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Abstract

We present efficient algorithms for counting points on a smooth plane quartic curve X
modulo a prime p. We address both the case where X is defined over I, and the case
where X is defined over Q and p is a prime of good reduction. We consider two
approaches for computing #X(IF,,), one which runs in O(p log p log log p) time using
O(log p) space and one which runs in O(p'/2 log? p) time using O(p'/2 log p) space.
Both approaches yield algorithms that are faster in practice than existing methods. We
also present average polynomial-time algorithms for X /Q that compute #X(IF,,) for
good primes p < N in O(N log® N) time using O(N) space. These are the first practical
implementations of average polynomial-time algorithms for curves that are not cyclic
covers of P!, which in combination with previous results addresses all curves of genus
g < 3.0Our algorithms also compute Cartier-Manin/Hasse-Witt matrices that may be of
independent interest.

1 Introduction

Let X/Q be a smooth projective curve of genus g. The L-function L(X,s) = }_, >, aun™*
is a Dirichlet series that is defined by an Euler product ]_[p Ly(p~*)71, where L,(T) is
an integer polynomial of degree at most 2¢g. For primes p of good reduction for X the
polynomial L,(T) is the numerator of the zeta function

L,(T)

(1—T)1 —pT) -

,
Zp(T)=exp [ Y #X(IE‘pr)TT =
r>1

of the reduction of X modulo p. The L-function L(X, s) and its coefficients a, are the
subject of many outstanding conjectures, including the connection to automorphic forms
predicted by the Langlands program, generalizations of the Sato—Tate conjecture, the
Lang—Trotter conjecture, and the conjecture of Birch and Swinnerton-Dyer, as well as
conjectures about the zeros and special values of L(X; s). To numerically investigate these
conjectures one needs to compute the Dirichlet coefficients a;, for n up to some bound N
that one would like to make as large as possible, and at a minimum, larger than the square

root of the conductor of L(X; s) by a significant constant factor.
Since L(X; s) is defined by an Euler product, its coefficients a,, for n < N are determined

by the coefficients 4, for prime powers p® < N, almost all of which are Frobenius traces

a, =p+1—#X(F,)
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at primes p of good reduction for X. From a computational perspective, the problem
of computing the integers a, for n < N is overwhelmingly dominated by the cost of
computing Frobenius traces a, for good primes p < N, equivalently, counting points on
X modulo primes p < N of good reduction, which is the problem we consider here.

There are two existing algorithms that can compute a, for good primes p < N in
time O(N), which is optimal up to logarithmic factors, since it is quasilinear in the size
of the output. The first is Pila’s generalization of Schoof’s algorithm [2,27,31], which can
compute each g, in time (log p)°W, leading to a total time of N (log N)°1). The second is
Harvey’s average polynomial-time algorithm [17], which can compute a), for good p <N
in time O(N logN). Neither of these algorithms is meant to be practical for g > 1, but
the second has the distinct advantage that the implicit constant (which increases with g)
is not in the exponent of the complexity bound. For g = 1 both algorithms are practical,
but the O(N>/%) generic group algorithm described in [24] is faster for all practical values
of N.

The case g = 2 is efficiently addressed by the practical implementation of Harvey’s
algorithm for hyperelliptic curves given in [21] and improved in [22]. Prior work has
addressed the case g = 3 in various special cases, including when X is hyperelliptic, either
as a degree-2 cover of P! [22] or as a degree-2 cover of a pointless conic [20], and when
X is superelliptic, including Picard curves and cyclic 4-covers of P! [35]. But the generic
case of a smooth plane quartic is not efficiently addressed by any prior work we are aware
of.

In this article we consider three practical average polynomial-time algorithms for com-
puting the Frobenius traces a, of a smooth plane quartic X/Q at good primes p < N.
As with the average polynomial-time algorithms mentioned above, they all involve the
computation of partial products of a sequence of r x r integer matrices My, ..., Mny_1
reduced modulo coprime integers my, ..., my—_1 that include the primes p < N. This
can be accomplished in O(r>N log® N) time using O(r>N log N) space via an accumu-
lating remainder tree, and one can improve the constant factors in the time complexity
and reduce the space complexity to O(r>N) using the accumulating remainder forest
described in [21,22]; see Theorem 5.21 for a precise statement. As with other average
polynomial-time algorithms, one can alternatively use these matrices to count points
modulo a particular prime p in two ways: one runs in O(r?plog p log log p) time using
O(r* log p) space and the other runs in O(r?p'/? log? p) time using O(r*p'/? log p) space,
assuming r = O(log p).

Our restriction to genus 3 curves effectively fixes r, so r> becomes a constant factor
that is hidden in our complexity bounds. But r takes different values in each of the three
algorithms we present, and this has a significant impact on their relative running times.
Constant factors related to the size of the matrix coefficients size also play a role, but they
are less significant; see § 6 for a detailed discussion and a performance comparison of the
three algorithms.

Our algorithms compute the trace of Frobenius @, by computing the trace of the Cartier-
Manin matrix A, € IF;X?’ of the smooth plane quartic X,: f(xo, ¥1,%2) = 0 over F,
given by reducing X modulo p. The precise definition of A, is recalled in §2, but its
entries consist of nine particular coefficients of f7~! and its trace is congruent to a,
modulo p, which uniquely determines 4, for p > 144. The Cartier—Manin matrix provides
additional information about X}, including the p-rank of its Jacobian and the reduction of
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L,(T) modulo p, which constrains L,(T) to O(p'/?) possibilities. These possibilities can
be distinguished in 5(171/ %) time using a probabilistic generic group algorithm working
in the Jacobian of X; see [24,32,33] for details of the algorithm and see [13] for efficient
implementation of the group operation. This does not yield an average polynomial time for
computing L,(T) for good p < N, it would have complexity O(N®/%), but for the practical
range of N this approach is faster in practice than using the average polynomial-time
algorithm in [17], which can compute L,(T) for good p < N in O(N logSN) time.

The key differences among the three algorithms we consider lie in the relations that are
used to define the matrices M; and the sizes of these matrices; in particular the value of
r may be 66, 28, or 16. The relations used in [17] are based on a deformation approach
that in the case of a plane quartic curve X:=f(xo, x1, x3) = 0 introduces an auxiliary
polynomial g(xo, x1, x2) = xg + x‘f + x% and derives relations between the coefficients
that appear in the terms of the binomial expansion of (f + tg)?~1, where ¢ is an auxiliary
parameter. These relations yield 66 x 66 matrices M;. Rather than using the general
algorithm given in [17], which does not not require X to be smooth or even a curve (it can
be any hypersurface), one can use these matrices to directly compute the coefficients of
fP~! that appear in the Cartier—Manin matrix Ap via [17, Thm. 4.1], as we explain in §5.
With appropriate optimizations the resulting algorithm is quite practical and faster than
previous approaches, as demonstrated by the timings in Table 1.

However, the main focus of this paper is deriving new relations that yield smaller matri-
ces M;. In contrast to [17], which uses relations that involve coefficients of mth-powers of
the homogeneous polynomial F that defines X, where the parameter 7 may vary, here we
fix m. This forces us to impose nondegeneracy conditions on F that are not required in
[17], but it yields 28 x 28 matrices, and the resulting algorithms for computing Cartier—
Manin matrices, either for a single prime p or all good p < N are substantially faster
in practice than those that use the 66 x 66 matrices based on [17]. The relations we
obtain are not independent, and we develop tools that allow us to compress them. This
yields 16 x 16 matrices of full rank with slightly larger coefficients that provides a further
substantial improvement in practical running times; see Tables 1-3.

Our algorithms for smooth plane quartics are not as fast as those that have been devel-
oped for genus 3 curves of a special form, such as hyperelliptic or superelliptic curves;
see Table 4 for a comparison. Nevertheless, for general genus 3 curve the algorithms we
present substantially extend the practical range of N one may consider. This played a
key role in [11,12] where a preliminary version of our algorithm was used to compute
Sato—Tate distributions, and in computing the L-functions of the nonhyperelliptic genus
3 curves tabulated in [34].

We conclude this introduction with an outline of the paper. After briefly recalling the
definition of the Cartier—Manin matrix and some of its properties in Sect. 2, we devote
Sects. 3 and 4 to developing the recurrences that determine the matrices M; used by our
algorithms; the main result used to define the 28 x 28 matrices M; appears in Lemma 4.4,
and the result that allows us to compress them to 16 x 16 matrices appears in Lemma 3.13.
The algorithms themselves are presented in Sect. 5, along with an analysis of their com-
plexity, and Sect. 6 compares the performance of our algorithms to each other and to
existing approaches for counting points on smooth plane quartics, as well as to previously
developed average polynomial-time algorithms for hyperelliptic and superelliptic genus 3

curves.
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2 The Cartier matrix of a smooth plane curve

In this section we recall the definition of the Cartier matrix of a smooth plane curve,
following [35]. Let k be a perfect field of characteristic p > 0, let K be a function field
of transcendence degree one with field of constants k, and let Qg denote its module of
differentials, which we identify with its module of Weil differentials via [29, Def. 4.17] and
[29, Rm.4.3.7]. Let x € K be a separating element, so that K /k(x) is a finite separable
extension, and let K” denote the subfield of pth powers. Then (1, ..., x”~!) is a basis
for K as a KP-vector space, and every z € K has a unique representation of the form

z=z€+z’fx+-~~+z§_1xp_1,

with z; € K. Each rational differential form w = zdx can then be written uniquely as
W= (zg + Z’fx + - ~z§_1xp*1)dx.

The (modified) Cartier operator C: Qx — Qk is then defined by
Clw):=zp_1dx.

It maps regular differentials to regular differentials and thus restricts to an operator on
the space Qr(0):={w € Qx : w = 0or div(w) > 0}, which is a k-vector space whose
dimension g is the genus of K. See [29, Ex.4.12-17] for these and other standard facts
about the Cartier operator.

Definition 2.1 Let w:=(w1, ..., ;) be a basis for Qx(0) and define a;; € k via

g
C((z)/') = Zaijwi.
i=1
The Cartier-Manin matrix of K (with respect to ) is the matrix A:=[a;;] € k8.

If X /k is a smooth projective curve with function field K, we also call A the Cartier—
Manin matrix of X. This matrix is closely related to the Hasse-Witt matrix B of X, which
is defined as the matrix of the p-power Frobenius operator acting on H!(X, Ox) with
respect to some basis. As explained in [1], the matrices A and B are related by Serre
duality, and for a suitable choice of basis one finds that B = [af;]T. In the case of interest
to us k = I is a prime field and the Cartier—Manin and Hasse—Witt matrices are simply
transposes, hence have the same rank and characteristic polynomials. But we shall follow
the warning/request of [1] and call A the Cartier—Manin matrix, although one can find
examples in the literature where A is called the Hasse—Witt matrix (see [1] for a list).

Following Stohr—Voloch [30] we write K as k(x)[y]/(F), where x € X is a separating
element and y is an integral generator for the finite separable extension K/k(x) with
minimal polynomial F € k[x][y]. We now define the differential operator

821772
Vi=————,
dxp—19yr—1
which maps x(+DP=1y(+Dp=1 to x#4P and annihilates monomials not of this form; it thus

defines a semilinear map V: K — KP. Writing F), for %F € klx,y], for any h € K we
have

dx\ _ —1\1/p 4%
C(hF—y>_(V(Fp h)) 7’ (2.2)
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by [30, Thm. 1.1]. If we choose a basis for x(0) using regular differentials of the form hd—;‘,
we can compute the action of the Cartier operator on this basis via (2.2). To construct
such a basis, we use differentials of the form

da
a)kg::xk_lyz_lp—x (k€>1 k+¢< deg(F) - 1). (2.3)

y
Writing F(x, y Z”Fp 'x !y (defining Fp € kforalli,j € Z), for k, £ > 1 we have

p—1 itk—1 j+e-1 | _ p—1 K—Dp (1 Lp
A DAY =) F s (2.4)
>0 ij>1

Now Flp 2”] ; is nonzero only when (i +j)p — (k + ¢) < (p — 1)deg(F), and k + £ <

deg(F) — 1, so we can restrict the sum on the RHS to i 4+ j < deg(F) — 1. From (2.2) and
(2.4) we obtain

Clape) = Z (F;:k ,p,g>1/p wjj. (2.5)
ij>1

When X is a smooth plane curve the complete set of w;; defined in (2.3) is a basis
for Qx(0) and we can read off the entries of the Cartier—Manin matrix A of X directly
from (2.5). Following the convention in [35], we order our basis w:=(w;;) for ©;(0) in
increasing order by j and then i, so that ® = (w11, w21, ..., @12, ...), and we view the
Cartier—Manin matrix as acting on the column vector @', so that we may express (2.5) as
Cw") = Aw".

If X: f(xo, x1, %2) = 0is a smooth plane quartic curve with (0, 1, 0) # 0 (an assumption
that will hold under non-degeneracy constraints we impose on X), then we may write its
function field as k(x)[y]/(F (%, y)) with x = xo/x2 and y = x1 /%2 so that its Cartier—Manin
matrix with respect to the basis in (2.3) is

fp lp 1, 2p— 2f2p lp 1L, p— pr 12p Lp—2

A= p2p 1,2p— 1f2p 2 p-1,p—1 Sy 22p Lp—1 |’ (2.6)

p—1 p—1
p—1,p—2,2p—1 f2p71,p72,p71 p—L12p—2p—1
p—1 : i o J ok -1
where fz/ X denotes the coefficient of the term xéx’lxz in f(x0, 1, x2)P .
An essential property of the Cartier—Manin matrix is the identity

det(I — TA) = Ly(T) mod p, (2.7)

where L,(T) is the numerator of the zeta function of X defined in (1.1); see [23, Thm. 3.1]
and [26, Thm. 1]. In particular, we have tr A = a;, mod p, where a,, is the trace of Frobe-
nius. The Weil bounds imply |a,| < 2g./p, which allows us to derive #X(F,) = p+1—a,
from tr A for all p > 16g% = 144 (for g = 3).

Remark 2.8 All of our algorithms compute #X(F,) = p + 1 — a, by computing the
Cartier—Manin matrix A and lifting tr A € Z/pZ to the unique a, € Z with |a,| < 6,/p
when p > 144. For p < 144 we are happy to count points naively via (6.1).

3 Setup

Throughout this section, R denotes one of the rings Z or IF,. Many of the results we use
hold in greater generality, but we make no attempt to generalize them beyond the cases
of interest to us here.
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We write R[xT] for the Laurent polynomial ring R[xo, %, L x;l] in n+ 1 variables.
We use multi-index notation: for vi=(vq, .. ., v,) € Z"!, we write " for the monomial
xgo ---x". For G € R[x*] we write G, for the coefficient of G at the monomial x*. We
also define the degree of v € Z"™! to be deg vi=degx” = Y ", v;.

For ¢ € 7, we write R[xT], for the R-submodule of R[x*] generated by the monomials
of degree £. More generally, for any subset S € Z"*1, we define R[xT]s to be the R-
submodule of Laurent polynomials supported on S, consisting of all G € R[x*] such that
Gy, =0forv ¢ S. We typically use this notation in the case that S corresponds to a finite
set of monomials, all of the same degree. For G € R[x*] we define G| s, the restriction of
G t0 S, to be the polynomial )", ¢ Gyx” € R[xT]s.

For any R-submodule M € R[x*], we put My:=M NR[x*];. In particular, let R[x] denote
the subring R[xo, . .., x,]; then R[x], is the submodule of homogeneous polynomials of
degree ¢, or the zero submodule if £ < 0. More generally, if I is a homogeneous ideal of
R[x], then I, is the R-submodule consisting of homogeneous polynomials of degree ¢ in
I. The monomials generating R[x]; are indexed by the set Dy:={v € Z;‘Bl :degv = £} of
cardinality #D; = dimg R[x]; = (KJ;”) for ¢ > 0, with Dy = @ for £ < 0.

We denote by K the fraction field of R, which is either Q or F,,. All of the definitions for
R[x*] above may be extended in the obvious way to K [x]. We write P% = Proj K[x] for
projective n-space over K.

For the rest of the section we fix a homogeneous polynomial F € R[x]; of degree
d > 2. We always assume that d # 0 in R; in particular, if R = I, then we require that
p 1d.Our goal is to establish a framework for efficiently computing individual coefficients
FJI':=(F™)y, for a prescribed integer m > 0, without computing the entire polynomial F”.
Our strategy will be to observe that F” satisfies certain partial differential equations (see
(3.7)), which imply various relations between nearby coefficients of F™.

Definition 3.1 For{¢ € Z3pandv € 7" we define D(v, £):={v — w : w € D;} C Z"+1,

The set D(v, £) may be thought of as an inverted simplex of size ¢ centered at v.

We will study the vectors of coefficients of F™|p, ), for certain small integers ¢ and
v € Z'"! with degv = dm + £. As we will see, the differential equations lead naturally to
relations among these vectors, for fixed m, as we vary v.

Remark 3.2 When n = 2 and F defines a smooth plane curve X in IP’]ZFP of genusg = (dgl),

the Cartier—Manin matrix of X consists of g2 coefficients Fg_l with u € D(v, ¢) for g
particular choices of v of degree d(p — 1) + € with £ = d — 3. It turns out to be more
convenient to use m = p — 2, as we will eventually want d(m + 1) # 0in ), and to use v
of degree d(p — 2) + ¢ with £ = 2d — 2. For smooth plane quartics we haven = 2,d =4,
and £ = nd — n = 6, values the reader may find useful to keep in mind.

Let Ir be the homogeneousideal (doF, . . ., 9,F) in K[x], where 0; is the degree-preserving
differential operator 8i::x,'3%. For ¢ € Z, the K-vector space K[x];/(Ir) is spanned by
the monomials {x? : B € Dy}, so we may choose a subset By € Dy such that {x? : § € By}
projects to a basis of K[x]¢/(Ir)e. For the rest of the discussion, we assume a choice for By
has been fixed for each £. Note that for £ < d we have (Ir); = 0, in which case By = Dy.
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Definition 3.3 Let by:=dimg K[x]¢/(Ir)¢ = #By < #Dy. For v € Z"t! we define the
set B, £):={v — B : B € By} € D(v,£) € Z"1. We also define the K-vector spaces
'DV,ZZZI([xi]D(V,g) and B,,,@::K[xi]B(V,Z) - 'Dvyg.

We recall the following Hilbert series computation due to Macaulay [25].

Lemma 3.4 Let hy, . .., h, be homogeneous polynomials in K [x], of positive degree with
710 COMIMON Zeros in ]I”[”(. Fort >0, let

Se:=dimg K[x]¢/(ho, ..., e

Then, in Z[t] we have the identity

n

Zagté = 1_[(1 +t4+--- 4+ tdeghi—l)'

€0 i=0
Proof See Theorem 58 in [25, pp. 64—66]. ]

Recall that the discriminant A ;(F) of F € R[x], is determined up to sign by the formula
Ag(F) = £dV" @0 D/d e, | (E e E)
3960 an
where Res,(ho, ..., h,) is the resultant, the irreducible integer polynomial in the (n +
1)(8:”) coefficients of hy, ..., h, € R[x]. that vanishes if and only if ko, ..., , have a
common zero in IP’I”< and satisfies Res,(x{, . . ., x5) = 1; see [15, pp.433-435] for details.
The hypersurface defined by F € R[x]; is smooth if and only if 9F /dxo, ..., dF /9%y,
have no common zeros in IP%, that is, if and only if A;(F) # 0. (Note that any common
zero of the 3F /dx; is automatically a zero of F by Euler’s identity d - F = ), 9;F, since
d # 01in R.) We say that F is nondegenerate if yF, . . ., 3,F have no common zeros in P.
Nondegeneracy of F is equivalent to requiring that the intersection of the hypersurface
defined by F with every set of coordinate hyperplanes is smooth (see [3, Prop. 4.6], [6,
Prop. 1.2]); this implies that the hypersurface defined by F is smooth, but it is a stronger
condition. If we let D4(S):={v € D; : v; = 0 for i € S} and define
A% (F):= l_[ Ad(Flpys))s (3.5)
SC{0,...n)
where the discriminants on the right are taken with respect to the variables not in S, then
we see that F is nondegenerate if and only if A%(F) # 0.
Forn = 1wehave A%(F) = £Fq 4F40A4(F) = £Fo,4F 0 disc F(t, 1), where disc denotes
the usual discriminant of a univariate polynomial in R[¢]. For n = 2 we have
N%(F) = +Fy0,4F0,40F 400 disc F(t, 1,0) disc F(t, 0, 1) disc F(0, £, 1) Ay(F).

Let Hp(t):=) >0 bet" € Z[t] denote the Hilbert series of the quotient ring K [x]/IF.
Corollary 3.6 IfF € R[x], is nondegenerate then
Hp(t):=Y byt = (1+t+--+ s e
£>0
and we have ) ",y 4 4 be = d” for any integer k.

Proof The first claim follows from Lemma 3.4. For the second, fix k € Z and let ¢ be a
primitive dth root of unity. We have
d—1 d—1

Y OHp@EH =3 bt =d Y by,

i=0 i=0£2>0 =k mod d
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and also
d—1 d—1
ZHF(Ki)kai _ Z(l N R R Vo R o
i=0 i=0
Comparing these two expressions yields the desired result. ]

Let m > 0 and consider the system of differential equations for G € K[x*],,, given by

WFG) = m+1)(&F)G  i=0,...,n (3.7)
The scalar multiples of F™” are solutions to (3.7). Note that the Euler identity
n n
> 0(FG) = d(m+ 1)FG = (m+1) Y _(3:F)G (3.8)
i=0 i=0

implies that one of these n + 1 equations is redundant, so for many purposes we may treat
it as a system of only # equations.

We now show that (3.7) defines a system of linear equations on the coefficients of G.
For any w € Z"*! of degree dm + d, equating coefficients in (3.7) for the monomial x"
gives rise to the system of linear equations

wi Y FGuy=(m+1) Y tiFiGyy  i=0..,n (3.9)
teDy teDy
Via (3.8) we may view this as a system of # equations in #D; unknowns G, for u € D(w, d).

More generally, forany ¢ > d andv € Z"*! of degree dm+{ we may consider the system
of linear equations involving the coefficients G, for u € D(v, £), obtained by including the
equations (3.9) for each w € D(v, £ —d). Here we are using the fact that D(v, £) is the union
of the sets D(w, d) as w ranges over D(v, £ — d). Explicitly, these equations are given by

vi—s) Y FG, gy =m+1)Y tFG, s s€Dy_g i=0,...,n (310)
teDy teDy

Via (3.8) we view this as a system of n#D;_ ; equations in #D; unknowns G, for u € D(v, £).

Definition 3.11 Let £,; denote the K-vector subspace of D, = K[x¥] D(v,¢) consisting
of those Laurent polynomials G € D, satisfying the system (3.10).

Note that &, is only defined when degv is of the form dm + € for some m > 0. The
value of m is implicitly defined by v and ¢: we always have m = (degv — £)/d, so a choice
of v and ¢ determines a choice of m.

Since F’" satisfies the original differential equations (3.7), we see immediately that

Fm|D(v,() (S 51/)@.
We also have the following basic result concerning inclusions of sets of the form D(v, £).
Lemma 3.12 Let(, ¢’ > dandletv,v' € 7""! have degrees dm+€ and dm+t' respectively.

Assumethat D(v, £) € D(V', £'). Thentherestrictionmap D¢ — Dyp, G = Glp,e), maps
Ey v into Eyyp.

Proof The equations defining &, ¢ are a subset of those defining &, 4. |

In the remainder of this section we develop further properties of the vector spaces &,¢.
In particular, we compute their dimension and give explicit bases for certain cases of
interest.
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Lemma 3.13 Let £ > d, and let v € 7" be of degree dm + (. Consider the K -linear map

Tye: Dye —— By ®Dyo—a

G+ Glawe) + (FG)lpg,e_ay

The map w,, may be represented by a matrix whose entries lie in R and are independent

of v.

Moreover, there exists a nonzero constant Ay € R and a K-linear map
Vet Bue ® Dyye—ag — Dy

such that the composition
Yy 0 Tye: Dye — Dy

restricts to scalar multiplication by (m + 1)x¢ on E,4. The map Vo may be represented
by a matrix whose entries are R-linear combinations of 1, vy, . . ., v, and m, which we may
view as polynomials in R[v, m] = R|vy, . . ., Vs, m] of degree at most 1.

Note that when using matrices to represent maps such as 7,0 and v, ¢, we always work
with respect to the obvious monomial bases. For example, the columns of 7, ; are indexed
by Dy, and its rows are indexed by the concatenation of By and D,_. For this purpose we
assume that some ordering of the monomials of each degree has been chosen, such as the

lexicographical ordering.

Remark 3.14 One may think of 7, as “compressing” a vector of length #D; into a vector
of length #B; + #D,_,. If the input vector lies in the subspace &, i.e., satisfies the
appropriate differential equations, then no information is lost in the compression, and
Yy,e “decompresses” the result to recover the original vector (multiplied by a certain
scalar).

Proof We observe that m,, may be represented by a matrix in which the rows corre-
sponding to B, ¢ have entries in {0, 1}, and the entries of the rows corresponding to D, ,_,
ueby F,Gy_y_, for
w € D(v, £ — d). This matrix is the same for every v € Z"*! of degree dm + .

are either zero or of the form F, for some u € D, with (FG),—yy = )

We now explain how to construct ,,¢. Our task is to construct a formula that recovers
a polynomial G € &,,¢ from knowledge of G|p(,,¢) and (FG)|p,¢—a)-
First, it follows from the definition of B, that for any u € Dy we may write

n
Aext = Zhu,,»ail-" + Z cu,ﬁxﬂ, (3.15)
i=0 BeBy
for some Ay, ¢y g € R (A¢ 7 0) and h1,,; € R[x]y_4. (For u € By C Dy we may take ,,; = 0,
Cuu = rg,and ¢, g = 0 for B # u.)
Now suppose that G € &, . Multiplying both sides of (3.15) by (m + 1)G and equating
coeflicients of x" yields

n

(m~+DreGy—y = Z Z (m + 1)(hu,i)s((aiF)G)V,S +(m+1) Z CupGv—p
i=0 seDy_y BEB,

for each u € Dy. By assumption G satisfies (3.10), so

(m 4+ 1)((3:F)G)y—s = (0;(FG))v—s = (vi — 8:)(FG)y—s (3.16)
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foralls € D,_yandi =0,..., n. Therefore, for each u € Dy,

n
M+ DGy =Y Y i —s)hy)(FG)y—s + (m+1) > cupGyp.  (3.17)
i=0 seDy_y BeBe
The right hand side of (3.17) involves the coefficients of FG on D(v, £ — d) and the
coefficients of G on B(y, £), so we may use this expression to define v, ,. Explicitly, for
H e B,¢and] € D,;y_, we define ¥, o(H +]) € D, via

n
WV,Z(H +v—ui= Z Z (vi — Si)(hu,i)sjv—s +(m+1) Z Cu,ﬂHv—ﬂ- (3.18)
i=0 seDy_y BeBy
It is clear that the entries of the corresponding matrix are polynomials of degree at most 1
invy, ..., v, mwith coefficients in R. By construction, if G € &, ¢, then (3.17) implies that

Ve 0@ = Ve (Glawe + (FG) )

vV—u

=Y > i s))(FGys + (m+1) Y cupGyyp

i=0 seDy_y BeBe
=(m+1DrGy—y

for u € Dy. Thus ¢ o 7y, restricts to scalar multiplication by (m + 1)A, on &,,;. O

Definition 3.19 We define W, ;:=B,,¢ ® B, ¢_4. For £ < 24 this is the codomain of 7,
and the domain of ¥, ¢, since Bv, £ —d) = D(v, ¢ —d) for ¢ —d < d.

Corollary 3.20 Letd < ¢ < 2d and v € 7"t of degree dm + (. Assume that m # —1 in
R. Then

dimg &0 < dimg Wy, = be + by_g, (3.21)

and if F is nondegenerate then we have dimg &, < d”.
When equality holds in (3.21) we may restrict the domain of 7, and the codomain of
Yy,¢ to obtain K-linear isomorphisms

£ £
Tyet Eve = Wy, wv,(g: Wie — Ene.

Proof As noted above, the hypothesis £ < 2d ensures that the codomain of m,, and
domain of v, ¢ are both equal to W, . Let A, be as in Lemma 3.13. Since (m + 1), # 0
in R, Lemma 3.13 implies that the map m,,¢ is injective when restricted to &,,¢ (since scalar
multiplication by (m + 1)A; is injective), and the first inequality follows. The equality
in (3.21) is simply the observation that dimx W, = #B(v,£) + #B(v,{ — d) = #B; +
#By_g = by + by_y4. If F is nondegenerate, then by Corollary 3.6 we have by + by_; <
2=t mod a b =d".

Suppose now that equality holds in (3.21), so dimg &,y = dimg W,¢. Let ”5/&’ Eve —
W, be the restriction of m,,¢ to &, ¢. As shown in the previous paragraph, ”fe is injective,
and by comparing dimensions we see that it is an isomorphism onto W, ;. Then, since
Yy 0 nf,e: Eye = Dy is injective (by Lemma 3.13) it follows that ¢ is injective. The
image of ¥, ¢ contains £, (again by Lemma 3.13), and by comparing dimensions we find
that its image is equal to &, 4. Restricting the codomain of v, then yields the desired
isomorphism Wf@i Wie = Eve. O
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Corollary 3.22 Letn =2, £ € {2d — 2,2d — 1}, and v € 7" of degree dm + £. Then
dimg &0 > d?, and if F is nondegenerate and m # —1in R, then dimy Ey,p = by +by_y =
d>.

Proof Recall that &, is defined by a system of n#D,_; equations in #D; unknowns. Its
dimension is therefore at least #Dy — n#D,_,; = (Z:") — n(e_i+"), which is precisely d?
forn = 2 and ¢ € {2d — 2,2d — 1}, in which case dimg &,y > d’. it additionally F
is nondegenerate and m # —1 in R, then Corollary 3.20 and Corollary 3.6 imply that

dimg Eye < by + by < d?, so we conclude that dimg Eve=br+by_g= dz. O

Remark 2.23 Corollaries 3.20 and 3.22 explain why we use m = p — 2 rather than m =
p — 1 when computing Cartier—Manin matrices: we want (m + 1)A¢ to be nonzero in

characteristic p.

Remark 2.24 We expect that generalizations of Corollary 3.22 for n > 2 also hold, that
is, dim &,y = d" for F nondegenerate and ¢ large enough. However, a simple dimension
count no longer shows that m, ¢ is surjective, more is needed.

4 Shifting coefficients
To simplify the exposition we now specialize to the case # = 2. As in the previous section,
Ris Z or Fp, K is its fraction field, R[x*] is the Laurent polynomial ring in n + 1 = 3
variables xg, x1, x2, R[x] is the subring R[xo, x1, x3], and we work with a fixed homogeneous
polynomial F € R[x]; of degree d > 1 and a positive integer m such that d(m + 1) # 0 in
R (we will take m = p — 2 when R = ). We assume throughout that F is nondegenerate,
i.e., that A%(F) # 0 (see (3.5) for the definition of A% (F)).

Let eq, e1, e2 be the standard basis for Z3. In this section we consider how to shift a
solution to (3.10 from D(v, £) to D(v + ¢; — ej, £), for £ = 2d —2 and v € 73 of degree
dm + £, where i, j € {0, 1,2} with i # j. Our goal is to construct a “shift” map

Tyij: Dye — ,Dv+e,vfe,',éx
illustrated in the top row of Figure 1, with two key properties:

(1) Forany G € D,y, the coefficients of G and 1,,;;(G) should agree on the intersection
D@, £)ND(v+e; —ej, £) = D(v —ej, £ — 1), up to multiplication by a known nonzero
scalar. The region D(v — e, £ — 1) is indicated by the dotted lines in Figure 1.

(2) 1, should restrict to a map

g .
Tyij* Ene = 5v+e,-—e,-,(b

i.e., if G € D, satisfies the differential equations on D(v, £), then the shifted poly-

nomial 7,,;;(G) satisfies the equations on D(v + ¢; — ¢;, £).

It will be convenient to reformulate the first condition as follows. Forany £ > 1, w € VA
and k € {0, 1, 2} let

PW,Z’,k: Dw,f’ - ’Dw—ek,ﬁ’—l

denote the restriction map G + G|p(,—¢,,¢'—1) induced by the inclusion D(w—ey, £'—1) €
D(w, £'). Then condition (1) is equivalent to requiring Pyiei—e,0i 0 Tnijt Dye = Dy—ge—1
to be a nonzero scalar multiple of P, ¢;: D, — D‘,_e},g_l.
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v+er—(l+1)ey

x

prter—(+1eo prter—(+1er prtei—(+1)eo

Tv,i,j

prter—(+1)es

Ir+e1 —(l+1)ey

vter—(l+1)es

x

Fig. 1 lllustration of the maps ¢, and 7, ford = 4,£ = 6,i = 1,j = 0. The common domain D(v, £) of 7,
and ¢y, is represented by the white and gray dots enclosed in the upper left triangle (the dots represent a
monomial basis). The codomain D(v + ¢; — ¢}, £) of 7,,;; is represented by the subset of white, gray, and black
dots enclosed in the upper right triangle, and the codomain D(v + e, £ + 1) of ¢, is the entire bottom
triangle, which contains both D(v, £) and D(v 4 e; — ¢}, £). As shown in the proof of Lemma 4.4, the
coordinates in the codomain of ¢,,; represented by the black dots are determined by the coordinates
represented by the gray dots

Remark 4.1 Later we will apply this framework to G = F"|p, ). It is easy to compute
F™|p(,¢) when v is near dmey, i.e., at the corners of the simplex. By repeatedly applying the
Ty,,; Maps, we may shift this solution to obtain F””|p,, ¢ for a given target value of v. For
certain carefully chosen v, the components of these vectors will in turn yield the entries of
the Cartier—Manin matrix of the smooth plane quartic defined by F, whend = 4, = 6
and m = p — 2. These shifts are illustrated in Figure 1.

By composing ¢y,; with the projection Py ¢, ¢11j: Dyte,er1 — Dv+ei—e,,e we obtain the
desired map t,,;;, as shown in the following commutative diagram:

Ty,

DV,Z Dv+e;—e,,£ .
\ /‘ (4.2)
Pri Pyie et
DV+€,‘,K+1

See Figure 1 for an illustration of this diagram in the case d = 4.

Tvij
gv,i gv-l—e,'—ej,ﬁ .
\\ / (4.3)
#%. £
" gv+e,~,£+l Pves

The first step in defining 7, ;; is to construct an “extension” map ¢y,;: Dy,¢ — Dye; 041
that extends G from D(, £) to the larger set D(v+e;, £+1). This is carried out in Lemma 4.4
below. The idea is to explicitly solve the system (3.10) for the unknown coefficients of
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¢v,i(G), i.e., for the monomials in D(v + e;, £ + 1) \ D(v, £). These are shown as the black
dots in Figure 1.

We remind the reader that w = 2,d > 1, £ = 2d — 2, d(m + 1) is nonzero in R, and
A%(F) # 0. In particular, A%(Fy,=o) # 0, since the latter is a factor of A% (F); see (3.5).

Lemma 4.4 Letv € 73 be of degree dm + ¢, let i € {0, 1,2}, and let ;:= + A% (Fyx;=0) # 0.
There exists a K-linear map

@it Dyo — Dv+ei,l+1

such that Pyye,ev1i © ¢vi = (vi + 1)0; - idp,,, and such that if vi + 1 # 0 in R then
¢V,i(gv,(f) c gv-l—e,v,l-i—l-
2d+1 2d . . .
The map ¢,,; may be represented by a ( A ) X ( 2) matrix whose entries are R-linear
combinations of 1, vy, v1, vo and m, which may be viewed as linear polynomials in R[v, m] =
Rlvg, v1, v, m).

Remark 4.5 The sign of 6; is not canonically determined; it depends on choices made
during the following proof (such as the choice of j and k). An explicit formula for 6;, as
the determinant of a certain Sylvester matrix, is given in (4.11).

Proof We are given as input G € D,,¢, and we wish to extend it to some Ge Dytet+1-
We first set G,,:=G,, for w € D(v, £). Let

S:=D(v+e;, L+ 1)\ Dy, 2).

Our task is to show how to define the missing coefficients Gy forw € Sinsucha way that
Ge Evte,e+1 whenever G € &,¢. These 2d coefficients are indicated by the black dots in
Figure 1. We can alternatively write S as

S:{(V—i—ei)—(ce/+(2d—1—c)ek):0<c<2d—1}

where j and k are chosen so that {j, k} = {0, 1, 2} \ {i}.
According to (3.10), G lies in Evte,e+1 if and only if

((v+e)n —sp) Z Ftév+ei—s—t =(m+1) Z tthév+ei—s—t (4.6)
teDy teD,
foralls € Dy 1_4and h = 0, 1, 2. Consider the subset of equations in (4.6) corresponding
to those s with s; > 1, i.e., for those s = s’ + ¢; with s’ € D,_,:

Wh—8) Y FGyyy=m+1) Y tFGy g, 5 €Dy_g h=012
teDy teDy

These equations only involve Gy for w € D(v,£), and in fact are exactly the equations
defining &,4. If G € &,,¢, then G automatically satisfies these equations, since we already
arranged that Gy = G, for w € D(v, £). The remaining equations correspond to those
s € Dyy1-q = D1 for whichs; =0, i.e, tos € E where

E={aej+(d—-1—-a)e:0<a<d—1}

Consequently, for G toliein Evte,e+1, it suffices to choose 5W for w € S so that (4.6) holds
foralls € E and & = 0, 1, 2. Moreover, we recall that one value of / is redundant, thanks
to the Euler identity (3.8). Taking # = i and & = j, this system of 2|E| = 2d equations is
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given explicitly by
(vi+1) Z Ftév-l-e,'—s—t =(m+1) Z tiFtév-i-e,'—s—t; seEk
D, D,
teDy ~ teDy B (4.7)
(Vj - S/’) Z FGyies—t =(m+1) Z LiFtGyte—s—ts seL
teDy teDy

Let us manipulate these equations to put them into a more useful form. For each s,
multiply the second equation by v; + 1, subtract v; — s; times the first equation, and divide
by m + 1 # 0, to obtain the system

(Vi + 1) Z Ftév+e,~—s—t = (Wl + 1) Z tiFtE:”v+e,~—s—t: sek
teDy teDy

Z ((vi + 1)t — (vj — sj)t,-)Ftév+ei_s_t =0, s e E
teD,

(4.8)

The system (4.8) is equivalent to (4.7), provided that v; +1 # 0. Now we rearrange so that
the terms with #; = 0 appear on the left hand side:

(vi+1) Z Ftév+e[—s—t = Z ((Wl + Dt — (vi + 1))Ft6’v+e[—s—t; s€E

teD, teDy
t;i=0 t;#0
~ s - (4.9)
vi+1) Z LGEGyye—s—t = Z (v = $)ti — (vi + 1)t))F;Gyye;—s—1» S € E.
teDy teDy
t=0 1,0

We may rewrite the system (4.9) in matrix form as follows.

« The coefficients G,, on the left hand side are exactly the unknowns of interest: writing
t =bej+(d—befor0 < b<dands=ae+(d—1—a)efor0<a<d-—1,
weseethat w =v+e —s—t=v+e)—ce—(2d—1—cleg € Sforc=a—+b.
Let y € K?@ represent this vector of unknowns, with y, = év+e,»—cej—(2d—1—c)ek for
0<c<2d—1

« The coefficients G,, on the right hand side are shown as the gray dots in Figure 1.
These coefficients are already known, i.e., all such w lie in D(v, £), so that Gy = Gy.
Indeed, if t = t' + ¢ fort € Dy_j,thenw =v+e —s—t =v—s—t €
D(v,(d—1)+(d —1)) =D, ¢).Letz € K(sz) be the vector consisting of all G,, for
w € D(v, £), for some convenient ordering of D(v, £).

o Let Pb1=Fbe,+(d—h)ek for 0 < b < d; these are the coefficients F; appearing on the left
hand side of (4.9). Let A be the 2d x 2d matrix (over R) given by

FoFp Fy -+ --- E;
Ao Fy Fy Fy -+ «-- E;

Tl o Ey2E .. - dE,
0 F 2F) -+ «-- dFd

The columns correspond to the unknowns y, for 0 < ¢ < 2d — 1. The first group of
d rows corresponds to the first equation in (4.9), and the second group to the second
equation. The rows in each group are indexed bya =0, ..., d — 1, corresponding to
the values of s € E vias = aej + (d — 1 — a)ey.
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» Let M,,,, be the 2d x (22‘1 ) matrix encoding the linear combinations on the right
hand side of (4.9). The columns of M,,, correspond to the known values G,, for
w € D(v, £), and the rows to the 2d equations. More explicitly, in the first d rows,
indexedbya = 0,...,d — 1, we place the value (m + 1)t; — (v; + 1) in the column
corresponding to v+ e; —s — ¢ for each ¢ = ' + e;, t' € Dy_1. Similarly, in the last
d rows, we place the values (v; — s;)t; — (v; + 1)¢; in suitable positions. The entries of
M,,,, may be regarded as linear polynomials in R[v, m].

With these definitions, the system (4.9) may be expressed compactly as
(vi + DAy = My, 2. (4.10)

The matrix A is the Sylvester matrix of Fy,—o,x,—1 and (3;F),,—0,x,—1 as degree d polyno-
mials in x;. By Proposition 1.8 in [15, p.435] we have

det A = £Fy, Fye, discy; Fx—o=1 = £A} (Fx=0) # 0.
We may therefore solve the system explicitly as follows. Define
0;:=det A, (4.11)

and let adj(4) € R??*2? denote the matrix satisfying adj(4)A = (det A)I. Multiplying
(4.10) by adj(A) on the left yields the solution

(vi + 1)y = adj(A)M,,,z.

Note that the columns of adj(A)M,,;, correspond to monomials # € D(v, £), and the rows
correspond to monomials w € S € D(v + e;, £ + 1), i.e., the ¢-th row corresponds to
w=v+e —ce—(2d—1—clefor0<c<2d— 1.

Finally we show how to define the matrix for the desired map ¢,;: Dyt = Dyte,e+1-
Forw € D(v + e;, £ + 1) and u € D(v, £), the matrix entry (¢y,;)u,4 is given by

(vi + 1)0;6w,u ifw e D(v, £),
(vidwu = (4.12)
(adj(A)Mm,v)w,u: ifw ¢ D, £),

where §,,, if w = u and 0 otherwise. o

Remark 4.13 One may attempt to apply the construction in the proof of Lemma 4.4 for
values of ¢ other than 2d — 2. This leads to a system of 2(¢ — d + 2) equations in £ + 2
unknowns. Ultimately, the reason we work with £ = 24 — 2 is that this is the smallest
value of ¢ for which there are at least as many equations as unknowns.

Remark 4.14 As observed in Lemma 3.12 the equations defining &,,; are a subset of the
equations defining &4, ¢+1. In the setup of Lemma 4.4 this difference of equations has
size 2d. The condition A ;(Fx,—o) # O ensures that these 2d equations are linearly inde-
pendent. Furthermore, if v; + 1 # 0, then given G € &, there is a unique Ge Evtept+1
such that 6|D(V,[) = (v; + 1)0;G. Thus when v; + 1 # 0, we have ¢,,;(E,,¢) = Evteyo+1.

For the remainder of this section we fix distinct i, j € {0, 1, 2}. By composing the map
¢vit Dyg = Dyye,e41 with the projection Pyye,j: Dyye,e41 — Dyte—e,¢ we obtain the
map

tv,i,/::Pv+e,~,j o ¢y,i: Dye — ’Dv+e,v—ej,(i: (4.15)
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and the diagram (4.2) as desired. We now check that 7,,;; has the desired properties.
In particular, if G € &y, then 1,;;(G) € &,Hi_epg, meaning that 7,;;(G) satisfies the
equations on a shifted set of monomials.

Corollary 4.16 We have 1,,;;(£,,¢) C 5V+el.,ej,g and the composition

Tv,ij Pv+ci,j
,Dv+e,'72/,l — ,vae,,lfl

'vae,-,lfl Dv,l

is scalar multiplication by (v; 4 1)0;, and t,,;; is invertible when v; + 1 # 0 in R.
The map t,;; may be represented by a (2201) X (22‘1) matrix whose entries are R-linear
combinations of 1, vy, v1, vy corresponding to linear polynomials in R[v].

Proof The first part follows by the definition of 7,,;; combined with Lemmas 4.4 and 3.12.
The last part also follows from Lemma 4.4, where we note that #D(v, £) = #D(v + e; —
e, ) = #Dy = (“”) = (22‘1) forn =2and ¢ = 2d — 2. ]

n

Let qbfi: Eve = Evyeye+1 be the restriction of ¢y;: Dyy — Dyye,e+1 and similarly

define rvgl. ; and Pfi. Because we have assumed that F is nondegenerate and m + 1 # 0 in

R, applying Corollary 3.22 with £ = 2d — 2 and £ + 1 = 2d — 1 yields
dimg Wy = dimg E,¢ = dimg Eype, 011 = dimi Eypei—e,e = d°. (4.17)
Since dimg &,,¢ = dimg W, by (4.17), Corollary 3.20 gives us bijections
Tee: Ene = W Yy Wit = Ene (4.18)
which are the restrictions of ;¢ and v,¢, respectively. We now consider the map
Tv,i,j::nfﬂi_ep 00T 0 Wap: Wyt — Wire—gt- (4.19)

In other words, the map T,;; re-expresses the shifting map t’, j in terms of a basis for
W,,e. We are interested in applying chains of such maps T)4.,;;, thus for any s > 0 we
define

Tii,j:: 1_[ Tv—i—k(ei—e/),i,j = Tv+(s—1)ei—(s—l)e}',i,j 00 TV+€i—€,',i,j o Tl/,l}]" (4.20)
s>k>0

where the product is taken over decreasing values of k starting from s — 1; note that the
symbol sin T}, ; is a superscript, not an exponent.

Corollary 4.21 Let s be a positive integer. We have
s s—14y5—1_¢& £ £
Vij (m + 1) )‘é nv+seifse,‘,2 ° 1_[ Tv+k(ei—ej),i,j © wv,é'
s>k>0

£ £ £ 2 2
Furthermore, T sei—sept © (]_[S>k>0 rv+k(el__e}_),l.,},) o ¥, , may be represented by d* x d
matrix whose entries are polynomials in R[v, m] = R[vg, v1, v2, m] of degree at most s + 1.
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Proof Lemma 3.13 implies wV+k (ei—e)t © v+k(el et = =(m+ l)kgldgwrk gt for0 < k <
s. Applying this repeatedly yields
Tv L,] 1_[ Tv+k(e,—e1) ij
s>k>0
& &£ &
[1 Tyt Dei—eht © Tokle—ep)i © Vorrk(e—e,t
s>k>0
& & & &
v+s(e,—e, ( l_[ rv—&-k (ei—e))ij 1»[/v+k(e,'—e/-),(i ° T[v—&-k(e,-—ej),i) ° 7"v,i,j ° 1/’\/,[
s>k>0
1 1 & &
= (m+ l)s )‘S V+se —sej,t o 1_[ Tv—&-k(e,'—ej),i,j ° wv,f‘ (4-22)

s>k>0

Lemma 3.13, Corollary 3.20, and Corollary 4.16 imply that the RHS can be represented
as the product of a scalar, a d* x (22‘1) matrix, s — 1 different (22‘1) X (22‘1) matrices, and
a (sz ) x d? matrix, all of whose entries are linear polynomials in R[v, m]. The corollary
follows. ]

Corollary 4.21 combined with Lemma 3.13 yields the following corollary.

Corollary 4.23 Lets € Zxo and let G € R[X] gy, satisfy equation (3.7). Then,

s

T4 0 Toe (Glpwey) = 673y (m + 1) <H(Vz + k)) 7 sterepe (Glowsta—en)-

k=1
Before stating the final result of this section, we remind the reader of our running assump-
tions:

« ,j €{0, 1,2} distinct;
e« R=ZorFyn=2,d>1,¢=2d —-2,m>0,andd(m+ 1) #0inR;
+ F € R[x], is nondegenerate, meaning A% (F) # 0 (see (3.5) for the definition of AY).

Theorem 4.24 Let p be a prime that is equal to the characteristic of R when R = ¥, and
does not divide A} (F)d(m + 1) when R = 7. Let s be a positive integer, and let G € R[x] gy,
satisfy equation (3.7). The following hold:

(a) Ifw € Z"*! of degree dm + £ and v = w mod p then the matrices representing T

Vl]
and Ty, ; j agree modulo p.
) Ifv, = 0 modp and s = p — 1, then (m + 1)°A36] [Tiei(vi + k) = —1 mod p and
p-1 € _ _£
Tvz} V,Z (G|D(V,[)) = _nv+(p—1)(ei—ej),f <G|D(V+(p—l)(e,'—ei),[)) mod p-
When v; = —1 mod p also holds, the matrix Tf;jl is invertible modulo p and its

. . —1
7 .
wnverse s v+(p71)(eife/-),/,L

Proof For (a) note that TS 1s representable as a matrix with entries in R[v]. For (b) we

apply Fermat’s little theorem and Wilson’s theorem to obtain H /<=1(Vi +k=p-1)=
—1 mod p, which together with Corollary 4.23 implies the first claim. For the second claim

Page 17 of 32

1



1 Page 18 of 32 E. Costa et al. Res. Number Theory (2023) 9:1

in (b), we apply Tf J:(L_l) e to both sides of the first claim to obtain

p—1 p—1 £
Tv+(p 1)(ei—ej)jri Tv,i,j OT[V,K(G|D(V;Z))

— p—1
= _Tv+(p 1)(e,—e,)}zo nv+(p 1)(e,—e,)E<G|D(V+(P 1)(ei—ej) L) ) mOdp

=75, (Glpwe) mod p,

where the last equivalence follows from the first claim in (b), since v; = —1 mod p implies
(v+ (p — 1)(e; — ¢))); = 0 mod p, allowing us to apply the first claim to 7?7 +(p Diei—e))ii
5 Computing Cartier-Manin matrices of a smooth plane quartic

Let X: f(xo, x1,x2) = 0 be a smooth plane quartic defined by a nondegenerate homo-
geneous quartic f € R[xo, X1, x2]4. In this section we give algorithms to compute the
Cartier—Manin matrix A, of X when R = F,, or the Cartier—Manin matrices A, of the
reductions of X modulo primes p < N of good reduction up to a given bound N when
R=7Z.

We first consider the case R = [, where p is an odd prime, noting that for p = 2 the
Cartier—Manin matrix can be extracted directly from the coefficients of f = 7~ via (2.6).
We will apply the infrastructure developed in §4 with F = f and m = p — 2. In particular,
we work with £ = 6 = 2d — 2and dm + £ = 4(p — 2) + 6 = 4p — 2 throughout.

Let us first sketch our algorithm by working backwards from our goal. The coefficients
of fP~! that appear in the ith column of the matrix A, in (2.6) lie in f7~ 1|D ),2) for

:=(p —Lp2p-—1), V(z):=(2p,p —1,p-—1), v(3)::(p —1,2p,p—1); (5.1)

note that the v) are not symmetric because the indices in the columns of (2.6) are not.
Now D, 5 = By, since 2 < 4 = d, so m,,4 has codomain W, ¢ and it suffices to compute

76 (" Ipe) =17 2lawe) 17 a2y € Was (5.2)
for v = v, v®, 1) We now define

wl:=0,2p - 1,2p -1, w?=@p-10p-1), w=03p-1p—-1), (53)
with w = v 4 (p — 1)(e; — eg), WP = v + (p — 1)(ep — e1), and W = v® 4 (p —
1)(e1 —ep). Let Cy, € ]F1176X16 denote the matrix representing the linear operator

771

w1 Wyme = W6 (5.4)

determined by the nondegenerate polynomial f € IF,[xo, x1, ¥2]4. By Theorem 4.24 (a),
the matrix C, also represents

771

w®,0,1° VVW(3 - W0 ,6? (5.5)

since v = v® mod p and w) = w® mod p, and by Theorem 4.24 (b), Cljl represents

-1 \71 -1
(Tf@),o,l) = Ti(z),l,(): Ww(z)’6 — V26 (5.6)
since V(()Z) = 0 mod p and Viz) = —1 mod p and w? = v  (p —1)(ey — e1). We can thus

use the matrix C, and its inverse to traverse the three paths from the intermediate points
w depicted as blue dots on the exterior of triangle in Figure 2 to the target interior points
v.



E. Costa et al. Res. Number Theory (2023) 9:1

[e)e) (0]
0000000000000 OOOOOOOOOOOO0OO
Ap—2 x4p72
Zg 1

Fig.2 lllustration for p = 7. The target points v in the interior are shown in black with v{") at the top center,
v at the lower left, and v at the lower right. The intermediate points w are in blue, and the paths used to
reach the target points v are shown in gray

To obtain the coefficients of /7 2 D(w,6) forw = w), W@, WG we could apply a variation
of the method of §4 for n = 1 (each w has a zero entry we can ignore), but we prefer to
use a simpler approach that we illustrate for w = w®, Let h(t):=f(0, 1, ¢). Then

H72(8) = h(t?)h™2(¢). (5.7)
If we put g(t):=h(t)? = Z?:o a;t! and let
ao/g(t) = ) _ait' € Fyllel) (5.38)
i>0
then we can compute (cs, ¢s—1, - - -, ¢s—7) as the first column of QS, where
[ —a1 —ay —a3 -+ —ag
ag 0 O 0
a)Qg=| 0 a O 0 (5.9)
i 0 0 ay O ]

Computing Q; withs = p—1allows us to derive the (6J{1) = 7 coefficients of {7 2| D(w,6) We
need usingcs, . . ., ¢s—¢; the other (6*2'2) - (6'{1) = 21 coefficients correspond to monomials
in Fp[xi] that contain a negative exponent and are necessarily zero because f7~2 is a
polynomial. In terms of Figure 2, the computation we have just described corresponds to
walking p — 1 steps along the gray path from the lower right corner of the triangle to the
first blue dot on the right edge (the 21 zero coefficients correspond to monomials outside
the triangle).

The cases w = w'), w? are treated similarly using suitable g(¢) and s.

Algorithm 5.10 Givenanondegeneratef € I, [xo, ¥1, ¥2]4 and the corresponding matrix
Cy e IF11,6X16, compute the Cartier—Manin matrix of X : f(xg, x1, x2) = 0 as follows:
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(1) Compute f7~2| D(w,e) forw = w), w?), wG) (the blue dots in Figure 2) using suitably
chosen g € Fp[t] and Qg € ]Fﬁ><8 as described above:

(a) Compute the edge coefficients offp_le(w(l)b) using g(£):=f (0, 1, £)*:
p—2 -2 p—1 —1 2p—1
W _jer—(6—)) 61) (f(o s1f040  Q  +fo40) ' Q; )
(1,0,..., o)T,

(b) Compute the edge coefficients offp_le(w(z)ﬁ) using g(£):=f (1,0, £):
p—2 _ —-1Hp-1 T
W(Z)—]’EZ—(6—j)20))0<j<7 __f(4,0,0) Qg ' (1; 0..., 0) .

(c) Compute the edge coefficients of f7~2| Dw®),6) using g(£):=f(0, L, )%
p—2 —-1Hp-1 T

O jer— (e Jo<i<r =Foa0 QT (1,0, 0)".

(2) Compute 7,,6(f? 2| D(%)) for v = v, v@ 13 (the black dots in Figure 2) using
Theorem 4.24 and Equation (5.2) as follows:

(a) Compute the first column of A, using v = (p—1,p2p—1):

(f 1p2p 3 Si- 1,p—1 S zzp—n’

f(p 219217 2y f(p 2, —-1,2p— 1)’f(p 310211J 2))

)
( mym,6 (7~ |D(v 6))) B2 ~Cp o 7,6 ("% Ipwin,6))-

(b) Compute the second column of A, using v =Q2pp—Lp—1):

(f(2pp Lp— 3)’f(2pp 2,p— 2)’f(2pp 3p-1)y f(Zp 1,p—Lp-2)
f(Zp Lp—-2p— 1)’f(2p -2,p—1,p— 1))

( e 6(f |D(v 6))) B2

_ -1 -2
PI ° M6 Ipwer,g)

(c) Compute the third column of A, using v® = (p — 1, 2p, p — 1):

(f(p 12Pp 3)’f(p 12p 1Lp— 2)’f(p 12p 2,p—1)

AT /A PR PO
-2
( e 6(f |D(v<3 6))) BW®,2) =G °”w<3),6(fp |D(w(3),6))-

(3) Output the matrix A, € IFE;XE’ defined in (2.6) using the coefficients of f7~! that are
shown in bold above.

Remark 5.11 The matrix Qg_l in step (1c) is the same as in step (la) and need not be
recomputed. The matrices that represent 1,6 for w = wl), w, w in step (2) are all the
same, since 7,,6 does not depend on w, by Lemma 3.13. Indeed, if «(¢) € {1, ...#D,} is the
index of t € Dy in its lexicographic ordering, the matrix W e R'©*28 with nonzero entries
W.),u(t+u)'=F¢ for u € Dy and t € Dy and Wej184j:=1 for 1 < j < 10 represents my,6.
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Remark 5.12 1f we instead use the “uncompressed” matrix U, € F;gxzs representing the
. £ . .
linear operator [ | P10 Toyl) 4 k(ep—e1)0,1” which by (4.21) satisfies
— -1,& £

Up = =2e Vg0 Cpomt mg
we can consider an “uncompressed” version of Algorithm 5.10. We replace Cy, o 7,,0) ¢
and Cy o T3 6 with 7,0y o Uy and 73 o Uy, respectively, to obtain the desired vectors in
(2a) and (2c), and for (2b) we replace Cp’1 with —)L6(7t1§1),6 olUyo 105(1)76)’1.

Lemma 5.13 Algorithm 5.10 runs in O(log? p log log p) time using O(log p) space.

Proof The algorithm uses O(log p) ring operations for the matrix exponentiations and
O(1) field inversions in step (1), and O(1) field operations in step (2). Each ring operation
in F, can be achieved using O(1) ring operations in Z on integers with O(log p) bits
(using Newton iteration to perform fast Euclidean division, see [14, Thm.9.8]), which
yields a bit complexity of O(M(logp)) = O(log ploglog p) per ring operation via [19].
We can perform field inversions in O(M(log p) log log p) = O(log p(log log p)?) time using
a fast GCD algorithm [14, Cor. 11.13], which is dominated by the cost of O(logp) ring
operations; the time bound follows and the space bound is immediate. O

We now give our algorithms to compute the Cartier—Manin matrix of a smooth plane
quartic. Let us define the matrix
M@):=T 1) 4 y(ey—eryo1 € RIS, (5.14)
whose entries are polynomials in ¢ of degree at most 2, by Corollary 4.21. From (4.19), we
see that M(t) can be computed as the product of matrices in R[t]10*28, R[¢]>8%28, R[£]?8x16
representing the maps nf( D)teo—er,6” rf( 001 l/ff( 1,6’ respectively, where v(t) = w4+ t(eg —
e1). The matrices representing 7

v(t)+eo—e1,6
Lemma 3.13: the matrix representing m

and 1//1‘?(”)6 are computed as in the proof of

V(0 +eo—e16 is independent of v(¢), its entries are

coefficients of f or elements of {0, 1}, while the entries in wvg(t) ¢ are determined by (3.18).

The matrix representing = Pg( Ry ogbf( i is computed by composing the matrix in

&
v(¢),0,1 v

{0, 1}28%36 representing the projection P¢ with the matrix in R[¢]30%?® representin
p g p J V([)J’_eo 1 p g
¢5 ;, Whose entries are given by (4.12). From equation (4.20) we then have
-1 ;
Cp::Ti(l),O,l = [] M() mod p e F,*<1. (5.15)

p—1>j20

Algorithm 5.16 Given a nondegenerate f € Iy [xo, X1, ¥2]4, compute the Cartier—Manin
matrix A, of the smooth plane quartic X : f(xo, ¥1, x2) = 0 as follows:

(1) Compute the matrix M(t) € F,[£]19*1¢ corresponding to f as described above.
P g
(2) Compute the matrix C, = Tﬁ;&l = Hp—1>j>0 M() € fom.
(3) Use Algorithm 5.10 with inputs C, and f to compute the Cartier—Manin matrix A,,.
g P P P P

Remark 5.17 We may also consider an uncompressed version of Algorithm 5.10 that uses
M(t)::rvflth(eo_el))o’1 € R[t]?#*?8 to compute the matrix U, defined in Remark 5.10 rather
than using the matrices M(¢) defined in (5.14) to compute C,. Note that in the former
case the entries of M(¢) have degree at most 1 rather than 2.

Theorem 5.18 Algorithm 5.16 can be implemented to use O(p log ploglog p) time and
O(log p) space, and also to use O(p'/? log>p) time and O(p'/? log p) space.
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Proof The first complexity bound is achieved by iteratively instantiating the entries of
M(t) at t = k and accumulating the matrix product in C,. This involves O(p) ring oper-
ations in F, which takes O(p log p log log p) time using O(log p) space. The second com-
plexity bounds is achieved by using the interpolation/evaluation algorithm of Bostan—
Gaudry—Schost [5] to compute ]_[p71>1>0 M(j), which uses M(p'/2 log p) = O(p'/? log? p)
time and O(p'/? log p) space. The cost of invoking Algorithm 5.10 in step (2) is negligible
in both cases. ]

Remark 5.19 In our O(plogploglogp) implementation, rather than computing C,
as the product of p — 1 matrices M(j), we instead iteratively multiply the vectors
0,6 (fF —2 D(w<i),6)) that appear in steps (2a) and (2c) of Algorithm 5.10 by each matrices
M(j) as it is computed. We then repeat this process using the curve defined by f (x1, xo, x2)
to obtain the vector computed in step (2b); note that in steps (1c) and (2c) of Algo-
rithm 5.10 are identical to steps (1b) and (2b) except the roles of xy and x; are reversed.
This effectively replaces each matrix multiplication with 3 matrix-vector multiplications
and is practically faster in the range of p we consider. The matrices M(j) forj = 0,...,p—1
can be efficiently enumerated using finite differences (the entries of M(t) are polynomials
of degree at most 2).

We now turn to the case R = Z, where our strategy is to use an average polynomial-time
approach to simultaneously compute the matrices C, at suitable primes p < N using a
single matrix M(t) € Z[¢]'®*1°. A nondegenerate polynomial f € Z[xo, x1, x2]4 will have
nondegenerate reduction modulo all primes p that do not divide Aj}(f), but in order to
obtain a valid matrix C, to use as input for Algorithm 5.10 computed via (5.15) with
M(¢) € Z[t]'®*16 we also need to ensure that the scalar (7 + 1)Ag arising in Lemma 3.13
and the degree d = 4 are both nonzero modulo p.

Now m + 1 = p — 1 is never divisible by p, so it suffices to restrict our attention to odd
primes that do not divide Ag. We thus define D:=2A¢A}(f) and treat all primes p < N
that do not divide D using an average polynomial-time approach and handle good primes
p | D as special cases via Remark 5.20 below. The primes p | D are bounded by a constant
that does not depend on N, thus the time spent handling the good p | D has no impact
on the complexity of our algorithm as a function of N (and it is completely negligible in
practice).

Remark 5.20 For primes p | D where f has good reduction we can compute the Cartier—
Manin matrix directly from its definition, but we can more efficiently treat p { AJ(f) by
simply applying Algorithm 5.16 to the nondegenerate reduction of f modulo p. In our
implementation we do the same for good primes p | Aj(f) greater than 3 by applying a
random linear transformation to the reduction of f modulo p until we obtain a nonde-
generate polynomialf € Fp[xo, x1, x2] that defines an isomorphic curve. For p > 3 such a
nondegenerate polynomial is guaranteed to exist by Proposition 3.2 of [7], and in practice
we can find one quickly. Note that we have assumed f (xo, x1, x2) = 0 is a model for X that
is smooth a p, but if not, replace f modulo p with the reduction of a model for X that is
smooth at p.

Before describing our average polynomial-time algorithms to compute A4, for p < N
coprime to D, we briefly recall some background material on remainder trees and forests.
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Given a sequence of integer matrices My, ..., My—_1 and a sequence of coprime integers
my, . . ., my—1 we wish to compute the following sequence of reduced partial products for
0<k<N:

Pr:=My - - - M mod my.
Let M_1:=My:=my:=1, and for 0 < k < N/2 let M;:=Mp_1 Moy and mj:=mymopy1.
If we now recursively compute P;:=M---M; mod m;, = M- -- My mod marmaj 1
for 0 < k < N /2, we can then compute

Py =Py mod mye  and  Popyy = PyMyryq mod migy .

Unwinding this recursion yields the REMAINDERTREE algorithm described in [21].

The REMAINDERFOREST algorithm in [22] reduces the time and (especially) the space
needed by splitting the remainder tree into 2“-subtrees, for a suitable choice of «. In
[21,22,35] the REMAINDERFOREST algorithm is used to compute the sequence of vectors
Vie=VoM - - - My mod my, using vector-matrix multiplications to carry results from one
subtree to the next, but it can also be used to compute Py = IMj - - - M mod my using
the same approach. Below we record a special case of [22, Theorem 3.3], in which || M|
denotes the logarithm of the largest absolute value appearing in the nonzero matrix Mj.

Theorem 5.21 Fix a constant ¢ > 0. Let N be a positive integer, let my, ..., my_1 be
positive coprime integers withlog [ [f_o mx < cnfor2 < n < N, let My, ..., Mn—_1 € Z"™"
be nonzero integer matrices with r < clogN and ||M;| < clogN. We can compute the
matrices

k
Py:= l_[M,- mod 1
i=0

for0 < k < N in O(r*N logSN) time using O(r>N) space.

Proof We apply [22, Thm. 3.3] with k:=[2log, log, N|, B =cN,B' =1, H = clogN.
We use M(n) = O(nlogn) from [19] and note that replacing M(n) with nlogn in the
statement of [18, Lem. 4] allows us to omit the last step of the proof where the hypothesis
that M(n)/(nlog n) is increasing is used and remove that hypothesis.

Provided logr = O(log B), the complexity of multiplying » x r matrices with B-bit
entries is O(r>Blog B + r®Bloglog B), where w < 3 is the exponent of matrix multipli-
cation. We have r = O(log B), so this is O(r?Blog B) = O(r*>N log N), which we may
substitute for [22, Lem. 3.1] in the proof of [22, Thm 3.3]. The cost of replacing vector-
matrix multiplications with matrix multiplications as we transition from one subtree to the
next is asymptotically negligible: we may reduce modulo m:= ]_[]k\[;o1 my throughout and
perform O(2°) = O(lo,c:,r2 N) matrix multiplications with O(N)-bit entries, each involving
O(r>N log N) bit operations. O

Algorithm 5.22 Given f € Z[xo, ¥1, x2]4 with A}(f) # 0 and a positive integer N,
compute the Cartier—Manin matrices A, of the reductions of the smooth plane quar-
tic X : f (o, x1, ¥2) = 0 modulo primes p < N of good reduction for X as follows:

(1) Use the ReMAINDERFOREsST algorithm to compute Cp = [],_;. ;50 M(j) mod p for
primes p < N with p { D using the matrices M;:=M(—2 — i) € Z'®*1¢ and moduli
m;:=i+ 2 when i + 2 is a prime p t D and with m;:=1 otherwise, for 0 <i < N — 1.
The matrices M; and moduli m2; should be dynamically computed as needed.
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(2) For each C, computed in (1) apply Algorithm 5.10 with input f mod p and C, to
compute A,. This step should be interleaved with step (1), computing the rele-
vant A, in batches as the REMAINDERFOREST algorithm completes each subtree.

(3) For p < N of good reduction dividing D compute A, via Remark 5.20.

Note that for primes p < N that do not divide D we have

p—2 p—2
Py, p = HMi mod m,_y = HM(—2 — i) mod p
i=0 i=0
p—2
= HM(p —2—i)= ]_[ M(j) = C, mod p, (5.23)
i=0 p—1>j2>0

thus step (1) of Algorithm 5.22 computes exactly the matrices C, that are needed in step
(2).

Remark 5.24 Lemma 3.13 and Corollary 4.21 imply that each integer matrix product
MM is divisible by A¢. In our implementation of Algorithm 5.22 we precompute As and
remove it from each matrix product computed during the REMAINDERFOREST computation
in step (1). This changes the output P,_» mod p by a factor of Alg_z, and we divide once
more by Ag to obtain the desired matrix C,, since )fg_l = 1 mod p (note that A | D so
P 1 Ae). This does not change the complexity of the algorithm, but it reduces the sizes
of the matrix coefficients in every layer of the product tree above the leaves by roughly a
factor of 2, which yields a significant constant factor speedup (more than a factor of 2 in
our tests).

Remark 5.25 Asin Remark 5.17, we may also consider an uncompressed version of Algo-
rithm 5.22 that instead computes 28 x 28 matrices L/, mod p and uses Remark 5.12 to
compute the Cartier—Manin matrices A,. In this uncompressed version we are not able
to apply the optimization noted in Remark 5.24.

Remark 5.26 Algorithms 5.16 and 5.22 can be modified to more efficiently handle smooth
plane quartics of the form f (xo, x1, x2) = x -+ h(x1, x2)x3 + g(x1, x2). In this casefvp_l -0
whenever v is odd, and for p > 2 this implies that the Cartier—Manin matrix A, € IF;XB
has at most five nonzero entries: the four corners and the center. The center corresponds
to the 1 x 1 Cartier—Manin matrix of the genus 1 curve x(z) = h(x1, x2)> — 4g(x1, x2) which
can be computed via [22] using 4 x 4 matrices. Restricting the domain and codomain of
£ £
T 42t +1)(e0—e1),01 © Twh2t(ep—e1),0,1
to the subspaces spanned by monomials with even degree in xy yields a matrix M €
R[£]'0*16, One finds that M can be compressed via a coordinate projection to a 10 x 10
matrix M’, and we compute Wp:=[],-3 ., , M(k) mod p as the product ofM(’%B) and
7 =Kk=
the zero extension of ]_[p%s>k>0 M'(t) mod p. The matrix W), can then be zero extended

tol, € IE‘I%SX% and used to compute the four corner entries of A, via Remark 5.17.
Theorem 5.27 Algorithm 5.22 runs in O(N logBN ) time using O(N) space.

Proof Theorem 5.21 implies that the complexity of step (1) is within the desired bounds.
Step (2) calls Algorithm 5.10 O(N/log N) times, which takes O(N log N loglog N) time
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using O(log N) space. The complexity of step (3) is asymptotically negligible, since D is
fixed as a function of N, and the theorem follows. O

To help assess the benefits of our new recurrences, we also implemented an algorithm
that uses the recurrences derived in [17] to compute the Cartier—Manin matrix A, of a
smooth plane quartic X : f(xo, x1, x3) = O (or its reduction modulo p when R = Z). If one
applies [17, Thm.4.1] withn =2, d =4,s=1,h=d - 1)n+1)+1=10,kg=p — 1,
and w = v+ z with z = (0, 0, 6) € Dj,_4, one obtains a matrix Q € R[k, []%0*%° that can be
used to compute f* 1|51, 1) for any v € Dy via

P prsaio) = m()(p —Lp—2Qp-1p—3)---

QW = 1,0)g" M piuiz0p (5.28)

where g(xo, x1, x2) = xg + x‘f + x%. The algorithm in [17] uses the matrix Q to compute
a matrix M; which is then used to compute the matrix A% that appears in the trace
formula [17, Thm. 3.1], but the Cartier—Manin matrix A, can be computed directly from
(5.28), and it suffices to compute the product M(p — 2)M(p — 3) - - - M(0) mod p, where
M(j):=Q(—1, j); the algorithm in [17] works modulo p?> when s = 1, but that is not
necessary here. This product does not depend on v € Dy, so it suffices to compute a single
matrix product and then apply (5.28) using v = (1, 1, 2), (2, 1, 1), (1, 2, 1); this yields three
vectors in IE*‘[676, each of which contains three entries that correspond to a column of A,.
Having reduced the problem to computing ]_[p_1>j>0M(j) mod p we immediately
obtain algorithms to compute A, with the complexities given in Theorem 5.18 for R = I,
and for R = 7Z we obtain an average polynomial-time algorithm with the complexities
given in Theorem 5.27 using a remainder forest. The difference in the size of the matrices
(66 versus 28 or 16) only impacts the constant factors, which we consider in the next

section.

Remark 5.29 There is an additional optimization that we exploit in our implementation
of the average polynomial-time algorithm based on [17, Thm. 4.1]. In the remainder forest
algorithm, rather than computing the 66 x 66 matrix Py = My - - - My mod my we instead
compute the 3 x 66 matrix Py = VoM - - - My mod my, where Vp is a 3 X 66 matrix with
entries in {0, 1} and zeros in all but one entry of each row. This optimization is possible
because we only need 3 rows of the matrix product to compute A,. This optimization is
not applicable in the context of Algorithm 5.22 because we need to invert the reduced
matrix products in order to compute the middle column of A, via Algorithm 5.10.

A demonstration version of the O(p) and average polynomial-time versions of all three
approaches (compressed, uncompressed, and the algorithm based on [17, Thm. 4.1]) writ-
ten in the SageMath computer algebra system [28] is available at [10]. The optimized C
implementation whose practical performance is analyzed in the next section will be part
of the next release of the open source smalljac software library [24].

6 Performance comparisons

In this section we compare the practical performance of our new algorithms to each
other, and to existing implementations, both for computing the Cartier—Manin matrix
of a smooth plane quartic over I, (see Table 1), and for computing the Cartier—Manin
matrices of the reductions of a smooth plane quartic over Q at good primes p < N for
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some bound N. Table 2 compares the new average polynomial-time algorithms to each
other and Table 4 compares them to average polynomial-time algorithms for other types
of genus 3 curves.

We first consider 5(p) and 5(p1/ 2) implementations of the compressed and uncom-
pressed versions of Algorithm 5.16 (denoted Algorithm 5.16¢ and Algorithm 5.16u below)
as well as 5(p) and 5([)1/ 2) implementations of the approach based on [17, Thm.4.1]
described at the end of the previous section (denoted [17] (optimized) below). We com-
pared the performance of these six algorithms to each other, and to the following existing
algorithms:

+ In [8] Costa gives an 6(p)—time p-adic algorithm for computing the matrix of Frobe-
nius to a specified p-adic precision, which can be used to compute the Cartier—Manin
matrix of a smooth plane quartic. This algorithm is available at [9].

o The smalljac software library [24] includes a naive point-counting algorithm for
plane projective curves X : f(xo, x1, x2) = 0 that computes

#X(Fp) = /P00 #{t € F1f (£0,1) = 0} + Y #{t € Fp : f(t1,a) = 0} (6.1)
acFy
via the identity #{t € I, : g(t) = 0} = deggcd(g(¢), ¥ — t) (valid for g # 0), in
O(plog?plog log p) time using O(log p) space.
« For smooth plane curves the RationalPoints function in Magma [4] uses an
O(p log?p log log p)-time algorithm to enumerate rational points over Fp.

The last two algorithms only compute #X(IF,,), they do not compute the Cartier—Manin
matrix A,, which provides additional information about X, including the reduction of its
zeta function modulo p and the p-rank of its Jacobian. Magma includes an implementation
of Tuitman’s algorithm [36] that computes the entire zeta function in (~)(p) time, but the
constant factors make it more than 100 times slower than the three O(p) algorithms listed
above in the ranges we tested, so we chose not to include it in our comparison.

We ran each of these 9 algorithm on smooth plane quartics defined by dense polynomials
f € Fplxo, x1, %214, taking p to be the first prime larger than 2" for » = 10,11, .. ., 30. The
running times for each algorithm can be found in Table 1, in which the complexity bounds
in the column headings ignore O(log log p) factors.

Each of the three 5(p1/ 2) algorithms is substantially faster than the existing approaches,
as one would expect given the asymptotic advantage. For p ~ 23° Algorithm 5.16c appears
to be faster than Algorithm 5.16u by factor of about 3, which in turn appears to be faster
than [17] (optimized) by a factor of almost 8. The factor of 3 ~ (28/16)? is as expected,
while the factor of 8 > 5.6 & (66/28)” is larger than one might expect; this is likely
due to the fact that p is not large enough for the O(r®p'/?log ploglog p) term in the
complexity bound from [5] to become completely negligible. All three implementations
use the smalljac library [24], which includes an implementation of the algorithm in [5]
built on the zn_poly library [16], which is used for fast cache-friendly multiplication in
IFp [x]. B

The relative performance of the O(p) implementations of Algorithm 5.16 is perhaps
more surprising: Algorithm 5.16u outperforms Algorithm 5.16¢ by a wide margin. This is
explained by the fact that in our O(p) implementation of Algorithm 5.16u we exploit the
shape of the 28 x 28 matrices M(¢) defined in Remark 5.17: as can be seen from (4.12),
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Table 1 Algorithms for smooth plane quartics over IFp,. Times in 5.2GHz Intel i9-12900K
core-seconds. Complexities ignore O(log log p) factors. The point counting computations only
determine the trace of the Cartier—-Manin matrix

Cartier-Manin matrix point counting
Algorithm 5.16¢ Algorithm 5.16u [17]1(optimized) [Blhalljac magma
p p'?log’p plogp p'*log’p plogp p'/?log’p plogp plogp plog’p  plog’p

21047 0.003 0.001 0.002 0.000 0.022 0.001 0.014 0.000 0.000
245 0.003 0.001 0.003 0.000 0.029 0.003 0.017 0.001 0.010
21243 0.004 0.002 0.004 0.000 0.041 0.006 0.023 0.001 0.020
213417 0004 0.004 0.006 0.001 0.056 0.011 0.035 0.002 0.040
24427 0005 0.009 0.008 0.002 0.081 0.023 0.058 0.004 0.070
21543 0.006 0.017 0.012 0.003 0113 0.047 0.112 0.008 0.140
216 41 0.008 0.033 0.018 0.006 0.175 0.089 0.192 0.023 0.300
27 429 0011 0.066 0.028 0.012 0.255 0.184 0.372 0.039 0.620
218 43 0.017 0.130 0.047 0.024 0.402 0.368 0.718 0.078 1.23
219421 0025 0.263 0.072 0.047 0.598 0.735 1.43 0.158 2.62
2047 0.039 0.527 0.119 0.092 0.956 1.41 2.84 0.324 5.50
221417 0060 1.05 0.186 0.188 1.47 2.84 5.65 0.740 114
222415 0.100 211 0.318 0.370 241 5.65 11.3 1.47 239
2249 0.154 4.15 0.488 0.736 3.69 11.8 22.6 2.93 48.3
224 443 0269 843 0.858 1.46 6.26 234 44.9 6.44 99.3
225 435 0421 16.6 1.35 2.93 9.73 45.2 89.9 13.6 201
226415 0735 337 2.36 5.83 16.8 90.4 180 26.9 723
227429 116 66.4 3.68 11.7 274 188 360 54.5 1530
2243 1.95 135 6.14 234 44.5 361 719 114 3080
229411 290 265 9.04 46.7 68.5 750 1440 230 6430
23043 4.89 539 15.1 93.1 119 1480 3130 465 13600

it has only 7 - 22 + 21 = 165 < 256 = 162 nonzero entries. As noted in Remark 5.19, in
our O(p) implementation we iteratively compute matrix-vector products, which lets us
exploit the sparsity of the uncompressed M(t) (the compressed matrices are not sparse).
Additionally, the uncompressed M(¢) have degree 1 rather than 2, which provides a further
speedup.

We also analyzed the performance of the three average polynomial-time algorithms
introduced in this paper: the compressed and uncompressed versions of Algorithm 5.22
and the algorithm based on [17, Thm.4.1]. Table 2 lists the total time and space, and
average time per prime, to compute the Cartier—Manin matrices of the reductions mod-
ulo p of a fixed smooth plane quartic curve over Q for good primes p < N = 2" for
n = 10,11,...,23. We used a dense polynomial f € Z[xo, 1, x2]4 with small (single
digit) coefficients as input to all three algorithms. The parameter « that determines the
number 2° of trees in the remainder forest was chosen to optimize the running time;
for N = 218,...,2%3 this led us to use k = 6 for both versions of Algorithm 5.22 and
k = 7 for the algorithm based on [17, Thm. 4.1], which is close to the asymptotic value
k = |2log, log,N | used in Theorem 5.21.

Remark 6.2 For the algorithm based on [17, Thm.4.1], at small values of N the optimal
value of « is actually log, N, meaning that each “tree” in the forest consists of a single
matrix. This choice of k leads to an O(N2) time complexity but is advantageous for
small values of N because it allows the algorithm to avoid full matrix multiplications via
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Table 2 Average polynomial-time algorithms for smooth plane quartics over Q with small
coefficients. Times in 5.2GHz Intel i9-12900K core-seconds

Algorithm 5.22¢ Algorithm 5.22u [17] (optimized)
N seconds ms/p GB seconds ms/p GB seconds ms/p GB
210 0.060 0.355 0.042 0.151 0.903 0.033 0.092 0.550 0.034
21 0.135 0.444 0.043 0.395 1.30 0.035 0.219 0.719 0.034
212 0.280 0.500 0.044 1.12 2.01 0.035 0.592 1.06 0.034
213 0.648 0.633 0.047 3.60 3.51 0.036 1.84 1.80 0.035
214 1.47 0.774 0.053 7.00 3.69 0.077 6.66 3.34 0.035
215 3.62 1.03 0.067 15.9 4.54 0.123 24.2 6.89 0.037
216 8.08 1.24 0.088 36.9 5.65 0.217 74.4 11.4 0.040
217 19.2 157 0.131 85.2 6.96 0410 252 20.5 0.071
218 44.8 1.95 0.223 192 837 0.805 676 29.4 0.910
219 106 2.44 0413 437 10.1 1.63 1680 38.6 2.38
220 241 2.94 0.790 991 12.1 3.29 4100 50.0 491
221 543 3.49 1.57 2230 14.3 6.73 10800 69.3 10.1
222 1260 4.26 3.20 5040 17.0 13.8 29900 101 20.9
223 2950 523 6.57 11400 20.3 284 88200 156 43.2

Remark 5.29. This explains the rapid growth in the running times for this algorithm for
N < 2%

In addition to «, the memory used by our algorithms is influenced by the matrix dimen-
sions and the size of the matrix coefficients. To get a better understanding of these param-
eters, we analyzed the computation of a single product tree in the middle of a remainder
forest with N = 22* and x = 6 for all three algorithms. The results are shown in Table 3,
in which one can see the growth in the size of the matrix coefficients at each level of
the product tree in the “KB/entry” columns, the total size of all the matrices in each
level in the “MB” columns, and the total time per level. The decrease in the total size of
the matrices in the first few layers of the product tree for Algorithm 5.22c is explained
by Remark 5.24.

Remark 6.3 Inour implementation we use the algorithm for integer matrix multiplication
described in [18]. As explained in the proof of Theorem 5.27, this algorithm computes the
product of r x r matrices with b-bit entries in time O(r*blog b + rblog log b), provided
that log 7 = O(log b). This becomes O(r%blog b) when b is large relative to r, as in the
context of Theorem 5.21 where we have r = O(log B), and in Theorem 5.27 where r =
O(1). But for the small values of b that arise in the lower levels of the product tree the
constant factors make this approach less efficient than naive matrix multiplication, so we
use the algorithm of [18] only once it becomes faster to do so. These crossover points are
indicated by thin horizontal lines in Table 3. Given that r is fixed in all the algorithms we
consider, we made no attempt to achieve the optimal value of w in our implementation;
doing so might have improved the relative performance of the algorithm with » = 66 in
the range we tested.

In Table 3 one can see that the matrix coefficient sizes roughly double in each level
while the number of matrix products is cut in half, and the total size of the products in
each level is essentially constant in the top half of each tree. Asymptotically, the time to
build each layer of the product tree is quasilinear in the total size, so for sufficiently large
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Table 3 Computation of a product tree in the middle of a remainder forest with N = 2% and x = 6
involving the product of N/2¢ = 2'8 r x r matrices. The "MB” columns list the total size of the
products in megabytes. Horizontal lines indicate matrix multiplication algorithm crossovers. Times in
5.2GHz Intel i9-12900K core-seconds

Algorithm 5.22¢ (r = 16) Algorithm 5.22u (r = 28) [17] (optimized) (r = 66)
products  KB/entry ~MB seconds KB/entry  MB seconds KB/entry ~ MB seconds
2l 0.014 457 291 0.005 469 6.62 0.003 1890 87.2
216 0.029 470 2.95 0.015 776 6.21 0.009 2508  70.7
215 0.055 449 2.28 0.039 989 7.37 0.019 2624 535
214 0.103 420 2.44 0.079 996 7.07 0.038 2679  36.3
213 0.198 406 2.62 0.159 999 8.68 0.078 2708 318
212 0.389 399 3.58 0319 1001 13.2 0.156 2723 46.0
21 0.772 395 3.71 0.639 1002 14.4 0313 2730 736
210 1.54 393 3.44 1.28 1003 13.6 0.628 2734 79.6
2° 3.07 392 3.39 256 1003 14.0 1.26 2736 776
28 6.13 392 3.43 512 1003 14.1 2.51 2737 768
27 12.2 392 3.51 10.2 1003 14.4 5.03 2737 765
26 24.5 392 3.81 20.5 1003 15.0 10.1 2737 779
2° 49.0 392 3.90 40.9 1003 15.2 20.1 2738  80.0
24 97.9 392 4.05 819 1003 15.5 40.2 2738  80.8
23 196 392 4.18 164 1003 16.0 80.4 2738 820
2? 392 392 4.37 328 1003 16.5 161 2738 841
2 783 392 4.52 655 1003 17.1 322 2738 857
1 1570 392 5.80 1310 1003 21.0 644 2738 964

N /2 one would expect the relative running times of the three algorithms in the top half
of the tree to approach the ratios of these total sizes, which are roughly 1 : 2.6 : 7.0 for the
algorithms with » = 16, 28, 66, respectively. The ratios of the actual times to build these

trees for N = 224

are approximately 1 : 3.6 : 20.0, a discrepancy that is likely explained by
lower order complexity terms involving r® and the greater frequency of cache misses for

larger total bit sizes.

Remark 6.4 Table 3 only captures the cost of building a product tree in the remainder
forest, which is less than half the total running time (for the time-optimal value of «).
The other phases of the algorithm (transferring information between product trees and
computing remainders down the trees) involve computations on matrices that one can
assume have been reduced modulo m, where m is either the product of all remaining
moduli, or the product of the moduli in some subtree. The values of m will be the same
in all three algorithms, so one would asymptotically expect the relative costs of these
phases to converge to the relative ratios of 2r2 for r = 16,28 and 3r + r2 for r = 66 (via
Remark 5.29), which are 1 : 3.1 : 8.9.

Remark 6.5 As in Table 2, the data in Table 3 reflects a curve with small coefficients,
which is the case we expect to most often arise in practice (as in [34], for example). To
assess the performance of our algorithms on curves with larger coefficients we also tested
random curves with 10 and 100 digit coefficients with N = 224 using x = 8 and x = 10.
As in Table 3, the total size of the matrix products at each level stabilizes in the top
half of the product tree, as do the relative running times. For 10-digit coefficients the
relative size ratios are 1 : 2.8 : 2.7 and the time ratios are 1 : 3.5 : 6.0 (for the algorithms
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Table 4 Average polynomial-time algorithms for various genus 3 curves over Q with small
coefficients. Times in 5.2GHz Intel i9-12900K core-seconds

N plane geometrically rationally 2-cover of a 3-cover 4-cover
quartic hyperelliptic hyperelliptic genus 1 curve of P! of P!
210 0.058 0.053 0.007 0.021 0.006 0.006
2N 0.158 0.069 0.008 0.035 0.007 0.007
212 0.281 0.126 0.011 0.070 0.008 0.008
213 0.638 0.294 0.022 0.139 0.013 0.012
214 1.49 0.724 0.065 0.326 0.030 0.028
21° 343 212 0.222 0.742 0.086 0.089
216 8.00 542 0.829 1.77 0.333 0.285
217 19.1 124 3.25 424 0.882 0.760
218 44.6 29.6 10.0 101 238 215
219 105 69.5 24.4 242 6.67 548
220 241 168 55.6 57.2 153 122
22! 543 388 133 133 36.1 296
2% 1260 921 320 315 87.6 72.0
223 2950 2160 746 748 214 173
2% 6840 4860 1760 1750 514 410
2% 15600 11200 4120 4050 1220 975
2% 35600 26000 9560 9370 2880 2350

with 7 = 16, 28, 66, respectively), and for 100-digit coefficients the relative size ratios are
1:2.7: 1.8 and the time ratios are 1 : 2.4 : 2.7 (as noted above, these ratios are relevant
only to the build phase).

Finally, we compared the performance of Algorithm 5.22c to average polynomial-time
algorithms that are applicable to various types of genus 3 curves over Q, including:

+ The algorithm in [20] for computing Cartier—Manin matrices of reductions of a
geometrically hyperelliptic curve of genus 3 defined over Q with a model of the form
2%, 2) = 0, w? = f(x, 9, z), where g is a pointless conic and deg f = 4.

+ The algorithm in [22] for computing Cartier—Manin matrices of reductions of a
hyperelliptic curve over Q, applied to a genus 3 curve y> = f(x) with deg f = 8, which
is a 2-cover of P1.

+ The algorithm in [35] for computing the Cartier—Manin matrices of reductions of
superelliptic curves y”* = f(x) over Q applied to genus 3 curves of the form y> = f (x)
and y* = f(x) with deg f = 4 (the case y> = f(x) is a Picard curve).

+ The algorithm for smooth plane quartics of the form x* + h(y, z)x*> = f(y, z) (these
are degree 2 covers of genus 1 curves) described in Remark 5.26.

The results appear in Table 4, which reflects curves defined by dense polynomials with
random single digit coefficients. All of these implementations use the REMAINDERFOREST
algorithm and the same libraries for multiplying polynomials and matrices over F, and Z,
based on [16] and [18]. None of these computations required more than 64GB memory,
but the computations for smooth plane quartics were the most memory intensive.
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