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Abstract
We identify locally D-optimal designs for binary data when a generalized linear 
model with multiple continuous covariates whose values can be selected at the 
design stage. Yang et al. (Stat Sin 21:1415–1430, 2011) provided an explicit form 
for D-optimal designs when there are no interaction effects between the design vari-
ables. After providing an alternative proof of that result, we generalize the result 
by identifying D-optimal designs for models with interactions between the design 
variables that satisfy the strong effect heredity principle. We also employ orthogonal 
arrays to obtain more practical D-optimal designs with a smaller support size.
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seminal contributions, namely orthogonal arrays.
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Introduction

Generalized linear models (GLMs) with multiple covariates have applications in 
many fields. While analysis of such data has received a considerable amount of 
attention (Agresti 2013), the optimal design of experiments literature for such prob-
lems when the covariates are design variables is rather sparse (cf. Khuri et al. 2006). 
Most efforts to obtain optimal designs for these types of problem are computational 
(cf. Lukemire et al. 2019) and are derived on a case-by-case basis for specific situ-
ations. There are some exceptions to this. For example, optimal designs for binary 
response experiments with two design variables are studied in Sitter and Torsney 
(1995b) and with more than two design variables in Sitter and Torsney (1995a) and 
Kabera and Haines (2012). D-optimal designs for Poisson regression models have 
been investigated in Russell et al. (2009). Unless the design space is restricted, infor-
mation matrices for the parameters for models with two or more design variables 
can be made arbitrarily large (Sitter and Torsney 1995a). To avoid this, each variable 
could, for example, be restricted to a bounded interval. Assumptions like this are 
natural in many applications; for example, in a clinical study, a very high dose level 
may cause serious side effects, and a very low dose level may not have any effect. 
Therefore, we can restrict the range of dose level to a certain acceptable interval. For 
the main effects model, Yang et al. (2011) made such an assumption for p − 1 of the 
p design variables. With that assumption, and for GLMs with the logistic or probit 
link function and multiple design variables, they obtained explicit formulas for a 
large class of optimal designs, including D-, A-, and E-optimal designs.

Using the same setup as in Yang et al. (2011), we consider the following model 
for subject i:

where Yi and (xi1, xi2,… , xip) are the response and the p design variables, while P(⋅) 
is a cumulative distribution function. The first p − 1 design variables are assumed to 
be bounded, with xij in the interval [Lj,Uj] , 1 ≤ j ≤ p − 1 . The pth design variable is 
unrestricted. Therefore, the design space is

Additionally, we assume that interaction terms, if any, do not include the pth design 
variable. The set Ht includes the subsets of size t from {1,… , p − 1} for which 
the corresponding t-way interaction is included in the model. For the main effects 
model, the sets Ht are empty, and the summation term in (1) would vanish.

The restrictions that one design variable is unbounded and that this variable is not 
involved in any interaction are purely technical.

In “Optimal designs for the main effects model” , we will provide an alter-
native proof of the theorem in Yang et  al. (2011) which describes the structure 
of locally D-optimal designs for the main effects model. Using the mathematical 

(1)

Prob(Yi = 1) = P(�0 + �1xi1 +⋯ + �pxip

+

p−1∑
t=2

∑
(l1,l2,⋯,lt)∈Ht

�l1l2⋯lt
xil1xil2 ⋯ xilt )

(2)� = [L1,U1] ×⋯ × [Lp−1,Up−1] × (−∞,∞).
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elegance of this alternative proof, in “Optimal designs for interaction models”, 
we obtain optimal designs for certain interaction models. Additional results for 
obtaining smaller D-optimal designs using orthogonal arrays are presented in 
“Smaller optimal designs using orthogonal arrays”, followed by a brief discussion 
in “Summary and discussion”.

Optimal Designs for the Main Effects Model

It will be convenient to make a slight change in notation. In “Introduction”, for 
subject i, we can write the design point as x

i
= (xi1,… , xip) and the row in the 

model matrix as x̃
i
= (1, xi1,… , xi,p−1,… , xil1 ⋯ xilt ,… , xip)

T , where we only 
include interactions that are in the model. So, the subscript i stands for the ith 
subject. While this notation is convenient for presenting the model, in what fol-
lows, we will use i to represent the i-th distinct support point in a design. We 
make this change to facilitate our discussion about designs. We use ni to denote 
the number of subjects assigned to the ith design point. A collection of x

i
 ’s and 

the corresponding ni’s, where 
∑

i ni = n , is called an exact design with n obser-
vations. Finding optimal exact designs (by finding the best choices for the x

i
 ’s 

and ni ’s for a given n) is typically a difficult problem due to the discrete nature 
of the ni’s. As is common in the optimal design literature, we instead work with 
approximate designs. An exact design is converted to an approximate design by 
replacing each ni by the weight wi = ni∕n . In searching for optimal designs we 
allow the wi ’s to take any non-negative values that sum to 1. Then, an approxi-
mate design can be written as � = {(x

i
,wi), i = 1,… , k} , wi > 0 , 

∑
i wi = 1 , where 

k is the number of support points of � . An optimal (approximate) design chooses 
values of k, the wi ’s and the x

i
 ’s that optimize a specified objective function or 

optimality criterion.
For model (1), the parameter vector is � = (�0, �1,… , �p−1,… , �l1⋯lt

,… , �p)
T . 

Define ci = x̃
i

T
𝜷 and c̃

i
= (1, xi1,… , xi,p−1,… , xil1 ⋯ xilt ,… , ci)

T . Then, with 
the assumption that �p ≠ 0 , there is a one-to-one relationship between x̃

i
 and 

c̃
i
 . The approximate design � = {(x

i
,wi), i = 1,… , k} can also be written as 

� = {(ci,wi), i = 1,… , k} , where ci = (xi1,… , xi,p−1, ci).
In this paper, we focus on D-optimality. A design � is called locally D-optimal 

for � if it maximizes the determinant of the information matrix,

among all designs for a given � . In the remainder of this section, we assume that 
model (1) only contains main effects, so that x̃

i
= (1, xT

i
)T . Theorem 2 of Yang et al. 

(2011) provides in that case an explicit expression for locally D-optimal designs for 
� . We restate their result for D-optimality in the following theorem and provide an 
alternative proof.

(3)I� =

k∑
i=1

wiΨ(x̃i
T
𝜷)x̃

i
x̃
i

T ,
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Theorem  1  (See Theorem  2 of Yang et  al. 2011) For the logistic and probit link 
functions, if model (1) only contains main effects, the design space is given by � in 
(2), and �p ≠ 0 , then a D-optimal design for � is given by

where c∗
l1
= (hl1,… , hl,p−1, c

∗)T and c∗
l2
= (hl1,… , hl,p−1,−c

∗)T . Here hlj is either Lj 
or Uj , (hl1,… , hl,p−1), l = 1,… , 2p−1 cover all possible combinations, and c∗ maxi-
mizes c2(Ψ(c))p+1 where Ψ is defined as

Proof  Transforming to a canonical form of the original design problem (see Ford 
et al. 1992, Atkinson and Haines (1996) and Torsney and Gunduz (2001)), for each 
of the first p − 1 design variables we define

so that vi ∈ [−1, 1], i = 1,… , p − 1 . For convenience, write ai = (Ui + Li)∕2 and 
bi = (Ui − Li)∕2 , so that vi =

xi−ai

bi
 . We also define vp = x̃

T
𝜷 = c and write 

v = (v1, v2,… , vp)
T.

For an arbitrary design point x ∈ � and the corresponding model vector 
x̃ = (1, xT )T , we have

where ṽ = (1, vT )T and

is a (p + 1) × (p + 1) nonsingular matrix.
The mapping from x to v induces a one-to-one mapping from a design � in the 

original variables to a design

The induced design space 𝜒v = {v ∶ Bx̃ = ṽ, x ∈ 𝜒} = [−1, 1]p−1 × [−∞,∞] . With 
M�v

=
∑k

i=1
wiΨ(ci)ṽiṽi

T , it follows from (3) that the information matrix for � under 
design � is

�∗ =
{(

c
∗

l1
,
1

2p

)
and

(
c
∗

l2
,
1

2p

)
, l = 1,… , 2p−1

}
,

(4)Ψ(x) =

{
ex

(1+ex)2
, for the logistic link

[Φ�(x)]2

Φ(x)(1−Φ(x))
, for the probit link

.

(5)vi =
xi − (Ui + Li)∕2

(Ui − Li)∕2
,

(6)Bx̃ = ṽ,

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 ⋯ ⋯ ⋯ 0

−a1∕b1 1∕b1 0 ⋯ ⋯ 0

−a2∕b2 0 1∕b2 0 ⋯ 0

⋮

−ap−1∕bp−1 0 ⋯ 0 1∕bp−1 0

�0 �1 �2 ⋯ �p−1 �p

⎞⎟⎟⎟⎟⎟⎟⎠

�v =

{
v
1

v
2
⋯ v

k

w1 w2 ⋯ wk

}
.
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As a result, det(I�) = det(B−1)2 ⋅ det(M�v
) , meaning that maximizing det(I�) on � is 

equivalent to maximizing det(M�v
) on �v . Once we obtain an optimal design �∗

v
 , we 

may transform it back to �∗ by mapping v back to x . So from now on, we will focus 
only on designs �v on the induced design space �v.

The putative optimal design �∗ in Theorem  1 corresponds to 
�∗
v
= {(c̃∗

l1
,
1

2p
) & (c̃∗

l2
,
1

2p
), l = 1,… , 2p−1} , where c̃

∗

l1
= (h̃l1,… , h̃l,p−1, c

∗)T 
and c̃

∗

l2
= (h̃l1,… , h̃l,p−1,−c

∗)T . Here h̃lj is either −1 or 1 and 
(h̃l1,… , h̃l,p−1), l = 1,… , 2p−1 cover all possible combinations.

Therfore, to show the D-optimality of �∗
v
 on �v , we apply the equivalence theorem 

(see Kiefer and Wolfowitz (1960) and Kiefer (1974)) and all we have to show is that

where the equality is attained at the support points of �∗
v
.

Following a similar procedure as in the proof of Theorem  1 and Lemma 3 in 
Wang and Stufken (2020), we have

Since equality holds for each design point in �∗
v
 , it follows that �∗

v
 is D-optimal on the 

induced space �v . As a result, the proposed design �∗ is also D-optimal on the origi-
nal design space � which concludes the proof. 	�  ◻

The reason that we assumed xp to be unbounded is that we do not a priori know the 
values of x∗

p1
 and x∗

p2
 that correspond to −c∗ and c∗ . This depends on the value of � , so 

that the smallest interval that contains x∗
p1

 and x∗
p2

 is different for locally optimal designs 
for different values of � . If the design space for xp is bounded, then the design in Theo-
rem 1 is D-optimal provided that x∗

p1
 and x∗

p2
 are in the bounded interval for xp . If this is 

not the case, then the structure of the optimal design will be different.

Optimal Designs for Interaction Models

The alternative proof of Theorem 1 in “Optimal designs for the main effects model” 
assists in extending the result to models with interactions. We restrict attention to 
models that satisfy the strong effect heridity principle. By this we mean that when 

I𝜉 =

k∑
i=1

wiΨ(ci)B
−1
ṽ
i
ṽ
i

T (B−1)T

= B−1
[ k∑
i=1

wiΨ(ci)ṽiṽi
T
]
(B−1)T = B−1M𝜉v

(B−1)T .

(7)Ψ(c)ṽTI−1
𝜉∗
v

ṽ ≤ p + 1,

(8)
Ψ(c)ṽTI−1

𝜉∗
v

ṽ =
Ψ(c)

Ψ(c∗)

{
1 + v2

1
+⋯ + v2

p−1
+

c2

(c∗)2

}

≤
Ψ(c)

Ψ(c∗)
p +

c2Ψ(c)

(c∗)2Ψ(c∗)
≤ p + 1 , c ∈ (−∞,∞).



	 Journal of Quantitative Economics

1 3

a t-th order effect is included in the model, then all t′-th order effects (t� < t) must 
also be in the model. It turns out that D-optimal designs for model (1) have the same 
structure as in Theorem 1 under the assumption of strong effect heredity, but with a 
changed value of c∗ . We state the main result in the next theorem.

Theorem 2  For the logistic and probit link functions, if model (1) satisfies the strong 
effect heredity principle, the design space is given by � in (2), and �p ≠ 0 , then a 
D-optimal design for � is given by

where c∗
l1
= (hl1,… , hl,p−1, c

∗)T and c∗
l2
= (hl1,… , hl,p−1,−c

∗)T . Here hlj is either Lj 
or Uj , (hl1,… , hl,p−1), l = 1,… , 2p−1 cover all possible combinations, and c∗ maxi-
mizes c2(Ψ(c))r where Ψ is defined in (4) and r is the length of �.

Proof  The proof mimics that of Theorem 1, except that the elements of the canoni-
cal transformation in (6) are of a higher dimension. For instance, if x1x2 is the 
only interaction effect in the model, then x̃ becomes (1, x1, x2, x1x2, x3,… , xp) , 
ṽ = (1, v1, v2, v1v2, v3,… , vp) and matrix B will have an additional row and column 
as follows

In general, Eq. (8) becomes

and the result follows from the equivalence theorem by using Lemma 3 in Wang and 
Stufken (2020). 	�  ◻

Note that, without loss of generality, we implicitly assume in Theorem 1 that all 
main effects appear in the model. If a main effect is not in the model, then, due to the 
strong effect heredity principle, the corresponding design variable will not appear at 
all in the model and can be ignored. Hence, if the only interactions in the model are 
interactions of two variables, then the strong effect heredity assumption is automati-
cally satisfied. The need for the strong effect heredity assumption can be understood 

�∗ =
{(

c
∗

l1
,
1

2p

)
and

(
c
∗

l2
,
1

2p

)
, l = 1,… , 2p−1

}
,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ⋯ ⋯ ⋯ ⋯ 0

−a1∕b1 1∕b1 0 ⋯ ⋯ ⋯ 0

−a2∕b2 0 1∕b2 0 ⋯ ⋯ 0

a1a2∕b1b2 − a2∕b1b2 − a1∕b1b2 1∕b1b2 0 ⋯ 0

⋮

−ap−1∕bp−1 0 ⋯ ⋯ 0 1∕bp−1 0

�0 �1 �2 �12 ⋯ �p−1 �p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Ψ(c)ṽTI−1
𝜉∗
v

ṽ =
Ψ(c)

Ψ(c∗)

{
1 + v2

1
+⋯ + v2

p−1
+

L∑
t=2

∑
(l1,⋯,lt)∈Ht

( t∏
m=1

v2
lm

)
+

c2

(c∗)2

}

≤
Ψ(c)

Ψ(c∗)
(r − 1) +

c2Ψ(c)

(c∗)2Ψ(c∗)
, c ∈ (−∞,∞)
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by considering a model with an interaction of three variables, say x1x2x3 . With the 
mapping in (5), when expressed in vi’s, this term becomes a linear combination of 
v1 , v2 , v3 , v1v2 , v1v3 , v2v3 and v1v2v3 . In other words, the model in the vi ’s will need to 
satisfy the strong effect heredity principle. But in order for the two models to be the 
same, this must then also hold for the model in the xi’s.

We now illustrate Theorem 2 through the following example.

Example 1  Consider model (1) with the logistic link and 
x
i
T� = ci = �0 + �1xi1 + �2xi2 + �12xi1xi2 + �3xi3 . Assume that the first two design 

variables are restricted to [0, 2] and [−1, 1] , respectively, and that there is no restric-
tion on the third design variable. Then, according to Theorem 2, a locally D-opti-
mal design for � = (�0, �1, �2, �12, �3)

T = (1,−1, 0.5, 1, 1)T is shown in Table 1. The 
value c∗ maximizes c2(Ψ(c))4+1 , which is approximately 0.9254.

Smaller Optimal Designs Using Orthogonal Arrays

Theorem  2 provides a nice and simple structure for locally D-optimal designs 
for models that satisfy the strong effect heredity principle. However, the number 
of support points for these designs, which is 2p , will rapidly increase with p. For 
example, when p increases from 4 to 8, the support size increases from 24 = 16 
to 28 = 256 . The number of parameters to be estimated would typically be much 
smaller, so that designs with such large support sizes are not really necessary. 
Following Sitter and Torsney (1995a) and Wang and Stufken (2021), we now 
obtain smaller designs using orthogonal arrays (Rao 1946, 1947). An N × k array 
is called an orthogonal array with s levels and strength t if, for every N × t subar-
ray, all possible combinations of t symbols occur equally often as a row ( Hedayat 
et  al. (1999)). We denote such an array as OA(N, sk, t) , where “ sk ” indicates 
that there are k factors with s levels each. We only need arrays with s = 2 and, 
without loss of generality, denote the levels by 1 and 2. Furthermore, Hedayat 
(1989) (see also Hedayat (1990)) introduced the concept of OAs of strength t+ . 
An OA(N, sk, t+) is an OA(N, sk, t) that is not of strength t + 1 , but that has one 
or more subarrays which form an OA(N, sk� , t + 1) . Strength t+ arrays have also 
been recently employed in Wang and Stufken (2021). We now present our results 
for obtaining smaller D-optimal designs. Proofs are omitted because they follow 

Table 1   Support points and 
weights for a locally D-optimal 
design

Support points Weights Support points Weights

(0,−1,−1.4254) 1/8 (2,−1, 2.5746) 1/8
(0,−1, 0.4254) 1/8 (2,−1, 4.4254) 1/8
(0, 1,−2.4254) 1/8 (2, 1,−2.4254) 1/8
(0, 1,−0.5746) 1/8 (2, 1,−0.5746) 1/8
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along similar lines as those in Wang and Stufken (2021) for a related but different 
problem. The assumptions in the next Theorems 3 through 6 for the design space 
� and �p are the same as in Theorem 2.

Theorem  3  For p ≥ 3 , consider model (1) with the logistic or probit link and 
with only one interaction effect, say x1x2 . Let H be the collection of rows for an 
OA(N, 2p−1, 2+) with the property that columns (1,  2,  j), for all j ≥ 3 , form an 
OA(N, 23, 3) . Define

where c∗
l1
= (hl1,… , hl,p−1, c

∗)T and c∗
l2
= (hl1,… , hl,p−1,−c

∗)T . Here c∗ is as in The-
orem 2 with r = p + 2 , hlj is either Lj or Uj , and (hl1,… , hl,p−1), l = 1,… ,N cover 
all rows in H. Then

so that �1 is also a D-optimal design for �.

In Theorem 3, the number of support points is reduced compared to Theorem 2 
provided that N < 2p−1 , which is a choice that is typically possible. However, we 
still need two support points for each of the N combinations for the first p − 1 
design variables. The next theorem shows that when the orthogonal array has an 
additional 2-level column, it is possible to find even smaller optimal designs.

Theorem  4  For p ≥ 3 , consider the same model as in Theorem  3. Suppose an 
OA(N, 2p, 2+) exists with the property that the columns (1, 2,  j), for all j ≥ 3 form 
an OA(N, 23, 3) , and let H again denote the collection of its rows. Partition the rows 
of H into two collections, H1 and H2 , each of size N

2
 , depending on whether the final 

entry of the row is 1 or 2, respectively. Then delete that final entry from each row. 
Define

where c∗
l1
= (hl1,… , hl,p−1, c

∗)T and c∗
l2
= (hl1,… , hl,p−1,−c

∗)T . Here, c∗ is as in 
Theorem 3, hlj is either Lj or Uj , and (hl1,… , hl,p−1), l = 1,… ,N∕2 cover all rows in 
H1 and H2 for c∗

l1
 and c∗

l2
 , respectively. Then,

so that �2 is also a D-optimal design for �.

The next two results are for models with two 2-way interactions between 
design variables. Theorem 5 finds the optimal designs for a situation when there 
is a common design variable in these two interactions, whereas Theorem 6 does 
so when the four design variables in the two interactions are distinct.

�1 =
{(

c
∗

l1
,
1

2N

)
and

(
c
∗

l2
,
1

2N

)
, l = 1,… ,N

}

I�1 (�) = I�∗ (�),

�2 =
{(

c
∗

l1
,
1

N

)
, l = 1,… ,

N

2

}
∪
{(

c
∗

l2
,
1

N

)
, l = 1,… ,

N

2

}
,

I�2 (�) = I�∗ (�),
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Theorem 5  For p ≥ 4 , consider model (1) with the logistic or probit link with two 
2-way interaction effects that have a common design variable, say x1x2 and x1x3 . Let 
H be the collection of rows for an orthogonal array OA(N, 2p−1, 2+) with the prop-
erty that the columns (1, 2, j) and (1, 3, j), for all j ≥ 4 , form an OA(N, 23, 3) . Define

where c∗
l1
= (hl1,… , hl,p−1, c

∗)T and c∗
l2
= (hl1,… , hl,p−1,−c

∗)T . Here c∗ is as in The-
orem 2 with r = p + 3 , hlj is either Lj or Uj , and (hl1,… , hl,p−1), l = 1,… ,N cover all 
rows in H. Then

so that �3 is also a D-optimal design for �.

Moreover, suppose that an OA(N, 2p, 2+) exists with the property that the col-
umns (1, 2, j) and (1, 3, j), for all j ≥ 4 form an OA(N, 23, 3) . Form H1 and H2 as in 
Theorem 4. Define

where c∗
l1
= (hl1,… , hl,p−1, c

∗)T , c∗
l2
= (hl1,… , hl,p−1,−c

∗)T , and c∗ is as in the first 
part of this theorem. Here, hlj is either Lj or Uj , and (hl1,… , hl,p−1), l = 1,… ,N∕2 , 
cover all rows in H1 and H2 for c∗

l1
 and c∗

l2
 , respectively. Then

so that �4 is also a D-optimal design for �.

Theorem 6  For p ≥ 5 , consider model (1) with the logistic or probit link with two 
2-way interaction effects that do not have a common design variable, say x1x2 and 
x3x4 . Let H be the collection of rows for an orthogonal array OA(N, 2p−1, 2+) with 
the property that the columns (1, 2, j) and columns (3, 4, j), for all j ≥ 5 , form an 
OA(N, 23, 3) and columns (1, 2, 3, 4) form an OA(N, 24, 4) . Define

where c∗
l1
= (hl1,… , hl,p−1, c

∗)T and c∗
l2
= (hl1,… , hl,p−1,−c

∗)T . Here c∗ is as in The-
orem 2 with r = p + 3 , hlj is either Lj or Uj , and (hl1,… , hl,p−1), l = 1,… ,N cover all 
rows in H. Then

so that �5 is also a D-optimal design for �.

�3 =
{(

c
∗

l1
,
1

2N

)
and

(
c
∗

l2
,
1

2N

)
, l = 1,… ,N

}
,

I�3 (�) = I�∗ (�),

�4 =
{(

c
∗

l1
,
1

N

)
, l = 1,… ,

N

2

}
∪
{(

c
∗

l2
,
1

N

)
, l = 1,… ,

N

2

}
,

I�4 (�) = I�∗ (�),

�5 =
{(

c
∗

l1
,
1

2N

)
and

(
c
∗

l2
,
1

2N

)
, l = 1,… ,N

}
,

I�5 (�) = I�∗ (�),
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Moreover, suppose an OA(N, 2p, 2) exists with the property that the columns 
(1,  2,  j) and columns (3,  4,  j), for all j ≥ 5 , form an OA(N, 23, 3) and columns 
(1, 2, 3, 4) form an OA(N, 24, 4) . Let H1 and H2 be defined as in Theorem 4. Define

where c∗
l1
= (hl1,… , hl,p−1, c

∗)T , c∗
l2
= (hl1,… , hl,p−1,−c

∗)T , and c∗ is as in the first 
part of this theorem. Here hlj is either Lj or Uj , and (hl1,… , hl,p−1), l = 1,… ,N∕2 , 
cover all rows in H1 and H2 for c∗

l1
 and c∗

l2
 , respectively. Then

so that �6 is also a D-optimal design for �.

Two other cases are worth mentioning. First, if the model has no interactions, 
as in Theorem 1, then any OA of strength 2 can be used to reduce the support size. 
Second, if all 2-way interactions among the first p − 1 design variables are in the 
model, then any OA of strength 4 can be used to reduce the support size. Proofs 
follow along the lines of those in Wang and Stufken (2021). We now illustrate Theo-
rem 5 through the following example.

Example 2  Consider model (1) with the logistic link and

Assume that the first four design variables are restricted to [−1, 1] , [−2, 2] , 
[−1, 1] and [−0.5, 0.5] , respectively, and that there is no restriction for the last 
(fifth) design variable. To find locally optimal designs, we further assume that 
� = (�0, �1, �2, �3, �4, �12, �13, �5)

T = (1,−0.5, 0.5,−1, 1,−0.5, 0.5, 1)T . Notice that 
there are two 2-way interactions in the model and that x1 appears in both. Then, 
according to Theorem  5, we want to find an OA(N, 24, 2+) so that the columns 
(1, 2, 4) and (1, 3, 4) both form strength 3 orthogonal arrays. Table 2 presents such 
an OA for N = 8 . In fact, this is an OA(8, 24, 3).

Based on Theorem 5, a locally D-optimal is obtained as shown in Table 3. For 
illustration purpose, we use lower bound Li and upper bound Ui instead of their real 
values. Also we use c∗ and −c∗ to replace the real values for the unbounded design 
variable x5 . In this case, the value c∗ maximizes c2(Ψ(c))8 , which is approximately 
0.7222. Notice that the design shown in Table 3 only has 16 distinct support points 
compared with the 32-point design obtained from Theorem 2.

We can obtain an even smaller design by using the second part of Theorem  5 
provided that there is an OA(N, 25, 2+) so that columns (1,2,4), (1,2,5), (1,3,4) and 
(1,3,5) all form strength 3 orthogonal arrays. We provide such an orthogonal array 
in Table 4. Then, a smaller D-optimal design constructed using Theorem 5 is shown 
in Table 5. This design has only 8 distinct support points. With exactly 8 parameters 

�6 =
{(

c
∗

l1
,
1

N

)
, l = 1,… ,

N

2

}
∪
{(

c
∗

l2
,
1

N

)
, l = 1,… ,

N

2

}
,

I�6 (�) = I�∗ (�),

x̃
i

T
𝜷 = ci = �0 + �1xi1 + �2xi2 + �3xi3 + �4xi4 + �12xi1xi2 + �13xi1xi3 + �5xi5.
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in � that need to be estimated, the design in Table 5 is actually a saturated D-optimal 
design (see Hu et al. (2015) for more details).

Table 2   An OA(8, 24, 3)
1 1 1 2
1 1 2 1
1 2 1 1
1 2 2 2
2 1 1 1
2 1 2 2
2 2 1 2
2 2 2 1

Table 3   Support points for 
a smaller D-optimal design 
based on Orthogonal Arrays for 
Example 2

(x1, x2, x3, x4) x5 (x1, x2, x3, x4) x5

(L1,L2,L3,U4) c
∗; − c

∗ (U1,L2,L3,L4) c
∗; − c

∗

(L1,L2,U3,L4) c
∗; − c

∗ (U1,L2,U3,U4) c
∗; − c

∗

(L1,U2,L3,L4) c
∗; − c

∗ (U1,U2,L3,U4) c
∗; − c

∗

(L1,U2,U3,U4) c
∗; − c

∗ (U1,U2,U3,L4) c
∗; − c

∗

Table 4   An OA(8, 25, 2+) with 
columns (1,2,4), (1,2,5), (1,3,4) 
and (1,3,5) of strength 3

1 1 1 2 1
1 1 2 1 2
1 2 1 1 2
1 2 2 2 1
2 1 1 1 1
2 1 2 2 2
2 2 1 2 2
2 2 2 1 1

Table 5   Support points for 
a smaller D-optimal design 
based on orthogonal arrays for 
example 2

(x1, x2, x3, x4) x5 (x1, x2, x3, x4) x5

(L1,L2,L3,U4) −c∗ (U1,L2,L3,L4) −c∗

(L1,L2,U3,L4) c
∗ (U1,L2,U3,U4) c

∗

(L1,U2,L3,L4) c
∗ (U1,U2,L3,U4) c

∗

(L1,U2,U3,U4) −c∗ (U1,U2,U3,L4) −c∗
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Summary and Discussion

Locally optimal designs for GLMs with a logistic or probit link and with multiple 
design variables were known when the model contains only main effects. In this 
paper we have extended these results to allow for the presence of interactions in 
models that satisfy the strong effect heredity principle. We have given explicit 
expressions for D-optimal designs for such models. By using orthogonal arrays, 
we have also shown how one might find D-optimal designs with a smaller support 
size.

The canonical transformation that we have used cannot be applied for models that 
do not satisfy the strong effect heredity principle. Whether optimal designs for such 
models have also a simple structure is less clear.

While we have focused attention on models with main effects and some 2-way 
interactions, the basic results also apply with multi-way interactions, as long as 
the strong effect heredity principle holds. Requirements for the orthogonal arrays 
become however more complicated.

The restriction that one of the design variables is unbounded is necessary for 
the theoretical results to make sure that, when translated to a value for xp , the val-
ues of c∗ and −c∗ are within the design region. If the pth design variable is also 
bounded and c∗ and −c∗ in the optimality results yield values for xp that fall within 
the bounds, then the designs in the theorems will still be optimal. But if the xp values 
fall outside of the bounds, then optimal designs may be more complicated and use of 
algorithms, such as meta-heuristic algorithms (cf. Chen et al. 2015; Lukemire et al. 
2019; Qiu et al. 2014) may be needed to find optimal designs.

The properties that are needed for the orthogonal arrays are fairly simple, but it 
may require some investigation whether a required array exists. In some cases, it 
will be sufficient to consider regular orthogonal arrays. When this is not the case, a 
repository of orthogonal arrays (e.g., http://​neils​loane.​com/​oadir/) could be a good 
starting point.

Finally, while the use of orthogonal arrays, where applicable, leads to D-optimal 
designs with a much smaller support size, it is possible that computational methods 
can identify optimal designs with an even smaller support size. Such designs may or 
may not have an equally nice structure as the designs identified in this paper.

Acknowledgements  Research was partially supported through National Science Foundation grant 
DMS-1935729.

Declarations 

Conflict of interest  The authors have no competing interests to declare that are relevant to the content of 
this article.

References

Agresti, A. 2013. Categorical data analysis, 3rd ed. Hoboken: Wiley.

http://neilsloane.com/oadir/


1 3

Journal of Quantitative Economics	

Atkinson, A.C., and L.M. Haines. 1996. Designs for nonlinear and generalized linear models. In Hand-
book of statistics, vol. 13, ed. S. Ghosh and C.R. Rao, 437–475. Amsterdam: Elsevier.

Chen, R.-B., S.-P. Chang, W. Wang, H.-C. Tung, and W.K. Wong. 2015. Minimax optimal designs via 
particle swarm optimization methods. Statistics and Computing 25: 975–988.

Ford, I., B. Torsney, and C.F.J. Wu. 1992. The use of a canonical form in the construction of locally opti-
mal designs for non-linear problems. Journal of the Royal Statistical Society Series B (Methodologi-
cal) 54: 569–583.

Hedayat, A.S. 1989. Orthogonal arrays of strength t+ and their statistical applications. Technical Report, 
Statistical Laboratory, University of Illinois, Chicago.

Hedayat, A.S. 1990. New properties of orthogonal arrays and their statistical applications. Statistical 
Design and Analysis of Industrial Experiments, pp. 407–422.

Hedayat, A.S., N.J.A. Sloane, and J. Stufken. 1999. Orthogonal arrays: Theory and applications. New 
York: Springer.

Hu, L., M. Yang, and J. Stufken. 2015. Saturated locally optimal designs under differentiable optimality 
criteria. The Annals of Statistics 43 (1): 30–56.

Kabera, M.G., and L.M. Haines. 2012. A note on the construction of locally D and DS-optimal designs 
for the binary logistic model with several explanatory variables. Statistics Probability Letters 82 (5): 
865–870.

Khuri, A.I., B. Mukherjee, B.K. Sinha, and M. Ghosh. 2006. Design issues for generalized linear models: 
A review. Statistical Science 21: 376–399.

Kiefer, J. 1974. General equivalence theory for optimum designs (approximate theory). The Annals of 
Statistics 2: 849–879.

Kiefer, J., and J. Wolfowitz. 1960. The equivalence of two extremum problems. Canadian Journal of 
Mathematics 12: 363–365.

Lukemire, J., A. Mandal, and W.K. Wong. 2019. d-QPSO: A quantum particle swarm technique for find-
ing D-optimal designs with mixed factors and a binary response. Technometrics 26: 87–105.

Qiu, J., R.-B. Chen, W. Wang, and W.K. Wong. 2014. Using animal instincts to design efficient biomedi-
cal studies via particle swarm optimization. Swarm and Evolutionary Computation 18: 1–10.

Rao, C.R. 1946. Hypercubes of strength “d’’ leading to confounded designs in factorial experiments. Bul-
letin of the Calcutta Mathematical Society 38: 67–78.

Rao, C.R. 1947. Factorial experiments derivable from combinatorial arrangements of arrays. Supplement 
to the Journal of the Royal Statistical Society 9: 128–139.

Russell, K.G., D.C. Woods, S.M. Lewis, and J.A. Eccleston. 2009. D-optimal designs for Poisson regres-
sion models. Statistica Sinica 19: 721–730.

Sitter, R.R., and B. Torsney. 1995a. D-optimal designs for generalised linear models. In Moda4—
advances in model-oriented data analysis, ed. C. Kitsos and W. Müller, 87–102. Heidelberg: 
Physica.

Sitter, R.R., and B. Torsney. 1995b. Optimal designs for binary response experiments with two design 
variables. Statistica Sinica 5: 405–419.

Torsney, B., and N. Gunduz. 2001. On optimal designs for high dimensional binary regression mod-
els. In Optimum design 2000, ed. A. Atkinson, B. Bogacka, and A. Zhigljavsky, 275–285. Boston: 
Springer.

Wang, Z., and J. Stufken. 2020. Locally D-optimal designs for binary responses in the presence of facto-
rial effects. Journal of Statistical Theory and Practice 14: 19.

Wang, Z., and J. Stufken. 2021. Orthogonal array based locally D-optimal designs for binary responses in 
the presence of factorial effects. Journal of Statistical Theory and Practice 15: 87.

Yang, M., B. Zhang, and S. Huang. 2011. Optimal designs for generalized linear models with multiple 
design variables. Statistica Sinica 21: 1415–1430.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Locally D-Optimal Designs for Binary Responses and Multiple Continuous Design Variables
	Abstract
	Prologue
	Introduction
	Optimal Designs for the Main Effects Model
	Optimal Designs for Interaction Models
	Smaller Optimal Designs Using Orthogonal Arrays
	Summary and Discussion
	Acknowledgements 
	References




