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Abstract

Background

While booster vaccinations clearly reduce the risk of severe Coronavirus Disease 2019
(COVID-19) and death, the impact of boosters on Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) infections has not been fully characterized: Doing so requires
understanding their impact on asymptomatic and mildly symptomatic infections that often
go unreported but nevertheless play an important role in spreading SARS-CoV-2. We
sought to estimate the impact of COVID-19 booster doses on SARS-CoV-2 infections in a
vaccinated population of young adults during an Omicron BA.1-predominant period.

Methods and findings

We implemented a cohort study of young adults in a college environment (Cornell Univer-
sity’s Ithaca campus) from a period when Omicron BA.1 was the predominant SARS-CoV-2
variant on campus (December 5 to December 31, 2021). Participants included 15,800 uni-
versity students who completed initial vaccination series with vaccines approved by the
World Health Organization for emergency use, were enrolled in mandatory at-least-weekly
surveillance polymerase chain reaction (PCR) testing, and had no positive SARS-CoV-2
PCR test within 90 days before the start of the study period. Robust multivariable Poisson
regression with the main outcome of a positive SARS-CoV-2 PCR test was performed to
compare those who completed their initial vaccination series and a booster dose to those
without a booster dose.
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A total of 1,926 unique SARS-CoV-2 infections were identified in the study population.
Controlling for sex, student group membership, date of completion of initial vaccination
series, initial vaccine type, and temporal effect during the study period, our analysis esti-
mates that receiving a booster dose further reduces the rate of having a PCR-detected
SARS-CoV-2 infection relative to an initial vaccination series by 56% (95% confidence inter-
val [42%, 67%], P < 0.001). While most individuals had recent booster administration before
or during the study period (a limitation of our study), this result is robust to the assumed
delay over which a booster dose becomes effective (varied from 1 day to 14 days). The
mandatory active surveillance approach used in this study, under which 86% of the person-
days in the study occurred, reduces the likelihood of outcome misclassification. Key limita-
tions of our methodology are that we did not have an a priori protocol or statistical analysis
plan because the analysis was initially done for institutional research purposes, and some
analysis choices were made after observing the data.

Conclusions

We observed that boosters are effective, relative to completion of initial vaccination series,
in further reducing the rate of SARS-CoV-2 infections in a college student population during
a period when Omicron BA.1 was predominant; booster vaccinations for this age group may
play an important role in reducing incidence of COVID-19.

Author summary

Why was this study done?

« In late 2021, government and health organizations were developing recommendations
for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) booster vaccina-
tion for at-risk groups and the general public.

o University students are a generally healthy population, but high rates of SARS-CoV-2
infections occur on college campuses.

o Understanding whether booster vaccination reduces SARS-CoV-2 infections, specifi-
cally the Omicron variant, among university students will help universities and others
decide whether to recommend or require booster vaccination in this population to pre-
vent spread of disease to the local community and disruptions to the school year.

What did the researchers do and find?

o We collected data on SARS-CoV-2 infections and vaccination status of over 15,000 stu-
dents enrolled in mandatory testing at one university.

o We created a statistical model to compare SARS-CoV-2 infection rates among univer-
sity students who had received a booster vaccination prior to an Omicron variant out-
break and students who had completed an initial vaccination series but did not receive a
booster vaccination.
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o The statistical model accounted for differences in infection risk due to participation in
social organizations and athletic teams, sex, time during the study period, and initial
vaccination date.

« Students who received a booster were approximately half as likely to get infected as stu-
dents who had completed their initial vaccination series but not received a booster.

What do these findings mean?

« Booster vaccination may be a useful tool to reduce SARS-CoV-2 infections on university
campuses.

o Our analysis was initially performed as part of an institutional response and thus did
not have an a priori protocol or statistical analysis plan, which should be considered in
interpreting our results. Additional studies are needed to confirm these findings in the
context of new SARS-CoV-2 variants and for new booster formulations.

Introduction

Coronavirus Disease 2019 (COVID-19) vaccines reduce Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) infections and symptom severity [1], yet breakthrough infec-
tions occur, especially with the Omicron (B.1.1.529) variant [2,3]. The effectiveness of Food
and Drug Administration (FDA)-authorized or approved vaccines BNT162b2, mRNA-1273,
and Ad26.COV2.S in preventing SARS-CoV-2 infections has dropped dramatically due to
immune evasion and waning of vaccine-induced immunity over time [4-7]. The Omicron var-
iant exhibits immune system escape as the result of several mutations [8,9]; this, and the high
transmissibility of the Omicron variant, are leading to higher infection rates, strain on health-
care systems, and increased mortality [10,11]. With the emergence of new variants combined
with waning immunity, the CDC recommends a booster 6 months after an initial mRNA vac-
cine series or 2 months after Ad26.COV2.S vaccination to prevent symptomatic and severe
outcomes of COVID-19 [7,12]. The booster dose elicits an increase in antibody neutralization
titers against the Omicron variant and causes affinity maturation leading to a better antibody
response, maintaining long-term protection against severe COVID-19 outcomes [12-15].

While boosters are understood to be effective against severe disease, hospitalization [16],
and symptomatic infections [12,17] resulting from the Omicron variant, limited information
is available about their effectiveness against asymptomatic and mild symptomatic infections
that may go unreported in the absence of asymptomatic surveillance testing. Asymptomatic
and mild symptomatic infections play an important role in spreading SARS-CoV-2 [18].
Moreover, the clinical course of COVID-19 is understood to vary by age [19]; current esti-
mates of booster effectiveness based on the general population may not apply to cohorts whose
age distribution differs substantially from that of the general population.

We leveraged polymerase chain reaction (PCR) testing data derived from a SARS-CoV-2
surveillance program that required mandatory routine SARS-CoV-2 testing of students
(through December 14, 2021) and departure tests before students left the Ithaca campus. Dur-
ing December 5 to December 31, 2021, there was an explosive increase in Omicron cases to
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the point where the Omicron variant (BA.1) became predominant at Cornell University’s Ith-
aca campus [20], and 1,926 SARS-CoV-2 infections were identified in a vaccinated population
of students. We sought to estimate the effectiveness of COVID-19 boosters in reducing SARS--
CoV-2 infections in the vaccinated population of students during this Omicron-predominant
period.

Methods

We used a retrospective cohort study to estimate the effectiveness of COVID-19 boosters in
reducing SARS-CoV-2 infections. Specific to our context was a highly vaccinated study popu-
lation, and a period where Omicron BA.1 was the dominant viral strain. We did not have an a
priori protocol or statistical analysis plan. As detailed in Section A in S1 Appendix, our initial
analysis [21] came as part of Cornell University’s institutional response to COVID-19 during
an Omicron-driven outbreak among a highly vaccinated population. This plan was made after
observing aggregate infection rates that compared those who had uploaded early proof of
booster vaccination (less than 17% of those in the study population who would eventually pro-
vide documentation) against those who had not. We subsequently developed a study plan that
modified two of the covariates in this analysis (adding sex and changing how primary vaccine
series completion date was coded) because we hypothesized that they are confounders. We
then made additional modifications in response to reviewer requests. As described in Section
A in S1 Appendix, estimates of vaccine booster effectiveness were not sensitive to these
changes in the analysis.

We utilized deidentified student data from Cornell University’s COVID-19 surveillance
database. We included PCR-positive cases identified at Cornell surveillance testing sites, the
campus student health service, and a sampling site operated by the local hospital system during
the period of December 5, 2021 to December 31, 2021 (referred to as the “Omicron outbreak”
or the study period), in which the Omicron variant (BA.1) was the predominant strain. Sam-
ples collected at Cornell surveillance sites and the local hospital’s sampling site were tested
using EZ-SARS-CoV-2 Real-Time RT-PCR [22] within a two-stage Dorfman procedure [23]
using pools of size 5. The assay targets two highly conserved regions of the SARS-CoV-2 N
gene, and the Omicron variant is not expected to significantly affect test performance. Samples
collected at the campus student health service were tested using the Cepheid Xpert Xpress
SARS-CoV-2 Assay [24]. The FDA reports that the introduction of the Omicron variant does
not appear to have resulted in a significant change in the test performance of this assay [25].
This work was completed as a part of Cornell’s institutional planning and preparedness, desig-
nated as exempt from IRB review by the Cornell IRB.

Study context

In July 2020, as a part of its reopening strategy, Cornell implemented a robust COVID-19 sur-
veillance testing program for students, faculty, and staff (1,637,394 PCR tests performed as of
February 2, 2022). At the start of December 2021, 23,389 students were enrolled in full-time
academic programs at Cornell’s Ithaca campus. Masks were required in all on-campus build-
ings. COVID-19 vaccination was required for all students (97% vaccinated), though medical
or religious exemptions were granted. Boosters were encouraged (October 21, 2021) before
being required (January 31, 2022). Through December 14, 2021, all undergraduates and pro-
fessional program (veterinary, business, and law) students (n = 17,017) were enrolled in at-
least-weekly mandatory PCR surveillance (compliance: 99.8% for surveillance tests scheduled
between November 29, 2021 and December 14, 2021) using an anterior nasal swab sample.
Approximately 86% of person-days included in the study (see the Study population section

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1004153  January 10, 2023 4/19


https://doi.org/10.1371/journal.pmed.1004153

PLOS MEDICINE

Booster vaccination protection against SARS-CoV-2 infections in young adults during Omicron BA.1 period

below) fell within this period. Students leaving the Ithaca campus before the end of the study
period (82% of students in the study population indicated that they left before the end of the
study period through a Cornell-managed checklist) were required to seek an additional test
shortly before departure. Additionally, students were prompted to seek a PCR test if they were
identified as a close contact of a case or if they developed COVID-like symptoms. Free PCR
testing was available to any constituent of the university 7 days per week. Whole genome
sequencing confirmed the presence of the Omicron variant (BA.1) in Cornell community
COVID-19 surveillance samples collected on December 1, 2021; by December 11, 2021, Omi-
cron was the predominant variant on the Ithaca campus [20].

Study population

Our study included 15,800 Cornell students. Study inclusion criteria were as follows: being an
active student at Cornell’s Ithaca campus enrolled in mandatory surveillance testing, being
vaccinated with a vaccine approved by the World Health Organization (WHO) for emergency
use at the time of the study (2 doses of BNT162b2, 2 doses of mRNA-1273, 1 dose of Ad26.
COV2.S, or 2 doses of other WHO-approved vaccines), and having no positive SARS-CoV-2
PCR test within 90 days before the start of the study period (Fig 1). Students were required to
upload a photo of a vaccine card documenting their booster status via an online form or
request an exemption by February 1, 2022 [26]. According to vaccination records that were
uploaded and validated by February 8, 2022, 11.9% of the study population (n = 1,876)
received a booster before the study period, with the earliest booster dose administered on
August 3, 2021. Our analysis does not distinguish the booster vaccine manufacturer, although
this information is available in Table B in S1 Appendix. Students were excluded from the
study population if they were not subject to mandatory surveillance testing, i.e., graduate stu-
dents (n = 6,372), tested PCR-positive within 90 days before the start of the study period (n =
214), did not have at least one PCR surveillance test between November 5, 2021 and December
4, 2021 (n = 130), had not completed a WHO-approved initial vaccine series (n = 701), had an
unspecified sex (n = 9), or had invalid vaccination records (n = 163). Students with no PCR
test records during the study period (n = 285) were considered lost to follow-up.

Statistical analysis

The primary outcome of our study was PCR-confirmed SARS-CoV-2 infection. To estimate
the effectiveness of COVID-19 boosters against SARS-CoV-2 infections during this Omicron-
predominant period, we calculated the person-days that each student contributed to the
boosted and nonboosted population during the study period. The total number of person-days
contributed by a student is the number of days between December 5, 2021 and either their
final test date in the study period or their first PCR-positive test date, whichever comes first.
Of the study population, 38,023 PCR tests were performed during the study period. Approxi-
mately 98.2% of the students (n = 15,515) had at least one PCR test (mean = 2.4 tests,
median = 2.0 tests, SD = 1.2 tests), hence contributing at least one person-day (Fig A in S1
Appendix). We assume that booster vaccinations become effective 7 days after administration,
based on results from a study of the Israeli general population [27]. As a result, each person-
day has its booster status labeled as boosted (1) or control (0) based on whether the associated
individual received their booster dose at least 7 days before that day (Fig B in S1 Appendix).
We performed a multivariable Poisson regression to estimate the effect of receiving a
booster dose on having a positive PCR-based diagnosis during the study period. The unit of
observation is an exposure period of an individual (measured in person days). An offset equal
to log(person-days), i.e., the natural logarithm of the number of days in the exposure period, is
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e 2
Enrolled in an Ithaca-based full-time academic program
(n=123,389)

| J

L4
4 N\

Subject to mandatory surveillance testing (i.e., undergraduates
and students pursuing professional degrees) (n =17,017)
\. J

Y
( )

Not tested PCR-positive within 90 days before the start of
the study period (n = 16,803)
| J

4 N\
Tested at least once in surveillance between 11/5/2021 and

12/4/2021 (n = 16,673)
| J/

A

-
Completed initial vaccination series approved by WHO
for emergency use at least 14 days before the study period

(n=15,972)
\ J

( \

Had a specified sex (male / female) (n = 15,963)

. J

Had valid initial and booster vaccination records (n = 15,800)

'

period (n = 1,876)

Received a booster dose before the study

Received a booster dose during the study Did not receive a booster dose or received a
period (n =15,993) booster dose after the study period (n = 7,931)

Fig 1. Enrollment of the study population. Students were included if they were enrolled in a full-time academic program based at Cornell’s Ithaca campus in
Fall 2021, were subject to mandatory surveillance testing, had no positive SARS-CoV-2 PCR test within 90 days before the start of the study period, had at least
one PCR test between November 5, 2021 and December 4, 2021, had a valid vaccination record indicating completion of WHO-approved initial vaccination
series at least 14 days before the study period, and specified their sex in university records. PCR, polymerase chain reaction; SARS-CoV-2, Severe Acute
Respiratory Syndrome Coronavirus 2; WHO, World Health Organization.

https://doi.org/10.1371/journal.pmed.1004153.9001

added in the regression model for each exposure period. Each exposure period lasts until the
end of the week (Week 0 is December 5 to December 11, etc.), a change in booster status (in
which case a week is split into two exposure periods), or the person completes their last test in
the study, whichever comes first. This model can be seen as a Cox proportional hazards analy-
sis [28], in which it is assumed that exposure risk accrues at a constant rate within each expo-
sure period. To account for possible within-individual correlation among observations over
time (i.e., the risk of some individual contracting the disease is likely persistent over time due
to individual behavior), we used generalized estimating equations (GEEs) [29,30] with an
exchangeable correlation structure over weeks in the study period to obtain consistent coeffi-
cient estimates and robust variance estimates for the regression model.
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We controlled for sex, student group (undergraduate or professional), fraternity/sorority
participation (yes or no), varsity athletic team participation (yes or no), initial vaccine type
(BNT162b2, mRNA-1273, Ad26.COV2.S, or other WHO-approved vaccines), initial vaccina-
tion series completion date (date of receiving 1 dose of Ad26.COV2.S or 2 doses of other
WHO-approved vaccines, grouped by months from January 2021 to November 2021), and
temporal effect during the study period (grouped by week). We also created univariable mod-
els for each of these covariates to obtain unadjusted incidence rate ratios. We included student
group, fraternity/sorority participation, and athletic team participation as covariates because
case investigation of data from before the study period suggested that these covariates
explained much of the heterogeneity in the risk of infection across students [31]. Undergradu-
ate students were divided into 3 subgroups based on fraternity/sorority and athletic team par-
ticipation. Students who were in both fraternities/sororities and athletic teams were classified
in the fraternity/sorority group. Thus, we had six student groups: (1) undergraduate fraternity/
sorority participants; (2) undergraduate athletes not in Group 1; (3) undergraduates not in
Groups 1 or 2; (4) law students; (5) postbaccalaureate business students; (6) veterinary stu-
dents. Initial vaccination series completion date was included as a covariate to adjust for het-
erogeneous social behavior, inclination to receive vaccination, and waning vaccine immune
response. The week during the study period was included as a categorical covariate to control
for time-varying prevalence and the resulting risk of exposure. This mitigates bias that would
have otherwise been created by temporal variation in the fraction of on-campus students
boosted. We used a categorical covariate rather than a continuous one because prevalence did
not change linearly with time. We did not include age as a covariate because there is little age
variation in the study population (Fig C in S1 Appendix). The dependent variable was
whether a student tests PCR-positive for COVID-19 in a particular exposure period. The
regression model was

log(4) = log(exposure) + i, + f, * Booster + f, x Sex

+ Zyi * Student Group,

i=1

3
+ Zocj * Initial Vaccine Type;

=1

10
+ Z(Sk x Month of Initial Vaccination Series Completion,

k=1

3
+ Zoé * Week During the Study Period,

(=1

where A is the incidence rate, and greek letters on the right-hand side of the specification are
the regression coefficients. The p-values for the estimated coefficients and the 95% confidence
intervals for the adjusted incidence rate ratios were adjusted using the Bonferroni correction
[32].

To estimate the effectiveness of a booster dose, we used

booster effectiveness = 1 — adjusted incidence rate ratio (aIRR) = 1 — exp(f,).

We performed several robustness checks. To assess the effect of students leaving campus at
the end of the semester and the accordingly paused mandatory surveillance, we performed a
secondary GEE Poisson regression with the same specification as above, but for a shorter study
period (from December 5, 2021 to December 18, 2021, the last day of exams).
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To assess the possibility of bias remaining in our analysis despite the included controls, e.g.,
bias due to days since booster dose administration, we performed a GEE Poisson regression
with multiple classes for the booster status (unboosted, 0 to 6 days after booster administra-
tion, >7 days after booster dose administration). We hypothesized that booster vaccination
has negligible effect 0 to 6 days after administration.

We further performed a sensitivity analysis on the delay to boosted status, allowing person-
days to count as boosted only after this delay after administration had elapsed, varying this
delay from the day after booster administration (day 1) to 14 days (Fig B in S1 Appendix). We
emphasize that varying this parameter only affects the booster status of person days from peo-
ple that were boosted within or shortly before the start of the study period. We hypothesized
that the shorter delays would result in smaller but still statistically significant booster effective-
ness estimates as person-days from 0 to 6 days after booster administration would dilute the
effect observed in >7 days after booster administration group. We expected to see similar esti-
mates of booster effectiveness for all delays >7 days. We emphasize that this analysis is not
designed to comment on how quickly boosters become effective, but instead only on the
robustness of our main findings to assumptions about this delay parameter.

We also performed a logistic regression with GEE to assess the robustness of our conclu-
sions to model specification. The unit of observation is a person-day. We assumed that booster
vaccinations become effective 7 days after administration. The dependent variable is whether a
student tests PCR-positive for SARS-CoV-2 on a particular day. The regression model was

log (1’%1)) = log(ezposure) + f, + B, * Booster + f, * Sex

+ Zyi * Student Groupp,

i=1

3
+ Zocj * Initial Vaccine Type,

=
10

+ Zék x Month of Initial Vaccination Series Completion,

k=1

3
+ Zok * Week During the Study Period,

=1

where p is the probability of infection, and greek letters on the right-hand side of the specifica-
tion are the regression coefficients. This logistic model can be seen as a form of discrete time
interval-censored survival model, in which a person’s endpoint is the first day on which they
tested positive, and the right-censoring date is the date of their last negative test. As with the
Poisson regression model, information bias is possible because testing did not occur every day.
We approximated the incidence rate ratio using the adjusted odds ratio (aOR) when estimat-
ing the booster effectiveness.

A subset analysis of undergraduate students living on campus was performed to assess the
robustness of our results to additional kinds of student clustering, i.e., residence, through
which virus could spread. The description of this analysis is included in Section B in S1
Appendix.

All statistical analyses were performed in Python (V3.7.11), using the statsmodels package
(V0.13.2). All code is publicly available (https://github.com/jiayuewan/booster_effectiveness).
The data are protected by an institutional data requirement at Cornell that covers the use of
data collected during COVID-19 surveillance and are maintained by Cornell University’s
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Office of the Vice President for Research and Innovation. These can be requested from that
entity.

Results

Boosted students were more likely to be female, professional students, and have an earlier ini-
tial vaccine series than unboosted individuals (Table 1). During the study period, a total of
1,926 PCR-positive cases were identified and reported out of 15,800 students included in this
analysis (overall infection risk of 12.2%). None of the cases required hospitalization. The over-
all infection risk among students that received a booster dose before December 5, 2021 is 6.2%
(117 PCR-positives out of 1,876 boosted students), whereas the infection risk among students
that did not receive a booster before December 5, 2021 is 13.0% (1,809 PCR-positives out of
13,924 students). The cumulative incidence among students who received a booster before
December 5, 2021 was approximately half the cumulative incidence among students who were
unboosted at that time (Fig 2). Similarly, the incidence rate was 0.6 per 100 person-days (127
PCR-positive cases/19,842 person-days) among students who had received the booster dose
>7 days earlier, compared to 1.3 per 100 person-days (1,799 PCR-positive cases/135,214 per-
son-days) among those who had not received the booster dose or had received the booster
dose <7 days earlier.

The booster effectiveness estimate from the main GEE Poisson model is 56% (95% CI:
[42%, 67%]). In addition to boosters, the incidence rate in our fitted GEE Poisson model
depends on the student group and the date of completing the initial vaccine series (Table 2).
The incidence rate was significantly lower among students who completed the initial vaccine
series after May 1, 2021 compared with those completing the initial vaccine series earlier. Dur-
ing the study period, the incidence rate was significantly higher among undergraduate stu-
dents participating in fraternity and sorority activities (aIRR 2.16 [1.84, 2.54]) or belonging to
athletic teams (aIRR 2.02 [1.57, 2.60]), and among professional students at the business school
(aIRR 1.64 [1.15, 2.32]), when compared with other undergraduates. Students vaccinated with
Ad26.COV2.S had a higher risk of infection relative to other vaccines, but the difference was
not statistically significant in our model.

To study the robustness to population size variation as students left campus at the end of
the semester, we performed a GEE Poisson regression (Table C in S1 Appendix) for a shorter
period (December 5, 2021 to December 18, 2021). This yields a similar booster effectiveness of
57% (95% CI: [42%, 68%]), suggesting that our estimate of booster effectiveness from the full
regression model is robust to the effect of students leaving campus at the end of the semester
and the accordingly paused mandatory surveillance. As an additional robustness check, we
performed a GEE Poisson regression (Table D in S1 Appendix) with multiple classes for the
booster status of a person-day (unboosted, 0 to 6 days after booster administration, >7 days
after booster dose administration). As expected, a booster status corresponding to 0 to 6 days
after booster dose administration was not found to have a statistically significant effect on
PCR-diagnosed infection (P > 0.99) relative to being unboosted.

We further performed a sensitivity analysis to assess the impact of the assumed delay
between booster administration and booster effectiveness. Although 5,993 students received
their booster dose during the study period (Fig D in S1 Appendix), 5,210 of them received it
after leaving the active surveillance program at the end of the semester. These students did not
contribute any person-days to the study after their last surveillance test, so they contributed
only unboosted person-days. For the 783 students who received a booster dose while in active
surveillance, we varied this delay from 1 day to 14 days and calculated the booster effectiveness
against infection using the full model (Figs B and E in S1 Appendix). The estimated booster
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Table 1. Distribution of person-day data by sex, student group, initial vaccination series completion date, initial vaccine type, and week in the study period.

# unboosted | # unboosted Incidence rate per |# boosted | # boosted Incidence rate | Total # Total # Incidence rate
person-days | PCR-positive | 100 person-days person- PCR- per 100 person | person- PCR- per 100 person
cases (unboosted) days positive days (boosted) | days positive days (total)
cases cases
n (col %) n (col %) n (col %) n (col %) n (col %) | n(col %)
Sex
Female 72,195 (53%) | 908 (50%) 1.3 12,034 75 (59%) 0.6 84,229 983 (51%) | 1.2
(61%) (54%)
Male 63,019 (47%) | 891 (50%) 1.4 7,808 52 (41%) 0.7 70,827 943 (49%) | 1.3
(39%) (46%)
Student group®
UG-frat/sor 21,333 (16%) | 517 (29%) 24 2,986 35 (28%) 1.2 24,319 552 (29%) |2.3
(15%) (16%)
UG-athlete 7,629 (6%) 170 (9%) 2.2 781 (4%) | 7 (6%) 0.9 8,410 177 (9%) 2.1
(5%)
UG-other 89,860 (66%) | 985 (55%) 1.1 11,446 65 (51%) 0.6 101,306 1,050 (55%) | 1.0
(58%) (65%)
LA 6,166 (5%) 30 (2%) 0.5 1,734 (9%) | 3 (2%) 0.2 7,900 33 (2%) 0.4
(5%)
GM 4,979 (4%) 84 (5%) 1.7 1,061 (5%) | 15 (12%) 14 6,040 99 (5%) 1.6
(4%)
VM 5,247 (4%) 13 (1%) 0.2 1,834 (9%) | 2 (2%) 0.1 7,081 15 (1%) 0.2
(5%)
Month of initial
vaccine series
completion®
January 2021 278 (0%) 5 (0%) 1.8 158 (1%) 1 (1%) 0.6 436 (0%) | 6 (0%) 1.4
February 2021 1,926 (1%) 27 (2%) 1.4 1,185 (6%) | 8 (6%) 0.7 3,111 35 (2%) 1.1
(2%)
March 2021 9,623 (7%) 184 (10%) 1.9 3,801 34 (27%) 0.9 13,424 218 (11%) | 1.6
(19%) (9%)
April 2021 41,897 (31%) | 667 (37%) 1.6 9,006 60 (47%) 0.7 50,903 727 (38%) | 1.4
(45%) (33%)
May 2021 54,169 (40%) | 646 (36%) 1.2 3,653 21 (17%) 0.6 57,822 667 (35%) | 1.2
(18%) (37%)
June 2021 10,883 (8%) | 113 (6%) 1.0 1,095 (6%) | 2 (2%) 0.2 11,978 115 (6%) 1.0
(8%)
July 2021 7,958 (6%) 77 (4%) 1.0 582 (3%) | 0 (0%) 0.0 8,540 77 (4%) 0.9
(6%)
August 2021 5,301 (4%) 55 (3%) 1.0 160 (1%) | 0(0%) 0.0 5,461 55 (3%) 1.0
(4%)
September 2021 2,774 (2%) 21 (1%) 0.8 106 (1%) | 0(0%) 0.0 2,880 21 (1%) 0.7
(2%)
October 2021 392 (0%) 4 (0%) 1.0 72 (0%) 1(1%) 14 464 (0%) | 5 (0%) 1.1
November 2021 13 (0%) 0 (0%) 0.0 24 (0%) 0 (0%) 0.0 37 (0%) 0 (0%) 0.0
Initial vaccine
series type
BNT162b2 83,826 (62%) | 1,179 (66%) 14 12,532 83 (65%) 0.7 96,358 1,262 (66%) | 1.3
(63%) (62%)
mRNA-1273 38,480 (28%) | 481 (27%) 1.3 3,297 24 (19%) 0.7 41,777 505 (26%) | 1.2
(17%) (27%)
Ad26.COV2.S 6,234 (5%) 101 (6%) 1.6 1,186 (6%) | 11 (9%) 0.9 7,420 112 (6%) 1.5
(5%)
(Continued)
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Table 1. (Continued)

# unboosted | # unboosted Incidence rate per |# boosted | # boosted Incidence rate | Total # Total # Incidence rate
person-days | PCR-positive | 100 person-days person- PCR- per 100 person | person- PCR- per 100 person
cases (unboosted) days positive days (boosted) | days positive days (total)
cases cases
Other WHO- 6,674 (5%) 38 (2%) 0.6 2,827 9 (7%) 0.3 9,501 47 (2%) 0.5
approved vaccines (14%) (6%)
Week in the study
period
Week 0 89,480 (66%) | 520 (29%) 0.6 11,256 46 (36%) 0.4 100,736 | 566 (29%) | 0.6
(57%) (65%)
Week 1 39,642 (29%) | 1,211 (67%) 3.1 6,263 68 (54%) 1.1 45,905 1,279 (66%) | 2.8
(32%) (30%)
Week 2 4,614 (3%) 47 (3%) 1.0 1,524 (8%) | 8 (6%) 0.5 6,138 55 (3%) 0.9
(4%)
Week 3 1,478 (1%) 21 (1%) 14 799 (4%) | 5 (4%) 0.6 2,277 26 (1%) 1.1
(1%)
Total 135,214 1,799 (100%) | 1.3 19,842 127 (100%) | 0.6 155,056 1,926 1.2
(100%) (100%) (100%) (100%)

*Descriptions for student group categories. UG-frat/sor: Undergraduate students affiliated with fraternities/sororities; UG-athlete: Undergraduate varsity athletes that

have no affiliation with fraternities/sororities; UG-other: Other undergraduate students; LA: Professional students in the law school; GM: Postbaccalaureate professional

students in the business school; VM: Professional students in the college of veterinary medicine.

®Initial vaccination series completion is the date of receiving 1 dose of Ad26.COV2.S or 2 doses of other WHO-approved vaccines.

https://doi.org/10.1371/journal.pmed.1004153.t001

effectiveness is consistently above 48% and is relatively flat after 7 days, suggesting that our
estimate of booster effectiveness is robust to variation in the time required to mount an effec-
tive immune response after booster vaccination. Similarly, the incidence in the boosted popu-
lation does not vary substantially as we change the assumed delay between booster
administration and effectiveness (Table E in S1 Appendix).

In a separate sensitivity analysis using logistic regression with GEE (Table F in S1 Appen-
dix), the estimated booster effectiveness is 57% (95% CI: [43%, 68%]). The estimate from the
logistic regression with GEE is close to the estimate from the full GEE Poisson regression
model.

In a subset analysis (Section B in S1 Appendix) on the undergraduate population living in
on-campus housing, we did not observe a significant change in the estimated booster effective-
ness on the subpopulation whether or not an additional covariate for housing building was
included in the regression. This subset analysis justifies the use of our regression model with-
out controlling for housing type on the full study population, given that housing information
is only available for the on-campus undergraduates.

Discussion

This study is one of the first community studies to quantify booster vaccine effectiveness from
an actively surveilled population of young adults. Our study provides evidence that booster
vaccinations significantly reduced infections in university settings during periods when the
Omicron BA.1 variant was predominant, supporting the implementation of booster vaccina-
tion requirements to minimize community transmission.

In this retrospective analysis of SARS-CoV-2 tests performed at Cornell University’s Ithaca
campus during a 27-day period when Omicron BA.1 was the predominant variant, the inci-
dence of COVID-19 infections was approximately halved among participants vaccinated with
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Fig 2. SARS-CoV-2 infection cumulative incidence rate (number of infections per person) and its 95% confidence interval during
the study period, broken out by booster dose status.

https://doi.org/10.1371/journal.pmed.1004153.9002

a booster dose of a COVID-19 vaccine approved by WHO for emergency use when compared
with vaccinated participants without a booster dose. The calculated booster effectiveness was
56% (95% CI: [42%, 67%]), which is slightly lower than a previously reported effectiveness
against symptomatic COVID-like illness in adults (66%; 95% CI: [64%, 68%]) in the same time
period [17]. Our estimate is similar to the reduction in cumulative incidence of reported infec-
tions associated with booster vaccination during an Omicron wave in Los Angeles County
[33] and consistent with a pooled estimate of booster effectiveness (47%; 95% CIL: [19%, 65%])
from a meta-analysis of studies completed during periods of Omicron predominance across
the globe [34]. Importantly, our analysis includes both symptomatic and asymptomatic infec-
tions because the student population was under active surveillance, whereas none of the stud-
ies included in the meta-analysis examined a population under active surveillance [7,35-40].
Interestingly, between two studies on the effectiveness of a second booster dose, i.e., fourth
vaccine dose [41,42], one that used data collected during active surveillance [42] also found
lower effectiveness than one that did not [41]. Students vaccinated with Ad26.COV2.S had a
higher risk of infection relative to other vaccines, similar to other studies [43], though the dif-
ference was not statistically significant, likely because a small number of students had Ad26.
COV2.S initial doses (Table 1, Table B in S1 Appendix). We did not find a booster status cor-
responding to 0 to 6 days after booster dose administration to have a statistically significant
effect on PCR-diagnosed infection relative to being unboosted. This could be because of an
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Table 2. Summary of the full GEE Poisson regression model with covariates for sex, student group, initial vaccination series completion date, initial vaccine type,
and week in the study period.

Variable Unadjusted IRR® Multivariable GEE Poisson model
p-value? aIRR 95% CI for aIRR
Booster (ref = 0)
1 0.47 <0.001 0.44 [0.33, 0.58]
Sex (ref = Female)
Male 1.15 >0.99 1.02 [0.89, 1.18]
Student group® (ref = UG-other)
UG-frat/sor 2.20 <0.001 2.16 [1.84, 2.54]
UG-athlete 2.00 <0.001 2.02 [1.57,2.60]
LA 0.41 <0.001 0.43 [0.25,0.73]
GM 1.51 <0.001 1.64 [1.15,2.32]
VM 0.21 <0.001 0.17 [0.08, 0.37]
Month of initial vaccine series completion® (ref = May 2021)
January 2021 1.15 >0.99 1.53 [0.44, 5.28]
February 2021 0.97 >0.99 1.23 [0.74, 2.07]
March 2021 1.40 <0.001 1.48 [1.15,1.89]
April 2021 1.23 <0.001 1.30 [1.10, 1.55]
June 2021 0.82 >0.99 0.95 [0.69, 1.29]
July 2021 0.77 >0.99 0.89 [0.60, 1.31]
August 2021 0.87 >0.99 0.86 [0.56, 1.32]
September 2021 0.63 0.62 0.62 [0.32, 1.20]
October 2021 0.93 >0.99 1.02 [0.29, 3.66]
November 2021 0.00 <0.001 <0.001 [<0.001, <0.001]
Initial vaccine type (ref = BNT162b2)
mRNA-1273 0.93 >0.99 0.97 [0.82,1.15]
Ad26.COV2.S 1.16 >0.99 1.11 [0.82, 1.49]
Other WHO-approved vaccines 0.37 0.002 0.53 [0.33, 0.87]
Week in the study period (ref = Week 0)
Week 1 4.89 <0.001 5.37 [4.61, 6.25]
Week 2 1.52 <0.001 2.57 [1.63,4.07]
Week 3 1.90 <0.001 3.71 [1.96,7.01]

*Descriptions for student group categories. UG-frat/sor: Undergraduate students affiliated with fraternities/sororities; UG-athlete: Undergraduate varsity athletes that
have no affiliation with fraternities/sororities; UG-other: Other undergraduate students; LA: Professional students in the law school; GM: Postbaccalaureate professional
students in the business school; VM: Professional students in the college of veterinary medicine.

®Initial vaccination series completion is the date of receiving 1 dose of Ad26.COV2.S or 2 doses of other WHO-approved vaccines.

“Unadjusted incidence rate ratios are computed from results of univariable GEE Poisson regression models.

dAdjusted using Bonferroni correction to address multiple comparisons.

alRR, adjusted incidence rate ratio; GEE, generalized estimating equation; IRR, incidence rate ratio; WHO, World Health Organization.

https://doi.org/10.1371/journal.pmed.1004153.t002

insufficient immune response to the booster within 6 days of administration, consistent with
previous findings [22], or because of a lack of statistical power resulting from a small number
of person days in the 0-to-6-day window after booster administration.

We observed lower incidence rates among students with more recent initial vaccinations,
consistent with waning protection against SARS-CoV-2 infections observed within a few
months of completing the initial vaccination series [44]. Months in which fewer individuals
completed their initial vaccine series did not have a statistically significant effect, consistent
with fewer data points resulting in less statistical power. Varsity athletes and students in
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fraternities/sororities at institutions of higher education may have more social contact than
other undergraduates; thus, consistent with previous studies, we found that this population
may be at higher risk for SARS-CoV-2 infection [31,45,46]. As in other higher-education insti-
tutions [46], contact tracing at Cornell identified fraternity/sorority gatherings as significant
spreading events. Local case investigation efforts also pointed to additional events, including
post-Thanksgiving break travel and a series of end-of-semester gatherings, as contributing to
Omicron spread. With the emergence of highly transmissible variants, travel and social gather-
ings may put students at increased risk of SARS-CoV-2 infection.

Our Poisson regression analysis is similar to Bar-On and colleagues’ [47], a previous study
of vaccine booster effectiveness against COVID-19. See also Bar-on and colleagues’ study [41]
for another similar approach to estimating vaccine booster effectiveness against COVID-19.
There are two common alternative statistical approaches to estimating vaccine effectiveness.
The first approach is the emulated trial design (e.g., [48]), which matches subjects with the
same covariates in an observational study to emulate a randomized trial. This design offers
more robustness against misspecification of the functional form by which booster status and
infection risk depend on covariates, but requires a larger dataset to enable matching simulta-
neously on all covariates. We did not have a sufficiently large dataset to match on all the covar-
iates included in our model. A second alternative approach is the test-negative case-control
design [17], which controls bias by including those individuals who sought testing, and
improvements that model the propensity to test [49]. Since testing was mandatory and compli-
ance was high, it is not necessary to model the propensity to test in this study population.

Limitations and conclusion

Several limitations of our approach should be considered in interpreting our results. First, we
did not have an a priori protocol or statistical analysis plan because the analysis was initially
done for institutional research purposes, and some analysis choices were made after observing
the data (see Section A in S1 Appendix). Thus, confidence intervals and hypothesis tests
would be invalidated by correlation that could have been unintentionally introduced between
the data and the choice of analysis plan. Second, a limitation of the Poisson regression is infor-
mation bias due to the fact that individuals were not tested every day. Delays in reporting a
positive test would cause the period of the delay to have a misclassified infection status,
whether this period is within one exposure period or spans multiple exposure periods. Third,
there may be additional confounding bias because, even after controlling for covariates, people
who avoid risk could also be more likely to get a booster vaccination, which could result in the
boosted group having decreased exposure to SARS-CoV-2. This would cause our regression
analyses to overestimate vaccine effectiveness. Conversely, if people had engaged in more risky
behavior in response to perceived protection offered by booster vaccination, our analyses
would underestimate vaccine effectiveness. Fourth, our data do not allow distinguishing
between booster doses and additional doses for immunocompromised individuals, or distin-
guishing between symptomatic and asymptomatic infections for confirmed PCR-positive
cases. As mentioned earlier, not all samples were tested for S-gene dropout, and sequencing of
every PCR-positive case was not performed. If boosters are more effective against the Delta
variant than the Omicron variant, then Delta infections during the study period would lead
our analysis to overestimate booster effectiveness against Omicron. Fifth, enough COVID-19
cases were observed to provide sufficient statistical power for moderately precise booster effec-
tiveness estimates, but not to estimate how booster effectiveness varies with the manufacturer
of the booster dose or the original vaccine. Most students were boosted with BNT162b2 in this
study (Table B in S1 Appendix). Sixth, we did not include information on previous COVID-
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19 infections and had no information on the students’ underlying medical conditions or use of
nonpharmaceutical interventions, although students were required to wear a mask (cloth,
medical, or respirator) while inside campus buildings. This may lead to confounding bias if
medical history differentially affected booster choice or if booster choice affected the use of
nonpharmaceutical interventions. Seventh, gaps in time between a student’s last test and their
departure from Ithaca (or the end of the study period, whichever came first) could lead to attri-
tion bias. Eighth, although nearly 90% of positive samples tested for S-gene dropout during the
study period exhibited this marker of the Omicron BA.1 variant [20], and sequencing con-
firmed the presence of the Omicron variant in all samples sequenced during this period, not
all samples were tested for S-gene dropout, and sequencing of each PCR-positive case was not
performed. Finally, not every individual who was boosted before or during the study period
may have uploaded their vaccination record, which may have led to information bias towards
the null.

In conclusion, our findings are consistent with the notion that booster vaccine doses, rela-
tive to being vaccinated with the initial series, are effective in reducing infections in young
adults during Omicron-predominant periods, thereby helping universities and other institu-
tions to remain open safely. In the 2 months subsequent to the period covered in this study,
almost the entire Cornell student body, if eligible, received at least 1 booster dose.
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