,�(H + J)v−u:=
n∑

i=0

∑

s∈D�−d

(vi − si)(hu,i)sJv−s + (m + 1)
∑

β∈B�

cu,βHv−β . (3.18)

It is clear that the entries of the corresponding matrix are polynomials of degree at most 1
in v0, . . . , vn,m with coefficients in R. By construction, ifG ∈ Ev,�, then (3.17) implies that

ψv,�(πv,�(G))v−u = ψv,�
(
G|B(v,�) + (

FG
)|D(v,�−d)

)

v−u

=
n∑

i=0

∑

s∈D�−d

(vi − si)(hu,i)s(FG)v−s + (m + 1)
∑

β∈B�

cu,βGv−β

= (m + 1)λ�Gv−u

for u ∈ D�. Thus ψv,� ◦ πv,� restricts to scalar multiplication by (m + 1)λ� on Ev,�.
�

Definition 3.19 We defineWv,�:=Bv,� ⊕ Bv,�−d . For � < 2d this is the codomain of πv,�
and the domain of ψv,�, since B(v, � − d) = D(v, � − d) for � − d < d.

Corollary 3.20 Let d � � < 2d and v ∈ Z
n+1 of degree dm + �. Assume that m �= −1 in

R. Then

dimK Ev,� � dimK Wv,� = b� + b�−d, (3.21)

and if F is nondegenerate then we have dimK Ev,� � dn.
When equality holds in (3.21) we may restrict the domain of πv,� and the codomain of

ψv,� to obtain K-linear isomorphisms

πE
v,� : Ev,� → Wv,�, ψE

v,� : Wv,� → Ev,�.

Proof As noted above, the hypothesis � < 2d ensures that the codomain of πv,� and
domain of ψv,� are both equal to Wv,�. Let λ� be as in Lemma 3.13. Since (m + 1)λ� �= 0
in R, Lemma 3.13 implies that the map πv,� is injective when restricted to Ev,� (since scalar
multiplication by (m + 1)λ� is injective), and the first inequality follows. The equality
in (3.21) is simply the observation that dimK Wv,� = #B(v, �) + #B(v, � − d) = #B� +
#B�−d = b� + b�−d . If F is nondegenerate, then by Corollary 3.6 we have b� + b�−d �
∑

�′≡� mod d b�′ = dn.
Suppose now that equality holds in (3.21), so dimK Ev,� = dimK Wv,�. Let πE

v,� : Ev,� →
Wv,� be the restriction of πv,� to Ev,�. As shown in the previous paragraph, πE

v,� is injective,
and by comparing dimensions we see that it is an isomorphism onto Wv,�. Then, since
ψv,� ◦ πE

v,� : Ev,� → Dv,� is injective (by Lemma 3.13) it follows that ψv,� is injective. The
image of ψv,� contains Ev,� (again by Lemma 3.13), and by comparing dimensions we find
that its image is equal to Ev,�. Restricting the codomain of ψv,� then yields the desired
isomorphism ψE

v,� : Wv,� → Ev,�.
�

E. Costa et al. Res. Number Theory (2023) 9:1 Page 11 of 32 1

Corollary 3.22 Let n = 2, � ∈ {2d − 2, 2d − 1}, and v ∈ Z
n+1 of degree dm + �. Then

dimK Ev,� � d2, and if F is nondegenerate andm �= −1 in R, then dimK Ev,� = b� +b�−d =
d2.

Proof Recall that Ev,� is defined by a system of n#D�−d equations in #D� unknowns. Its
dimension is therefore at least #D� − n#D�−d = (

�+n
n

) − n
(
�−d+n

n
)
, which is precisely d2

for n = 2 and � ∈ {2d − 2, 2d − 1}, in which case dimK Ev,� � d2. If additionally F
is nondegenerate and m �= −1 in R, then Corollary 3.20 and Corollary 3.6 imply that
dimK Ev,� � b� + b�−d � d2, so we conclude that dimK Ev,� = b� + b�−d = d2.
�

Remark 2.23 Corollaries 3.20 and 3.22 explain why we use m = p − 2 rather than m =
p − 1 when computing Cartier–Manin matrices: we want (m + 1)λ� to be nonzero in
characteristic p.

Remark 2.24 We expect that generalizations of Corollary 3.22 for n > 2 also hold, that
is, dim Ev,� = dn for F nondegenerate and � large enough. However, a simple dimension
count no longer shows that πv,� is surjective, more is needed.

4 Shifting coefficients
To simplify the exposition we now specialize to the case n = 2. As in the previous section,
R is Z or Fp, K is its fraction field, R[x±] is the Laurent polynomial ring in n + 1 = 3
variables x0, x1, x2, R[x] is the subring R[x0, x1, x2], and wework with a fixed homogeneous
polynomial F ∈ R[x]d of degree d > 1 and a positive integerm such that d(m+ 1) �= 0 in
R (we will takem = p−2 when R = Fp). We assume throughout that F is nondegenerate,
i.e., that �∗

d(F) �= 0 (see (3.5) for the definition of �∗
d(F)).

Let e0, e1, e2 be the standard basis for Z
3. In this section we consider how to shift a

solution to (3.10 from D(v, �) to D(v + ei − ej, �), for � = 2d − 2 and v ∈ Z
3 of degree

dm + �, where i, j ∈ {0, 1, 2} with i �= j. Our goal is to construct a “shift” map

τv,i,j : Dv,� → Dv+ei−ej ,�,

illustrated in the top row of Figure 1, with two key properties:

(1) For anyG ∈ Dv,�, the coefficients ofG and τv,i,j(G) should agree on the intersection
D(v, �)∩D(v+ei −ej, �) = D(v−ej, �−1), up tomultiplication by a known nonzero
scalar. The region D(v − ej, � − 1) is indicated by the dotted lines in Figure 1.

(2) τv,i,j should restrict to a map

τE
v,i,j : Ev,� → Ev+ei−ej ,�,

i.e., if G ∈ Dv,� satisfies the differential equations on D(v, �), then the shifted poly-
nomial τv,i,j(G) satisfies the equations on D(v + ei − ej, �).

It will be convenient to reformulate the first condition as follows. For any �′ � 1, w ∈ Z
3

and k ∈ {0, 1, 2} let
Pw,�′ ,k : Dw,�′ � Dw−ek ,�′−1

denote the restrictionmapG �→ G|D(w−ek ,�′−1) inducedby the inclusionD(w−ek , �′−1) ⊆
D(w, �′). Then condition (1) is equivalent to requiring Pv+ei−ej ,�,i ◦ τv,i,j : Dv,� → Dv−ej ,�−1
to be a nonzero scalar multiple of Pv,�,j : Dv,� → Dv−ej ,�−1.

1 Page 12 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

xv+e1−(�+1)e1 xv+e1−(�+1)e0

xv+e1−(�+1)e2

xv+e1−(�+1)e1 xv+e1−(�+1)e0

xv+e1−(�+1)e2

xv+e1−(�+1)e1 xv+e1−(�+1)e0

xv+e1−(�+1)e2

τv,i,j

φv,i Pv+ei,�+1,j

Fig. 1 Illustration of the maps φv,i and τv,i,j for d = 4, � = 6, i = 1, j = 0. The common domainD(v, �) of τv,i,j
and φv,i is represented by the white and gray dots enclosed in the upper left triangle (the dots represent a
monomial basis). The codomainD(v + ei − ej , �) of τv,i,j is represented by the subset of white, gray, and black
dots enclosed in the upper right triangle, and the codomainD(v + ei , � + 1) of φv,i is the entire bottom
triangle, which contains bothD(v, �) andD(v + ei − ej , �). As shown in the proof of Lemma 4.4, the
coordinates in the codomain of φv,i represented by the black dots are determined by the coordinates
represented by the gray dots

Remark 4.1 Later we will apply this framework to G = Fm|D(v,�). It is easy to compute
Fm|D(v,�) when v is near dmek , i.e., at the corners of the simplex. By repeatedly applying the
τv,i,j maps, we may shift this solution to obtain Fm|D(v,�) for a given target value of v. For
certain carefully chosen v, the components of these vectors will in turn yield the entries of
the Cartier–Manin matrix of the smooth plane quartic defined by F , when d = 4, � = 6
andm = p − 2. These shifts are illustrated in Figure 1.

By composing φv,i with the projection Pv+ei,�+1,j : Dv+ei,�+1 � Dv+ei−ej ,� we obtain the
desired map τv,i,j , as shown in the following commutative diagram:

Dv,� Dv+ei−ej ,� .

Dv+ei,�+1

τv,i,j

φv,i Pv+ei ,�+1,j

(4.2)

See Figure 1 for an illustration of this diagram in the case d = 4.

Ev,� Ev+ei−ej ,� .

Ev+ei,�+1

τEv,i,j

φE
v,i PEv+ei ,j

(4.3)

The first step in defining τv,i,j is to construct an “extension” map φv,i : Dv,� → Dv+ei,�+1
that extendsG fromD(v, �) to the larger setD(v+ei, �+1). This is carried out in Lemma4.4
below. The idea is to explicitly solve the system (3.10) for the unknown coefficients of

E. Costa et al. Res. Number Theory (2023) 9:1 Page 13 of 32 1

φv,i(G), i.e., for the monomials in D(v + ei, � + 1) \ D(v, �). These are shown as the black
dots in Figure 1.
We remind the reader that n = 2, d > 1, � = 2d − 2, d(m + 1) is nonzero in R, and

�∗
d(F) �= 0. In particular, �∗

d(Fxi=0) �= 0, since the latter is a factor of �∗
d(F); see (3.5).

Lemma 4.4 Let v ∈ Z
3 be of degree dm+ �, let i ∈ {0, 1, 2}, and let θi:= ± �∗

d(Fxi=0) �= 0.
There exists a K-linear map

φv,i : Dv,� → Dv+ei,�+1

such that Pv+ei,�+1,i ◦ φv,i = (vi + 1)θi · idDv,� , and such that if vi + 1 �= 0 in R then
φv,i(Ev,�) ⊆ Ev+ei,�+1.
The map φv,i may be represented by a

(2d+1
2

) × (2d
2
)
matrix whose entries are R-linear

combinations of 1, v0, v1, v2 andm, whichmay be viewed as linear polynomials in R[v,m] =
R[v0, v1, v2, m].

Remark 4.5 The sign of θi is not canonically determined; it depends on choices made
during the following proof (such as the choice of j and k). An explicit formula for θi, as
the determinant of a certain Sylvester matrix, is given in (4.11).

Proof We are given as input G ∈ Dv,�, and we wish to extend it to some G̃ ∈ Dv+ei,�+1.
We first set G̃w :=Gw for w ∈ D(v, �). Let

S:=D(v + ei, � + 1) \ D(v, �).
Our task is to show how to define the missing coefficients G̃w for w ∈ S in such a way that
G̃ ∈ Ev+ei,�+1 whenever G ∈ Ev,�. These 2d coefficients are indicated by the black dots in
Figure 1. We can alternatively write S as

S = {
(v + ei) − (cej + (2d − 1 − c)ek) : 0 � c � 2d − 1

}

where j and k are chosen so that {j, k} = {0, 1, 2} \ {i}.
According to (3.10), G̃ lies in Ev+ei,�+1 if and only if

((v + ei)h − sh)
∑

t∈Dd

FtG̃v+ei−s−t = (m + 1)
∑

t∈Dd

thFtG̃v+ei−s−t (4.6)

for all s ∈ D�+1−d and h = 0, 1, 2. Consider the subset of equations in (4.6) corresponding
to those s with si � 1, i.e., for those s = s′ + ei with s′ ∈ D�−d :

(vh − s′h)
∑

t∈Dd

FtG̃v−s′−t = (m + 1)
∑

t∈Dd

thFtG̃v−s′−t , s′ ∈ D�−d, h = 0, 1, 2.

These equations only involve G̃w for w ∈ D(v, �), and in fact are exactly the equations
defining Ev,�. If G ∈ Ev,�, then G̃ automatically satisfies these equations, since we already
arranged that G̃w = Gw for w ∈ D(v, �). The remaining equations correspond to those
s ∈ D�+1−d = Dd−1 for which si = 0, i.e., to s ∈ E where

E:={aej + (d − 1 − a)ek : 0 � a � d − 1}.
Consequently, for G̃ to lie in Ev+ei,�+1, it suffices to choose G̃w forw ∈ S so that (4.6) holds
for all s ∈ E and h = 0, 1, 2. Moreover, we recall that one value of h is redundant, thanks
to the Euler identity (3.8). Taking h = i and h = j, this system of 2|E| = 2d equations is

1 Page 14 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

given explicitly by

(vi + 1)
∑

t∈Dd

FtG̃v+ei−s−t = (m + 1)
∑

t∈Dd

tiFtG̃v+ei−s−t , s ∈ E,

(vj − sj)
∑

t∈Dd

FtG̃v+ei−s−t = (m + 1)
∑

t∈Dd

tjFtG̃v+ei−s−t , s ∈ E.
(4.7)

Let us manipulate these equations to put them into a more useful form. For each s,
multiply the second equation by vi + 1, subtract vj − sj times the first equation, and divide
bym + 1 �= 0, to obtain the system

(vi + 1)
∑

t∈Dd

FtG̃v+ei−s−t = (m + 1)
∑

t∈Dd

tiFtG̃v+ei−s−t , s ∈ E,

∑

t∈Dd

(
(vi + 1)tj − (vj − sj)ti

)
FtG̃v+ei−s−t = 0, s ∈ E.

(4.8)

The system (4.8) is equivalent to (4.7), provided that vi +1 �= 0. Now we rearrange so that
the terms with ti = 0 appear on the left hand side:

(vi + 1)
∑

t∈Dd
ti=0

FtG̃v+ei−s−t =
∑

t∈Dd
ti �=0

(
(m + 1)ti − (vi + 1)

)
FtG̃v+ei−s−t , s ∈ E,

(vi + 1)
∑

t∈Dd
ti=0

tjFtG̃v+ei−s−t =
∑

t∈Dd
ti �=0

(
(vj − sj)ti − (vi + 1)tj

)
FtG̃v+ei−s−t , s ∈ E.

(4.9)

We may rewrite the system (4.9) in matrix form as follows.

• The coefficients G̃w on the left hand side are exactly the unknowns of interest: writing
t = bej + (d − b)ek for 0 � b � d and s = aej + (d − 1 − a)ek for 0 � a � d − 1,
we see that w = v + ei − s − t = (v + ei) − cej − (2d − 1 − c)ek ∈ S for c = a + b.
Let y ∈ K 2d represent this vector of unknowns, with yc = G̃v+ei−cej−(2d−1−c)ek for
0 � c � 2d − 1.

• The coefficients G̃w on the right hand side are shown as the gray dots in Figure 1.
These coefficients are already known, i.e., all such w lie in D(v, �), so that G̃w = Gw .
Indeed, if t = t ′ + ei for t ′ ∈ Dd−1, then w = v + ei − s − t = v − s − t ′ ∈
D(v, (d − 1) + (d − 1)) = D(v, �). Let z ∈ K (2d2) be the vector consisting of all Gw for
w ∈ D(v, �), for some convenient ordering of D(v, �).

• Let F̄b:=Fbej+(d−b)ek for 0 � b � d; these are the coefficients Ft appearing on the left
hand side of (4.9). Let A be the 2d × 2d matrix (over R) given by

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

F̄0 F̄1 F̄2 · · · · · · F̄d
.

F̄0 F̄1 F̄2 · · · · · · F̄d
0 F̄1 2F̄2 · · · · · · dF̄d

.
0 F̄1 2F̄2 · · · · · · dF̄d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The columns correspond to the unknowns yc for 0 � c � 2d − 1. The first group of
d rows corresponds to the first equation in (4.9), and the second group to the second
equation. The rows in each group are indexed by a = 0, . . . , d − 1, corresponding to
the values of s ∈ E via s = aej + (d − 1 − a)ek .

E. Costa et al. Res. Number Theory (2023) 9:1 Page 15 of 32 1

• Let Mv,m be the 2d × (2d
2
)
matrix encoding the linear combinations on the right

hand side of (4.9). The columns of Mv,m correspond to the known values Gw for
w ∈ D(v, �), and the rows to the 2d equations. More explicitly, in the first d rows,
indexed by a = 0, . . . , d − 1, we place the value (m + 1)ti − (vi + 1) in the column
corresponding to v + ei − s − t for each t = t ′ + ei, t ′ ∈ Dd−1. Similarly, in the last
d rows, we place the values (vj − sj)ti − (vi + 1)tj in suitable positions. The entries of
Mv,m may be regarded as linear polynomials in R[v,m].

With these definitions, the system (4.9) may be expressed compactly as

(vi + 1)Ay = Mv,mz. (4.10)

The matrix A is the Sylvester matrix of Fxi=0,xk=1 and (∂jF)xi=0,xk=1 as degree d polyno-
mials in xj . By Proposition 1.8 in [15, p. 435] we have

detA = ±Fdej Fdekdiscxj Fxi=0,xk=1 = ±�∗
d

(
Fxi=0

) �= 0.

Wemay therefore solve the system explicitly as follows. Define

θi:= detA, (4.11)

and let adj(A) ∈ R2d×2d denote the matrix satisfying adj(A)A = (detA)I . Multiplying
(4.10) by adj(A) on the left yields the solution

(vi + 1)θiy = adj(A)Mv,mz.

Note that the columns of adj(A)Mv,m correspond to monomials u ∈ D(v, �), and the rows
correspond to monomials w ∈ S ⊆ D(v + ei, � + 1), i.e., the c-th row corresponds to
w = v + ei − cej − (2d − 1 − c)ek for 0 � c � 2d − 1.
Finally we show how to define the matrix for the desired map φv,i : Dv,� → Dv+ei,�+1.

For w ∈ D(v + ei, � + 1) and u ∈ D(v, �), the matrix entry (φv,i)w,u is given by

(φv,i)w,u =
⎧
⎨

⎩

(vi + 1)θiδw,u, if w ∈ D(v, �),

(adj(A)Mm,v)w,u, if w /∈ D(v, �),
(4.12)

where δw,u if w = u and 0 otherwise.
�

Remark 4.13 One may attempt to apply the construction in the proof of Lemma 4.4 for
values of � other than 2d − 2. This leads to a system of 2(� − d + 2) equations in � + 2
unknowns. Ultimately, the reason we work with � = 2d − 2 is that this is the smallest
value of � for which there are at least as many equations as unknowns.

Remark 4.14 As observed in Lemma 3.12 the equations defining Ev,� are a subset of the
equations defining Ev+ei,�+1. In the setup of Lemma 4.4 this difference of equations has
size 2d. The condition �d(Fxi=0) �= 0 ensures that these 2d equations are linearly inde-
pendent. Furthermore, if vi + 1 �= 0, then given G ∈ Ev,� there is a unique G̃ ∈ Ev+ei,�+1
such that G̃|D(v,�) = (vi + 1)θiG. Thus when vi + 1 �= 0, we have φv,i(Ev,�) = Ev+e1 ,�+1.

For the remainder of this section we fix distinct i, j ∈ {0, 1, 2}. By composing the map
φv,i : Dv,� → Dv+ei,�+1 with the projection Pv+ei,j : Dv+ei,�+1 � Dv+ei−ej ,� we obtain the
map

τv,i,j :=Pv+ei,j ◦ φv,i : Dv,� → Dv+ei−ej ,�, (4.15)

1 Page 16 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

and the diagram (4.2) as desired. We now check that τv,i,j has the desired properties.
In particular, if G ∈ Ev,�, then τv,i,j(G) ∈ Ev+ei−ej ,�, meaning that τv,i,j(G) satisfies the
equations on a shifted set of monomials.

Corollary 4.16 We have τv,i,j(Ev,�) ⊆ Ev+ei−ej ,� and the composition

Dv−ej ,�−1 Dv,� Dv+ei−ej ,� Dv−ej ,�−1
τv,i,j Pv+ei ,j

is scalar multiplication by (vi + 1)θi, and τv,i,j is invertible when vi + 1 �= 0 in R.
The map τv,i,j may be represented by a

(2d
2
) × (2d

2
)
matrix whose entries are R-linear

combinations of 1, v0, v1, v2 corresponding to linear polynomials in R[v].

Proof The first part follows by the definition of τv,i,j combined with Lemmas 4.4 and 3.12.
The last part also follows from Lemma 4.4, where we note that #D(v, �) = #D(v + ei −
ej, �) = #D� = (

�+n
n

) = (2d
2
)
for n = 2 and � = 2d − 2.
�

Let φE
v,i : Ev,� → Ev+ei,�+1 be the restriction of φv,i : Dv,� → Dv+ei,�+1 and similarly

define τE
v,i,j and PE

v,i. Because we have assumed that F is nondegenerate andm + 1 �= 0 in
R, applying Corollary 3.22 with � = 2d − 2 and � + 1 = 2d − 1 yields

dimK W� = dimK Ev,� = dimK Ev+ei,�+1 = dimK Ev+ei−ej ,� = d2. (4.17)

Since dimK Ev,� = dimK W�, by (4.17), Corollary 3.20 gives us bijections

πE
v,� : Ev,� → Wv,�, ψE

v,� : Wv,� → Ev,�, (4.18)

which are the restrictions of πv,� and ψv,�, respectively. We now consider the map

Tv,i,j :=πE
v+ei−ej ,� ◦ τE

v,i,j ◦ ψE
v,� : Wv,� −→ Wv+ei−ej ,�. (4.19)

In other words, the map Tv,i,j re-expresses the shifting map τE
v,i,j in terms of a basis for

Wv,�. We are interested in applying chains of such maps Tv+•,i,j , thus for any s > 0 we
define

Ts
v,i,j :=

∏

s>k�0
Tv+k(ei−ej),i,j = Tv+(s−1)ei−(s−1)ej ,i,j ◦ · · · ◦ Tv+ei−ej ,i,j ◦ Tv,i,j , (4.20)

where the product is taken over decreasing values of k starting from s − 1; note that the
symbol s in Ts

v,i,j is a superscript, not an exponent.

Corollary 4.21 Let s be a positive integer. We have

Ts
v,i,j = (m + 1)s−1λs−1

� πE
v+sei−sej ,� ◦

⎛

⎝
∏

s>k�0
τE
v+k(ei−ej),i,j

⎞

⎠ ◦ ψE
v,�.

Furthermore, πE
v+sei−sej ,� ◦

(∏
s>k�0 τE

v+k(ei−ej),i,j

)
◦ ψE

v,� may be represented by d2 × d2

matrix whose entries are polynomials in R[v,m] = R[v0, v1, v2, m] of degree at most s + 1.

E. Costa et al. Res. Number Theory (2023) 9:1 Page 17 of 32 1

Proof Lemma 3.13 impliesψE
v+k(ei−ej),� ◦πE

v+k(ei−ej),� = (m+1)λ�idEv+k(ei−ej),�
for 0 � k <

s. Applying this repeatedly yields

Ts
v,i,j :=

∏

s>k�0
Tv+k(ei−ej),i,j

=
∏

s>k�0
πE
v+(k+1)(ei−ej),� ◦ τE

v+k(ei−ej),i,j ◦ ψE
v+k(ei−ej),�

= πE
v+s(ei−ej),� ◦

(
∏

s>k>0
τE
v+k(ei−ej),i,j ◦ ψE

v+k(ei−ej),� ◦ πE
v+k(ei−ej),�

)

◦ τE
v,i,j ◦ ψE

v,�

= (m + 1)s−1 λs−1
� πE

v+sei−sej ,� ◦
⎛

⎝
∏

s>k�0
τE
v+k(ei−ej),i,j

⎞

⎠ ◦ ψE
v,�. (4.22)

Lemma 3.13, Corollary 3.20, and Corollary 4.16 imply that the RHS can be represented
as the product of a scalar, a d2 × (2d

2
)
matrix, s − 1 different

(2d
2
) × (2d

2
)
matrices, and

a
(2d
2
) × d2 matrix, all of whose entries are linear polynomials in R[v,m]. The corollary

follows.
�

Corollary 4.21 combined with Lemma 3.13 yields the following corollary.

Corollary 4.23 Let s ∈ Z�0 and let G ∈ R[x]dm satisfy equation (3.7). Then,

T s
v,i,j ◦ πE

v,�
(
G|D(v,�)

) = θ si λ
s
�(m + 1)s

(s∏

k=1
(vi + k)

)

πE
v+s(ei−ej),�

(
G|D(v+s(ei−ej),�)

)
.

Before stating the final result of this section, we remind the reader of our running assump-
tions:

• i, j ∈ {0, 1, 2} distinct;
• R = Z or Fp, n = 2, d > 1, � = 2d − 2,m > 0, and d(m + 1) �= 0 in R;
• F ∈ R[x]d is nondegenerate, meaning �∗

d(F) �= 0 (see (3.5) for the definition of �∗
d).

Theorem 4.24 Let p be a prime that is equal to the characteristic of R when R = Fp and
does not divide �∗

d(F)d(m+ 1) when R = Z. Let s be a positive integer, and let G ∈ R[x]dm
satisfy equation (3.7). The following hold:

(a) If w ∈ Z
n+1 of degree dm + � and v ≡ w mod p then the matrices representing T s

v,i,j
and Ts

w,i,j agree modulo p.
(b) If vi ≡ 0 mod p and s = p − 1, then (m + 1)sλs�θ

s
i
∏s

k=1(vi + k) ≡ −1 mod p and

Tp−1
v,i,j ◦ πE

v,�
(
G|D(v,�)

) ≡ −πE
v+(p−1)(ei−ej),�

(
G|D(v+(p−1)(ei−ej),�)

)
mod p.

When vj ≡ −1 mod p also holds, the matrix Tp−1
v,i,j is invertible modulo p and its

inverse is Tp−1
v+(p−1)(ei−ej),j,i .

Proof For (a) note that Ts
v,i,j is representable as a matrix with entries in R[v]. For (b) we

apply Fermat’s little theorem and Wilson’s theorem to obtain
∏p−1

k=1(vi + k) ≡ (p − 1)! ≡
−1 mod p, which togetherwithCorollary 4.23 implies the first claim. For the second claim

1 Page 18 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

in (b), we apply Tp−1
v+(p−1)(ei−ej),j,i to both sides of the first claim to obtain

Tp−1
v+(p−1)(ei−ej),j,i ◦ Tp−1

v,i,j ◦ πE
v,�

(
G|D(v,�)

)

≡ −Tp−1
v+(p−1)(ei−ej),j,i◦ πE

v+(p−1)(ei−ej),�

(
G|D(v+(p−1)(ei−ej),�)

)
mod p

≡ πE
v,�

(
G|D(v,�)

)
mod p,

where the last equivalence follows from the first claim in (b), since vj ≡ −1 mod p implies
(v+ (p− 1)(ei − ej))j ≡ 0 mod p, allowing us to apply the first claim to Tp−1

v+(p−1)(ei−ej),j,i.
�

5 Computing Cartier–Maninmatrices of a smooth plane quartic
Let X : f (x0, x1, x2) = 0 be a smooth plane quartic defined by a nondegenerate homo-
geneous quartic f ∈ R[x0, x1, x2]4. In this section we give algorithms to compute the
Cartier–Manin matrix Ap of X when R = Fp, or the Cartier–Manin matrices Ap of the
reductions of X modulo primes p � N of good reduction up to a given bound N when
R = Z.
We first consider the case R = Fp, where p is an odd prime, noting that for p = 2 the

Cartier–Maninmatrix can be extracted directly from the coefficients of f = f p−1 via (2.6).
We will apply the infrastructure developed in §4 with F = f andm = p− 2. In particular,
we work with � = 6 = 2d − 2 and dm + � = 4(p − 2) + 6 = 4p − 2 throughout.
Let us first sketch our algorithm by working backwards from our goal. The coefficients

of f p−1 that appear in the ith column of the matrix Ap in (2.6) lie in f p−1|D(v(i) ,2) for
v(1):=(p − 1, p, 2p − 1), v(2):=(2p, p − 1, p − 1), v(3):=(p − 1, 2p, p − 1); (5.1)

note that the v(i) are not symmetric because the indices in the columns of (2.6) are not.
Now Dv,2 = Bv,2, since 2 < 4 = d, so πv,6 has codomainWv,6 and it suffices to compute

πv,6
(
f p−2|D(v,6)

) = f p−2|B(v,6) + f p−1|B(v,2) ∈ Wv,6 (5.2)

for v = v(1), v(2), v(3). We now define

w(1):=(0, 2p − 1, 2p − 1), w(2):=(3p − 1, 0, p − 1), w(3):=(0, 3p − 1, p − 1), (5.3)

with w(1) = v(1) + (p − 1)(e1 − e0), w(2) = v(2) + (p − 1)(e0 − e1), and w(3) = v(3) + (p −
1)(e1 − e0). Let Cp ∈ F

16×16
p denote the matrix representing the linear operator

Tp−1
w(1),0,1 : Ww(1) ,6 → Wv(1),6, (5.4)

determined by the nondegenerate polynomial f ∈ Fp[x0, x1, x2]4. By Theorem 4.24 (a),
the matrix Cp also represents

Tp−1
w(3),0,1 : Ww(3) ,6 → Wv(3),6, (5.5)

since v(1) ≡ v(3) mod p and w(1) ≡ w(3) mod p, and by Theorem 4.24 (b), C−1
p represents

(
Tp−1
v(2),0,1

)−1 ≡ Tp−1
w(2) ,1,0 : Ww(2) ,6 → Wv(2) ,6 (5.6)

since v(2)0 ≡ 0 mod p and v(2)1 ≡ −1 mod p andw(2) = v(2) + (p−1)(e0 − e1). We can thus
use the matrix Cp and its inverse to traverse the three paths from the intermediate points
w depicted as blue dots on the exterior of triangle in Figure 2 to the target interior points
v.

E. Costa et al. Res. Number Theory (2023) 9:1 Page 19 of 32 1

x4p−2
0

x4p−2
1

x4p−2
2

Fig. 2 Illustration for p = 7. The target points v in the interior are shown in black with v(1) at the top center,
v(2) at the lower left, and v(3) at the lower right. The intermediate points w are in blue, and the paths used to
reach the target points v are shown in gray

Toobtain the coefficients of f p−2|D(w,6) forw = w(1), w(2), w(3) we could apply a variation
of the method of §4 for n = 1 (each w has a zero entry we can ignore), but we prefer to
use a simpler approach that we illustrate for w = w(3). Let h(t):=f (0, 1, t). Then

hp−2(t) ≡ h(tp)h−2(t). (5.7)

If we put g(t):=h(t)2 = ∑8
i=0 aiti and let

a0/g(t) =
∑

i�0
citi ∈ Fp[[t]], (5.8)

then we can compute (cs, cs−1, · · · , cs−7) as the first column of Qs
g , where

a0Qg :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a1 −a2 −a3 · · · −a8
a0 0 0 · · · 0
0 a0 0 · · · 0
...

. . .
...

0 · · · 0 a0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.9)

ComputingQs
g with s = p−1 allows us to derive the

(6+1
1

) = 7 coefficients of f p−2|D(w,6) we
need using cs, . . . , cs−6; the other

(6+2
2

)−(6+1
1

) = 21 coefficients correspond tomonomials
in Fp[x±] that contain a negative exponent and are necessarily zero because f p−2 is a
polynomial. In terms of Figure 2, the computation we have just described corresponds to
walking p − 1 steps along the gray path from the lower right corner of the triangle to the
first blue dot on the right edge (the 21 zero coefficients correspond to monomials outside
the triangle).
The cases w = w(1), w(2) are treated similarly using suitable g(t) and s.

Algorithm 5.10 Given a nondegenerate f ∈ Fp[x0, x1, x2]4 and the correspondingmatrix
Cp ∈ F

16×16
p , compute the Cartier–Manin matrix of X : f (x0, x1, x2) = 0 as follows:

1 Page 20 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

(1) Compute f p−2|D(w,6) forw = w(1), w(2), w(3) (the blue dots in Figure 2) using suitably
chosen g ∈ Fp[t] and Qs

g ∈ F
8×8
p as described above:

(a) Compute the edge coefficients of f p−2|D(w(1) ,6) using g(t):=f (0, 1, t)2:
(
f p−2
w(1)−je2−(6−j)e1

)
0�j�7 =

(
f(0,3,1)f(0,4,0)−2Qp−1

g + f(0,4,0)−1Q2p−1
g

)

·(1, 0, . . . , 0)T .
(b) Compute the edge coefficients of f p−2|D(w(2) ,6) using g(t):=f (1, 0, t)2:

(
f p−2
w(2)−je2−(6−j)e0)

)
0�j�7 = f(4,0,0)−1Qp−1

g · (1, 0, . . . , 0)T .

(c) Compute the edge coefficients of f p−2|D(w(3) ,6) using g(t):=f (0, 1, t)2:
(
f p−2
w(3)−je2−(6−j)e1

)
0�j�7 = f(0,4,0)−1Qp−1

g · (1, 0, . . . , 0)T .

(2) Compute πv,6(f p−2|D(v,6)) for v = v(1), v(2), v(3) (the black dots in Figure 2) using
Theorem 4.24 and Equation (5.2) as follows:

(a) Compute the first column of Ap using v(1) = (p − 1, p, 2p − 1):

(
f p−1
(p−1,p,2p−3), f

p−1
(p−1,p−1,2p−2), f

p−1
(p−1,p−2,2p−1),

f p−1
(p−2,p,2p−2), f

p−1
(p−2,p−1,2p−1), f

p−1
(p−3,p,2p−2)

)

=
(
πv(1) ,6

(
f p−2|D(v(1),6)

))|
B(v(1),2)

= −Cp ◦ πw(1) ,6
(
f p−2|D(w(1) ,6)

)
.

(b) Compute the second column of Ap using v(2) = (2p, p − 1, p − 1):

(
f p−1
(2p,p−1,p−3), f

p−1
(2p,p−2,p−2), f

p−1
(2p,p−3,p−1), f

p−1
(2p−1,p−1,p−2),

f p−1
(2p−1,p−2,p−1), f

p−1
(2p−2,p−1,p−1)

)

=
(
πv(2) ,6

(
f p−2|D(v(2),6)

))|
B(v(2),2)

= −Cp
−1 ◦ πw(2) ,6

(
f p−2|D(w(2) ,6)

)
.

(c) Compute the third column of Ap using v(3) = (p − 1, 2p, p − 1):

(
f p−1
(p−1,2p,p−3), f

p−1
(p−1,2p−1,p−2), f

p−1
(p−1,2p−2,p−1),

f p−1
(p−2,2p,p−2), f

p−1
(p−2,2p−1,p−1), f

p−1
(p−3,2p,p−1)

)

=
(
πv(3) ,6

(
f p−2|D(v(3),6)

))|
B(v(3),2)

= −Cp ◦ πw(3) ,6
(
f p−2|D(w(3) ,6)

)
.

(3) Output the matrix Ap ∈ F
3×3
p defined in (2.6) using the coefficients of f p−1 that are

shown in bold above.

Remark 5.11 The matrix Qp−1
g in step (1c) is the same as in step (1a) and need not be

recomputed. The matrices that represent πw,6 forw = w(1), w(2), w(3) in step (2) are all the
same, since πw,6 does not depend on w, by Lemma 3.13. Indeed, if ι(t) ∈ {1, . . . #D�} is the
index of t ∈ D� in its lexicographic ordering, the matrixW ∈ R16×28 with nonzero entries
Wι(u),ι(t+u):=Ft for u ∈ D2 and t ∈ D4 andW6+j,18+j :=1 for 1 � j � 10 represents πw,6.

E. Costa et al. Res. Number Theory (2023) 9:1 Page 21 of 32 1

Remark 5.12 If we instead use the “uncompressed” matrix Up ∈ F
28×28
p representing the

linear operator
∏

p−1>k�0 τE
w(1)+k(e0−e1),0,1

, which by (4.21) satisfies

Up = −λ−1
6 ψE

v(1),6 ◦ Cp ◦ πE
w(1) ,6,

we can consider an “uncompressed” version of Algorithm 5.10. We replace Cp ◦ πw(1) ,6
and Cp ◦ πw(3) ,6 with πv(1) ◦Up and πv(3) ◦Up, respectively, to obtain the desired vectors in
(2a) and (2c), and for (2b) we replace C−1

p with −λ6(πE
v(1),6 ◦ Up ◦ ψE

w(1) ,6)
−1.

Lemma 5.13 Algorithm 5.10 runs in O(log2 p log log p) time using O(log p) space.

Proof The algorithm uses O(log p) ring operations for the matrix exponentiations and
O(1) field inversions in step (1), and O(1) field operations in step (2). Each ring operation
in Fp can be achieved using O(1) ring operations in Z on integers with O(log p) bits
(using Newton iteration to perform fast Euclidean division, see [14, Thm. 9.8]), which
yields a bit complexity of O(M(log p)) = O(log p log log p) per ring operation via [19].
We can perform field inversions inO(M(log p) log log p) = O(log p(log log p)2) time using
a fast GCD algorithm [14, Cor. 11.13], which is dominated by the cost of O(log p) ring
operations; the time bound follows and the space bound is immediate.
�
We now give our algorithms to compute the Cartier–Manin matrix of a smooth plane

quartic. Let us define the matrix

M(t):=Tw(1)+t(e0−e1),0,1 ∈ R[t]16×16, (5.14)

whose entries are polynomials in t of degree at most 2, by Corollary 4.21. From (4.19), we
see thatM(t) can be computed as the product ofmatrices inR[t]16×28, R[t]28×28, R[t]28×16

representing themaps πE
v(t)+e0−e1 ,6, τ

E
v(t),0,1,ψ

E
v(t),6, respectively, where v(t) = w(1)+ t(e0−

e1). The matrices representing πE
v(t)+e0−e1 ,6 and ψE

v(t),6 are computed as in the proof of
Lemma 3.13: the matrix representing πE

v(t)+e0−e1 ,6 is independent of v(t), its entries are
coefficients of f or elements of {0, 1}, while the entries in ψE

v(t),6 are determined by (3.18).
Thematrix representing τE

v(t),0,1 = PE
v(t)+e0 ,j◦φE

v(t),i is computedby composing thematrix in
{0, 1}28×36 representing the projection PE

v(t)+e0 ,1 with the matrix in R[t]36×28 representing
φE
v,i whose entries are given by (4.12). From equation (4.20) we then have

Cp:=Tp−1
w(1) ,0,1 =

∏

p−1>j�0
M(j) mod p ∈ F

16×16
p . (5.15)

Algorithm 5.16 Given a nondegenerate f ∈ Fp[x0, x1, x2]4, compute the Cartier–Manin
matrix Ap of the smooth plane quartic X : f (x0, x1, x2) = 0 as follows:

(1) Compute the matrixM(t) ∈ Fp[t]16×16 corresponding to f as described above.
(2) Compute the matrix Cp = Tp−1

w1 ,0,1 = ∏
p−1>j�0 M(j) ∈ F

16×16
p .

(3) Use Algorithm 5.10 with inputsCp and f to compute the Cartier–ManinmatrixAp.

Remark 5.17 Wemay also consider an uncompressed version of Algorithm 5.10 that uses
M(t):=τE

w1+t(e0−e1),0,1
∈ R[t]28×28 to compute thematrixUp defined inRemark 5.10 rather

than using the matrices M(t) defined in (5.14) to compute Cp. Note that in the former
case the entries ofM(t) have degree at most 1 rather than 2.

Theorem 5.18 Algorithm 5.16 can be implemented to use O(p log p log log p) time and
O(log p) space, and also to use O(p1/2 log2p) time and O(p1/2 log p) space.

1 Page 22 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

Proof The first complexity bound is achieved by iteratively instantiating the entries of
M(t) at t = k and accumulating the matrix product in Cp. This involves O(p) ring oper-
ations in Fp, which takes O(p log p log log p) time using O(log p) space. The second com-
plexity bounds is achieved by using the interpolation/evaluation algorithm of Bostan–
Gaudry–Schost [5] to compute

∏
p−1>j�0 M(j), which usesM(p1/2 log p) = O(p1/2 log2 p)

time and O(p1/2 log p) space. The cost of invoking Algorithm 5.10 in step (2) is negligible
in both cases.
�

Remark 5.19 In our O(p log p log log p) implementation, rather than computing Cp
as the product of p − 1 matrices M(j), we instead iteratively multiply the vectors
πw(i) ,6(f p−2|D(w(i) ,6)

)
that appear in steps (2a) and (2c) of Algorithm 5.10 by each matrices

M(j) as it is computed.We then repeat this process using the curve defined by f (x1, x0, x2)
to obtain the vector computed in step (2b); note that in steps (1c) and (2c) of Algo-
rithm 5.10 are identical to steps (1b) and (2b) except the roles of x0 and x1 are reversed.
This effectively replaces each matrix multiplication with 3 matrix-vector multiplications
and is practically faster in the range of pwe consider. ThematricesM(j) for j = 0, . . . , p−1
can be efficiently enumerated using finite differences (the entries ofM(t) are polynomials
of degree at most 2).

We now turn to the case R = Z, where our strategy is to use an average polynomial-time
approach to simultaneously compute the matrices Cp at suitable primes p � N using a
single matrix M(t) ∈ Z[t]16×16. A nondegenerate polynomial f ∈ Z[x0, x1, x2]4 will have
nondegenerate reduction modulo all primes p that do not divide �∗

4(f), but in order to
obtain a valid matrix Cp to use as input for Algorithm 5.10 computed via (5.15) with
M(t) ∈ Z[t]16×16 we also need to ensure that the scalar (m + 1)λ6 arising in Lemma 3.13
and the degree d = 4 are both nonzero modulo p.
Nowm + 1 = p − 1 is never divisible by p, so it suffices to restrict our attention to odd

primes that do not divide λ6. We thus define D:=2λ6�∗
4(f) and treat all primes p � N

that do not divideD using an average polynomial-time approach and handle good primes
p | D as special cases via Remark 5.20 below. The primes p | D are bounded by a constant
that does not depend on N , thus the time spent handling the good p | D has no impact
on the complexity of our algorithm as a function of N (and it is completely negligible in
practice).

Remark 5.20 For primes p | D where f has good reduction we can compute the Cartier–
Manin matrix directly from its definition, but we can more efficiently treat p � �∗

4(f) by
simply applying Algorithm 5.16 to the nondegenerate reduction of f modulo p. In our
implementation we do the same for good primes p | �∗

4(f) greater than 3 by applying a
random linear transformation to the reduction of f modulo p until we obtain a nonde-
generate polynomial f̃ ∈ Fp[x0, x1, x2] that defines an isomorphic curve. For p > 3 such a
nondegenerate polynomial is guaranteed to exist by Proposition 3.2 of [7], and in practice
we can find one quickly. Note that we have assumed f (x0, x1, x2) = 0 is a model for X that
is smooth a p, but if not, replace f modulo p with the reduction of a model for X that is
smooth at p.

Before describing our average polynomial-time algorithms to compute Ap for p � N
coprime toD, we briefly recall some background material on remainder trees and forests.

E. Costa et al. Res. Number Theory (2023) 9:1 Page 23 of 32 1

Given a sequence of integer matrices M0, . . . ,MN−1 and a sequence of coprime integers
m0, . . . , mN−1 we wish to compute the following sequence of reduced partial products for
0 � k < N :

Pk :=M0 · · ·Mk mod mk.

LetM−1:=MN :=mN :=1, and for 0 � k < N/2 letM′
k :=M2k−1M2k andm′

k :=m2km2k+1.
If we now recursively compute P′

k :=M′
0 · · ·M′

k mod m′
k = M0 · · ·M2k mod m2km2k+1

for 0 � k < N/2, we can then compute

P2k = P′
k mod m2k and P2k+1 = P′

kM2k+1 mod m2k+1.

Unwinding this recursion yields the REMAINDERTREE algorithm described in [21].
The REMAINDERFOREST algorithm in [22] reduces the time and (especially) the space

needed by splitting the remainder tree into 2κ -subtrees, for a suitable choice of κ . In
[21,22,35] the REMAINDERFOREST algorithm is used to compute the sequence of vectors
Vk :=V0M0 · · ·Mk mod mk using vector-matrix multiplications to carry results from one
subtree to the next, but it can also be used to compute Pk = IM0 · · ·Mk mod mk using
the same approach. Below we record a special case of [22, Theorem 3.3], in which ‖Mk‖
denotes the logarithm of the largest absolute value appearing in the nonzero matrixMk .

Theorem 5.21 Fix a constant c > 0. Let N be a positive integer, let m0, . . . , mN−1 be
positive coprime integers with log

∏n
k=0mk � cn for 2 � n < N, let M0, . . . ,MN−1 ∈ Z

r×r

be nonzero integer matrices with r < c logN and ‖Mi‖ � c logN. We can compute the
matrices

Pk :=
k∏

i=0
Mi mod mk

for 0 � k < N in O(r2N log3N) time using O(r2N) space.

Proof We apply [22, Thm. 3.3] with κ :=�2 log2 log2N�, B = cN , B′ = 1, H = c logN .
We use M(n) = O(n log n) from [19] and note that replacing M(n) with n log n in the
statement of [18, Lem. 4] allows us to omit the last step of the proof where the hypothesis
thatM(n)/(n log n) is increasing is used and remove that hypothesis.
Provided log r = O(log B), the complexity of multiplying r × r matrices with B-bit

entries is O(r2B log B + rωB log log B), where ω < 3 is the exponent of matrix multipli-
cation. We have r = O(log B), so this is O(r2B log B) = O(r2N logN), which we may
substitute for [22, Lem. 3.1] in the proof of [22, Thm3.3]. The cost of replacing vector-
matrixmultiplicationswithmatrixmultiplications aswe transition fromone subtree to the
next is asymptotically negligible: we may reduce modulo m:= ∏N−1

k=0 mk throughout and
perform O(2κ) = O(log2N) matrix multiplications with O(N)-bit entries, each involving
O(r2N logN) bit operations.
�
Algorithm 5.22 Given f ∈ Z[x0, x1, x2]4 with �∗

4(f) �= 0 and a positive integer N ,
compute the Cartier–Manin matrices Ap of the reductions of the smooth plane quar-
tic X : f (x0, x1, x2) = 0 modulo primes p � N of good reduction for X as follows:

(1) Use the REMAINDERFOREST algorithm to compute Cp = ∏
p−1>j�0 M(j) mod p for

primes p � N with p � D using the matricesMi:=M(−2 − i) ∈ Z
16×16 and moduli

mi:=i+ 2 when i+ 2 is a prime p � D and withmi:=1 otherwise, for 0 � i < N − 1.
The matricesMi and modulimi should be dynamically computed as needed.

1 Page 24 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

(2) For each Cp computed in (1) apply Algorithm 5.10 with input f mod p and Cp to
compute Ap. This step should be interleaved with step (1), computing the rele-
vant Ap in batches as the REMAINDERFOREST algorithm completes each subtree.

(3) For p � N of good reduction dividing D compute Ap via Remark 5.20.

Note that for primes p � N that do not divide D we have

Pp−2 =
p−2∏

i=0
Mi mod mp−2 =

p−2∏

i=0
M(−2 − i) mod p

≡
p−2∏

i=0
M(p − 2 − i) ≡

∏

p−1>j�0
M(j) ≡ Cp mod p, (5.23)

thus step (1) of Algorithm 5.22 computes exactly the matrices Cp that are needed in step
(2).

Remark 5.24 Lemma 3.13 and Corollary 4.21 imply that each integer matrix product
MiMi+1 is divisible by λ6. In our implementation of Algorithm5.22we precompute λ6 and
remove it from each matrix product computed during the REMAINDERFOREST computation
in step (1). This changes the output Pp−2 mod p by a factor of λ

p−2
6 , and we divide once

more by λ6 to obtain the desired matrix Cp, since λ
p−1
6 ≡ 1 mod p (note that λ6 | D so

p � λ6). This does not change the complexity of the algorithm, but it reduces the sizes
of the matrix coefficients in every layer of the product tree above the leaves by roughly a
factor of 2, which yields a significant constant factor speedup (more than a factor of 2 in
our tests).

Remark 5.25 As in Remark 5.17, wemay also consider an uncompressed version of Algo-
rithm 5.22 that instead computes 28 × 28 matrices Up mod p and uses Remark 5.12 to
compute the Cartier–Manin matrices Ap. In this uncompressed version we are not able
to apply the optimization noted in Remark 5.24.

Remark 5.26 Algorithms 5.16 and 5.22 can bemodified tomore efficiently handle smooth
plane quartics of the form f (x0, x1, x2) = x40 + h(x1, x2)x20 + g(x1, x2). In this case f p−1

v = 0
whenever v0 is odd, and for p > 2 this implies that the Cartier–Manin matrix Ap ∈ F

3×3
p

has at most five nonzero entries: the four corners and the center. The center corresponds
to the 1× 1 Cartier–Manin matrix of the genus 1 curve x20 = h(x1, x2)2 − 4g(x1, x2) which
can be computed via [22] using 4 × 4 matrices. Restricting the domain and codomain of

τE
w(1)+(2t+1)(e0−e1),0,1

◦ τE
w(1)+2t(e0−e1),0,1

to the subspaces spanned by monomials with even degree in x0 yields a matrix M ∈
R[t]16×16. One finds that M can be compressed via a coordinate projection to a 10 × 10
matrixM′, and we computeWp:= ∏

p−3
2 �k�0M(k) mod p as the product ofM(p−3

2) and
the zero extension of

∏
p−3
2 >k�0 M

′(t) mod p. The matrixWp can then be zero extended
to Up ∈ F

28×28
p and used to compute the four corner entries of Ap via Remark 5.17.

Theorem 5.27 Algorithm 5.22 runs in O(N log3N) time using O(N) space.

Proof Theorem 5.21 implies that the complexity of step (1) is within the desired bounds.
Step (2) calls Algorithm 5.10 O(N/ logN) times, which takes O(N logN log logN) time

E. Costa et al. Res. Number Theory (2023) 9:1 Page 25 of 32 1

using O(logN) space. The complexity of step (3) is asymptotically negligible, since D is
fixed as a function of N , and the theorem follows.
�
To help assess the benefits of our new recurrences, we also implemented an algorithm

that uses the recurrences derived in [17] to compute the Cartier–Manin matrix Ap of a
smooth plane quartic X : f (x0, x1, x2) = 0 (or its reduction modulo p when R = Z). If one
applies [17, Thm. 4.1] with n = 2, d = 4, s = 1, h = (d − 1)(n + 1) + 1 = 10, k0 = p − 1,
and w = v+ z with z = (0, 0, 6) ∈ Dh−d , one obtains a matrixQ ∈ R[k, l]66×66 that can be
used to compute f p−1|D(pv+z,10) for any v ∈ D4 via

f p−1|D(pv+z,10) = 1
dp−1(p − 1)!

Q(p − 1, p − 2)Q(p − 1, p − 3) · · ·
Q(p − 1, 0)gp−1|D(pv+z,10), (5.28)

where g(x0, x1, x2) = x40 + x41 + x42. The algorithm in [17] uses the matrix Q to compute
a matrix Ms which is then used to compute the matrix Aar

Fs that appears in the trace
formula [17, Thm. 3.1], but the Cartier–Manin matrix Ap can be computed directly from
(5.28), and it suffices to compute the product M(p − 2)M(p − 3) · · ·M(0) mod p, where
M(j):=Q(−1, j); the algorithm in [17] works modulo p2 when s = 1, but that is not
necessary here. This product does not depend on v ∈ D4, so it suffices to compute a single
matrix product and then apply (5.28) using v = (1, 1, 2), (2, 1, 1), (1, 2, 1); this yields three
vectors in F

66
p , each of which contains three entries that correspond to a column of Ap.

Having reduced the problem to computing
∏

p−1>j�0 M(j) mod p we immediately
obtain algorithms to computeAp with the complexities given in Theorem 5.18 forR = Fp,
and for R = Z we obtain an average polynomial-time algorithm with the complexities
given in Theorem 5.27 using a remainder forest. The difference in the size of the matrices
(66 versus 28 or 16) only impacts the constant factors, which we consider in the next
section.

Remark 5.29 There is an additional optimization that we exploit in our implementation
of the average polynomial-time algorithm based on [17, Thm. 4.1]. In the remainder forest
algorithm, rather than computing the 66×66matrix Pk = M0 · · ·Mk mod mk we instead
compute the 3× 66 matrix Pk = V0M0 · · ·Mk mod mk , where V0 is a 3× 66 matrix with
entries in {0, 1} and zeros in all but one entry of each row. This optimization is possible
because we only need 3 rows of the matrix product to compute Ap. This optimization is
not applicable in the context of Algorithm 5.22 because we need to invert the reduced
matrix products in order to compute the middle column of Ap via Algorithm 5.10.

A demonstration version of the Õ(p) and average polynomial-time versions of all three
approaches (compressed, uncompressed, and the algorithm based on [17, Thm. 4.1]) writ-
ten in the SageMath computer algebra system [28] is available at [10]. The optimized C
implementation whose practical performance is analyzed in the next section will be part
of the next release of the open source smalljac software library [24].

6 Performance comparisons
In this section we compare the practical performance of our new algorithms to each
other, and to existing implementations, both for computing the Cartier–Manin matrix
of a smooth plane quartic over Fp (see Table 1), and for computing the Cartier–Manin
matrices of the reductions of a smooth plane quartic over Q at good primes p � N for

1 Page 26 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

some bound N . Table 2 compares the new average polynomial-time algorithms to each
other and Table 4 compares them to average polynomial-time algorithms for other types
of genus 3 curves.
We first consider Õ(p) and Õ(p1/2) implementations of the compressed and uncom-

pressed versions of Algorithm 5.16 (denoted Algorithm 5.16c andAlgorithm 5.16u below)
as well as Õ(p) and Õ(p1/2) implementations of the approach based on [17, Thm. 4.1]
described at the end of the previous section (denoted [17] (optimized) below). We com-
pared the performance of these six algorithms to each other, and to the following existing
algorithms:

• In [8] Costa gives an Õ(p)-time p-adic algorithm for computing the matrix of Frobe-
nius to a specified p-adic precision, which can be used to compute the Cartier–Manin
matrix of a smooth plane quartic. This algorithm is available at [9].

• The smalljac software library [24] includes a naïve point-counting algorithm for
plane projective curves X : f (x0, x1, x2) = 0 that computes

#X(Fp) = 0f (1,0,0)+ #{t ∈ Fp : f (t, 0, 1) = 0} +
∑

a∈Fp

#{t ∈ Fp : f (t, 1, a) = 0} (6.1)

via the identity #{t ∈ Fp : g(t) = 0} = deg gcd(g(t), tp − t) (valid for g �= 0), in
O(p log2p log log p) time using O(log p) space.

• For smooth plane curves the RationalPoints function in Magma [4] uses an
O(p log2p log log p)-time algorithm to enumerate rational points over Fp.

The last two algorithms only compute #X(Fp), they do not compute the Cartier–Manin
matrix Ap, which provides additional information about X , including the reduction of its
zeta functionmodulo p and the p-rank of its Jacobian.Magma includes an implementation
of Tuitman’s algorithm [36] that computes the entire zeta function in Õ(p) time, but the
constant factors make it more than 100 times slower than the three Õ(p) algorithms listed
above in the ranges we tested, so we chose not to include it in our comparison.
We ran eachof these 9 algorithmon smoothplane quartics definedbydense polynomials

f ∈ Fp[x0, x1, x2]4, taking p to be the first prime larger than 2n for n = 10, 11, . . . , 30. The
running times for each algorithm can be found in Table 1, in which the complexity bounds
in the column headings ignore O(log log p) factors.
Each of the three Õ(p1/2) algorithms is substantially faster than the existing approaches,

as onewould expect given the asymptotic advantage. For p ≈ 230 Algorithm 5.16c appears
to be faster than Algorithm 5.16u by factor of about 3, which in turn appears to be faster
than [17] (optimized) by a factor of almost 8. The factor of 3 ≈ (28/16)2 is as expected,
while the factor of 8 > 5.6 ≈ (66/28)2 is larger than one might expect; this is likely
due to the fact that p is not large enough for the O(rωp1/2 log p log log p) term in the
complexity bound from [5] to become completely negligible. All three implementations
use the smalljac library [24], which includes an implementation of the algorithm in [5]
built on the zn_poly library [16], which is used for fast cache-friendly multiplication in
Fp[x].
The relative performance of the Õ(p) implementations of Algorithm 5.16 is perhaps

more surprising: Algorithm 5.16u outperforms Algorithm 5.16c by a wide margin. This is
explained by the fact that in our Õ(p) implementation of Algorithm 5.16u we exploit the
shape of the 28 × 28 matrices M(t) defined in Remark 5.17: as can be seen from (4.12),

E. Costa et al. Res. Number Theory (2023) 9:1 Page 27 of 32 1

Table 1 Algorithms for smooth plane quartics over Fp . Times in 5.2GHz Intel i9-12900K
core-seconds. Complexities ignore O(log log p) factors. The point counting computations only
determine the trace of the Cartier–Manin matrix

Cartier–Manin matrix point counting

Algorithm 5.16c Algorithm 5.16u [17](optimized) [8]smalljac magma

p p1/2 log2 p p log p p1/2 log2 p p log p p1/2 log2 p p log p p log p p log2p p log2 p

210 + 7 0.003 0.001 0.002 0.000 0.022 0.001 0.014 0.000 0.000

211 + 5 0.003 0.001 0.003 0.000 0.029 0.003 0.017 0.001 0.010

212 + 3 0.004 0.002 0.004 0.000 0.041 0.006 0.023 0.001 0.020

213 + 17 0.004 0.004 0.006 0.001 0.056 0.011 0.035 0.002 0.040

214 + 27 0.005 0.009 0.008 0.002 0.081 0.023 0.058 0.004 0.070

215 + 3 0.006 0.017 0.012 0.003 0.113 0.047 0.112 0.008 0.140

216 + 1 0.008 0.033 0.018 0.006 0.175 0.089 0.192 0.023 0.300

217 + 29 0.011 0.066 0.028 0.012 0.255 0.184 0.372 0.039 0.620

218 + 3 0.017 0.130 0.047 0.024 0.402 0.368 0.718 0.078 1.23

219 + 21 0.025 0.263 0.072 0.047 0.598 0.735 1.43 0.158 2.62

220 + 7 0.039 0.527 0.119 0.092 0.956 1.41 2.84 0.324 5.50

221 + 17 0.060 1.05 0.186 0.188 1.47 2.84 5.65 0.740 11.4

222 + 15 0.100 2.11 0.318 0.370 2.41 5.65 11.3 1.47 23.9

223 + 9 0.154 4.15 0.488 0.736 3.69 11.8 22.6 2.93 48.3

224 + 43 0.269 8.43 0.858 1.46 6.26 23.4 44.9 6.44 99.3

225 + 35 0.421 16.6 1.35 2.93 9.73 45.2 89.9 13.6 201

226 + 15 0.735 33.7 2.36 5.83 16.8 90.4 180 26.9 723

227 + 29 1.16 66.4 3.68 11.7 27.4 188 360 54.5 1530

228 + 3 1.95 135 6.14 23.4 44.5 361 719 114 3080

229 + 11 2.90 265 9.04 46.7 68.5 750 1440 230 6430

230 + 3 4.89 539 15.1 93.1 119 1480 3130 465 13600

it has only 7 · 22 + 21 = 165 < 256 = 162 nonzero entries. As noted in Remark 5.19, in
our Õ(p) implementation we iteratively compute matrix-vector products, which lets us
exploit the sparsity of the uncompressed M(t) (the compressed matrices are not sparse).
Additionally, the uncompressedM(t) have degree 1 rather than 2,which provides a further
speedup.
We also analyzed the performance of the three average polynomial-time algorithms

introduced in this paper: the compressed and uncompressed versions of Algorithm 5.22
and the algorithm based on [17, Thm. 4.1]. Table 2 lists the total time and space, and
average time per prime, to compute the Cartier–Manin matrices of the reductions mod-
ulo p of a fixed smooth plane quartic curve over Q for good primes p � N = 2n for
n = 10, 11, . . . , 23. We used a dense polynomial f ∈ Z[x0, x1, x2]4 with small (single
digit) coefficients as input to all three algorithms. The parameter κ that determines the
number 2κ of trees in the remainder forest was chosen to optimize the running time;
for N = 218, . . . , 223 this led us to use κ = 6 for both versions of Algorithm 5.22 and
κ = 7 for the algorithm based on [17, Thm. 4.1], which is close to the asymptotic value
κ = �2 log2 log2N� used in Theorem 5.21.

Remark 6.2 For the algorithm based on [17, Thm. 4.1], at small values of N the optimal
value of κ is actually log2N , meaning that each “tree” in the forest consists of a single
matrix. This choice of κ leads to an Õ(N 2) time complexity but is advantageous for
small values of N because it allows the algorithm to avoid full matrix multiplications via

1 Page 28 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

Table 2 Average polynomial-time algorithms for smooth plane quartics over Q with small
coefficients. Times in 5.2GHz Intel i9-12900K core-seconds

Algorithm 5.22c Algorithm 5.22u [17] (optimized)

N seconds ms/p GB seconds ms/p GB seconds ms/p GB

210 0.060 0.355 0.042 0.151 0.903 0.033 0.092 0.550 0.034

211 0.135 0.444 0.043 0.395 1.30 0.035 0.219 0.719 0.034

212 0.280 0.500 0.044 1.12 2.01 0.035 0.592 1.06 0.034

213 0.648 0.633 0.047 3.60 3.51 0.036 1.84 1.80 0.035

214 1.47 0.774 0.053 7.00 3.69 0.077 6.66 3.34 0.035

215 3.62 1.03 0.067 15.9 4.54 0.123 24.2 6.89 0.037

216 8.08 1.24 0.088 36.9 5.65 0.217 74.4 11.4 0.040

217 19.2 1.57 0.131 85.2 6.96 0.410 252 20.5 0.071

218 44.8 1.95 0.223 192 8.37 0.805 676 29.4 0.910

219 106 2.44 0.413 437 10.1 1.63 1680 38.6 2.38

220 241 2.94 0.790 991 12.1 3.29 4100 50.0 4.91

221 543 3.49 1.57 2230 14.3 6.73 10800 69.3 10.1

222 1260 4.26 3.20 5040 17.0 13.8 29900 101 20.9

223 2950 5.23 6.57 11400 20.3 28.4 88200 156 43.2

Remark 5.29. This explains the rapid growth in the running times for this algorithm for
N � 217.

In addition to κ , the memory used by our algorithms is influenced by the matrix dimen-
sions and the size of thematrix coefficients. To get a better understanding of these param-
eters, we analyzed the computation of a single product tree in the middle of a remainder
forest with N = 224 and κ = 6 for all three algorithms. The results are shown in Table 3,
in which one can see the growth in the size of the matrix coefficients at each level of
the product tree in the “KB/entry” columns, the total size of all the matrices in each
level in the “MB” columns, and the total time per level. The decrease in the total size of
the matrices in the first few layers of the product tree for Algorithm 5.22c is explained
by Remark 5.24.

Remark 6.3 In our implementationwe use the algorithm for integermatrixmultiplication
described in [18]. As explained in the proof of Theorem 5.27, this algorithm computes the
product of r × r matrices with b-bit entries in time O(r2b log b + rωb log log b), provided
that log r = O(log b). This becomes O(r2b log b) when b is large relative to r, as in the
context of Theorem 5.21 where we have r = O(log B), and in Theorem 5.27 where r =
O(1). But for the small values of b that arise in the lower levels of the product tree the
constant factors make this approach less efficient than naïve matrix multiplication, so we
use the algorithm of [18] only once it becomes faster to do so. These crossover points are
indicated by thin horizontal lines in Table 3. Given that r is fixed in all the algorithms we
consider, we made no attempt to achieve the optimal value of ω in our implementation;
doing so might have improved the relative performance of the algorithm with r = 66 in
the range we tested.

In Table 3 one can see that the matrix coefficient sizes roughly double in each level
while the number of matrix products is cut in half, and the total size of the products in
each level is essentially constant in the top half of each tree. Asymptotically, the time to
build each layer of the product tree is quasilinear in the total size, so for sufficiently large

E. Costa et al. Res. Number Theory (2023) 9:1 Page 29 of 32 1

Table 3 Computation of a product tree in the middle of a remainder forest with N = 224 and κ = 6
involving the product of N/2κ = 218 r × r matrices. The “MB” columns list the total size of the
products in megabytes. Horizontal lines indicate matrix multiplication algorithm crossovers. Times in
5.2GHz Intel i9-12900K core-seconds

Algorithm 5.22c (r = 16) Algorithm 5.22u (r = 28) [17] (optimized) (r = 66)

products KB/entry MB seconds KB/entry MB seconds KB/entry MB seconds

217 0.014 457 2.91 0.005 469 6.62 0.003 1890 87.2

216 0.029 470 2.95 0.015 776 6.21 0.009 2508 70.7

215 0.055 449 2.28 0.039 989 7.37 0.019 2624 53.5

214 0.103 420 2.44 0.079 996 7.07 0.038 2679 36.3

213 0.198 406 2.62 0.159 999 8.68 0.078 2708 31.8

212 0.389 399 3.58 0.319 1001 13.2 0.156 2723 46.0

211 0.772 395 3.71 0.639 1002 14.4 0.313 2730 73.6

210 1.54 393 3.44 1.28 1003 13.6 0.628 2734 79.6

29 3.07 392 3.39 2.56 1003 14.0 1.26 2736 77.6

28 6.13 392 3.43 5.12 1003 14.1 2.51 2737 76.8

27 12.2 392 3.51 10.2 1003 14.4 5.03 2737 76.5

26 24.5 392 3.81 20.5 1003 15.0 10.1 2737 77.9

25 49.0 392 3.90 40.9 1003 15.2 20.1 2738 80.0

24 97.9 392 4.05 81.9 1003 15.5 40.2 2738 80.8

23 196 392 4.18 164 1003 16.0 80.4 2738 82.0

22 392 392 4.37 328 1003 16.5 161 2738 84.1

2 783 392 4.52 655 1003 17.1 322 2738 85.7

1 1570 392 5.80 1310 1003 21.0 644 2738 96.4

N/2κ one would expect the relative running times of the three algorithms in the top half
of the tree to approach the ratios of these total sizes, which are roughly 1 : 2.6 : 7.0 for the
algorithms with r = 16, 28, 66, respectively. The ratios of the actual times to build these
trees forN = 224 are approximately 1 : 3.6 : 20.0, a discrepancy that is likely explained by
lower order complexity terms involving rω and the greater frequency of cache misses for
larger total bit sizes.

Remark 6.4 Table 3 only captures the cost of building a product tree in the remainder
forest, which is less than half the total running time (for the time-optimal value of κ).
The other phases of the algorithm (transferring information between product trees and
computing remainders down the trees) involve computations on matrices that one can
assume have been reduced modulo m, where m is either the product of all remaining
moduli, or the product of the moduli in some subtree. The values of m will be the same
in all three algorithms, so one would asymptotically expect the relative costs of these
phases to converge to the relative ratios of 2r2 for r = 16, 28 and 3r + r2 for r = 66 (via
Remark 5.29), which are 1 : 3.1 : 8.9.

Remark 6.5 As in Table 2, the data in Table 3 reflects a curve with small coefficients,
which is the case we expect to most often arise in practice (as in [34], for example). To
assess the performance of our algorithms on curves with larger coefficients we also tested
random curves with 10 and 100 digit coefficients with N = 224 using κ = 8 and κ = 10.
As in Table 3, the total size of the matrix products at each level stabilizes in the top
half of the product tree, as do the relative running times. For 10-digit coefficients the
relative size ratios are 1 : 2.8 : 2.7 and the time ratios are 1 : 3.5 : 6.0 (for the algorithms

1 Page 30 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

Table 4 Average polynomial-time algorithms for various genus 3 curves over Q with small
coefficients. Times in 5.2GHz Intel i9-12900K core-seconds

N plane geometrically rationally 2-cover of a 3-cover 4-cover

quartic hyperelliptic hyperelliptic genus 1 curve of P1 of P1

210 0.058 0.053 0.007 0.021 0.006 0.006

211 0.158 0.069 0.008 0.035 0.007 0.007

212 0.281 0.126 0.011 0.070 0.008 0.008

213 0.638 0.294 0.022 0.139 0.013 0.012

214 1.49 0.724 0.065 0.326 0.030 0.028

215 3.43 2.12 0.222 0.742 0.086 0.089

216 8.00 5.42 0.829 1.77 0.333 0.285

217 19.1 12.4 3.25 4.24 0.882 0.760

218 44.6 29.6 10.0 10.1 2.38 2.15

219 105 69.5 24.4 24.2 6.67 5.48

220 241 168 55.6 57.2 15.3 12.2

221 543 388 133 133 36.1 29.6

222 1260 921 320 315 87.6 72.0

223 2950 2160 746 748 214 173

224 6840 4860 1760 1750 514 410

225 15600 11200 4120 4050 1220 975

226 35600 26000 9560 9370 2880 2350

with r = 16, 28, 66, respectively), and for 100-digit coefficients the relative size ratios are
1 : 2.7 : 1.8 and the time ratios are 1 : 2.4 : 2.7 (as noted above, these ratios are relevant
only to the build phase).

Finally, we compared the performance of Algorithm 5.22c to average polynomial-time
algorithms that are applicable to various types of genus 3 curves over Q, including:

• The algorithm in [20] for computing Cartier–Manin matrices of reductions of a
geometrically hyperelliptic curve of genus 3 defined over Q with a model of the form
g(x, y, z) = 0, w2 = f (x, y, z), where g is a pointless conic and deg f = 4.

• The algorithm in [22] for computing Cartier–Manin matrices of reductions of a
hyperelliptic curve overQ, applied to a genus 3 curve y2 = f (x) with deg f = 8, which
is a 2-cover of P

1.
• The algorithm in [35] for computing the Cartier–Manin matrices of reductions of

superelliptic curves ym = f (x) over Q applied to genus 3 curves of the form y3 = f (x)
and y4 = f (x) with deg f = 4 (the case y3 = f (x) is a Picard curve).

• The algorithm for smooth plane quartics of the form x4 + h(y, z)x2 = f (y, z) (these
are degree 2 covers of genus 1 curves) described in Remark 5.26.

The results appear in Table 4, which reflects curves defined by dense polynomials with
random single digit coefficients. All of these implementations use the REMAINDERFOREST

algorithm and the same libraries for multiplying polynomials and matrices over Fp and Z,
based on [16] and [18]. None of these computations required more than 64GB memory,
but the computations for smooth plane quartics were the most memory intensive.

E. Costa et al. Res. Number Theory (2023) 9:1 Page 31 of 32 1

Acknowledgements
Edgar Costa and Andrew V. Sutherland were supported by Simons Foundation grant 550033. David Harvey was
supported by the Australian Research Council (Grant FT160100219).

Funding Open Access funding provided by the MIT Libraries.

Data Availability Statement Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.

Author details
1Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA,
2School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia.

Received: 12 August 2022 Accepted: 28 September 2022 Published online: 21 November 2022

References
1. Achter, J.D., Howe, E.W.: Hasse–Witt and Cartier–Manin matrices: A warning and a request, Arithmetic Geometry:

Computations and Applications, Contemporary Mathematics 722 1–18, (2019) American Mathematical Society.
https://doi.org/10.1090/conm/722/14534. arXiv:1710.10726v5

2. Adleman, L.M., Huang, M.-D.: Counting points on curves and abelian varieties over finite fields. International
Algorithmic Number Theory Symposium (ANTS I), LNCS 1122, 1–16, (1996) Springer. https://doi.org/10.1007/
3-540-61581-4_36

3. Victor, V.: Batyrev. Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math J. 69
(1993). https://doi.org/10.1215/S0012-7094-93-06917-7

4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265
(1997). https://doi.org/10.1006/jsco.1996.0125

5. Bostan, A., Gaudry, P., Schost, É.: Linear recurrences with polynomial coefficients and application to integer factoriza-
tion andCartier-Manin operator. SIAM J. Comput.36, 1777–1806 (2007). https://doi.org/10.1137/S0097539704443793

6. Castryck, W., Voight, J.: On nondegeneracy of curves. Algebra Number Theory 3, 255–281 (2009). https://doi.org/10.
2140/ant.2009.3.255. arXiv:0802.0420

7. Castryck, W., Voight, J.: Nondegenerate curves of low genus over small finite fields. Arithmetic, Geometry, Cryptog-
raphy, and Coding Theory 2009, Contemporary Mathematics 521 21–28, (2010) American Mathematical Society
https://doi.org/10.1090/conm/521/10270. arXiv:0907.2060

8. Costa, E.: Effective computations of Hasse-Weil zeta functions. Ph.D. thesis, New York University, (2015) https://www.
proquest.com/docview/1711150592

9. Costa, E.: PycontrolledReduction. GitHub repository. https://github.com/edgarcosta/controlledreduction (retrieved
March 2021)

10. Costa, E., Harvey, D., Sutherland, A.V.: SPQPointcounting, Jupyter notebook. https://cocalc.com/AndrewVSutherland/
SPQPointCounting/ToyImplementation (2022)

11. Fité, F., Kedlaya, K.S., Sutherland, A.V.: Sato–Tate groups of abelian threefolds: a preview of the classification. In:
Arithmetic Geometry, Cryptography, and Coding Theory, Contemp. Math. 770 103–129. (2021) https://doi.org/10.
1090/conm/770. arXiv:1911.02071

12. Fité, F., Kedlaya, K.S., Sutherland, A.V.: Sato–Tate groups of abelian threefolds, https://doi.org/10.48550/arXiv.2106.13759
preprint

13. Flon, S., Oyono, R., Ritzenthaler, C.: Fast addition on non-hyperelliptic genus 3 curves. In: Algebraic Geometry and its
Applications, Ser. Number Theory Appl. 5(2008), 1–28. https://doi.org/10.1142/9789812793430_0001

14. Gathen, J.V.Z., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, Cambridge (2013). https://
doi.org/10.1017/CBO9781139856065

15. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, resultants, and multidimensional determinants.
Birkhäuser (1994). https://doi.org/10.1007/978-0-8176-4771-1

16. Harvey, D.: A cache-friendly truncated FFT. Theor. Comput. Sci. 410, 2649–2658 (2009). https://doi.org/10.1016/j.tcs.
2009.03.014. arXiv:0810.3203

17. Harvey, D.: Computing zeta functions of arithmetic schemes. Proc. Lond. Math. Soc. 111, 1379–1401 (2015). https://
doi.org/10.1112/plms/pdv056. arXiv:1402.3439

18. Harvey, D., van der Hoeven, J.: On the complexity of integer multiplication. J. Symb. Comput. (2017). https://doi.org/
10.1016/j.jsc.2017.11.001

19. Harvey, D., van der Hoeven, J.: Integer multiplication in time O(n log n). Ann. Math. 193, 563–617 (2021). https://doi.
org/10.4007/annals.2021.193.2.4

20. Harvey, D., Massierer, M., Sutherland, A.V.: Computing L-series of geometrically hyperelliptic curves of genus three. In:
Algorithmic Number Theory 12th International Symposium (ANTS XII), LMS J. Comput. Math. 19A, 220–234. (2016)
https://doi.org/10.1112/S1461157016000383. arXiv:1605.04708

21. Harvey, D., Sutherland, A.V.: Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time. In:
Algorithmic Number Theory 11th International Symposium (ANTS XI). LMS J. Comput. Math. 17A, 257–273 (2014).
https://doi.org/10.1112/S1461157014000187. arXiv:1402.3246

https://doi.org/10.1090/conm/722/14534
http://arxiv.org/abs/1710.10726v5
https://doi.org/10.1007/3-540-61581-4_36
https://doi.org/10.1007/3-540-61581-4_36
https://doi.org/10.1215/S0012-7094-93-06917-7
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1137/S0097539704443793
https://doi.org/10.2140/ant.2009.3.255
https://doi.org/10.2140/ant.2009.3.255
http://arxiv.org/abs/0802.0420
https://doi.org/10.1090/conm/521/10270
http://arxiv.org/abs/0907.2060
https://www.proquest.com/docview/1711150592
https://www.proquest.com/docview/1711150592
https://github.com/edgarcosta/controlledreduction
https://cocalc.com/AndrewVSutherland/SPQPointCounting/ToyImplementation
https://cocalc.com/AndrewVSutherland/SPQPointCounting/ToyImplementation
https://doi.org/10.1090/conm/770
https://doi.org/10.1090/conm/770
http://arxiv.org/abs/1911.02071
https://doi.org/10.48550/arXiv.2106.13759
https://doi.org/10.1142/9789812793430_0001
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1007/978-0-8176-4771-1
https://doi.org/10.1016/j.tcs.2009.03.014
https://doi.org/10.1016/j.tcs.2009.03.014
http://arxiv.org/abs/0810.3203
https://doi.org/10.1112/plms/pdv056
https://doi.org/10.1112/plms/pdv056
http://arxiv.org/abs/1402.3439
https://doi.org/10.1016/j.jsc.2017.11.001
https://doi.org/10.1016/j.jsc.2017.11.001
https://doi.org/10.4007/annals.2021.193.2.4
https://doi.org/10.4007/annals.2021.193.2.4
https://doi.org/10.1112/S1461157016000383
http://arxiv.org/abs/1605.04708
https://doi.org/10.1112/S1461157014000187
http://arxiv.org/abs/1402.3246

1 Page 32 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

22. Harvey, D., Sutherland, A.V.: Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial time, II. In:
Frobenius Distributions: Lang–Trotter and Sato–Tate Conjectures, Contemp. Math. 663 127–147 (2016). https://doi.
org/10.1090/conm/663

23. NicholasM. Katz, Une formule de congruence pour la function ζ , in Groups deMonodromie enGéométrie Algébrique,
Lecture Notes in Mathematics 340: 401–438. Springer (1973). https://doi.org/10.1007/BFb0060518

24. Kedlaya, .S., Sutherland, A.V.: Computing L-series of hyperelliptic curves. In: Algorithmic Number Theory 8th Interna-
tional Symposium (ANTS VIII), Lecture Notes in Computer Science 487 119–162, (2009) Springer. https://doi.org/10.
1007/978-3-540-79456-1_21. arXiv:0801.2778

25. Macaulay, F.S.: The algebraic theory of modular systems. Cornell Hist. Math Monogr. (1916). https://doi.org/10.3792/
chmm/1263317740

26. Manin, J.I.: The Hasse–Witt matrix of an algebraic curve. In: Fifteen Papers on Algebra, Amer. Math. Soc. Transl. 45
245–264, (1965) translated by J.W.S. Cassels https://doi.org/10.1090/trans2/045

27. Pila, J.: Frobenius maps of abelian varieties and fining roots of unity in finite fields. Math. Comp. 55, 745–763 (1990).
https://doi.org/10.2307/2008445

28. The Sage Developers, SageMath, the Sage Mathematics Software System Version 9.4, available at https://www.
sagemath.org, (2021)

29. Stichtenoth, H.: Algebraic Function Fields and Codes. Graduate Texts in Mathematics, vol. 254. Springer, New York
(2009). https://doi.org/10.1007/978-3-540-76878-4

30. Stöhr, K.-O., Voloch, J.F.: A formula for the Cartier operator on plane algebraic curves. J. Reine Angew. Math. 377,
49–64 (1987). https://doi.org/10.1515/crll.1987.377.49

31. Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44, 483–494
(1985). https://doi.org/10.1090/S0025-5718-1985-0777280-6

32. Sutherland, .V.: Order computations in generic groups, PhD Thesis, Massachusetts Institute of Technology (2007)
https://dspace.mit.edu/handle/1721.1/38881

33. Andrew, V.: Sutherland, A generic approach to searching for Jacobians. Math. Comp. 78, 485–507 (2009). https://doi.
org/10.1090/S0025-5718-08-02143-1. arXiv:0708.3168

34. Sutherland, A.V.: A database of nonhyperelliptic curves over Q, Thirteenth Algorithmic Number Theory Symposium
(ANTS XIII), Open Book Series 2 443–459 (2019). https://msp.org/obs/2019/2-1/p27.xhtml. arXiv:1806.06289

35. Sutherland, A.V.: Counting points on superelliptic curves in average polynomial time. In: Fourteenth Algorithmic
Number Theory Symposium (ANTS XIV), Open Book Series 4, 403–422 (2020). https://doi.org/10.2140/obs.2020.4.
403. arXiv:2004.10189

36. Tuitman, J.: Counting points on curves using a map to P
1. Math. Comp. 85, 961–981 (2016). https://doi.org/10.1090/

mcom/2996. arXiv:1402.6758

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1090/conm/663
https://doi.org/10.1090/conm/663
https://doi.org/10.1007/BFb0060518
https://doi.org/10.1007/978-3-540-79456-1_21
https://doi.org/10.1007/978-3-540-79456-1_21
http://arxiv.org/abs/0801.2778
https://doi.org/10.3792/chmm/1263317740
https://doi.org/10.3792/chmm/1263317740
https://doi.org/10.1090/trans2/045
https://doi.org/10.2307/2008445
https://www.sagemath.org
https://www.sagemath.org
https://doi.org/10.1007/978-3-540-76878-4
https://doi.org/10.1515/crll.1987.377.49
https://doi.org/10.1090/S0025-5718-1985-0777280-6
https://dspace.mit.edu/handle/1721.1/38881
https://doi.org/10.1090/S0025-5718-08-02143-1
https://doi.org/10.1090/S0025-5718-08-02143-1
http://arxiv.org/abs/0708.3168
https://msp.org/obs/2019/2-1/p27.xhtml
http://arxiv.org/abs/1806.06289
https://doi.org/10.2140/obs.2020.4.403
https://doi.org/10.2140/obs.2020.4.403
http://arxiv.org/abs/2004.10189
https://doi.org/10.1090/mcom/2996
https://doi.org/10.1090/mcom/2996
http://arxiv.org/abs/1402.6758

	Counting points on smooth plane quartics
	Abstract
	1 Introduction
	2 The Cartier matrix of a smooth plane curve
	3 Setup
	4 Shifting coefficients
	5 Computing Cartier–Manin matrices of a smooth plane quartic
	6 Performance comparisons
	References

