
H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6
https://doi.org/10.1007/s40993-022-00408-8

RESEARCH

Summing μ(n): a faster elementary
algorithm
Harald Andrés Helfgott1,2 and Lola Thompson3*

*Correspondence:
l.thompson@uu.nl
3Mathematics Institute, Utrecht
University, Hans
Freudenthalgebouw,
Budapestlaan 6, 3584 CD
Utrecht, Netherlands
Full list of author information is
available at the end of the article

Abstract

We present a new elementary algorithm that takes time Oε

(
x
3
5 (log x)

8
5+ε
)

and

space O
(
x

3
10 (log x)

13
10

)
(measured bitwise) for computingM(x) =∑n≤x μ(n), where

μ(n) is the Möbius function. This is the first improvement in the exponent of x for an
elementary algorithm since 1985. We also show that it is possible to reduce space
consumption to O(x1/5(log x)5/3) by the use of (Helfgott in: Math Comput 89:333–350,
2020), at the cost of letting time rise to the order of x3/5(log x)2 log log x .

1 Introduction
There are several well-studied sums in analytic number theory that involve the Möbius
function. For example, Mertens [14] considered

M(x) =
∑
n≤x

μ(n),

now called the Mertens function. Based on numerical evidence, he conjectured that
|M(x)| ≤ √

x for all x. His conjecture was disproved by Odlyzko and te Riele [16]. Pintz
[17] made their result effective, showing that there exists a value of x < exp(3.21× 1064)
for which |M(x)| >

√
x. It is still not known when |M(x)| >

√
x holds for the first time;

Dress [2] has shown that it cannot hold for x ≤ 1012, and Hurst has carried out a verifica-
tion up to 1016 [6]. Isolated values ofM(x) have been computed in [2] and in subsequent
papers.
The two most time-efficient algorithms known for computingM(x) are the following:

(1) An analytic algorithm (Lagarias-Odlyzko [13]), with computations based on integrals
of ζ (s); its running time is O(x1/2+ε).

(2) A more elementary algorithm (Meissel-Lehmer [10] and Lagarias-Miller-Odlyzko
[12]; refined by Deléglise-Rivat [1]), with running time about O(x2/3).

These algorithms are variants of similar algorithms for computing π (x), the number of
primes up to x. The analytic algorithm had to wait for almost 30 years to receive its
first rigorous, unconditional implementation due to Platt [18], which concerns only the
computation of π (x). The computation of M(x) using the analytic algorithm presents

123 © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40993-022-00408-8&domain=pdf
http://orcid.org/0000-0002-5686-804X
http://orcid.org/0000-0001-6692-4108
http://creativecommons.org/licenses/by/4.0/

6 Page 2 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

additional complications and has not been implemented.Moreover, in the range explored
to date (x ≤ 1022), elementary algorithms are faster in practice, at least for computing
π (x).
Deléglise and Rivat’s paper [1] gives the values of M(x) for x = 106, 107, . . . , 1016.

An unpublished 2011 preprint of Kuznetsov [9] gives the values of M(x) for x =
1016, 1017, . . . , 1022 using parallel computing. More recently, Hurst [6] computed M(x)
for x = 2n, n ≤ 73. (Note that 273 = 9.444 . . . · 1021.) The computations in [9] and [6] are
both based on the algorithm in [1].
Since 1996, all work on these problems has centered on improving the implementation,

with no essential improvements to the algorithm or to its computational complexity.
The goal of the present paper is to develop a new elementary algorithm that is more
time-efficient and space-efficient than the algorithm in [1]. We show:

MainTheorem We can compute M(x) in

O
(
x

3
5 (log x)

3
5 (log log x)

2
5
)

word operations,

time O
(
x

3
5 (log x)

8
5 (log log x)

7
5
)
,

and space O
(
x

3
10 (log x)

13
10 (log log x)−

3
10
)
.

Space here is measured in bits, and time is measured in bit operations. “Word operations”
(henceforth “operations”) means arithmetic operations (+,−, ·, /,√) on integers of abso-
lute value up to xO(1), as well as memory operations (read and write) in arrays of such
integers with indices up to xO(1). Some of the literature (including both [1] and earlier
versions of the present paper) counts time in terms of word operations; some (e.g., [13])
makes it clear that it counts bit operations.
Ours is the first improvement in the exponent of x since 1985. Using our algorithm, we

have been able to extend the work of Hurst and Kuznetsov, computing M(x) for x = 2n,
n ≤ 75, and for x = 10n, n ≤ 23. We expect that professional programmers who have
access to significant computer resources will be able to extend this range further.

1.1 Our approach

The general idea used in all of the elementary algorithms ([12], [1], etc.) is as follows. One
always starts with a combinatorial identity to breakM(x) into smaller sums. For example,
a variant of Vaughan’s identity allows one to rewriteM(x) as follows:

M(x) = 2M(
√
x)−

∑
n≤x

∑
m1m2n1=n
m1 ,m2≤√x

μ(m1)μ(m2).

Swapping the order of summation, one can write

M(x) = 2M(
√
x)−

∑

m1 ,m2≤√x

μ(m1)μ(m2)
⌊

x
m1m2

⌋
.

The first term can be easily computed in O(
√
x log log x) operations and space O(x1/4),

or else, proceeding as in [5], in O(
√
x log x) operations and space O(x1/6(log x)2/3). To

handle the subtracted term, the idea is to fix a parameter v ≤ √x, and then split the sum
into two sums: one overm1, m2 ≤ v and the other with max(m1, m2) > v. The difference
between the approach taken in the present paper and those that came before it is that our

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 3 of 37 6

predecessors take v = x1/3 and then compute the sum form1, m2 ≤ v inO(v2) operations.
We will take our v to be a little larger, namely, about x2/5. Because we take a larger value
of v, we have to treat the case withm1, m2 ≤ v with greater care than [1] et al. Indeed, the
bulk of our work will be in Sect. 4, where we show how to handle this case.
Our approach in Sect. 4 roughly amounts to analyzing the difference between reality

and a model that we obtain via Diophantine approximation, in that we show that this
difference has a simple description in terms of congruence classes and segments. This
description allows us to compute the difference quickly, in part bymeans of table lookups.

1.2 Alternatives

In a previous draft of our paper, we followed a route more closely related to the main
ideas in papers by Galway [3] and by the first author [5]. Those papers succeeded in
reducing the space needed for implementing the sieve of Eratosthenes (or the Atkin-
Bernstein sieve, in Galway’s case) down to about O(x1/3). In particular, [5] provides an
algorithm for computing μ(n) for all successive n ≤ x in O(x log x) operations and space
O(x1/3(log x)2/3), building on an approach from a paper of Croot, Helfgott, and Tao [19]
that computes

∑
n≤x τ (n) in aboutO(x1/3) operations. That approach is in turn related to

Vinogradov’s take on the divisor problem [20, Ch. III, exer. 3-6] (based on Voronoï).
The total number of word operations taken by the algorithm in the previous version of

our paper was on the order of x3/5(log x)8/5. Thus, the current version is asymptotically
faster. If an unrelated improvement present in the current version (Algorithm 23; see
Sect. 3) were introduced in the older version, the number of word operations would be
on the order of x3/5(log x)6/5(log log x)2/5. We sketch the older version of the algorithm
in Appendix A.
Of course, we could use [5] as a black box to reduce space consumption in some of our

routines, while leaving everything else as it is in the current version. Time complexity
would increase slightly, while space complexity would be much reduced. More precisely:
using [5] as a black box, and keeping everything else the same, we could compute M(x)
in O(x3/5(log x)) word operations (and hence time O(x3/5(log x)2 log log x)) and space
O(x1/5(log x)5/3). We choose to focus instead on the version of the algorithm reflected in
the main theorem; it is faster but less space-efficient.

1.3 Notation and algorithmic conventions

As usual, we write f (x) = O(g(x)) to denote that there is a positive constant C such
that |f (x)| ≤ Cg(x) for all sufficiently large x. The notation f (x) � g(x) is synonymous
to f (x) = O(g(x)). We use f (x) = O∗(g(x)) to indicate something stronger, namely,
|f (x)| ≤ g(x) for all x.
For x ∈ R, we write �x� for the largest integer≤ x, and {x} for x−�x�. Thus, {x} ∈ [0, 1)

no matter whether x < 0, x = 0, or x > 0.
We write logb x to mean the logarithm base b of x, not log log · · · log x (log iterated b

times).
We will count space in bits. We will assume that the time it takes to multiply two n-bit

numbers (n > 1) isO(n log n), as shown by [7]. (This is amore than reasonable assumption
in practice, even if we use older algorithms. In all of our experiments, n ≤ 128; we could
consider n = 196 or n = 256, but much larger n would correspond to values of x so large

6 Page 4 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

that an algorithm running in time > x3/5 would not be practical.) We will also assume
that accessing O(log x) consecutive bits in an array of length ≤ x takes time O(log x).
All of the pseudocode for our algorithms appears at the end of this paper. We will keep

track of the space and number of (word) operations used by each function. Total time
(measured in bit operations) will be bounded by the number of word operations times
O(log x log log x), since all of our arithmetic operations will be on integers of size xO(1) (or
rationals of numerator and denominator bounded by xO(1)), and all of our arrays will be of
size much smaller than x. Since it may not be immediately clear that we cannot hope for
a factor ofO(log x) rather thanO(log x log log x), we will point out two bottlenecks where
the factor is indeed O(log x log log x). This is so because of multiplications, square-roots
and divisions; addition and memory access only impose a factor of O(log x).

2 Preparatory work: identities
We will start from the identity

μ(n) = −
∑

m1m2n1=n
m1 ,m2≤u

μ(m1)μ(m2)+
⎧⎨
⎩
2μ(n) if n ≤ u

0 otherwise,
(2.1)

valid for n ≤ x and u ≥ √x. (We will set u = √
x.) This identity is simply the case K = 2

of Heath-Brown’s identity for the Möbius function: for all K ≥ 1, n ≥ 1, and u ≥ n1/K ,

μ(n) = −
∑

1≤k≤K
(−1)k

(
K
k

) ∑
m1...mkn1...nk−1=n

m1 ,...,mk≤u

μ(m1) . . . μ(mk).

(See [8, (13.38)]; note, however, that there is a typographical error under the sum there:
m1 . . .mkn1 . . . nk = n should be m1 . . .mkn1 . . . nk−1 = n.) Alternatively, we can derive
(2.1) immediately from Vaughan’s identity for μ: that identity would, in general, have a
term consisting of a sum over all decompositionsm1m2n1 = n withm1, m2 > u, but that
term is empty because u2 ≥ x.
We sum over all n ≤ x, and obtain

M(x) = 2M(u)−
∑
n≤x

∑
m1m2n1=n
m1 ,m2≤u

μ(m1)μ(m2). (2.2)

for u ≥ √x.
Before we proceed, let us compare matters to the initial approach in [1]. Lemma 2.1 in

[1] states that

M(x) =M(u)−
∑
m≤u

μ(m)
∑

u
m<n≤ x

m

M
(x
mn

)
(2.3)

for 1 ≤ u ≤ x. This identity is due to Lehman [11, p. 314]; like Vaughan’s identity, it can
be proved essentially byMöbius inversion. For u = √

x, this identity is equivalent to (2.1),
as we can see by a change of variables and, again, Möbius inversion.
We will set u = √

x once and for all. We can compute M(u) in (2.2) in O(u log log u)
operations and space O(

√
u), by a segmented sieve of Eratosthenes. (Alternatively, we

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 5 of 37 6

can computeM(u) in O(u log u) operations and space O(u1/3(log u)2/3), using the space-
optimized version of the segmented sieve of Eratosthenes in [5].) Thus, we will be able to
focus on the other term on the right side of (2.2). We can write, for any v ≤ u,

∑
n≤x

∑
m1m2n1=n
m1 ,m2≤u

μ(m1)μ(m2) =
∑
n≤x

∑
m1m2n1=n
m1 ,m2≤v

μ(m1)μ(m2)

+
∑
n≤x

∑
m1m2n1=n
m1 ,m2≤u

max(m1 ,m2)>v

μ(m1)μ(m2). (2.4)

In this way, computing M(x) reduces to computing the two double sums on the right
side of (2.4).

3 The case of a large non-free variable
Let us work on the second sum in (2.4) first. It is not particularly difficult to deal with;
there are a few alternative procedures that would lead to roughly the same number of
operations, and several that would lead to a treatment for which the number of operations
would be larger only by a factor of log x.
Clearly,

∑
n≤x

∑
m1m2n1=n
m1 ,m2≤u

max(m1 ,m2)>v

μ(m1)μ(m2) =
∑

v<m≤u
μ(m)2

⌊ x
m2

⌋

+ 2
∑
n≤x

∑
m1m2n1=n
v<m1≤u
m2<m1

μ(m1)μ(m2)
(3.1)

and

∑
n≤x

∑
m1m2n1=n
v<m1≤u
m2<m1

μ(m1)μ(m2) =
∑

v<a≤u
μ(a)

∑
r≤ x

a

∑
b|r
b<a

μ(b). (3.2)

It is evident that the first sum on the right in (3.1) can be computed in O(u log log u)
operations and space O(

√
u), again by a segmented sieve. (Alternatively, we can compute

it in space O(u1/3(log u)2/3) and O(u log u) operations, using the segmented sieve in [5].)
Write D(r, y) =∑b|r:b≤y μ(b). Then
∑
r≤ x

a

∑
b|r
b<a

μ(b) =
∑
r≤ x

a

∑
b|r
b≤ x

r

μ(b)−
∑
r≤ x

a

∑
b|r

a≤b≤ x
r

μ(b)

=
∑
r≤ x

a

D
(
r,
x
r

)
−
∑
b≥a

μ(b)
∑
r≤ x

b

1 = S
(x
a

)
−
∑
b≥a

μ(b)
⌊ x
b2
⌋
.

where S(m) = ∑
r≤m D(r; x/r) = 1 + ∑

x/u<r≤m D(r; x/r), since D(r; x/r) =∑
b|r:b≤x/r μ(b) =∑b|r μ(r) for r ≤ √x = u.
Thus, to compute the right side of (3.2), it makes sense to let n take the values �u�, �u�−

1, . . . , �v�+1 in descending order; asn decreases, x/n increases, andwe computeD(r; x/r),

6 Page 6 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

and thus S(x/n), for increasing values of r. Computing all values of μ(a) for v < a ≤ u
using a segmented sieve of Eratosthenes takesO(u log log u) operations and spaceO(

√
u).

The main question is how to compute D(r; x/r) efficiently for all r in a given segment.
Using a segmented sieve of Eratosthenes, we can determine the set of prime divisors of
all r in an interval of the form [y, y + �], |�| ≥ √y, in O(� log log y) operations and
space O(� log y). We want to compute the sum D(r; x/r) = ∑

b|r:b<x/r μ(b) for all r
in that interval. The naive approach would be to go over all divisors b of all integers r
in [y, y + �]; since those integers have log y divisors on average, doing so would take
O(� log y) operations. Fortunately, there is a less obvious way to computeD(r; x/r) using,
on average, O(log log y) operations. We will need a simple lemma on the anatomy of
integers.

Lemma 3.1 Let Pz(n) = ∏p≤z:p|n p. For z, N, a arbitrary and N < n ≤ 2N random, the
expected value of

∑
a

Pz (n)<d≤2a
p|d⇒p>z

∑

d′|n: d′ squarefree
p|d′⇒z1/2<p≤z

1 (3.3)

is O(1).

Proof For any fixed positive integer K , the numbers N < n ≤ 2N with Pz(n) = K are of
the form m ·∏p≤z:p|n = m · K, where m can be any of the z-rough integers N/K < m ≤
2N/K . Let us consider how many divisors d|m with properties with p | d ⇒ p > z and
a

Pz(n) < d ≤ 2a there are on average asm varies on (N/K, 2N/K].
We can assume that z ≤ N/K , as otherwise m has at most 2 divisors d free of prime

factors ≤ z (namely, d = 1 and d = m). Then a random integer m ∈ (N/K, 2N/K] with
no prime factors ≤ z has the following expected number of divisors in (aK , 2a]:

1
(N/K)/ log z

O

⎛
⎜⎜⎜⎝

∑
a
K <d≤2a
p|d⇒p>z

(N/K)/d
log z

⎞
⎟⎟⎟⎠+ O(1) = O

(
1+

∑
a
K <d≤2a
p|d⇒p>z

1
d

)
,

since the number of integers in (M, 2M] with no prime factors up to z is� M/ log z for
z ≤ M and � M/ log z for z > 1 and M ≥ 1. (The term O(1) is there to account for
d = m; in that case and only then, (N/K)/d < 1.)
Applying an upper bound sieve followed by partial summation, we see that

∑
a
K <d≤2a
p|d⇒p>z

1
d
� (log 2a− log a/K)

∏
p≤z

(
1− 1

p

)
+ 1.

(The term O(1) comes from
∑

a/K<d≤za/K 1/d.) By Mertens’ Theorem, the product is
� 1/ log z. Hence,

∑
a
K <d≤2a
e|d⇒e>z

1
d
= O

(
log 2a− log a/K

log z
+ 1
)
= O

(
log 2K
log z

+ 1
)
.

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 7 of 37 6

The number of divisors d′|n with p|d′ ⇒ z1/2 < p ≤ z depends only on K = Pz(n).
Therefore, the expected value of (3.3) is

O

⎛
⎜⎜⎜⎝E

⎛
⎜⎜⎜⎝
(
log 2Pz(n)

log z
+ 1
) ∑

d′|n: d′ squarefree
p|d′⇒z1/2<p≤z

1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ . (3.4)

Now, log Pz(n) =∑p|n log p. Let ξ denote the random variable given by

ξ =
∑

d′|n: d′ squarefree
p|d′⇒z1/2<p≤z

1

and let Ap denote the event that p | n. Then (3.4) is at most a constant times

E

(
ξ
)
+ 1

log z
∑
p≤z

log p
p

E

(
ξ

∣∣∣ Ap
)
. (3.5)

Clearly

E (ξ) ≤ 1
N
∑
n≤2N

∑

d′|n: d′ squarefree
p|d′⇒z1/2<p≤z

1� 1
N

∑
d square-free

p|d⇒z1/2<p≤z

N
d

=
∑

d square-free
p|d⇒z1/2<p≤z

1
d
=

∏

z1/2<p≤z

(
1+ 1

p

)
∼ log z

log z1/2
� 1.

Wemust also estimate the conditional expectation: for p ≤ z ≤ N ,

E

(
ξ

∣∣∣ Ap
)
� 1

N/p
∑
n≤2N
p|n

∑

d′|n: d′ squarefree
p′|d′⇒z1/2<p′≤z

1

� 1
N/p

⎛
⎜⎜⎜⎝

∑

d square-free:p�d
p′|d⇒z1/2<p′≤z

N/p
d

+
∑

d square-free:p|d
p′|d⇒z1/2<p′≤z

N/p
d/p

⎞
⎟⎟⎟⎠

�
∑

d square-free:p�d
p′|d⇒z1/2<p′≤z

1
d
≤

∏

z1/2<p≤z

(
1+ 1

p

)
� 1.

Hence, the expression in (3.5) is

� 1+ 1
log z

∑
p≤z

log p
p

� 1+ log z
log z

� 1.

��

Proposition 3.2 Define D(n; a) =∑d|n:d≤a μ(d). Let N, A ≥ 1. For each N < n ≤ 2N, let
A ≤ a(n) ≤ 2A. Then, given the factorization n = pα1

1 pα2
2 · · · pαr

r , where p1 < p2 < . . . <

pr , Algorithm 23 computes D(n; a(n)). in a number of operations that is O(log logN) on
average over n = N + 1, . . . , 2N.

6 Page 8 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

Proof Algorithm 23 computes D(n; a) recursively: it calls itself to compute D(n0; a) and
D(n0; a/pr), where n0 = p1p2 · · · pr−1, and then returns D(n; a) = D(n0; a)−D(n0; a/pr).
The contribution of D(n0; a) is that of divisors 	|n with pr � 	, whereas the contribution
of D(n0; a/pr) corresponds to that of divisors 	|n with pr |	.
The algorithm terminates in any of three circumstances:

(1) for a < 1, returning D(n; a) = 0,
(2) for n = 1 and a ≥ 1, returning D(n; a) = 1,
(3) for n > 1 and a ≥ n, returning D(n; a) = 0.

Here it is evident that the algorithm gives the correct output for the cases (1)–(2), whereas
case (3) follows from D(n; a) =∑d|n:d≤a μ(d) =∑d|n μ(d) = 0 for n > 1, a ≥ n.
We can see recursion as traversing a recursion tree, with leaves corresponding to cases

in which the algorithm terminates. (In the study of algorithms, trees are conventionally
drawn with the root at the top.) The total number of operations is proportional to the
number of nodes in the tree. If the algorithm were written to terminate only for n = 1,
the tree would have 2r leaves; as it is, the algorithm is written so that some branches
terminate long before reaching depth r. We are to bound the average number of nodes of
the recursion tree for inputs N < n ≤ 2N and a = a(n) ∈ [A, 2A].
Say we are at the depth reached after taking care of all pi with pi > z. The branches that

have survived correspond to d|n with p|d ⇒ p > z, d ≤ 2A and d > A/Pz(n). We are to
compute D(Pz(n); a/d). (If d > 2A, then a/d < 1, and so our branch has terminated by
case (1) above. If d ≤ A/Pz(n), then a/d ≥ Pz(n), and we are in case (3).)
Now we continue running the algorithm until we take care of all pi with pi > z1/2. On

each branch that survived up to depth p > z, the nodes between that depth and depth
p > z1/2 correspond to square-free divisors d′|n such that p|d ⇒ z1/2 < p ≤ z.
By Lemma 3.1, we conclude that the average number of nodes in the tree corresponding

to z1/2 < p ≤ z is O(1). Letting z = N,N 1/2, N 1/4 , N 1/8, . . . , we obtain our result. ��
In this way, letting � = √

x/v, we can compute D(r; x/r) for all x/u < r ≤ x/v in
O((x/v) log log(x/v)) operations and spaceO(

√
x/v log(x/v)). Summing values ofD(r; x/r)

for successive values of r to compute S(m) = ∑r≤m D(r; x/r) for x/u < m ≤ x/v takes
O(x/v) operations and additional space1 O(1). As a decreases andm = x/a increases, we
may (and should) discard values of S(m) and D(r; x/r) that we no longer need, so as to
keep space usage down.
We have thus shown that we can compute the right side of (3.2) in O((x/v) log log x)

operations and space O(
√
x/v · log x) for any 1 ≤ v ≤ u = √

x.
It is easy to see that, if we use the algorithm in [5, Main Thm.] instead of the classical

segmented sieve of Eratosthenes, we can accomplish the same task inO((x/v) log x) oper-
ations and space O((x/v)1/3(log x)5/3).

Bitwise time bottleneck. Since our operations are all on integers ≤ x, each of our
(word) operations involves O(log x log log x) bit operations, and so it is clear that our
O((x/v) log log x) operations take at most

O((x/v) log x(log log x)2)

1One may take a little more space (but no more than O(
√
x/v log(x/v))) if one decides to parallelize this summation

procedure.

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 9 of 37 6

bit operations. The question is whether one could do a little better.
The segmented sieve of Eratosthenes for factorization takes only

O((x/v) log x log log x)

bit operations. (In the final step, multiply small factors before large ones.) However, our
procedure for computing D(n; a(n)) does take time proportional to (x/v) log x(log log x)2

in total. The reason is the following. Recall that, to keep the number of operations low,
Algorithm 23 uses (and multiplies integers by) large primes before small ones. For a a
fixed power of N , a positive proportion of integers n � N have prime factors between
a1/3 and a2/3 (say). Those prime factors are found early on; they correspond to the first
two or three levels of the recursion tree in the proof of Prop. 3.2. Then every node further
down in the recursion tree involves a multiplication by a number of size at least a1/3.
That multiplication takes� log a1/3 log log a1/3 � logN log logN bit operations. Here
logN � log x. Thus, in our current algorithm, the number of bit operations is, in fact, on
the order of (x/v) log x(log log x)2.
A few words on the implementation. See Algorithm 2.
Choice of �. The size of the segments used by the sieve is to be chosen at the outset:

� = Cmax(
√
u,
√
x/v) = C

√
x/v (for some choice of constant C ≥ 1) if we use the

classical segmented sieve (SegFactor), or

� = Cmax
(

3√u(log u)2/3, 3

√
x
v
(log x/v)2/3

)
= C 3

√
x
v

(
log

x
v

)2/3
(3.6)

for the improved segmented sieve in [5, Main Thm.].
Memory usage. It is understood that calls such as F ← SegFactor(a0,�) will result

in freeing or reusing the memory previously occupied by F . (In other words, “garbage-
collection” will be taken care of by either the programmer or the language.)
Parallelization.Most of the running time is spent in function SArr (Algorithm 4), which

is easy to parallelize. We can let each processor sieve a block of length �. Other than that
– the issue of computing an array of sums S (as in Algorithm 4) in parallel is a well-known
problem (prefix sums), for which solutions of varying practical efficiency are known. We
follow a common two-level algorithm: first, we divide the array into as many blocks as
there are processing elements; then (level 1) we let each processing element compute, in
parallel, an array of prefix sums for each block, ending with the total of the block’s entries;
then we compute prefix sums of these totals to create offsets; finally (level 2), we let each
processing element add its block’s offset to all elements of its block.

4 The case of a large free variable
We now show how to compute the first double sum on the righthand side of (2.4). That
double sum equals

∑
m,n≤v

μ(m)μ(n)
⌊ x
mn

⌋
. (4.1)

Note that, in [1], this turns out to be the easy case. However, they take v = x1/3, while we
will take v = x2/5. As a result, we have to take much greater care with the computation to
ensure that the runtime does not become too large.

6 Page 10 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

4.1 A first try

We begin by splitting [1, v] × [1, v] into neighborhoods U around points (m0, n0). For
simplicity, we will take these neighborhoods to be rectangles of the form Ix × Iy with
Ix = [m0−a,m0+a) and Iy = [n0−b, n0+b), where√m0 � a < m0 and

√n0 � b < n0.
(In Sect. 5, we will partition the two intervals [1, v] into intervals of the form [x0, (1+η)x0)
and [y0, (1+η)y0), with 0 < η ≤ 1 a constant.Wewill then specify a and b for given x0 and
y0, and subdivide [x0, (1+ η)x0)× [y0, (1+ η)y0) into rectangles Ix × Iy with |Ix| = 2a and
|Iy| = 2b.) Applying a local linear approximation to the function x

mn on eachneighborhood
yields

x
mn

= x
m0n0

+ cx(m−m0)+ cy(n− n0)+ ETquad(m, n), (4.2)

where ETquad(m, n) is a quadratic error term (that is, a term whose size is bounded by
O(max(n− n0, m−m0)2) and

cx = −x
m2

0n0
, cy = −x

m0n20
.

The quadratic error term will be small provided that U is small. We will show how to
choose U optimally at the end of this section. The point of applying the linear approx-
imation is that it will ultimately allow us to separate the variables in our sum. The one
complicating factor is the presence of the floor function. If we temporarily ignore both
the floor function in (4.1) and the quadratic error term, we can see very clearly how the
linear approximation helps us. To wit:

∑
(m,n)∈Ix×Iy

μ(m)μ(n)
x
mn

(4.3)

is approximately equal to

∑
(m,n)∈Ix×Iy

μ(m)μ(n)
(

x
m0n0

+ cx(m−m0)+ cy(n− n0)
)

=
⎛
⎝∑

m∈Ix
μ(m)

(
x

m0n0
+ cx(m−m0)

)⎞
⎠ ·
∑
n∈Iy

μ(n)

+
⎛
⎝∑

n∈Iy
μ(n)cy(n− n0)

⎞
⎠ ·

∑
m∈Ix

μ(m). (4.4)

One can use the segmented sieve of Eratosthenes to compute the values of μ(m) for
m ∈ Ix and μ(n) for n ∈ Iy. If a <

√x0 or b <
√y0, we compute the values of μ in

segments of length about√x0 or
√y0 and use them for several neighborhoods Ix × Iy. In

any event, computing 4.4 givenμ(m) form ∈ Ix andμ(n) for n ∈ Iy takes onlyO(max(a, b))
operations and negligible space.

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 11 of 37 6

4.2 Handling the difference between reality and an approximation

Proceeding as above, we can compute the sum

S0 :=
∑

(m,n)∈Ix×Iy
μ(m)μ(n)

(⌊
x

m0n0
+ cx(m−m0)

⌋
+ ⌊cy(n− n0)

⌋)

in O(max(a, b)) operations and space O(log max(x0, y0)), given arrays with the values of
μ(m) and μ(n). The issue is that S0 is not the same as

S1 :=
∑

(m,n)∈Ix×Iy
μ(m)μ(n)

(⌊
x

m0n0
+ cx(m−m0)+ cy(n− n0)

⌋)
,

and it is certainly not the same as the sum we actually want to compute, namely,

S2 :=
∑

(m,n)∈Ix×Iy
μ(m)μ(n)

⌊ x
mn

⌋
.

From now on, we will write

L0(m, n) =
⌊

x
m0n0

+ cx(m−m0)
⌋
+ ⌊cy(n− n0)

⌋
,

L1(m, n) =
⌊

x
m0n0

+ cx(m−m0)+ cy(n− n0)
⌋
, L2(m, n) =

⌊ x
mn

⌋
.

Here m0, n0 and x are understood to be fixed. Our challenge will be to show that the
weights L2−L1 and L1−L0 actually have a simple form – simple enough that S2− S1 and
S1 − S0 can be computed quickly.
We approximate cy by a rational number a0/q with q ≤ Q = 2b such that

δ := cy − a0/q

satisfies |δ| ≤ 1/qQ. Thus,
∣∣∣∣cy(n− n0)− a0(n− n0)

q

∣∣∣∣ ≤
1
2q

. (4.5)

We can find such an a0
q in O(logQ) operations using continued fractions (see Algorithm

9).
Write r0 = r0(m) for the integer such that the absolute value of

β = βm :=
{

x
m0n0

+ cx(m−m0)
}
− r0

q
(4.6)

is minimal (and hence≤ 1/2q). If there are two such values, choose the greater one. Then

− 1
2q

≤ β <
1
2q

. (4.7)

Wewill latermake sure thatwechooseourneighborhoods Ix×Iy so that |ETquad(m, n)| ≤
1/2b, where ETquad(m, n) is defined by (4.2). We also know that ETquad(m, n) > 0, since
the function (m, n) �→ x/mn is convex.We are of course assuming that Ix× Iy is contained
in the first quadrant, and so (m, n) �→ x/mn is well-defined on it.
The aforementioned notation will be used throughout this section.

6 Page 12 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

Lemma 4.1 Let (m, n) ∈ Ix × Iy. Unless a0(n− n0)+ r0 ∈ {0,−1} mod q,

L2(m, n) = L1(m, n).

Proof Since 0 < ETquad(m, n) ≤ 1/2b, we can have

⌊ x
mn

⌋
�=
⌊

x
m0n0

+ cx(m−m0)+ cy(n− n0)
⌋

(4.8)

(in which case the left side equals the right side plus 1) only if

{
x

m0n0
+ cx(m−m0)+ cy(n− n0)

}
≥ 1− 1

2b
. (4.9)

Since q ≤ 2b and

x
m0n0

+ cx(m−m0)+ cy(n− n0) ∈ a0(n− n0)+ r0
q

+
[
−1
q
,
1
q

)
,

we see that (4.9) can be the case only if a0(n− n0)+ r0 is in {0,−1} mod q. ��

Lemma 4.2 Let (m, n) ∈ Ix × Iy. Unless a0(n− n0)+ r0 ≡ 0 (mod q),

L1(m, n)− L0(m, n) =
⎧⎨
⎩
0 if r0 + a0(n− n0) ≤ q,

1 otherwise,
(4.10)

+
⎧⎨
⎩
1 if q|(n− n0) ∧ (δ(n− n0) < 0),

0 otherwise,
(4.11)

where a denotes the integer in {0, 1, . . . , q − 1} congruent to a modulo q.

Proof Recall that, for all real numbers A and B,

�A+ B� − (�A� + �B�) =
⎧⎨
⎩
0, if {A} + {B} < 1

1, otherwise.

Thus, L1(m, n)− L0(m, n) is either 0 or 1, and it is 1 if and only if

{
x

m0n0
+ cx(m−m0)

}
+ {cy(n− n0)

}
(4.12)

is ≥ 1. By (4.5) and (4.7), the quantity in (4.12) lies in

r0
q
+
{
a0(n− n0)

q

}
+
[
−1
q
,
1
q

)

unless, possibly, ifa0(n−n0) ≡ 0 mod q, that is, ifq|(n−n0).Hence, unlessa0(n−n0)+r0 ≡
0 mod q or q|(n−n0), the expression in (4.12) is≥ 1 if and only if r0/q+{a0(n−n0)/q} ≥ 1.
Moreover, if q|(n−n0) but a0(n−n0)+ r0 �≡ 0 mod q, it is easy to see that the expression
in (4.12) is < 1 iff δ(n− n0) = cy(n− n0)− a0(n− n0)/q is ≥ 0. ��

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 13 of 37 6

It follows immediately from Lemmas 4.1 and 4.2 that

L2(m, n)− L0(m, n) =
⎧
⎨
⎩
0 if r0 + a0(n− n0) ≤ q,

1 otherwise,
(4.13)

unless r0 + a0(n− n0) ∈ {0,−1} mod q.
Note that the first term on the right side of (4.13) depends only on n mod q (and

a0 mod q and r0), and the second term depends only on n mod q, sgn(n− n0) and sgn(δ)
(and not on r0; hence it is independent ofm). Given the values of μ(n) for n ∈ Iy, it is easy
to make a table of

ρr =
∑
n∈Iy

a0(n−n0)≡r mod q

μ(n)

for r ∈ Z/qZ in O(b) operations and space O(q log b), and then a table of

σr =
∑
n∈Iy

a0(n−n0)>q−r

μ(n)

for 0 ≤ r ≤ q in O(q) operations and space O(q log b). We also compute
∑
n∈Iy

q|n−n0
δ·(n−n0)<0

μ(n)

once and for all. It remains to deal with the problematic cases a0(n − n0) + r0 ∈
{0,−1} mod q.

Lemma 4.3 Let (m, n) ∈ Ix × Iy. If a0(n− n0)+ r0 ≡ −1 (mod q) and q > 1, then

L2(m, n)− L1(m, n) =
⎧⎨
⎩
1 if n /∈ I,

0 if n ∈ I,

where I = (x−, x+) if the equation

γ2x2 + γ1x + γ0 = 0

has real roots x− < x+, and I = ∅ otherwise. Here γ0 = xq, γ2 = −a0m and

γ1 =
(
−
⌊

x
m0n0

+ cx(m−m0)
⌋
q − (r0 + 1)+ a0n0

)
m.

Proof The question is whether L2(m, n) > L1(m, n). Since

−1/2q ≤ β < 1/2q and |δ(n− n0)| ≤ 1/2q, (4.14)

we know that
{

x
m0n0

+ cx(m−m0)+ cy(n− n0)
}
=
{
r0
q
+ β + a0(n− n0)

q
+ δ(n− n0)

}

=
{
−1
q
+ β + δ(n− n0)

}
= q − 1

q
+ β + δ(n− n0),

6 Page 14 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

where the last line follows from (4.14). Hence, L2(m, n) > L1(m, n) if and only if

x
mn

−
(

x
m0n0

+ cx(m−m0)+ cy(n− n0)
)
≥ 1

q
− β − δ(n− n0). (4.15)

This, in turn, is equivalent to

c0
n
+ c1 + c2n ≥ 0, (4.16)

where c0 = x/m, c2 = −a0/q and

c1 = −
(

x
m0n0

+ cx(m−m0)− β

)
+ a0

q
n0 − 1

q

= −
⌊

x
m0n0

+ cx(m−m0)
⌋
− r0 + 1

q
+ a0

q
n0.

Since a0/q is a Diophantine approximation to cy = −x/m0n20 < 0, it is clear that a0/q
is non-positive. Consequently, if q > 1, a0 must be negative, since a0 and q are coprime.
Hence, c2 is positive, and so (4.16) holds iff n /∈ I , where I = (x−, x+) if the equation

c2x2 + c1x + c0 = 0

has real roots x− ≤ x+, and I = ∅ otherwise. ��

Solving a quadratic equation is not computationally expensive; in practice, the function
n �→ �√n� generally takes roughly as much time to compute as a division. Thus it makes
sense to count x �→ �√n� as one (word) operation, like the four basic operations +, −,
·, /. Computing �√n� takes O(log n log log n) bit operations, just like multiplication and
division.
What we have to do now is keep a table of

ρr,≤n′ =
∑

n∈Iy,n≤n′
a0(n−n0)≡r mod q

μ(n).

We need only consider values of n′ satisfying a0(n′ − n0) ≡ r mod q (since ρr,≤n′ = ρr,≤n′′
for n′′ the largest number n′′ ≤ n′ with a0(n′′ − n0) ≡ r mod q). It is then easy to see
that we can construct the table in O(b) operations and space O(b log b), simply letting
n traverse Iy from left to right. (In the end, we obtain ρr for every r ∈ Z/qZ.) In the
remaining lemmas, we show how to handle the cases where a0(n−n0)+ r0 ≡ 0 (mod q).

Lemma 4.4 Let (m, n) ∈ Ix × Iy. If a0(n− n0)+ r0 ≡ 0 (mod q), then

L1(m, n)− L0(m, n) =
⎧⎨
⎩
0 if n /∈ I,

1 if n ∈ I,

where, if r0 �≡ 0 mod q,

I =

⎧⎪⎪⎨
⎪⎪⎩

n0 − β
δ
+ 1

δ
· [0,∞) if δ �= 0,

R if δ = 0 and β ≥ 0,

∅ if δ = 0 and β < 0,

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 15 of 37 6

and, if r0 ≡ 0 mod q,

I =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R if β < 0 and δ < 0

(−∞, n0] ∪ [n0 − β
δ
,∞) if β < 0 and δ > 0

n0 + 1
δ
[−β , 0) if β > 0 and δ �= 0,

∅ otherwise.

Proof Since {a0(n− n0)/q} = {−r0/q},
{

x
m0n0

+ cx(m−m0)
}
+ {cy(n− n0)

} =
{
r0
q
+ β

}
+
{
− r0

q
+ δ(n− n0)

}
.

Recall that −1/2q ≤ β < 1/2q and |δ(n − n0)| ≤ 1/2q. For r0 �≡ 0 mod q, {r0/q + β} +
{−r0/q+ δ(n− n0)} ≥ 1 iff β + δ(n− n0) ≥ 0. We treat the case r0 ≡ 0 mod q separately:
{β} + {δ(n − n0)} ≥ 1 iff either (a) β < 0 and δ(n − n0) < 0, or (b) βδ(n − n0) < 0 and
β + δ(n− n0) ≥ 0. ��

Lemma 4.5 Let (m, n) ∈ Ix × Iy. If a0(n− n0)+ r0 ≡ 0 (mod q) and q > 1,

L2(m, n)− L1(m, n) =
⎧⎨
⎩
0 if n /∈ I ∩ J,

1 if n ∈ I ∩ J,

where I = [x−, x+] if the equation

γ2x2 + γ1x + γ0 = 0

has real roots x− ≤ x+, and I = ∅ otherwise, whereas J = n0 − β/δ − 1
δ
(0,∞) if δ �= 0,

J = ∅ if δ = 0 and β ≥ 0 and J = (−∞,∞) if δ = 0 and β < 0. Here γ0 = xq, γ2 = −a0m
and

γ1 =
(
−
⌊

x
m0n0

+ cx(m−m0)
⌋
q − r0 + a0n0

)
m.

Proof As in the proof of Lemma 4.3, we have

{
x

m0n0
+ cx(m−m0)+ cy(n− n0)

}
=
{
r0
q
+ β + a0(n− n0)

q
+ δ(n− n0)

}

= {β + δ(n− n0)
}
,

where the last equality follows from the fact that a0(n− n0)+ r0 ≡ 0 (mod q).We know
that β + δ(n− n0) < 1/q, whereas 0 < ETquad(m, n) ≤ 1/2b ≤ 1/q. Since q > 1, we see
that, if β + δ(n− n0) ≥ 0, the inequality

⌊ x
mn

⌋
>

⌊
x

m0n0
+ cx(m−m0)+ cy(n− n0)

⌋
(4.17)

cannot hold. If β + δ(n− n0) < 0, then (4.17) holds iff

x
mn

−
(

x
m0n0

+ cx(m−m0)+ cy(n− n0)
)
≥ −β − δ(n− n0), (4.18)

6 Page 16 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

Much as in the proof of Lemma 4.3, this inequality holds iff n ∈ I , where I = [x−, x+] if
the equation c2x2 + c1x + c0 = 0 has real roots x− ≤ x+, where c0 = x/m, c2 = −a0/q
and

c1 = −
⌊

x
m0n0

+ cx(m−m0)
⌋
− r0

q
+ a0

q
n0,

and I = ∅ if the equation has complex roots. ��

Lemma 4.6 Let (m, n) ∈ Ix × Iy. If q = 1,

L2(m, n)− L1(m, n) =
⎧⎨
⎩
0 if n /∈ (I0 ∩ J) ∪ (I1 ∩ (R \ J)),
1 if n ∈ (I0 ∩ J) ∪ (I1 ∩ (R \ J)),

where J = n0 − β/δ − 1
δ
(0,∞) if δ �= 0, J = ∅ if δ = 0.

If a �= 0, then Ij = [x−,j , x+,j] if the equation

γ2x2 + γ1,jx + γ0 = 0

has real roots x−,j ≤ x+,j , and I = ∅ otherwise. Here γ0 = xq, γ2 = −a0m and

γ1,j =
(
−
⌊

x
m0n0

+ cx(m−m0)
⌋
q − (r0 + j)+ a0n0

)
m.

If a = 0, then

Ij =
(
−∞,

x
m

(⌊
x

m0n0
+ cx(m−m0)

⌋
+ r0 + j

)−1]
.

Proof Just as in the proof of Lemma 4.5,
{

x
m0n0

+ cx(m−m0)+ cy(n− n0)
}
= {β + δ(n− n0)

}
.

If β+δ(n−n0) < 0, then L2(m, n)−L1(m, n) > 0 holds iff (4.18) holds. The term δ(n−n0)
cancels out, and so, by (4.6), we obtain that (4.18) holds iff

x
mn

≥
⌊

x
m0n0

+ cx(m−m0)
⌋
+ a0(n− n0)+ r0,

just as in Lemma 4.5. If β + δ(n− n0) ≥ 0, L2(m, n)− L1(m, n) > 0 holds iff (4.15) holds.
Again, the term involving δ(n− n0) cancels out fully, and so (4.18) holds iff

x
mn

≥
⌊

x
m0n0

+ cx(m−m0)
⌋
+ a0(n− n0)+ r0 + 1.

��
In summary: for aneighborhood Ix×Iy small enough that |ETquad(m, n)| ≤ 1/2b,weneed

to prepare tables (in O(b) operations and space O(b log b)) and compute a Diophantine
approximation (inO(log b) operations). Then, for each value ofm, we need to (i) compute
r0 = r0(m), (ii) look up σr0 in a table, (iii) solve a quadratic equation to account for the
case a0(n − n0) + r0 ≡ −1 mod q, and (iv) solve a quadratic equation and also a linear
equation to account for the case a0(n − n0) + r0 ≡ 0 mod q. If q = 1, then (iii) and (iv)
are replaced by the simple task of computing the expressions in Lemma 4.6. In any event,
there are a bounded number of tasks per m, each taking a bounded amount of (word)

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 17 of 37 6

operations. Thus, the computation over the neighborhood Ix × Iy takes in total O(a+ b)
word operations and space O(b log b), given the values of μ(m) and μ(n).
Bitwise time bottleneck. It should be evident that tasks (i), (iii) and (iv) above each

take time on the order of log x log log x; they involve multiplications, divisions and square
roots of integers N with logN � log x. Hence, the computation over Ix × Iy takes �
(a+ b) log x log log x bit operations.

5 Parameter choice. Final estimates
What remains now is to choose our neighborhoods U = Ix × Iy optimally (within a
constant factor), and to specify our choice of v. Recall that Ix = [m0 − a,m0 + a), Iy =
[n0 − b, n0 + b).

5.1 Bounding the quadratic error term. Choosing a and b

We can use the formula for the error term bound in a Taylor expansion to obtain an upper
bound on the error term. Since f : (x, y) �→ X/xy is twice continuously differentiable for
x, y > 0, we know that, for (x, y) in any convex neighborhood U of any (x0, y0) with
x0, y0 > 0,

X
xy
= X

x0y0
+ ∂f (x0, y0)

∂x
(x − x0)+ ∂f (x0, y0)

∂y
(y− y0)+ ETquad(x, y),

where the Lagrange remainder term ETquad(x, y) is given by

ETquad(x, y) = 1
2

∂2f (ξ ,υ)
∂2x

(x − x0)2 + 1
2

∂2f (ξ ,υ)
∂2y

(y− y0)2

+ ∂2f (ξ ,υ)
∂x∂y

(x − x0)(y− y0),

for some (ξ ,υ) = (ξ (x, y),υ(x, y)) ∈ U depending on (x, y). Working with our neighbor-
hoodU = Ix×Iy of (x0, y0) = (m0, n0), we obtain that, form ∈ Ix andn ∈ Iy, |ETquad(m, n)|
is at most

≤ X
m′3n′

(m−m0)2 + X
m′2n′2

(m−m0)(n− n0)+ X
m′n′3

(n− n0)2, (5.1)

wherem′ = min(m,n)∈U m and n′ = min(m,n)∈U n. Hence, by Cauchy-Schwarz,

|ETquad(m, n)| ≤ 3
2

(
X

m′3n′
(m−m0)2 + X

m′n′3
(n− n0)2

)
.

(From now on, we will write x, as we are used to, instead of X , since there is no longer any
risk of confusion with the variable x.)
Recall that we need to choose Ix and Iy so that

∣∣ETquad
∣∣ ≤ 1/2b. Since (m−m0)2 ≤ a2

and (n− n0)2 ≤ b2, it is enough to require that

x
m′3n′

a2 ≤ 1
6b

,
x

m′n′3
b2 ≤ 1

6b
.

In turn, these conditions hold for

a = 3

√
(m′)4
6x

, b = 3

√
m′(n′)3
6x

.

6 Page 18 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

More generally, if we are given thatm′ ≥ A, n′ ≥ B for some A, B, we see that we can set

a = 3

√
A4

6x
, b = 3

√
AB3

6x
. (5.2)

At the end of Sect. 4, we showed that it takesO(a+b) operations and spaceO(b log b) for
our algorithmto runover eachneighborhood Ix×Iy. Recall thatwe aredividing [1, v]×[1, v]
into dyadic boxes (or, at any rate, boxes of the formB(A, B, η) = [A, (1+η)A)×[B, (1+η)B),
where 0 < η ≤ 1 is a constant) and that these boxes are divided into neighborhoods Ix×Iy.
We have� AB

ab neighborhoods Ix × Iy in the box B(A, B, η). Thus, assuming that A ≥ B,
it takes

O
(
AB
ab

(a+ b)
)
= O

(
AB
b

)
= O

(
A2/3x1/3

)

operations to run over this box, using the values of a and b in (5.2).
Now, we will need to sum over all boxes B(A, B, η). Each A is of the form �(1+ η)i� and

each B is of the form �(1+ η)j� for 1 ≤ (1+ η)i, (1+ η)j ≤ v. By symmetry, we may take
j ≤ i, that is, A ≥ B. Summing over all boxes takes

�
∑

i:(1+η)i≤v

∑
j≤i

((1+ η)i)2/3x1/3 �
∑

i:(1+η)i≤v
i((1+ η)i)2/3x1/3

� (log v)v2/3x1/3 ≤ v2/3x1/3 log x

operations.
We tacitly assumed that a ≥ 1, b ≥ 1, and so we need to handle the case of a < 1 or

b < 1 separately, by brute force. It actually makes sense to treat the broader case of a < C
or b < C by brute force, where C is a constant of our choice. The cost of brute-force
summation for (m, n) with n ≤ m� (C3x)1/4 (as is the case when a < C) is

� ((6C3x)1/4)2 � x1/2,

whereas the cost of brute-force summation for (m, n) with m ≤ v, n � (6x/m)1/3 (as is
the case when b < C) is

�
∑
m≤v

x1/3

m1/3 � x1/3v2/3.

Lastly, we need to take into account the fact that we had to pre-compute a list of values
of μ using a segmented sieve (Algorithm 20), which takesO(v3/2 log log x) operations and
spaceO(

√
v log log v). Putting everything together, we see that the large free variable case

(Sect. 4) takes

O(v2/3x1/3 log x + v3/2 log log x) operations and

space O(
√
v log log x + (v4/x)1/3 log x),

where the space bound comes from substituting b = 3
√

m′(n′)3
6x into the space estimate that

we had for each neighborhood and adding it to the space bound from the segmented sieve.

5.2 Choice of v. Total time and space estimates

Recall that the case of a large non-free variable (Algorithm 2) takes O((xv + u) log log x)
operations and space O(

√
max(x/v, u) log x). At the end of Sect. 3, we took u = √

x,
resulting in O(xv log log x) operations and space O(

√
x/v log x).

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 19 of 37 6

On the other hand, as we just showed, the case of a large free variable (Algorithm5) takes
O(v2/3x1/3 log x + v3/2 log log x) operations and space O(

√
v log log x + (v4/x)1/3 log x).

Thus, in order to minimize our number of operations, we set the two time bounds equal
to one another and solve for v, yielding

v = x2/5(log log x)3/5/(log x)3/5.

Using this value of v (or any value of v within a constant factor c of it) allows us to obtain

O
(
x

3
5 (log x)

3
5 (log log x)

2
5
)

operations and

space O
(
x

3
10 (log x)

13
10 (log log x)−

3
10
)
,

as desired. Note that our algorithm for the case of a large non-free variable uses more
memory, by far, than that for the case of a large free variable.
The resulting number of bit operations is

O
(
x

3
5 (log x)

3
5 (log log x)

2
5
)
·O(log x log log x) = O

(
x

3
5 (log x)

8
5 (log log x)

7
5
)
.

We already explained (at the end of Sects. 3 and 4) that one cannot really hope for a factor
better than O(log x log log x) here, given our current algorithm.
The constant c can be fine-tuned by the user or programmer. It is actually best to set it

so that the time taken by the case of a large free variable and by the case of a large non-free
variable are within a constant factor of each other without being approximately equal.
If we were to use [5] to factor integers in SArr (Algorithm 4) then LargeNonFree (Algo-

rithm 2) would takeO((x/v) log x) operations and spaceO((x/v)1/3(log(x/v))5/3). It would
then be best to set v = c · x2/5 for some c, leading to O(x3/5 log x) operations in total and
total space O

(
x1/5(log x)5/3

)
.

6 Implementation details
We wrote our program in C++ (though mainly simply in C). We used gmp (the GNUMP
multiple precision library) for a few operations, but relied mainly on 64-bit and 128-bit
arithmetic. Some key procedures were parallelized by means of OpenMP pragmas.
Basics on better sieving. Let us first go over two well-known optimization techniques.

The first one is useful for sieving in general; the second one is specific to the use of sieves
to compute μ(n).

(1) Whenwe sieve (function SegPrimes, SegMuor SegFactor), it is useful tofirst compute
how our sieve affects a segment of length M = 23 · 32 · 5 · 7 · 11, say. (For instance,
if we are sieving for primes, we compute which elements of Z/MZ lie in (Z/MZ)∗.)
We can then copy that segment onto our longer segment repeatedly, and then start
sieving by primes and prime powers not dividingM.

(2) As is explained in [9] and [6], and for that matter in [4, § 4.5.1]: in function SegMu,
for n ≤ x0 = n0 + �, we do not actually need to store �j = ∑

p≤√x0:p|n p; it is
enough to store Sj

∑
p≤√x0�log4 p�. The reason is that (as can be easily checked)

�j <
∏

p|n p if and only if Sj < �log4 n�. In this way, we use space O(� log log x0)
instead of space O(� log x0). We also replace many multiplications by additions; in
exchange, we need to compute �log4 p� and �log4 n�, but that takes very little time,
as it only involves counting the space occupied by p or n in base 2, and that is a task
that a processor can usually accomplish extremely quickly.

6 Page 20 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

Technique (2) here is not essential in our context, as SegMu is not a bottleneck, whether
for time or for space. It is more important to optimize factorization – as we are about to
explain.
Factorizing via a sieve in little space. We wish to store the list of prime factors of a

positive number n in at most twice as much space as it takes to store n. We can do so
simply and rapidly as follows. We initialize an and bn to 0. When we find a new prime
factor p, we reset an to 2kan + 2k−1, where k = �log2 p�, and bn to 2kbn + p− 2k . In the
end, we obtain, for example,

a2·3·5·7 = 1110102, b2·3·5·7 = 0101112.

We can easily read the list of prime factors 2, 3, 5, 7 of n = 2 · 3 · 5 · 7 from an and bn,
whether in ascending or in descending order: we can see an as marking where each prime
in bn begins, as well as providing the leading 1: 2 = 102, 3 = 112, 5 = 1012, 7 = 1112.
The resulting savings in space lead to a significant speed-up in practice, due no doubt

in part to better cache usage. The bitwise operations required to decode the factorization
of n are very fast, particularly if one is willing to go beyond the C standard; we used
instructions available in gcc (__builtin_clzl, __builtin_ctzl).
Implementing the algorithm in integer arithmetic. Manipulating rationals is time con-

suming in practice, even if we use a specialized library. (Part of the reason is the frequent
need to reduce fractions a/b by taking the gcd of a and b.) It is thus best to implement the
algorithm – in particular, procedure SumByLin and its subroutines – using only integer
arithmetic. Doing so also makes it easier to verify that the integers used all fit in a certain
range (|n| < 2127, say), and of course also helps them fit in that range, in that we can
simplify fractions before we code: (a/bc)/(d/bf) (say) becomes af /bd, represented by the
pair of integers (af, bd).
Square-roots and divisions. On typical current 64-bit architectures, a division takes

as much time as several multiplications, and a square-root takes about as much time
as a division. (These are obviously crude, general estimates.) Here, by “taking a square-
root” of x we mean computing the representable number closest to

√
x, or the largest

representable number no larger than
√
x, where “representable” means “representable in

extended precision”, that is, as a number 2en with |n| < 2128 and e ∈ [−(214 − 1), 214 −
1]− 63.
Incidentally, one should be extremely wary of using hardware implementations of any

floating-point operations other than the four basic operations and the square-root; for
instance, an implementation of exp can give a result that is not the representable num-
ber closest to exp(x) for given x. Fortunately, we do not need to use any floating-point
operations other than the square-root. The IEEE 754 standard requires that taking a
square-root be implemented correctly, that is, that the operation return the representable
number closest to

√
x, or the largest representable number ≤ √

x, or the smallest such
number ≥ √x, depending on how we set the rounding mode.
Weactually need to compute �√n� forn a 128-bit integer. (Wecan assume thatn < 2125,

say.) We do so by combining a single iteration of the procedure in [21] (essentially New-
ton’s method) with a hardware implementation of a floating-point extended-precision
square-root in the sense we have just described.

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 21 of 37 6

It is of course in our interest to keep the number of divisions (and square-roots) we
perform as low as possible; keeping the number of multiplications small is of course also
useful. Some easy modifications help: for instance, we can conflate functions Special1 and
Special0B into a single procedure; the value of γ1 in the two functions differs by exactly
m.
Parallelization. We parallelized the algorithm at two crucial places: one is function

SArr (Algorithm 4), as we already discussed at the end of Sect. 3; the other one is function
DDSum (Algorithm 7), which involves a double loop. The task inside the double loop (that
is, DoubleSum or BruteDoubleSum) is given to a processing element to compute on its
own. How exactly the double loop is traversed and parcelled out is a matter that involves
not just the usual trade-off between time and space but also a possible trade-off between
either and efficiency of parallelization.
More specifically: it may be the case that the number of processing elements is greater

than the number of iterations of either loop (�(A′ −A)/�� and �(B′ −B)/��, respectively),
but smaller than the number of iterations of the double loop. In that case, parallelizing only
the inside loop or the outside loop leads to an under-utilization of processing elements.
One alternative is a naïve parallelization of the double loop, with each processing element
recomputing the arrays μ, μ′ that it needs. That actually turns out to be a workable
solution: while recomputing arrays in this way is wasteful, the overall time complexity
does not change, and the total space used is O(ν� log logmax(A′, B′)), where ν is the
number of threads; this is slightly less space than ν instances of SumbyLin use anyhow.
The alternative of computing and storing thewhole arraysμ,μ′ before entering the dou-

ble loopwould allowusnot to recompute them, but itwould lead to using (shared)memory
on the order of max(A′, B′) log logmax(A′, B′), which may be too large. Yet another alter-
native is to split the double loop into squares of side about

√
ν�; then each array segment

μ,μ′ is recomputed only about (A′−A)/(
√

ν�) or (B′−B)/(
√

ν�) times, respectively, and
we useO(

√
ν�) sharedmemory. Our implementation of this last alternative, however, led

to a significantly worse running time, at least for x = 1019; in the end, we went with the
“workable solution” above. In the end, what is best may depend on the parameter range
and number of threads one is working with.

7 Numerical results
We computed M(x) for x = 10n, n ≤ 23, and x = 2n, n ≤ 75, beating the records in [9]
and [6]. Our results are the same as theirs, except that we obtain a sign opposite to that in
[9, Table 1] for x = 1021; presumably [9] contains a transcription mistake.

x M(x)
1017 −21830254
1018 −46758740
1019 899990187
1020 461113106
1021 −3395895277
1022 −2061910120
1023 62467771689

x M(x)
268 2092394726
269 −3748189801
270 9853266869
271 −12658250658
272 9558471405
273 −6524408924
274 −6336351930
275 −4000846218

6 Page 22 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

Fig. 1 Logarithm base 2 of running time for input x = 2n

ComputingM(x) for x = 1023 took about 18 days and 14.6 hours on a 80-core machine
(Intel Xeon 6148, 2.40 GHz) shared with other users. Computing M(x) for x = 275 =
3.777 . . . ·1022 took about 9 days and 16 hours on the samemachine. (These are wall times,
not CPU times.) As we shall see shortly, one parameter c was more strictly constrained
for x = 1023, since we needed to avoid overflow; we were able to optimize c more freely
for 275.
For a fixed choice of parameters, running time scaled approximately as x3/5. See Fig. 1

for a plot2 of the logarithm base 2 of the running time (in seconds; wall time) for x = 2n,
n = 68, 69, . . . , 75 with v = x2/5/3. We have drawn a line of slope 3/5, with constant
coefficient chosen by least squares to fit the points with 68 ≤ n ≤ 75.
We also ran our code for x = 2n, 68 ≤ n ≤ 75, on a 128-core machine based on two

AMD EPYC 7702 (2GHz) processors. The results were of course the same as on the first
computer, but running time scaled more poorly, particularly when passing from 273 to
274. (For whatever reason, the program gave up on n = 275 on the second computer.) The
percentage of total time taken by the case of a large non-free variable was alsomuch larger
than on the first computer, and went up from 273 to 274. The reason for the difference
in running times in the two computers presumably lies in the differences between their
respective memory architectures. The dominance (in the second computer) of the case
of a large non-free variable, whose usage of sieves is the most memory-intensive part of
the program, supports this diagnosis. It would then be advisable, for the sake of reducing
running times in practice, to improve on the memory usage of that part of the program,
either replacing SegFactor by the improved sieve in [5] – sharply reducing memory usage
at the cost of increasing the asymptotic running time slightly, as we have discussed –
or using a cache-efficient implementation of the traditional segmented sieve as in [15,
Algorithm 1.2]. These two strategies could be combined.

2The first time we ran the program for x = 275 , we obtained a substantially higher running time, on the order of
fourteen and a half days (as was reported on the first public draft of this paper). The time taken for x = 271 was also
higher on a first run, by about 20%. We do not know the reason for this discrepancy, though demands by other users
are probably the reason for x = 271 and possibly also for x = 275 .

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 23 of 37 6

Checking for overflow. Since our implementation uses 128-bit signed integers, it is crucial
that all integers used be of absolute value < 2127. What is critical here is the quantity

β

δ
= (x(m◦ − (m−m◦))/m2◦n◦ − r0/q

−x/m◦n2◦ − a/q
= (x(2m◦ −m)q − r0m2◦n◦)n◦

(−xq − am◦n2◦)m◦
in SumByLim, where we write here y for the integer in {0, 1, . . . , m2◦n◦ − 1} congruent to
y modulo m2◦n◦. The numerator could be as large as qm2◦n2◦ (The denominator is much
smaller, since | − x/m◦n2◦ − a/q| ≤ 1/2bq.) Since q ≤ 2b, b ≤ (A4/6x)1/3 ≤ (v4/6x)1/3,
m◦, n◦ ≤ v and v = cx2/5 (log log x)

3/5

(log x)3/5 , we see that

qm2◦n2◦ ≤
2v16/3

(6x)1/3
= 2c16/3

61/3
· x9/5 (log log x)

16
5

(log x)
16
5

. (7.1)

For c = 3/2 and x = 275 = 3.777 . . . · 1022,

log2

(
2c16/3

61/3
x9/5

(log log x)
16
5

(log x)
16
5

)
= 126.361 . . . < 127;

for c = 9/8 and x = 1023,

log2

(
2c16/3

61/3
x9/5

(log log x)
16
5

(log x)
16
5

)
= 126.611 . . . < 127.

Thus, our implementation should give a correct result for x = 1023, for the choice c = 9/8.
One can obviously go farther by using wider (or arbitrary-precision) integer types.
There is another integer that might seem to be possibly larger, namely the discriminant

� = b2−4ac in the quadratic equations solved inQuadIneqZ, which is called by functions
Special1 and Special0B. However, that discriminant is smaller than it looks at first.
The coefficient γ1 in Special0B is

(−�R0�q − r0 + a0n◦)m = (−�R0�q − ({R0} − β)q + a0n◦)m

=
(
−
(

x
m◦n◦

− x
m2◦n◦

(m−m◦)
)
q + βq + a0n◦

)
m

=
(
−
(

x
m◦n◦

− x
m2◦n◦

(m−m◦)
)
+ β +

(
− x
m◦n2◦

− δ

)
n◦
)
mq

=
(
− 2x
m◦n◦

+ x(m−m◦)
m2◦n◦

+ O∗
(

1
2q

)
+ O∗

(
1

2bq

)
n◦
)
mq.

Here the second term isnegligible compared to thefirst one, and the third term isnegligible
compared to the fourth one. We know that

x
m◦n◦

mq ≤ x
m◦n◦

(m◦ + a) · 2b ≤ 2bx
n◦

+ 2abx
m◦n◦

≤ 2x 3

√
A
6x
+ 2x 3

√
A2

(6x)2
≤ 2x 3

√
v
6x
+ 2x 3

√
v2

(6x)2

≤ 2 3

√
c
6
· x 4

5

(
log log x
log x

)1/5
+ 2

(c
6

) 2
3 x

3
5

(
log log x
log x

)2/5
.

We also see that
n◦m
2b

≤ n◦m◦
b

≤ 3√6x · A2 ≤ 3√6v2x ≤ 3√6c2 · x 3
5

(
log log x
log x

)2/5
.

6 Page 24 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

The dominant term is thus 2(c/6)1/3x4/5((log log x)/ log x)1/5. The coefficient γ1 in Spe-
cial1 is equal to the one we just considered, minus m, and thus has the same dominant
term.
As for the term−4ac (or−4γ0γ2, so as not to conflict with the other meanings of a and

c here), it equals 4 times

amxq = a
q
mxq2 =

(
− x
m◦n2◦

− δ

)
mxq2 = −x2q2m

m◦n2◦
+ O∗(mx).

Since

x2q2

n2◦
≤ 4x2b2

B2 = 4x2 3√A2(6x)2 ≤ 4
62/3

x4/3v2/3 ≤ 4c2/3

62/3
x8/5

(
log log x
log x

)2/5

andmx ≤ vx ≤ cx7/5(log log x)3/5/(log x)3/5, we see that the main term here is at most

16c2/3

62/3
x8/5

(
log log x
log x

)2/5
.

Since the two expressions we have just considered have opposite sign, we conclude
that the main term in the discriminant γ 2

1 − 4γ0γ2 is thus at most (16c2/3/62/3)x8/5

(log log x)2/5/(log x)2/5, that is, considerably smaller than the term in (7.1), at least for x
larger than a constant. For c = 3/2 and x = 275,

log2
16c2/3

62/3
x8/5

(
log log x
log x

)2/5
= 121.179

For c = 9/8 and x = 1023,

log2
16c2/3

62/3
x8/5

(
log log x
log x

)2/5
= 123.141 . . . ,

and thus we are out of danger of overflow for those parameters as well.

Acknowledgements
We would like to thank the Max Planck Institute for Mathematics, which hosted us for a joint visit from February 1 - April
15, 2020. We are especially grateful to have had access to the parallel computers at the MPIM. While completing this
research, H.H. was partially supported by the European Research Council under Programme H2020-EU.1.1., ERC Grant ID:
648329 (codename GRANT), and by his Humboldt professorship. L.T. was partially supported by the Max Planck Institute
for Mathematics for her sabbatical during the 2019 - 2020 academic year. This work began while she was employed by
Oberlin College. She is grateful to Oberlin for supporting her during the early stages of this project. We are very grateful
to the anonymous referees for their valuable advice. We are especially indebted to Drew Sutherland, who suggested that
we add bitwise time complexity estimates and graciously answered our questions.

Data Availability All data generated or analysed during this study are included in this published
article.

Author details
1Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstraße 3-5, 37073 Göttingen, Germany, 2IMJ-PRG,
UMR 7586, 58 Avenue de France, Bâtiment S. Germain, case 7012, 75013 Paris Cedex 13, France, 3Mathematics Institute,
Utrecht University, Hans Freudenthalgebouw, Budapestlaan 6, 3584 CD Utrecht, Netherlands.

Appendix A: A sketch of an alternative algorithm
As we mentioned in the introduction, we originally developed an algorithm taking
O(x3/5(log x)8/5) word operations and space O(x3/10 log x), or, if the sieve in [5] is used to
factorize integers in function SArr (Algorithm 4), O(x3/5(log x)8/5) word operations and
space O(x1/5(log x)1/5+5/3). The algorithm actually had an idea in common with [5]; as
explained there, it is an idea inspired by Voronoï andVinogradov’s approach to the divisor
problem.

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 25 of 37 6

Part of the improvement over that older algorithm resides in a better (yet simple)
procedure for computing sums of the form

∑
d|n:d≤a μ(d) (see Algorithm 23); we analyzed

it in Sect. 3. Other than that, the difference lies mainly in the computation of the sum of
μ(m)μ(n)�x/mn� for (m, n) in a neighborhoodU = Ix×Iy (see Sect. 4.2 andAlgorithm11).
Let us use thenotation in §4.2. In particular,write Ix = [m0−a,m0+a), Iy = [n0−b, n0+b).
We have sums S0, S1, S2, where S0 is easy to compute and S2 is the sum that we actually
want to determine.
In the algorithm given in the current version of the paper, we compute the difference

S1 − S0 in O(a+ b) operations and space O(b log b). Computing the difference S1 − S0 in
O((a+b) log b) operations and spaceO(b log b) (aswedid in aprevious versionof thepaper)
is not actually hard; the main steps are: (i) sort the list of all pairs ({cy(n− n0)}, n) by their
first element {cy(n− n0)}, (ii) use the sorted list to compute the sums

∑
n:{cyn}≥{cyn′} μ(n)

for different n′, and then (iii) search through the list as needed to determine the sum∑
n:{cyn}≥β μ(n) for any given value of β .
The crux is how to compute S2 − S1. In the current version, we analyze this difference

with great care, after having determined the (at most) two arithmetic progressions in
which the terms of S2 − S1 that are non-zero must be contained. In the older version, we
determined those arithmetic progressions in the same way as here (namely, by finding a
Diophantine approximation a/q to cy). Within those progressions, however, we did not
establish precisely what the non-zero terms were, but simply showed that they had to be
contained in an interval I ⊂ Iy. We also showed that, for q small, the interval I had to be
small as well, at least on average. (The number of elements of an arithmetic progression
modulo qwithin Iy isO(b/q), and so the case of q large is not themainworry.) It is here that
the argument in [20, Ch. III, exer. 3-6] came in handy: as we move from neighborhood to
neighborhood, the quantity cy keeps changing at a certainmoderate speed,monotonically;
thus, cy modZ cannot spend too much time in major arcs on the circle R/Z. Only when
cy modZ lies in the major arcs can q be small and the interval I be large. Thus, just as
claimed, the case of q small and I large occurs for few neighborhoods.
We can thus simply determine I , and compute the terms that lie in the intersection of

either of those two arithmetic progressions and their corresponding intervals I , and sum
those terms. The number of operations will be about O(ab/q), unless q is small, in which
case one can do better, viz., O(a|I |/q) or so. (Compare with the corresponding bound for
the newer algorithm, namely, O(a + b).) On average, we obtained savings of a factor of
O((log b)/b), rather than O(1/b), as we do now.
Whether or not we use [5] to factor integers n ≤ x/v, we set v = cx2/5/(log x)3/5, for c

a constant of our choice.

Appendix B: Pseudocode for algorithms
We will now give the pseudocode for the algorithms referenced in this paper. To aid the
reader, we include a diagram demonstrating the relationship between the algorithms. As
before, “operations” means “word operations”, i.e., “arithmetic operations (+,−,·,/,√) on
integers n up to xO(1)” and “reading and writing such integers in arrays of size xO(1)”.

6 Page 26 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

Mertens 1

LargeFree 5 BruteM 3

DDSum 6SegMu 20

LargeNonFree 2

Doublesum 8

SumByLin 11

BruteDoubleSum 7

LinearSum 16

SumTable 10

DiophAppr 9

SArr 4

SegFactor 22

FacToSumMu 23

SubFacTSM 23

Special1 13

Special0A 15

Special00 14

Special0B 13

QuadIneqZ 17

SumInter 12

SubSegSievFac 21

SegPrimes 19

SimpleSiev 18

RaySum 10

FlCong 12

Fig. 2 Dependency diagram for Mertens. Function names are followed by algorithm number

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 27 of 37 6

Algorithm 1Main algorithm: computeM(x) =∑n≤x μ(n)
1: function Mertens(x)
Output:

∑
n≤x μ(n)

2: c ← 3/2 � hand-tuned value, change at will
3: u = √

x, v ← cx2/5(log log x)3/5/(log x)3/5
4: M ← 2 · BruteM(u)
5: M ← M − LargeNonFree(x, v, u)− LargeFree(x, v)
6: return M

Operations: O
(
x

3
5 (log x)3/5(log log x)2/5

)
.

Space: O
(
x

3
10 (log x)

13
10 (log log x)− 3

10
)
.

Algorithm 2 The case of a large non-free variable
1: function LargeNonFree(x,v,u)
Output:

∑
n≤x

∑
m1m2n1=n:m1 ,m2≤u,max(m1 ,m2)>v μ(m1)μ(m2)

2: n0 ← �u� + 1, r0 ← �x/(�u� + 1)� + 1
3: � ← �√max(u, x/v)�, S← SArr(x, r0,�, 1), � ← 0, σ ← 0
4: for n = �u�, �u� − 1, . . . , �v� + 1 do
5: if n < n0 then
6: n0 ← max(n0 − (�+ 1), 1), μ ← SegMu(n0,�)
7: σ ← σ + μn−n0�x/n2�
8: while x/n > r0 +� do
9: r0 ← r0 +�+ 1, S← SArr(x, r0,�, S�)
10: � ← � + 2μn−n0 ·

(
−σ + S� x

n�−r0
)
+ μ2

n−n0
⌊
x/n2

⌋

11: return �

Operations: O
((x

v + u
)
log log x

)
.

Space: O
(√

max(x/v, u) · log x
)
.

Algorithm 3 ComputeM(x) =∑n≤x μ(n) by brute force
1: function BruteM(x)
Output:

∑
n≤x μ(n)

2: M ← 0, � ← �√x�
3: for 0 ≤ j < �x/�� do
4: n0 ← j�+ 1, μ ← SegMu(n0,�)
5: for n0 ≤ n ≤ min(n0 +�− 1, x) do
6: M ← M + μn−n0
7: return M

Operations: O(x log log x). Space: O(
√
x log x).

6 Page 28 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

Algorithm 4 Compute the main sum needed for LargeNonFree
1: function SArr(x,r0,�,S0)
Output: for 0 ≤ j ≤ �, Sj =∑r≤r0+j

∑
b|r:b≤ x

r
μ(b).

Require: S0 =∑r<r0
∑

b|r:b≤ x
r
μ(b)

2: F ← SegFactor(r0,�), S ← S0
3: for r = r0, r0 + 1, . . . , r0 +� do
4: S ← S + FacToSumMu(Fr−r0 , x/r), Sr−r0 ← S
5: return S

Operations: O
(
(√r0 +�) log log x

)
. Space: O

(
(√r0 +�) log x

)
.

Algorithm 5 The case of a large free variable
1: function LargeFree(x,v)
Output:

∑
n≤x

∑
m1m2n1=n: m1 ,m2≤v μ(m1)μ(m2)

2: S ← 0, A′ ← �v� + 1, C ← 10, D← 8 � C and D are hand-tuned
3: while A′ ≥ max(2(6C3x)1/4 , �√v�, 2D) do
4: B′ ← A′, A← A′ − 2�A′/2D�
5: while B′ ≥ max(2(6C3x/A)1/3, �√v�, 2D) do
6: B← B′ − 2�B′/2D�
7: a← 3

√
A4
6x , b← 3

√
AB3
6x , � ← �√v/max(2a, 2b)� ·max(2a, 2b)

8: S ← S + DDSum(A,A′, B, B′, x,�, 1, a, b) ·
{
1 if A = B,
2 if A > B.

9: B′ ← B
10: S ← S + 2 · DDSum(A,A′, 1, B′, x, �√v�, 0, 0, 0)
11: A′ ← A
12: S ← S + DDSum(A,A′, 1, B′, x, �√v�, 0, 0, 0)
13: return S

Operations: O
(
v2/3x1/3 log x + v3/2 log log x

)
.

Space: O
(√

v log log x + (v4/x)1/3 log x
)

Algorithm 6 split
∑

(m,n)∈[A,A′)×[B,B′) μ(m)μ(n)
⌊ x
mn
⌋
into smaller sums

1: function DDSum(A,A′,B,B′,x,�,γ ,a,b)
Output:

∑
(m,n)∈[A,A′)×[B,B′) μ(m)μ(n)

⌊ x
mn
⌋

Require: A, B ≥ 1, 2|�, A′ ≡ A mod 2, B′ ≡ B mod 2
2: S ← 0
3: for m0 ∈ [A,A′) ∩ (A+�Z) do
4: m1 ← min(m0 +�, A′), μ ← SegMu(m0,�)
5: for n0 ∈ [B, B′) ∩ (B+�Z) do
6: n1 ← min(n0 +�, B′), μ′ ← SegMu(n0,�)
7: if γ = 1 then
8: S ← S + DoubleSum(m0, m1, n0, n1, a, b,μ,μ′, x)
9: else
10: F (m, n) := �x/mn�, f (m) := μm−m0 , g(n) := μ′n−n0
11: S ← S + BruteDoubleSum(m0, m1, n0, n1,μ,μ′, F)
12: return S

Operations: O
(⌈

A′−A
�

⌉⌈
B′−B

�

⌉
� log log�

)
,

assuming � � √
max(A′, B′),

plus time taken by DoubleSum or BruteDoubleSum.
Space: O(� log logmax(A′, B′)), mainly from SegMu

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 29 of 37 6

Algorithm 7
∑

(m,n)∈[m0 ,m1)×[n0 ,n1) f (m)g(n)F (m, n) by brute force
1: function BruteDoubleSum(m0,m1,n0,n1,f ,g ,F)
Output:

∑
(m,n)∈[m0 ,m1)×[n0 ,n1) f (m)g(n)F (m, n)

2: S ← 0
3: for m0 ≤ m < m1 do
4: for n0 ≤ n < n1 do
5: S ← S + f (m)g(n)F (m, n)
6: return S

Operations: O((m1 −m0)(n1 − n0)+ 1).
Space: O(input bit-length).

Algorithm 8 compute
∑

(m,n)∈[m0 ,m1)×[n0 ,n1) fm−m0gn−n0
⌊ x
mn
⌋

1: function Doublesum(m0,m1,n0,n1,a,b,f ,g ,x)
Output:

∑
(m,n)∈[m0 ,m1)×[n0 ,n1) fm−m0gn−n0

⌊ x
mn
⌋

Require: m0, n0 ≥ 1, m1 ≤ 2m0, n1 ≤ 2n0, 2|m1 − m0, 2|n1 − n0, and all conditions for
SumByLin

2: S ← 0
3: for 0 ≤ j < �(m1 −m0)/2a� do
4: m− ← m0 + j · 2a,m+ ← min(m0 + (j + 1) · 2a,m1)
5: m◦ ← (m− +m+)/2,m� ← (m+ −m−)/2 �midpoint, width
6: for 0 ≤ k < �(n1 − n0)/2b� do
7: n− ← n0 + k · 2b, n+ ← min(n0 + (k + 1) · 2b, n1)
8: n◦ ← (n− + n+)/2, n� ← (n+ − n−)/2 �midpoint, width
9: f (m) := fm+m◦−m0 , g(n) := gn+n◦−n0
10: S ← S + SumByLin(f, g, x,m◦, n◦, a, b)
11: return S

Operations: O (AB/min(a, b)).
Space: that of the inputs, plus O(b log b)

Algorithm 9 Finding a Diophantine approximation via continued fractions
1: function DiophAppr(α,Q)
Output: (a, a−1, q, s) s.t.

∣∣∣α − a
q

∣∣∣ ≤ 1
qQ , (a, q) = 1, q ≤ Q,aa−1 ≡ 1 mod q and s = sgn(α−a/q)

2: b← �α�, p← b, q ← 1, p− ← 1, q− ← 0, s← 1
3: while q ≤ Q do
4: if α = b then return (p,−sq−, q, 0)
5: α ← 1/(α − b)
6: b← �α�, (p+, q+)← b · (p, q)+ (p−, q−)
7: (p−, q−)← (p, q), (p, q)← (p+, q+), s←−s
8: return (p−, sq, q−,−s)

Operations: O(log max(Q, den(α)). Space: O(input bit-length).

6 Page 30 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

Algorithm 10 Preparing tables of partial sums by congruence class
1: function SumTable(f ,b,a0,q)
Output: (F, ρ, σ) where Fn0 =

∑
−b≤n≤n0:n≡n0 mod q f (n) for −b ≤ n0 < b

Output: ρr =∑−b≤n<b:a0n≡r mod q f (n) and σr =∑q−1
j=q−r+1 ρj .

Require: q ≤ 2b
2: for n ∈ [−b,−b+ q) do
3: Fn ← f (n)
4: for n ∈ [−b+ q, b) do
5: Fn ← Fn−q + f (n)
6: r ←Mod(a0(b− q), q), a←Mod(a0, q)
7: for n ∈ {b− q, . . . , b− 1} do
8: ρr ← Fn, r ← r + a
9: if r ≥ q then
10: r ← r − q
11: σ0 ← 0, σ1 ← 0
12: for r ∈ {1, 2, . . . , q − 1} do
13: σr+1 ← σr + ρq−r
14: return (F, ρ, σ)

Operations: O(b). Space: O(b log b).

15: function RaySum(f ,q,b,δ)
16: S ← 0
17: if δ < 0 then
18: for n ∈ {q, 2q, . . . , ⌊(b− 1)/q

⌋
q
}
do

19: S ← S + f [n]
20: if δ > 0 then
21: for n ∈ {q, 2q, . . . , ⌊b/q⌋ q} do
22: S ← S + f [−n]
23: return S

Operations: O(n/q). Space: O(input bit-length)

24: function Mod(a,q)
Returns the integer 0 ≤ r < q such that r ≡ a mod q.

Operations: O(1). Space: O(input bit-length).

25: function Sgn(δ)
26: if δ < 0 then
27: return −1
28: else if δ > 0 then
29: return 1
30: else
31: return 0

Operations: O(1). Space: O(input bit-length).

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 31 of 37 6

Algorithm 11 Summing with a weight x/mn using a linear approximation
1: function SumByLin(f ,g ,x,m◦,n◦,a,b)
Output:

∑
(m,n)∈U f (m)g(n)

⌊
x

(m+m◦)(n+n◦)
⌋
for U = [−a, a)× [−b, b), a, b ∈ Z

+

Require: the difference between x
(m+m◦)(n+n◦) and its linear approximation around (0, 0) has

absolute value ≤ 1/2b on U
2: α0 ← x

m◦n◦ , α1 = − x
m2◦n◦

, α2 = − x
m◦n2◦

3: S ← LinearSum(f, g, a, b,α0,α1,α2)
4: (a0, a0, q, s)← DiophAppr(α2, 2b), δ ← α2 − a0/q, δ′ ← Sgn(δ)
5: Z ← RaySum(g, q, b, sδ)
6: (G, ρ, σ)← SumTable(g, b, a0, q)
7: for m ∈ [−a, a) such that f (m) �= 0 do
8: R0 ← α0 + α1m, r0 ← �{R0}q + 1/2�,m′ ← m◦ +m
9: β ← {R0} − r0/q, β ′ ← Sgn(β)
10: if δ �= 0 then
11: Q← β/δ � the value of Q for δ = 0 is arbitrary
12: T ← σr0 + Special0A(G, q, a0, a0, r0, b, Q,β ′, δ′)
13: if q > 1 then
14: T ← T + Special1(G, x, q, a0, a0, R0, r0, n◦, m′, b)
15: T ← T + Special0B(G, x, q, a0, a0, R0, r0, n◦, m′, b, Q,β ′, δ′)
16: else
17: T ← T + Special00(G, x, q, a0, a0, R0, r0, n◦, m′, b, Q, δ′)
18: if 0 < r0 < q then
19: T ← T + Z
20: S ← S + f (m) · T
21: return S

Operations: O(a+ b).
Space: O(b log b), mainly from SumTable

Algorithm 12 Table lookup
1: function SumInter(G,r,I ,b,q)
Require: I = [I0, I1], where I0, I1 ∈ Z, I0 ≤ I1, or I = ∅
2: if I �= ∅ then
3: return 0
4: r0 ← FlCong(I0 − 1, r, q), r1 ← FlCong(min(I1, b− 1), r, q)
5: if (r0 > r1) ∨ (r1 < −b) then
6: return 0
7: if r0 ≥ −b then
8: return Gr1 − Gr0
9: else
10: return Gr1

Operations: O(1). Space: O(input bit-length+maxj bit-length of Gj).

11: function FlCong(n,a,q)
Output: Returns largest integer ≤ n congruent to a mod q
12: return n−Mod(n− a, q)

Operations: O(1). Space: O(input bit-length).

6 Page 32 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

Algorithm 13 L2 − L1 for special moduli: quadratic equations
1: function Special1(G,x,q,a,a,R0,r0,n◦,m,b)
2: γ1 = (−�R0�q − (r0 + 1)+ an◦)m
3: r ← (−1− r0)a
4: I ← QuadIneqZ(−am, γ1, xq)− n0
5: return SumInter(G, r, (−∞,∞), b, q)− SumInter(G, r, I, b, q)

6: function Special0b(G,x,q,a,a,R0,r0,n◦,m,b,Q,sβ ,sδ)
7: γ1 = (−�R0�q − r0 + an◦)m
8: I ← QuadIneqZ(−am, γ1, xq)− n◦
9: if sδ > 0 then
10: J ← (−∞,−�Q� − 1]
11: else if sδ < 0 then
12: J ← [−�Q� + 1,∞)
13: else if sβ ≥ 0 then
14: J ← ∅
15: else
16: J ← (−∞,∞)
17: return SumInter(G,−r0a, J, b, q)− SumInter(G,−r0a, I ∩ J, b, q)

Operations: O(1). Space: O(input bit-length+maxj bit-length of Gj).

Algorithm 14 L2 − L1: the case q = 1
1: function Special00(G,x,q,a,a,R0,r0,n◦,m,b,Q,sδ)
2: if sδ > 0 then
3: J ← (−∞,−�Q� − 1]
4: else if sδ < 0 then
5: J ← [−�Q� + 1,∞)
6: else
7: J ← ∅
8: for j = 0, 1 do
9: if a �= 0 then
10: γ1 = (−�R0� − (r0 + j)+ an◦)m
11: Ij ← QuadIneqZ(−am, γ1, x)− n◦
12: else
13: Ij ← (−∞, �(x/m)/(�R0� + r0 + j)� − n◦]
14: S ← SumInter(G, 0, I0 ∩ J, b, q)+ SumInter(G, 0, I1 ∩ (R \ J), b, q)
15: return SumInter(G, 0, (−∞,∞), b, q)− S

Operations: O(1). Space: O(input bit-length).

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 33 of 37 6

Algorithm 15 L1 − L0: casework for a0(n− n0)+ r0 ≡ 0 mod q
1: function Special0a(G,q,a,a,r0,b,Q,sβ ,sδ)
2: if 0 < r0 < q then
3: if sδ > 0 then
4: I ← [−�Q�,∞)
5: else if sδ < 0 then
6: I ← (−∞,−�Q�]
7: else if sβ ≥ 0 then
8: I ← (−∞,∞)
9: else
10: I ← ∅
11: else
12: if sδ = 0 ∨ sβ = 0 then
13: I ← ∅
14: else if sβ < 0 then
15: if sδ < 0 then
16: S ← SumInter(G,−r0a, (−∞,−�Q�], b, q)
17: return S + SumInter(G,−r0a, (0,∞), b, q)
18: else
19: S ← SumInter(G,−r0a, (−∞, 0), b, q)
20: return S + SumInter(G,−r0a, [−�Q�,∞), b, q)
21: else
22: if sδ > 0 then
23: I ← [−�Q�, 0)
24: else
25: I ← (0,−�Q�]
26: return SumInter(G,−r0a,I ,b,q)

Operations: O(1). Space: O(input bit-length).

Algorithm 16 Summing with floors of linear expressions as weights
1: function LinearSum(f ,g ,a,b,α0,α1,α2)
Output:

∑
(m,n)∈U f (m)g(n)(�α0 + α1m� + �α2n�) for U = [−a, a)× [−b, b)

2: S1 ← 0, S1,0 ← 0, S2 ← 0, S2,0 ← 0
3: for m ∈ [−a, a) ∩ Z do
4: S1 ← S1 + f [m] · �α0 + α1m�, S1,0 ← S1,0 + f [m]
5: for n ∈ [−b, b) ∩ Z do
6: S2 ← S2 + g[n] · �α2n�, S2,0 ← S2,0 + g[m]
7: return S1 · S2,0 + S1,0 · S2

Operations: O(max(a+ 1, b+ 1)).
Space: O(input bit-length).

6 Page 34 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

Algorithm 17 A little Babylonian routine
1: function QuadIneqZ(a,b,c)
Output: Returns an interval I such that
Output: I ∩ Z = {x ∈ Z : ax2 + bx + c ≥ 0}, if a < 0,
Output: I ∩ Z = {x ∈ Z : ax2 + bx + c < 0}, if a > 0.
Require: a, b, c ∈ Z, a �= 0
2: � = b2 − 4ac
3: if � < 0 then
4: return ∅
5: Q = �√�] � can be computed in integer arithmetic
6: if (a < 0) ∨ (Q2 �= �) then
7: I0 = �(−b− Q)/2a�, I1 = �(−b+ Q)/2a�
8: else
9: I0 = �(−b− Q)/2a+ 1�, I1 = �(−b+ Q)/2a− 1�
10: if I0 ≤ I1 then
11: return [I0, I1]
12: return ∅

Operations: O(1). Space: O(input bit-length).

Algorithm 18 A very simple sieve of Eratosthenes
1: function SimpleSiev(N)
Output: for 1 ≤ n ≤ N , Pn = 1 if n is prime, Pn = 0 otherwise
2: P1 ← 0, P2 ← 1, Pn ← 0 for n ≥ 2 even, Pn ← 1 for n ≥ 3 odd
3: m← 3, n← m ·m
4: while n ≤ N do
5: if Pm = 1 then
6: while n ≤ N do � [sic]
7: Pn ← 0, n← n+ 2m � sieves odd multiples ≥ m2 ofm
8: m← m+ 2, n← m ·m
9: return P

Operations: O(N log logN). Space: O(N).

Algorithm 19 A segmented sieve of Eratosthenes for finding primes
1: function SegPrimes(n,�) � finds all primes in [n, n+�]

Output: Sj =
{
1 if n+ j is prime
0 otherwise

2: Sj ← 1 for all 0 ≤ j ≤ �

3: Sj ← 0 for 0 ≤ j ≤ 1− n � [sic; excluding 0 and 1 from prime list]
4: M ← �√n+��, P ← SimpleSiev(M)
5: for 1 ≤ m ≤M do
6: if Pm = 1 then
7: n′ ← max(m · �n/m�, 2m)
8: while n′ ≤ n+� do � n′ goes over mults. ofm in n+ [0,�]
9: Sn′−n ← 0, n′ ← n′ +m
10: return S

Operations: O((
√
n+�) log log(n+�)). Space: O(

√
n+�).

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 35 of 37 6

Algorithm 20 A segmented sieve of Eratosthenes for computing μ(n)
1: function SegMu(n0,�) � computes μ(n) for n in [n0, n0 +�]
Output: for 0 ≤ j ≤ �,mj = μ(n0 + j)
2: mj ← 1, �j ← 1 for all 0 ≤ j ≤ �

3: P ← SimpleSiev(�√n0 +��)
4: for p ≤ √n0 +� do
5: if Pp = 1 then � if p is a prime…
6: n← p · �n0/p� � smallest multiple ≥ n0 of p
7: while n ≤ n0 +� do � n goes over multiples of p
8: mn−n0 ←−mn−n0 , �n−n0 = p ·�n−n0 , n← n+ p
9: n← p2 · �n0/p2� � smallest multiple ≥ n0 of p2
10: while n ≤ n0 +� do � n goes over multiples of p2
11: mn−n0 ← 0, n← n+ p2

12: for 0 ≤ j ≤ � do
13: if mj �= 0 ∧�j �= n0 + j then
14: mj ←−mj

15: return m
Operations: O((√n0 +�) log log(n0 +�)).
Space: O(√n0 + � log(n0 + �)), or, after a standard improvement (Sect. 6), O(√n0 +
� log log(n0 +�)).

Algorithm 21 A segmented sieve of Eratosthenes for factorization
1: function SubSegSievFac(n,�,M) � finds prime factors p ≤M
Output: for 0 ≤ j ≤ �, Fj = {(p, vp(n+ j))}p≤M,p|n+j
Output: for 0 ≤ j ≤ �, �j =∏p≤M,p|(n+j) pvp(n+j).
2: Fj ← ∅, �j ← 1 for all 0 ≤ j ≤ �

3: �′ ← �√M�,M′ ← 1
4: whileM′ ≤ M do
5: P ← SegPrimes(M′,�′)
6: for M′ ≤ p < M′ +�′ do
7: if Pp−M′ = 1 then � if p is a prime…
8: k ← 1, d ← p � d will go over the powers pk of p
9: while d ≤ n+� do
10: n′ ← d · �n/d�
11: while n′ < x do
12: if k = 1 then
13: append (p, 1) to Fn′−n
14: else
15: replace (p, k − 1) by (p, k) in Fn′−n
16: �n′−n ← p ·�n′−n, n′ ← n′ + d
17: k ← k + 1, d ← p · d
18: M′ ← M′ +�′
19: return (F,�)

Operations: O((M +�) log log(n+�)).
Space: O(M +� log(n+�)).

6 Page 36 of 37 H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6

Algorithm 22 A segmented sieve of Eratosthenes for factorization, II
1: function SegFactor(n,�) � factorizes all n′ ∈ [n, n+�]
Output: for 0 ≤ j ≤ �, Fj is the list of pairs (p, vp(n+ j)) for p|n+ j
2: (F,�)← SubSegSievFac(n,�, �√x�)
3: for n ≤ n′ ≤ n+� do
4: if �n′−n �= n′ then
5: p0 ← n′/�n′−n, append (p0, 1) to Fn′−n
6: return F

Operations: O((
√
n+�) log log(n+�)).

Space: O(
√
n+� log(n+�)).

Algorithm 23 From factorizations to
∑

d|n:d≤a μ(d)

1: function SubFacTSM(F ,m,m′,a,n)
2: if m > a then
3: return 0
4: if F = ∅ then
5: return 1
6: if m′a ≥ n then
7: return 0
8: Choose (p, i) ∈ F such that p is maximal
9: F ′ = F \ {(p, i)}
10: return SubFacTSM(F ′,m,pm′,a,n) - SubFacTSM(F ′,mp,m′,a,n)

11: function FacToSumMu(F , a)
Require: F is the list of all pairs (p, vp(n)), p|n, for some n, with p in order
Output: returns

∑
d|n:d≤a μ(d)

12: n′ =∏(p,i)∈F p
13: return SubFacTSM(F ,1,1,a,n′)

Operations: O(2len(F)), but less on average (see Prop 3.2).
Space: O(input bit-length).

Received: 24 September 2022 Accepted: 1 October 2022 Published online: 8 December 2022

References
1. Deléglise, M., Rivat, J.: Computing the summation of the Möbius function. Exp. Math. 5(4), 291–295 (1996)
2. Dress, F.: Fonction sommatoire de la fonction de Möbius; 1. Majorations expérimentales. Exp. Math. 2, 93–102 (1993)
3. Galway, W.F.: Dissecting a Sieve to Cut Its Need for Space. Algorithmic Number Theory (Leiden, 2000), Lecture Notes

in Comput. Sci., pp. 297–312 (2000)
4. Helfgott, H.A.: The ternary Goldbach problem. Second preliminary version. Ann. Math. Stud. (to appear) https://

webusers.imj-prg.fr/~harald.helfgott/anglais/book.html
5. Helfgott, H.: An improved sieve of Eratosthenes. Math. Comput. 89, 333–350 (2020)
6. Hurst, G.: Computations of the Mertens function and improved bounds on the Mertens conjecture. Math. Comput.

87, 1013–1028 (2018)
7. Harvey, D., van der Hoeven, J.: Integer multiplication in time O(nlog n). Ann. Math. 193(2), 563–617 (2021)
8. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53.

American Mathematical Society, Providence, RI (2004)
9. Kuznetsov, E.: Computing the Mertens function on a GPU. Arxiv preprint (2011)
10. Lehmer, D.H.: On the exact number of primes less than a given limit. Illinois J. Math. 3, 381–388 (1959)
11. Lehman, R.S.: On Liouville’s function. Math. Comput. 311–320 (1960)
12. Lagarias, J.C., Miller, V.S., Odlyzko, A.M.: Computing π (x): the Meissel–Lehmer method. Math. Comput. 44, 537–560

(1985)
13. Lagarias, J.C., Odlyzko, A.M.: Computing π (x): an analytic method. J. Algorithms 8(2), 173–191 (1987)

https://webusers.imj-prg.fr/~harald.helfgott/anglais/book.html
https://webusers.imj-prg.fr/~harald.helfgott/anglais/book.html

H. A. Helfgott, L. Thompson Res. Number Theory (2023) 9:6 Page 37 of 37 6

14. Mertens, F.: Über eine zahlentheoretische Funktion. Akad. Wiss. Wien Math.-Natur. Kl. Sitzungber. IIa 106, 761–830
(1897)

15. Silva, T. Oliveira e., Herzog, S., Pardi, S..: Empirical verification of the even Goldbach conjecture, and computation of
prime gaps, up to 4 · 1018. Math. Comput. 83, 2033–2060 (2014)

16. Odlyzko, A.M., te Riele, H.J.J.: Disproof of the Mertens conjecture. J. Reine Angew. Math. 357, 138–160 (1985)
17. Pintz, J.: An effective disproof of the Mertens conjecture. Astérisque 325–333(346), 147–148 (1987)
18. Platt, D.J.: Computing π (x) analytically. Math. Comput. 84(293), 1521–1535 (2015)
19. Tao, T., Croot, E., Helfgott, H.: Deterministic methods to find primes. Math. Comput. 81(278), 1233–1246 (2012)
20. Vinogradov, I.M.: Elements of Number Theory. Trans. S. Kravetz. Dover Publications, Inc., New York (1954)
21. Zimmermann, P.: Karatsuba square root. Technical Report RR-3805, Inria (1999)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Summing µ(n): a faster elementary algorithm
	Abstract
	1 Introduction
	1.1 Our approach
	1.2 Alternatives
	1.3 Notation and algorithmic conventions

	2 Preparatory work: identities
	3 The case of a large non-free variable
	4 The case of a large free variable
	4.1 A first try
	4.2 Handling the difference between reality and an approximation

	5 Parameter choice. Final estimates
	5.1 Bounding the quadratic error term. Choosing a and b
	5.2 Choice of v. Total time and space estimates

	6 Implementation details
	7 Numerical results
	Appendix A: A sketch of an alternative algorithm
	Appendix B: Pseudocode for algorithms
	References

