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Abstract

We identify locally D-optimal designs for binary data when a generalized linear
model with multiple continuous covariates whose values can be selected at the
design stage. Yang et al. (Stat Sin 21:1415-1430, 2011) provided an explicit form
for D-optimal designs when there are no interaction effects between the design vari-
ables. After providing an alternative proof of that result, we generalize the result
by identifying D-optimal designs for models with interactions between the design
variables that satisfy the strong effect heredity principle. We also employ orthogonal
arrays to obtain more practical D-optimal designs with a smaller support size.
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Introduction

Generalized linear models (GLMs) with multiple covariates have applications in
many fields. While analysis of such data has received a considerable amount of
attention (Agresti 2013), the optimal design of experiments literature for such prob-
lems when the covariates are design variables is rather sparse (cf. Khuri et al. 2006).
Most efforts to obtain optimal designs for these types of problem are computational
(cf. Lukemire et al. 2019) and are derived on a case-by-case basis for specific situ-
ations. There are some exceptions to this. For example, optimal designs for binary
response experiments with two design variables are studied in Sitter and Torsney
(1995b) and with more than two design variables in Sitter and Torsney (1995a) and
Kabera and Haines (2012). D-optimal designs for Poisson regression models have
been investigated in Russell et al. (2009). Unless the design space is restricted, infor-
mation matrices for the parameters for models with two or more design variables
can be made arbitrarily large (Sitter and Torsney 1995a). To avoid this, each variable
could, for example, be restricted to a bounded interval. Assumptions like this are
natural in many applications; for example, in a clinical study, a very high dose level
may cause serious side effects, and a very low dose level may not have any effect.
Therefore, we can restrict the range of dose level to a certain acceptable interval. For
the main effects model, Yang et al. (2011) made such an assumption for p — 1 of the
p design variables. With that assumption, and for GLMs with the logistic or probit
link function and multiple design variables, they obtained explicit formulas for a
large class of optimal designs, including D-, A-, and E-optimal designs.

Using the same setup as in Yang et al. (2011), we consider the following model
for subject i

Prob(Y; = 1) = P(fy + fix; + - + ﬁpxip

S ()
+ Z Z Buyt, .ot Xin, Xty ** Xit)

1=2 (I, lyoee.d,)EH,

where Y; and (x;;, x;5, ... , X;,) are the response and the p design variables, while P(-)
is a cumulative distribution function. The first p — 1 design variables are assumed to
be bounded, with x;; in the interval [L;, U;], 1 <j < p — 1. The pth design variable is
unrestricted. Therefore, the design space is

x =L, Ujlx - X[L,_,U,_ 11X (-00,). )

Additionally, we assume that interaction terms, if any, do not include the pth design
variable. The set H, includes the subsets of size ¢ from {1,...,p — 1} for which
the corresponding #-way interaction is included in the model. For the main effects
model, the sets H, are empty, and the summation term in (1) would vanish.

The restrictions that one design variable is unbounded and that this variable is not
involved in any interaction are purely technical.

In “Optimal designs for the main effects model” , we will provide an alter-
native proof of the theorem in Yang et al. (2011) which describes the structure
of locally D-optimal designs for the main effects model. Using the mathematical
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elegance of this alternative proof, in “Optimal designs for interaction models”,
we obtain optimal designs for certain interaction models. Additional results for
obtaining smaller D-optimal designs using orthogonal arrays are presented in
“Smaller optimal designs using orthogonal arrays”, followed by a brief discussion
in “Summary and discussion”.

Optimal Designs for the Main Effects Model

It will be convenient to make a slight change in notation. In “Introduction”, for
subject i, we can write the design point as x; = (x;;, ..., x;,) and the row in the
model matrix as X; = (1,2, ..o, 1, s Xy, oo Xy el X T, where we only
include interactions that are in the model. So, the subscript i stands for the ith
subject. While this notation is convenient for presenting the model, in what fol-
lows, we will use i to represent the i-th distinct support point in a design. We
make this change to facilitate our discussion about designs. We use n; to denote
the number of subjects assigned to the ith design point. A collection of x;’s and
the corresponding n;’s, where ). n; = n, is called an exact design with n obser-
vations. Finding optimal exact designs (by finding the best choices for the x;’s
and n;’s for a given n) is typically a difficult problem due to the discrete nature
of the n;’s. As is common in the optimal design literature, we instead work with
approximate designs. An exact design is converted to an approximate design by
replacing each n; by the weight w; = n;/n. In searching for optimal designs we
allow the w;’s to take any non-negative values that sum to 1. Then, an approxi-
mate design can be written as & = {(x;, w;),i = 1,...,k}, w; >0, Zi w; = 1, where
k is the number of support points of £. An optimal (approximate) design chooses
values of k, the w;’s and the x;’s that optimize a specified objective function or
optimality criterion.

For model (1), the parameter vector is B = (f,, f;, -.- ,ﬁp_l, ’ﬂlr--l,’ ,ﬂp)T.
Define ¢, =%"f and & = (1,X;..... X, 1o Xy = Xy....,¢)T. Then, with
the assumption that g, # 0, there is a one-to-one relationship between ¥; and
¢;. The approximate design & = {(x;,w;),i=1,...,k} can also be written as
&= {(c;,w),i=1,...,k}, where ¢; = (x;, ... ,x,-!p_l,c,-).

In this paper, we focus on D-optimality. A design & is called locally D-optimal
for B if it maximizes the determinant of the information matrix,

k
I = 2 w & px:E, 3)

i=1
among all designs for a given . In the remainder of this section, we assume that
model (1) only contains main effects, so that ¥; = (l,xiT)T. Theorem 2 of Yang et al.
(2011) provides in that case an explicit expression for locally D-optimal designs for
B. We restate their result for D-optimality in the following theorem and provide an

alternative proof.
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Theorem 1 (See Theorem 2 of Yang et al. 2011) For the logistic and probit link
functions, if model (1) only contains main effects, the design space is given by y in
(2), and B, # 0, then a D-optimal design for B is given by

" « 1 w1 -
e = { e ) (e 1),

where ¢* = (hy, ..., hypys ) and ¢t = (b, ..., hypys —c*)'. Here hy; is either L;
orU, (hy,....h, ), l=1,.. ,2P=1 cover all possible combinations, and c¢* maxi-
mizes c2(P(c)y’ where ¥ is defined as

P(x) = { (I+ev)?’ for the logistic link '

N ) . @
O)(1-0())’ for the probit link

Proof Transforming to a canonical form of the original design problem (see Ford
et al. 1992, Atkinson and Haines (1996) and Torsney and Gunduz (2001)), for each
of the first p — 1 design variables we define

x5 —(U+L)/2
AR A7: v

so that v; € [-1,1],i=1,...,p — 1. For convenience, write a;, = (U; + L;)/2 and
b;=(U;=Lp/2, so that v;=== We also define v =%"p=c and write

: P
V=V, ... ,vp)T.
For an arbitrary design point x € y and the corresponding model vector
*=(1,x")7, we have
B =7, ©)
where ¥ = (1,v7)T and
1 0 o e e 0
—a; /b, 1/b;, O -0
B— —az/bz 0 1/b2 0 A 0
-a,/b,.; 0 - 0 1/b,; 0

by B B - By B,

isa(p+ 1) X (p + 1) nonsingular matrix.
The mapping from x to v induces a one-to-one mapping from a design & in the

original variables to a design
é _ vl v2 cese vk
v - Wl W2 cee Wk :

The induced design space y, = {v : B¥ =¥,x € y} =[-1, 117! x [—o0, c0]. With
M, = Zle w,¥(c;)¥;%,", it follows from (3) that the information matrix for g under
design & is
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k
I, = Y w¥(c)B v (B

i=1

k
=B7'[ Y w7 =B M, 7.

i=1

As a result, det(l;) = det(B™')* - det(M; ), meaning that maximizing det(I;) on y is
equivalent to maximizing det(M; ) on y,. Once we obtain an optimal design &7, we
may transform it back to £* by mapping v back to x. So from now on, we will focus
only on designs &, on the induced design space y,.

The putative optimal design ¢* in  Theorem 1 corresponds to
& =@, %l& (E;,jﬂ),l: L....271), where & =y by, €T
and 572 = (s s hypeys —c*).  Here h; is either -1 or 1 and
(T ,h,’p_l), I=1,...,2" ' coverall possible combinations.

Therfore, to show the D-optimality of ¥ on y,, we apply the equivalence theorem
(see Kiefer and Wolfowitz (1960) and Kiefer (1974)) and all we have to show is that

‘I’(c)flTlg}lfJ <p+1, )

where the equality is attained at the support points of £’
Following a similar procedure as in the proof of Theorem 1 and Lemma 3 in
Wang and Stufken (2020), we have
P(o)

2
L4+ 2 =
\P(c*>{ N T e

Y(c) A¥(c)
=9’ T v

\P(c)ﬁTlgjﬁ =
®

<p+1 ,c€(—,).

Since equality holds for each design point in &7, it follows that & is D-optimal on the
induced space y,. As a result, the proposed design £* is also D-optimal on the origi-
nal design space y which concludes the proof. O

The reason that we assumed x, to be unbounded is that we do not a priori know the
values of le and x;2 that correspond to —c* and ¢*. This depends on the value of g, so

that the smallest interval that contains x[’;l and x;Z is different for locally optimal designs

for different values of B. If the design space for x, is bounded, then the design in Theo-
rem 1 is D-optimal provided that le and x}fz are in the bounded interval for x,. If this is

not the case, then the structure of the optimal design will be different.
Optimal Designs for Interaction Models
The alternative proof of Theorem 1 in “Optimal designs for the main effects model”

assists in extending the result to models with interactions. We restrict attention to
models that satisfy the strong effect heridity principle. By this we mean that when
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a t-th order effect is included in the model, then all #-th order effects (¢ < f) must
also be in the model. It turns out that D-optimal designs for model (1) have the same
structure as in Theorem 1 under the assumption of strong effect heredity, but with a
changed value of ¢*. We state the main result in the next theorem.

Theorem 2 For the logistic and probit link functions, if model (1) satisfies the strong
effect heredity principle, the design space is given by y in (2), and B, # 0, then a
D-optimal design for B is given by

& ={ (et 35 Jand(efy 35 ) 1= 1o 27 ],

where ¢ = (hyy, ..., hyp_y, ) and ¢, = (hyy, ..., by, ,—c*)". Here hy is either L;
or Uj, (hy, ... ,h,’p_l), I=1,...,2°7 ! cover all possible combinations, and c* maxi-
mizes c2(¥(c))” where ¥ is defined in (4) and r is the length of p.

Proof The proof mimics that of Theorem 1, except that the elements of the canoni-
cal transformation in (6) are of a higher dimension. For instance, if xx, is the

only interaction effect in the model, then X becomes (1,x,xy,XXp,%3,...,X,),
v =(L,v,v5,V1v;,V3,...,v,) and matrix B will have an additional row and column
as follows
1 0 0
_al /bl l/bl O A O
—-a, /b, 0 1/b, 0 - 0
B=| aja,/b)b, —ay/bby, —ay/biby 1/bb; 0 0
—a,_,/b,_, 0 we 0 1/b,; O
ﬂo ﬁl ﬁz ﬂlz ﬂp—l ﬂp

In general, Eq. (8) becomes

¥(c) c t ¢
lI’(C)f)Tlé_:flf»' = D {1 + V% + e+ v,27_1 + Z Z < Va) + (c*)2 }
m=1

1=2 (I;,+-l)EH,

Y(c) 2¥(c)
< ‘I‘(c*)(r_ 1)+ W ,C € (—00, )

and the result follows from the equivalence theorem by using Lemma 3 in Wang and
Stufken (2020). O

Note that, without loss of generality, we implicitly assume in Theorem 1 that all
main effects appear in the model. If a main effect is not in the model, then, due to the
strong effect heredity principle, the corresponding design variable will not appear at
all in the model and can be ignored. Hence, if the only interactions in the model are
interactions of two variables, then the strong effect heredity assumption is automati-
cally satisfied. The need for the strong effect heredity assumption can be understood
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by considering a model with an interaction of three variables, say x;x,x;. With the
mapping in (5), when expressed in v;’s, this term becomes a linear combination of
Vi, Vo, V3, V1 Vy, V| V3, Vyv3 and v, v,v5. In other words, the model in the v;’s will need to
satisfy the strong effect heredity principle. But in order for the two models to be the
same, this must then also hold for the model in the x;’s.

We now illustrate Theorem 2 through the following example.

Example 1 Consider = model €))] with the logistic link and
x; 7B =c; = By+ Bixy + Poxpp + PraXyXp + P3x5. Assume that the first two design
variables are restricted to [0, 2] and [—1, 1], respectively, and that there is no restric-
tion on the third design variable. Then, according to Theorem 2, a locally D-opti-
mal design for B = (B, By, Br» B12» B3)T = (1,—1,0.5,1,1)7 is shown in Table 1. The
value ¢* maximizes c¢?(¥(c))**!, which is approximately 0.9254.

Smaller Optimal Designs Using Orthogonal Arrays

Theorem 2 provides a nice and simple structure for locally D-optimal designs
for models that satisfy the strong effect heredity principle. However, the number
of support points for these designs, which is 27, will rapidly increase with p. For
example, when p increases from 4 to 8, the support size increases from 2* = 16
to 28 = 256. The number of parameters to be estimated would typically be much
smaller, so that designs with such large support sizes are not really necessary.
Following Sitter and Torsney (1995a) and Wang and Stufken (2021), we now
obtain smaller designs using orthogonal arrays (Rao 1946, 1947). An N X k array
is called an orthogonal array with s levels and strength ¢ if, for every N X ¢ subar-
ray, all possible combinations of # symbols occur equally often as a row ( Hedayat
et al. (1999)). We denote such an array as OA(N, sk, ), where “s*” indicates
that there are k factors with s levels each. We only need arrays with s =2 and,
without loss of generality, denote the levels by 1 and 2. Furthermore, Hedayat
(1989) (see also Hedayat (1990)) introduced the concept of OAs of strength 7+.
An OA(N, s*,t+) is an OA(N, s*, 1) that is not of strength ¢+ 1, but that has one
or more subarrays which form an OA(N, s¥', ¢+ 1). Strength t+ arrays have also
been recently employed in Wang and Stufken (2021). We now present our results
for obtaining smaller D-optimal designs. Proofs are omitted because they follow

Table 1 Support points and

weights for a locally D-optimal Support points Weights Support points Weights
design (0, -1, ~1.4254) 18 (2, ~1,2.5746) 18
(0, —1,0.4254) 18 (2.—1,4.4254) 18
(0,1, -2.4254) 18 (2.1, -2.4254) 18
(0,1, -0.5746) 18 (2.1, -0.5746) 18
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along similar lines as those in Wang and Stufken (2021) for a related but different
problem. The assumptions in the next Theorems 3 through 6 for the design space
x and f, are the same as in Theorem 2.

Theorem 3 For p >3, consider model (1) with the logistic or probit link and
with only one interaction effect, say x,x,. Let H be the collection of rows for an
OA(N, 2P, 2+) with the property that columns (1, 2, j), for all j >3, form an
OA(N, 23,3). Define

w1 « 1 _
a={(ch gy ) and (e g )- 1= 1oV}
&

where = (Mypsoee s gy, )" and c;"z =y gy, —c*)T. Here c* is as in The-
orem 2 withr=p+ 2, hli is either Lj or Ui’ and (hy,, ... ,hl‘p_l), [=1,...,N cover

all rows in H. Then
Ig] B = I};*(ﬂ)s

so that &, is also a D-optimal design for .

In Theorem 3, the number of support points is reduced compared to Theorem 2
provided that N < 27~!, which is a choice that is typically possible. However, we
still need two support points for each of the N combinations for the first p — 1
design variables. The next theorem shows that when the orthogonal array has an
additional 2-level column, it is possible to find even smaller optimal designs.

Theorem 4 For p > 3, consider the same model as in Theorem 3. Suppose an
OA(N,2P,2+) exists with the property that the columns (1, 2, j), for all j > 3 form
an OA(N, 23,3), and let H again denote the collection of its rows. Partition the rows
of H into two collections, H, and H,, each of size g, depending on whether the final
entry of the row is 1 or 2, respectively. Then delete that final entry from each row.

Define
| _ N | _ N
52 = {(Cll,]v),l— 1,...,E}U{<CIZ,JT]>,I— 1,...,5},
where ¢ = (hy, ..., by, ) and ¢ =y, ..., hy,_,—c*)'. Here, ¢* is as in
Theorem 3, hlj is either Lj or Uj, and (hyy, ... ,hl,p_l),l =1,...,N/2 cover all rows in

H, and H, for ¢, and ¢, respectively. Then,
I,(B) = I.(B),

so that &, is also a D-optimal design for p.

The next two results are for models with two 2-way interactions between
design variables. Theorem 5 finds the optimal designs for a situation when there
is a common design variable in these two interactions, whereas Theorem 6 does
so when the four design variables in the two interactions are distinct.
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Theorem 5 For p > 4, consider model (1) with the logistic or probit link with two
2-way interaction effects that have a common design variable, say x,x, and x,x5. Let
H be the collection of rows for an orthogonal array OA(N, 2P, 2+) with the prop-
erty that the columns (1, 2, j) and (1, 3, j), for all j > 4, form an OA(N, 23 3). Define

« 1 « 1 -
&= {(cll, ﬁ)dl’ld((‘lz,iv>,l =1,... ,N},

where c;‘l =y hypyys ) and ¢ = (b, ..., By —c*)T. Here c* is as in The-
orem 2 withr =p + 3, h,j is either LiorU, and (hy, ..., hl,p_]),l =1,...,N coverall
rows in H. Then

I.(B) = L.(P),

so that &, is also a D-optimal design for p.

Moreover, suppose that an OA(N,2P,2+) exists with the property that the col-
umns (1, 2, j) and (1, 3, j), for all j > 4 form an OA(N, 23.3). Form H,and H, as in
Theorem 4. Define

L1y N 1y, N
§4={(Cn,ﬁ>,l—1,...,5}U{<Cl*2,]v>,l—1,...,5},

where 071 = (hy,... ,h,,p_l, AT, c;“z = (hy, ... ’hl,p—l’ —cT, and ¢* is as in the first
part of this theorem. Here, hlj is either L]- or Uj, and (hy, ... ,h,!p_l),l =1,...,N/2,

cover all rows in H, and H, for cl"‘1 and c;"z, respectively. Then

154(.3) = Ig*(ﬁ)s

so that &, is also a D-optimal design for B.

Theorem 6 For p > 5, consider model (1) with the logistic or probit link with two
2-way interaction effects that do not have a common design variable, say x,x, and
x3%,. Let H be the collection of rows for an orthogonal array OA(N,2P~",2+) with
the property that the columns (1, 2, j) and columns (3, 4, j), for all j > 5, form an
OA(N, 23,3) and columns (1,2, 3, 4) form an OA(N, 24 4). Define

« « 1 _
55 = {(Cll’ ﬁ)dl’ld((’lri\]),l = 1, ,N},
£

where = (hypsoee s gy, )" and c*z =y gy, —c*)T. Here c* is as in The-
orem 2 withr = p + 3, h,j is either Lj or Uj, and (hy, ..., hl,p_]),l =1,...,N coverall

rows in H. Then
155 p) = I.f*(ﬁ)a

so that &s is also a D-optimal design for p.
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Moreover, suppose an OA(N,?2P,2) exists with the property that the columns
(1, 2, j) and columns (3, 4, j), for all j>5, form an OA(N, 23 3) and columns
(1,2, 3, 4) form an OA(N,2%,4). Let H, and H, be defined as in Theorem 4. Define

.1 N « 1Y, _ N
a={(qon) =t o{(egpa) =10}

® T % _ T : .
where [ = (hyys - ’hl,p—l’C*).7 cl.2 =y, ... ’hl,p—h_c*) , and c* is as in the first
part of this theorem. Here hlj is either Lj or Ui’ and (hy, ... ,hl,p_l),l =1,....,N/2,
cover all rows in H, and H, for ¢, and c,,, respectively. Then

I.(B) = L.(P),

so that &g is also a D-optimal design for B.

Two other cases are worth mentioning. First, if the model has no interactions,
as in Theorem 1, then any OA of strength 2 can be used to reduce the support size.
Second, if all 2-way interactions among the first p — 1 design variables are in the
model, then any OA of strength 4 can be used to reduce the support size. Proofs
follow along the lines of those in Wang and Stufken (2021). We now illustrate Theo-
rem 5 through the following example.

Example 2 Consider model (1) with the logistic link and
5B =c; =By + Bixi + Boxip + PaXip + BuXiy + BroXuXip + Biaxi X3 + Bsxis.

Assume that the first four design variables are restricted to [—1,1], [-2,2],
[-1,1] and [-0.5,0.5], respectively, and that there is no restriction for the last
(fifth) design variable. To find locally optimal designs, we further assume that
B = (Bys By» B Bss By» Bras Buiz» Bs)T = (1,-0.5,0.5,—1,1,-0.5,0.5,1). Notice that
there are two 2-way interactions in the model and that x, appears in both. Then,
according to Theorem 5, we want to find an OA(N, 24 24) so that the columns
(1,2, 4) and (1, 3, 4) both form strength 3 orthogonal arrays. Table 2 presents such
an OA for N = 8. In fact, this is an OA(8, 2%, 3).

Based on Theorem 5, a locally D-optimal is obtained as shown in Table 3. For
illustration purpose, we use lower bound L; and upper bound U, instead of their real
values. Also we use ¢* and —c* to replace the real values for the unbounded design
variable x;. In this case, the value ¢* maximizes c2(P(c))3, which is approximately
0.7222. Notice that the design shown in Table 3 only has 16 distinct support points
compared with the 32-point design obtained from Theorem 2.

We can obtain an even smaller design by using the second part of Theorem 5
provided that there is an OA(N, 25,2+) so that columns (1,2,4), (1,2,5), (1,3,4) and
(1,3,5) all form strength 3 orthogonal arrays. We provide such an orthogonal array
in Table 4. Then, a smaller D-optimal design constructed using Theorem 5 is shown
in Table 5. This design has only 8 distinct support points. With exactly 8 parameters
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Table2 An OA(8,24,3)

1 1 1 2
1 1 2 1
1 2 1 1
1 2 2 2
2 1 1 1
2 1 2 2
2 2 1 2
2 2 2 1
Zasﬂlzlierslg{)ggtritrrrl);%?sif; 0130, %4) s 32,35, %) s
based on Orthogonal Arrays for (L, Ly, Ly, Uy) ot (U, Ly, Ly, L) et = c*
Example 2
(L,,L,,Us,Ly) ¢y =c* U,,L,,U5,U,) c*=c*
(Ly,U,,Ls,Ly) ¥y —c* U,,U,,L;,Uy) c*;—c*
Ly, U,,Us,Uy) ¢t —c* U,,U,,Us,Ly) = c*
Table4 An OA(8,2°,2+) with ) | | ) |
columns (1,2,4), (1,2,5), (1,3,4)
and (1,3,5) of strength 3 1 1 2 1 2
1 2 1 1 2
1 2 2 2 1
2 1 1 1 1
2 1 2 2 2
2 2 1 2 2
2 2 2 1 1
Zasﬂillslerslg{)gg:izxﬁ)églgfsif;; (1. 32,23, %) - (1, X2 X3 %) -
based on orthogonal arrays for (L,,Ly. Ly, Uy) et (U, Ly, Ly, L) —c*
example 2 (Ly Ly, Us. L) e Uy Ly, Uy, Uy) e
(Ly, Uy, Ly, Ly) c* Uy, U,,L3,Uy) c*
(L1, Uy, Uy, Uy) —c* (U,, Uy, Uy L) —c*

in f that need to be estimated, the design in Table 5 is actually a saturated D-optimal
design (see Hu et al. (2015) for more details).
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Summary and Discussion

Locally optimal designs for GLMs with a logistic or probit link and with multiple
design variables were known when the model contains only main effects. In this
paper we have extended these results to allow for the presence of interactions in
models that satisfy the strong effect heredity principle. We have given explicit
expressions for D-optimal designs for such models. By using orthogonal arrays,
we have also shown how one might find D-optimal designs with a smaller support
size.

The canonical transformation that we have used cannot be applied for models that
do not satisfy the strong effect heredity principle. Whether optimal designs for such
models have also a simple structure is less clear.

While we have focused attention on models with main effects and some 2-way
interactions, the basic results also apply with multi-way interactions, as long as
the strong effect heredity principle holds. Requirements for the orthogonal arrays
become however more complicated.

The restriction that one of the design variables is unbounded is necessary for
the theoretical results to make sure that, when translated to a value for Xy, the val-
ues of ¢* and —c* are within the design region. If the pth design variable is also
bounded and ¢* and —c* in the optimality results yield values for x, that fall within
the bounds, then the designs in the theorems will still be optimal. But if the x,, values
fall outside of the bounds, then optimal designs may be more complicated and use of
algorithms, such as meta-heuristic algorithms (cf. Chen et al. 2015; Lukemire et al.
2019; Qiu et al. 2014) may be needed to find optimal designs.

The properties that are needed for the orthogonal arrays are fairly simple, but it
may require some investigation whether a required array exists. In some cases, it
will be sufficient to consider regular orthogonal arrays. When this is not the case, a
repository of orthogonal arrays (e.g., http://neilsloane.com/oadir/) could be a good
starting point.

Finally, while the use of orthogonal arrays, where applicable, leads to D-optimal
designs with a much smaller support size, it is possible that computational methods
can identify optimal designs with an even smaller support size. Such designs may or
may not have an equally nice structure as the designs identified in this paper.
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