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Abstract

Using totally symmetric sets, Chudnovsky—Kordek—Li—Partin gave a superexponential lower bound on the cardi-
nality of non-abelian finite quotients of the braid group. In this paper, we develop new techniques using multiple
totally symmetric sets to count elements in non-abelian finite quotients of the braid group. Using these techniques,
we improve the lower bound found by Chudnovsky et al. We exhibit totally symmetric sets in the virtual and welded
braid groups and use our new techniques to find superexponential bounds for the finite quotients of the virtual and
welded braid groups.

1. Introduction

The braid group, B,, is a versatile mathematical object which plays an important role in both topology
and algebra. In this paper, we focus on the size of the finite quotients of the braid group. Many useful
applications of the braid group rely on facts about finite quotients of the braid group. For example, the
structure of Jones representations of the braid group are understood due to the fact that B, modulo the
relation o> =1 is a finite group (the symmetric group, X,) [13]. Another example is the use of braid
group representations in models of topological quantum computing. To have a universal quantum gate
set, it is important to know the size and structure of the image of the braid group representation [11].

A guiding theory which motivates the work found in this paper is profinite rigidity, or the idea of
distinguishing groups by their finite quotients. More specifically, one would like to understand the
circumstances which allow finitely generated residually finite groups to have isomorphic profinite com-
pletions. If a residually finite group G is isomorphic to its profinite completion, we say that the group G
is profinitely rigid. In the context of braid groups and their generalizations, these groups are all residu-
ally finite, and the theory of profinite rigidity asks whether we can determine these groups by knowing
only what their finite quotients are. One step for studying whether a group G is profinitely rigid is to
determine which finite groups appear as finite quotients of the group G. The work done in this paper is a
step toward solving which subgroups appear as finite quotients of the braid group and its generalizations
as we are providing a lower bound on the size of the non-cyclic finite quotients. For more of an overview
of recent work and progress on profinite rigidity, see [21].

To study finite quotients of the braid group, we consider homomorphisms ¢ : B, — G, where G is a
finite group. If G is a cyclic group, then the quotient of B, will be a cyclic group. A homomorphism is
called cyclic (resp. abelian) if its image is a cyclic group (resp. an abelian group). One main focus of
this paper is to understand the non-cyclic quotients of B,. Work by Chudnovsky—Kordek-Li—Partin [8],
and more recently by Caplinger—Kordek [7], proves a lower bound for the size of non-cyclic quotients
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of B,. In this paper, we provide an improved lower bound for the size of non-cyclic quotients of B, by a
factor of n to the result of Caplinger—Kordek, as found in Theorem 1.1.

Theorem 1.1. Letn > 5, and let ¢ : B, — G be a non-cyclic homomorphism to a finite group, G, so that
@(B,) is not isomorphic to the symmetric group, X,. Then,

o= (|5 | +1) 69 5]

Moreover, if p is the smallest integer so that ¢(0;)’ = ¢(0;)’ for any i, j, then

— 1 .
6B > (apf(p) 1 VTJ ) 1) @ |2

where Ipf(p) is the least integer greater than 1 that divides p.

A secondary motivation for Theorem 1.1 is the following conjecture.

Theorem 1.1, and the results by Chudnovsky—Kordek-Li—Partin and Caplinger—Kordek, attempt to
rule out smaller possible non-cyclic quotients of B,. When n =5, 6, and 7, Caplinger—Kordek used the
classification of finite groups to conclude that a non-cyclic quotient of B, has size at least n! [7]. Since
Theorem 1.1 gives a lower bound on the size of the image of a non-cyclic homomorphism for n > 5, it
gives the tightest known lower bound for the size of a finite non-cyclic quotient of B, for n > 8.

Theorem 1.1 shows that the existence of a non-cyclic homomorphism ¢ : B, — G requires the group
G to be quite large or complicated. To see this, recall that all finite groups embed in a large enough
symmetric group, X, which implies that we can consider the target group G in Theorem 1.1 to be ;.
When n > 6, and k < n, homomorphisms B, — X, must be cyclic [1]. Therefore, if the group G embeds
into a small enough symmetric group, the image of ¢ is cyclic. However, less is known when k > n. One
step to understand the case where k > n was provided by Lin who showed that for 6 < n < k < 2n, all
transitive homomorphisms B, — ¥, are cyclic [20]. Since there exist cyclic maps B, — X, with k > n,
one could ask which other types of non-cyclic homomorphisms can exist.

We prove Theorem 1.1 using totally symmetric sets inside B,,. A fotally symmetric set is a commuta-
tive set that satisfies a highly symmetric conjugation relation. The theory of totally symmetric sets was
first introduced by Kordek and Margalit when studying homomorphisms of the commutator subgroup
of B, [19]. More recently, totally symmetric sets were used by Caplinger—Kordek [7] and Chudnovsky—
Kordek—Li—Partin [8] when studying finite quotients of the braid group. Totally, symmetric sets are
useful for counting arguments since the image of a totally symmetric set S under a homomorphism
¢ has size |¢(S)| =|S| or |¢(S)| = 1. In this paper, our approach is novel in the sense that we create
counting arguments using multiple totally symmetric sets at once.

There is a topological generalization of knot theory in S* to knot theory in a thickened surface of
higher genus, known as virtual knot theory. Virtual knot theory was introduced by Louis H. Kauffman
in the 1990s [17, 18]. From this perspective, B, can be generalized to the virtual braid group, vB,,
where every virtual knot is ambient isotopic to the closure of a virtual braid [15]. One way to think
of vB, is as an extension of B, by the symmetric group %,, where the added permutations are the vir-
tual crossings. The welded braid group, wB,, is an infinite quotient of vB, and was first described by
Fenn—Rimanyi—Rourke in [10]. Similar to the pure braid group, the virtual and welded braid groups have
“pure” subgroups, denoted PvB, and PwB,, respectively, which fix the strands of the braids pointwise.
Inside both the virtual and welded braid groups, we find totally symmetric sets. One particularly useful
type of totally symmetric set in wB, is denoted by A; in the theorems below; see Section 4.2.1. Using
the totally symmetric sets, A;, we proved classification theorems on the size of finite images of homo-
morphisms for both the virtual and welded braid groups. First, we state the classification theorem for the
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welded braid group, wB,. We hope that this is the first step in classifying non-cyclic homomorphisms
wB, — G.

Theorem 1.2. Let n > 5, and let ¢ : wB, — G be a group homomorphism to a finite group, G, so that
¢(wB,) is not isomorphic to the symmetric group, ,. One of the following must be true:

(1) ¢ is abelian.

(2) ¢ restricted to PwB, is cyclic.

(3) |¢(wB,)| =2"2(n—1)!

(4) Foralliand j, ¢ maps each A, to a single element with $(A;)* # ¢(A;)%, and

|p(wB,)| = (L”—;J + 1) (B9 [

For the case of the virtual braid group, Bellingeri and Paris classified all homomorphisms from vB, —
%, where n > 5, k> 2 and n > k [4]. However, similar to the story for B,, not much is known about non-
cyclic homomorphisms vB, — ¥, when k > n. Theorem 1.3 is a step in the right direction toward this
classification as it provides a necessary condition for the existence of a non-abelian homomorphism
vB, — G.

Theorem 1.3. Let n> 5, and let ¢ : vB, — G be a group homomorphism to a finite group, G, so that
¢(vB,) is not isomorphic to the symmetric group, X,. One of the following must be true:

(1) ¢ is abelian.
(2) ¢ factors through wB,, and either

a. ¢ restricted to PwB,, is cyclic.

b. |¢(vB,)| =2"(n—1)!
c. Foralliand j, ¢ does not split A;, $(A;)* # $(A;)*, and

$(vB,)| = Q%J + 1) (3 [ 5]

(3) ¢ does not factor through wB, and

¢(vB,)| = Q%J + 1) 69 [5])

Outline of the paper. Section 2 provides the background information about totally symmetric sets.
Section 3 applies these ideas to B, and gives a proof of Theorem 1.1. Section 4 provides the back-
ground about the virtual and welded braid groups and introduces some totally symmetric sets inside of
these groups. Section 5 contains the proofs of Theorems 1.2 and 1.3.

2. Totally symmetric sets

Kordek and Margalit introduced the theory of totally symmetric sets to give a complete classification of
homomorphisms B/, — B/ for n > 7, where B/, is the commutator subgroup of B, [19]. Totally symmetric
sets are useful because they behave predictably under homomorphisms and group closures, as will be
described in detail below.

Definition 2.1. A totally symmetric set of a group G is a nonempty finite subset {g,, . . ., g.} of G which
satisfies the following two relations:
(1) The elements g; pairwise commute (Commutativity Condition)
(2) For every permutation o, there exists an element h, € G
so that for each i, h,g:h.' = g, (Conjugation Condition)
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Remark. While in our context we consider only finite totally symmetric sets, we note that totally
symmetric sets need not be finite as seen in [19].

The conjugation condition states that each permutation of {gy, ..., g,} can be achieved via the con-
jugation of an element in G. An important fact about totally symmetric sets is that if f: G— H is a
homomorphism and S is a totally symmetric set of G, then f(S) is a totally symmetric set of H.

A standard example of a group which contains totally symmetric sets is the braid group [19].
We begin by defining the braid group.

Definition 2.2. The braid group on n strands, B,, is the group generated by the half-twists oy, . . ., 0,
with the following two relations:
(1) o.0;=00;if i —jl =2 (Far Commutativity)
(2) 0,0;110; = 04100, l:f‘l < i <n-— 2 (Braid RelatiOn)

In B,, the subsets S,;; = {04_; },-Li/lzJ and S,,., = {02,-}}31_')/ ! are both totally symmetric sets [8, 19].

Remark. The braid group is equivalent to the mapping class group of an n-times punctured disk. As the
elements of S,qq (resp. Se.en) have disjoint domains, we can apply the change-of-coordinates principle
to see that the conjugation condition holds for each of the two sets. See Section 1.3 of “A primer on
mapping class groups” for a detailed discussion [9].

2.1. The image of a totally symmetric set

The following lemma, due to Kordek and Margalit [19] (Lemma 2.1), is the crux of how totally
symmetric sets are used throughout this paper.

Lemma 2.3 (Kordek—Margalit). Let f: G — H be a group homomorphism. Suppose that S C G is a
totally symmetric set of size k. Then |f(S)| is equal to either 1 or k.

In this paper, we often consider whether |¢(S)| = |S| or not. We say that ¢ splits S if |¢p(S)| = |S].
Remark. By Lemma 2.3, if |S| > 1, then ¢ splits S if and only if |¢p(S)| > 1.

Remark. The proof by Kordek and Margalit of Lemma 2.3 only makes use of the conjugation condition
from the definition of a totally symmetric set. Therefore, Lemma 2.3 holds for all sets which satisfy the
conjugation condition from the definition of a totally symmetric set. For a set that only satisfies the
conjugation condition, it makes sense to say whether ¢ splits the set or not.

2.2. Totally symmetric sets with finite order elements

Let § = {s;}\_, be a totally symmetric subset of a group G. Since all elements of S are conjugate, every
element of S has the same order. Therefore, if one element of S has finite order k € N, every element of
S has order k.

Remark. In fact, if there exists p so that s} =] for any i, j, then s; = s} for all i, j. This follows imme-
diately from the conjugation condition in the definition of a totally symmetric set and is also true in
noncommutative sets which satisfy the conjugation condition.

Since the elements of a totally symmetric set commute, if a totally symmetric set consists of a finite
number of elements each of finite order, then (S) is a finite group. The following lemma gives a lower
bound of the size of this group. A first bound was obtained by Chen, Kordek, and Margalit (a proof
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of which can be found in [8]), but we will use an improvement of this bound by Caplinger—Kordek [7]
(Lemma 6).

Lemma 2.4 (Caplinger—Kordek). Let S be a totally symmetric set of size k in a group, G. Suppose
further that each element of S has finite order and let p be the minimal integer such that s} =] for all
S, 8; € S. Then, (S) is a finite group and |(S)| > p*".

Combining Lemma 2.4 with work of Chudnovsky—Kordek—Li—Partin, one obtains a lower bound on
the size of a group based on the size of a totally symmetric subset consisting of finite order elements [8].

Proposition 2.5 (Chudnovsky—Kordek—Li—Partin, Caplinger—Kordek). Let S be a totally symmetric
set of size k in a group, G. If the elements of S have finite order and p is the minimal integer such that
s} =5 for all s, s; €S, then |G| = p*~'k!.

A restatement of Proposition 2.5 in terms of group homomorphisms is the following: let S be a totally
symmetric set of a group G and ¢ : G — H a group homomorphism to a finite group H. If ¢ splits S,
then [¢(G)| = p"*''|S|!, where p is the minimal integer such that s} = s/ for all 5,5, € S.

3. Applications to the braid group

In this section, we utilize totally symmetric sets to determine a necessary condition for the existence of
a non-cyclic homomorphism from the braid group into a finite group. We begin with an overview of
existing results and then we discuss how to strengthen previous results.

3.1. Precursory results

Recall the two totally symmetric sets in B, of S, = {<72,-,1}I-Z/12J and S,,,, = {02,-}};"1_')/ A Chudnovsky,
Kordek, Li, and Partin used these totally symmetric sets to determine a necessary condition for the exis-
tence of a non-cyclic homomorphism of the braid group [8]. Recently, Caplinger and Kordek obtained
a stronger necessary condition than the one found by Chudnovsky—Kordek—Li—Partin [7].

Lemma 3.1 (Caplinger—Kordek). Let G be a finite group and let n > 5. If the homomorphism B, — G
is non-cyclic, then,

|Gl = 3" ([n/2)).

In Section 3.2, we strengthen the lower bound found in Lemma 3.1. Before we strengthen this lower
bound, we introduce the following well-known facts about the braid group, which can be found in [1].
This lemma provides sufficient conditions for when then image of a homomorphism of the braid group
is cyclic.

Lemma 3.2. For n>5, and let ¢ : B, — G be a group homomorphism where G is any group. If there
exists i,i + 1 <n— 1 so that ¢(o;) commutes with ¢p(o;,,) then ¢ is cyclic.

Lemma 3.3. Forn>35, if ¢ : B, — G is a non-cyclic group homomorphism, then ¢ must split both S.,.,
and Sodd'

Proof. Since n > 5, both S,,,, and S, have cardinality at least 2. Suppose that ¢ does not split S.,.,.

Then ¢(0,) = ¢(0,). Since o, commutes with o, then ¢(o,) commutes with ¢(o,). By Lemma 3.2, ¢
must be cyclic, a contradiction.
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By a similar computation, if ¢ does not split S,,;, then ¢(o,) commutes with ¢(o3), ultimately forcing
¢ to be cyclic. O

Notice that both Lemmas 3.2 and 3.3 fail for n =4 as there exists the folding homomorphism from
B, — B; which maps o1, 03 — 0} and 0, — 0.

3.2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1, which provides a strengthened lower bound for the smallest
non-cyclic finite quotient of B,.

We begin by following the proof of Chudnovsky—Kordek—Li—Partin, then further their ideas by
applying Lemma 3.2.

Theorem 1. Let n > 5, and let ¢ : B, — G be a non-cyclic homomorphism to a finite group, G, so that
@(B,) is not isomorphic to the symmetric group, X,. Then,

o= (|5 | +1) 60 5]

Moreover, if p is the smallest integer so that (o, = ¢(0;)’ for any i, j, then

— 1 .
6B > (apf(p) 1 VTJ . 1) o |2,

where 1pf(p) is the least integer greater than 1 that divides p.

Proof of Theorem 1.1. Denote O, = ¢(S,u1), Ep = P(Seven), i = ¢(07), k= |n/2], B = ¢(B,), letd be
the order of the s;’s and let p be the smallest integer so that ¢(o;)” = ¢(o;)” for any i, j.

Since we aim for a lower bound, we may assume that ¢(B,) is the smallest possible quotient not
isomorphic to Z,. In this case, Caplinger and Kordek prove that p =d in Lemma 7 of [7]. If d = 1, then
¢ is trivial (hence cyclic). If d =2, ¢ factors through the symmetric group X,, and the image is either
%, or cyclic (since the alternating group is the only proper normal subgroup of X, for n > 5).

Therefore, we may assume thatd =p > 3.

As ¢ is not cyclic and n > 5, each s; is distinct by Lemma 3.3. Thus, &, is a totally symmetric subset
of size k in A as the injective image of a totally symmetric subset of size k in B,.

Notice that # acts by conjugation on the set of totally symmetric subsets of Z of size k, and let
I' =Fix4(0,). This gives us a surjection ¢ : I' — X, where X, is the symmetric group on k elements.

Under this action by A, 0 fixes 0, pointwise since the elements of a totally symmetric set pairwise
commute. This shows that (J,) C I" and, in fact, (0,) C ker(y). By Lemma 2.4, we have that [(0,)| >
p*~!, and since p > 3, |ker(y)| > 3*7!. It follows that

|B] = IT| = |2 - [ker(¥)] = KI((G,) ) = kI3 (3.1

We now begin improving the bound on |%|. Notice that &, = {5,127 is a second totally symmetric

set which consists of the images of the remaining generators of B,. The elements in &} are currently not
accounted for in Equation 3.1. To include these elements in the bound of | %8|, we consider when elements
of (&) are not in I'. The following observations lead us to find elements of (&) that are not in I'.
We then count distinct cosets of I" in A.

Observation 1. Suppose there exists anm € {1,...,p — 1} so that s € T, then s"" € ker .
By definition of T, 57" acts on &, by conjugation, fixing &, setwise. By the relations of the braid
group, s7" commutes with every element of &, except for s,.;. Since 0, is fixed setwise, then either
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conjugation by s?" swaps the elements s;;; and s;_,, or fixes the elements pointwise. Suppose first that
conjugation by s!" swaps the elements s,;; and s;_,, meaning s7"s;_;s;" = s;;,. Then,
Si+2(si+l)s;r12 = Sit2 (S;’lsiflsfm) S,;lz =5/s;i_185," = Si1,

which shows that s;,, and s;,;, commute. By Lemma 3.2, ¢ must be cyclic. If i is large enough so that
eitheri+1>n—1o0ri+2>n— 1, an analogous argument shows that s; , and s;_; commute and that
¢ is cyclic. In both cases, we have contradicted our assumption that ¢ is non-cyclic. Thus, conjugation
by s does not swap the elements s,.; and s;_; but rather fixes these elements pointwise. Therefore, for
all i, conjugation by s" fixes every element of S pointwise. This implies that if s/ € I, then s € ker .

Observation 2. s; € I for i even.
Suppose that s; € I'. Observation 1 implies that s; € ker ¢ and s; commutes with every other s;.
Lemma 3.2 implies that ¢ is a cyclic map, a contradiction. Therefore, s; ¢ I.

Observation 3. s ¢ I for i even and m relatively prime to p.

Suppose that 57" € I' for some m > 2 and i even. By Observation 1, s € ker ¥ and commutes with
every element of 0, and &. Since s!" commutes with every s;, this implies that s" is central in the image
of ¢. If there exists an integer r so that (s!")" =s;, then this implies s; is also central in the image of ¢,
which by Lemma 3.2, implies that ¢ is cyclic, a contradiction. Thus, for integers m that are relatively
prime to p = ord(s;), the elements s7* cannot be elements of ker ¢ and hence are not elements in I'. For
the powers m that are not relatively prime to p, there is no contradiction, and it is possible for 57" to be
in ker .

Observation 4. s;"T" # s/’ when i and j are even, m, and m, are relatively prime to p, and m; — mj is
relatively prime to p.

From Observation 3, s;", /> ¢ I for every i, j even and m,, m, relatively prime to p. Suppose that
;"' =s;°T". This implies that s, "'s7* € T.

If i=j, then 5;"'s;"
contradiction.

If i <j, then s; commutes with s;_;. Consider the action of s

my—ny

e ' implies that s; eI'. Then, m, — m, is not relatively prime to p, a
;"5 on s;_; by conjugation:

—my _my —my _my _Sm]s s—m
i TR0 Wi—19g .

S/- S Si—18; SJ

—my gy

Since we supposed that s; "'s7” € T, then conjugation by s5; "'s}"” fixes the set &, setwise. Therefore, the
above equation shows that s/"'s;_;s; "' € 0. The exponent m; was chosen so that s;" ¢ I", which means
that & is not closed under conjugation by s;". As described in Observation 1, si"s;_;s;™ is not an
element of &, when ¢ is non-cyclic, a contradiction. Hence, s;"'s/* ¢ T".
Observation 5. Counting the cosets of I

Let Ipf(p) be the least integer greater than 1 that divides p. Notice that the set {2,...,Ipf(p) — 1,
Ipf(p) + 1} is a set of Ipf(p) — 1 integers which are each relatively prime to p, and pairwise their differ-
ences are relatively prime to p. Together with Observation 4, this shows that there are Ipf(p) — 1 distinct
non-intersecting cosets of I" for each s; with i even. Since there are |&},| distinct elements s; with 7 even,
we get (Ipf(p) — 1)|&;,| distinct cosets of I".

By counting the distinct cosets of I", we obtain a lower bound for the complement of I" in the image

of ¢:
l9p(B,) — 'l = (pf(p) — DI&y| - IT'|

Combining all of these observations, we arrive at the following lower bound for |¢(B,)|:

lp(B,)| = [T + ((pf(p) — DI&DIT| = ((pf(p) — DIéy| + 1) - |T'|
= ((pf(p) — DIy + D(O,) DK
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@-q-;

Figure 1. A virtual knot in a thickened torus, a projection of this virtual knot, and a virtual braid whose
closure is the knot

By substituting the values of k, [(0,)|, and |&,|, we arrive at our final result:

— 1 .
l¢(B,)| = <(1pf(p) -1 {”TJ T 1) (31471 LgJ'

For all even values of p, we have that Ipf(p) — 1 = 1, which gives the minimal bound:

9B = Q%J " 1) ) |2

4. Totally symmetric sets in the virtual and welded braid groups

In this section, we motivate and introduce two generalizations of the braid group, namely, the virtual
braid group and the welded braid group. For each group, we give examples of totally symmetric sets as
well as provide the important lemmas required to prove the main results, Theorems 1.2 and 1.3.

Classical knot theory is the study of embedded circles in S* up to ambient isotopy and planar projec-
tions of these knots up to classical Reidemeister moves. Virtual knot theory is a natural generalization of
classical knot theory by instead studying embedded circles in thickened surfaces of higher genus, which
are called virtual knots.

Due to the higher genus, projections of these virtual knots have two types of crossings: classical
crossings coming from arcs crossing in the thickness of the surface, and virtual crossings arising from an
arc in a handle that pass over another arc of the knot, as shown in Figure 1. Virtual crossings are denoted
as a circled crossing, and a virtual knot diagram can have both classical and virtual crossings. Like the
classical setting, virtual knot diagrams are considered up to virtual Reidemeister moves, as described by
Kauffman [17, 18]. There are virtual analogs of Alexander’s theorem, first proved by Kamada [15], and
Markov’s theorem, proved by Kauffman—Lambropolou [16]. These theorems give rise to a rich study of
virtual braid groups, which we describe below.

4.1. The virtual braid group

Let vB, denote the virtual braid group on n strands. This group has generators oy,...,0,; and
Ty, ..., T,_1. The generators oy, ..., 0, ; satisfy the classical braid group relations, and the generators
7, ..., T, generate the symmetric group. There are also some mixing relations. We list all relations in
the virtual braid group, below:
(1) oi0;=0;0;for |i —j| > 1 (Far Commutativity)
2) 00i40i=00i0,forl <i<n-—2 (Braid Relation)
3) 1:1.2 =lforl<i<n-1 (t is a Transposition)
@4 =gy for|i—jl>1 (t Far Commutativity)
O rtgut=t,tT forl <i<n-—2 (t Braid Relation)
(6) o1, =10 for |i —j| > 1 (Mixed Far Commutativity)
D tot =10t forl <i<n—2 (Mixed Braid Relation)
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(a) (b)

L |

C} )

Jol -1 il je1

Figure 2. (a) The element o;; when j < i. (b) The element 0;; when i < j

We note that these relations encode the virtual (or extended) Reidemeister moves. From this point of
view, vB, is the free product of the braid group and the symmetric group modulo relations (6) and (7),
vB, =B, * ¥, ¢ This presentation is nice in the sense that you can “see” the braid group as a subgroup
of the virtual braid group. B, embeds into vB,, as was first proven by Kamada [14]; see also Gaudreau
[12] and Bellingeri—Paris [4]. The canonical embeddings of B, and X, in vB, are B, = (03, - -+ ,0,_1)
and X, = (1, -+, T,1)-

Another presentation of vB, highlights a key difference between the virtual braids and the classical
braids. The pure virtual braid group, PvB,, is a subgroup of vB, which is the kernel of the projection
vB, — X, by sending o; — t; and 7; — t;. Unlike the classical braid group, vB, splits as a semidirect
product, vB, = PvB, x %, [3].

The subgroup PvB, is generated by elements denoted o;; of the form:

0ij =TTit1 -+ - T;2T;-10;1 T« . . Tip1 T when i <j, and

01 =Ti1Tic2 . . - T2 T O3 TTj g . . Tiy when j < i.

These generators are depicted in Figure 2. A presentation for PvB, is generated by the o;;, for i #j
elements and the following two relations [3]:

Commutativity Relation: o,;0,, = oy,0;; where |{i, ], k, [}| =4

Braid Relation: 0;;0,,0;; = 0;,0;,0;; Where [{i, ], k}| =3

4.1.1. Totally symmetric sets in the virtual braid group
Since B, is a subgroup of vB,, the sets S,,; = {GZi,l},.ri/lz] and S.,., = {04 are also totally symmetric
subsets of vB,. Additionally, the sets T,,; = {T2i_; },.ri/]21 and T,,., = {tz,-},i/,zJ are totally symmetric subsets
of vB,. A fun way to see why 7,,, and T,,,, are totally symmetric is that they are the homomorphic image
of S,,., and S,4; under the canonical projection map from B, — X,,.

The sets {1,0,}., and {7,0;},44 are totally symmetric sets in vB,. The sets are commutative by a com-
bination of relations (1), (5), and (7). The conjugation condition holds since you can swap t;0; with

7,120,412 by conjugation under 7,7, 7T, Which leaves all other elements of the set fixed.

/2]
}i

4.2. The welded braid group

The welded braid group, wB,, is a quotient of vB, by the Over Crossings Commute relation, or
“OC” relation, defined as 1,0, ,0; = 0,,,0:T;;; [5]. The welded braid group has also been called the
braid-permutation group by Fenn—Rimdnyi—Rourke [10], a finite-index subgroup of the ring group by
Brendle—Hatcher [6], and the loop braid group by Baez—Crans—Wise [2].

Recall from Section 4.1.1, a presentation for PvB, is generated by the elements denoted o;;. These
elements also generate the pure welded braid group, PwB,. Analogous to the virtual braid group, wB,
is a semidirect product of the pure welded braid group and the symmetric group, wB, = PwB, X X,,.
Through communication with Dror Bar-Natan, we learned the folklore result that the OC relation implies
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that 0;,0;; = 0;;0:4, and a proof of this fact can be found in [22]. It follows that PwB, is a quotient of
PvB, by the OC relation, and PwB, has the following presentation:

Generators: {o;;} for 1 <i,j <n withi#j
Commutativity Relation: o0;;0,, = oy,0;; where |[{i,j, k,[}| =4
Braid Relation: 0;;0;,0;, = 0;,0;,0;; where |{i, ], k}| =3

OC Relation: 0ix0i; = 0;0ik

4.2.1. Totally symmetric sets in wB,,
All of the totally symmetric sets in vB, are also totally symmetric in wB,. Due to the OC relation, wB,
has additional totally symmetric sets coming from subsets of the o;; elements.

If i <j, we call 0;; a right generator and is shown in Figure 2(b). We denote the set of right generators
with fixed i as R, = {o;;}}_,. If i <j, we call 0;; a left generator and is shown in Figure 2(a). For a fixed
i, the set of left generators is denoted by L; = {o; J»};;j. Let A, = L; UR; be the set of all elements of the
form o;; which have the same first index. The sets A;, R;, and L; are totally symmetric sets in wB,.

Lemma 4.1. For each integer 1 <i <n,

(1) A, is a totally symmetric set in wB, of sizen — 1.
(2) R;is a totally symmetric set in wB, of size n — i.
(3) L; is a totally symmetric set in wB,, of size i — 1.

Proof. Fix i. By definition, |R;| =n — i, |L;| =i — 1, and |A;| = |R;| + |L;| =n — 1. Since R; and L; are
subsets of A;, it suffices to show that A; is a totally symmetric set in wB,,. The elements in A; all have the
same first index i and commute by the OC relation.

From the semidirect product decomposition wB, = PwB, X X,, X, acts on PwB, by conjugation
which results in permutation of the indices. That is, for s € ¥, s0; J-s" = Oy(i).5)- O

The OC relation is required for the sets R;, L;, and A; to satisfy the commutation condition. These
sets are not totally symmetric in vB, but do satisfy the conjugation condition in vB,,.

4.2.2. Important lemmas

The classical braid group B, and the symmetric group X, are subgroups of vB,, and also wB,, under
the canonical embeddings B, = (0,-):-:11 CvB,and X, = (r,-):-‘;ll C vB,. This was proven by Kamada [15]
for the virtual case and Fenn—Rimanyi—Rourke [10] for the welded case. The pure subgroup has the
canonical presentation PvB, = (0;;): C vB,, similarly for PwB,. From here on, the restriction of a map
on vB, (resp. wB,) to B,, X, or PvB, (resp. PwB,) refers to the canonical embeddings of these groups.
Recall from the introduction that a map ¢ is called cyclic (resp. abelian), if its image is cyclic (resp.

abelian).

Lemma4.2. If ¢ : vB, — G is a group homomorphism so that ¢ restricted to either X, or B, is abelian,
then ¢ abelian.

Proof. Suppose that ¢ restricted to X, is abelian. The 7 braid relation gives that ¢(t;) = ¢(1,,,) for
all i, and so ¢ is cyclic on X,. Denote ¢(t;) = g. Applying ¢ to the mixed braid relation yields

O(Ti110:Ti41) = P(T,0:41T1)
8p(01)g = g9(0i1)8
¢(0)) = ¢(0i11)

This shows that ¢ restricted to B, is also cyclic, and therefore ¢ is abelian.
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Figure 3. Schematic diagram for Lemma 4.3

Suppose that ¢ restricted to B, is abelian. A similar argument using the braid relations shows that ¢
is cyclic on B,, and the mixed braid relation shows that ¢ is cyclic on %,. ]

Corollary. If ¢ :wB, — G is a group homomorphism so that ¢ restricted to either ¥, or B, is abelian,
then ¢ is abelian.

Proof. Let p :vB, — wB, be the quotient map which sends a virtual braid to its equivalence class
modulo the the OC relation. Apply Lemma 4.2 to the map ¢ o p. U

The following lemma is a key step to proving Theorems 1.2 and 1.3. To use totally symmetric sets
to count the cardinality of the image of a homomorphism, the homomorphism needs to split a totally
symmetric set. This lemma shows that, under the right conditions, when some subset of the totally
symmetric sets {A;}_, do not split under a map ¢ : wB, — G, the images of the A;’s which do not
split create a new totally symmetric set in the image. A schematic diagram for Lemma 4.3 is shown in
Figure 3.

Lemma 4.3. Let {A,,--- ,A;,} be a subset of {A,,--- ,A,}, the totally symmetric sets in wB,. Let
¢ :wB, — G be a non-abelian group homomorphism. Suppose ¢ does not split A, for all i;, and each
(;5(A,v/.)2 is a distinct element in the image. Then the set {(f)(A;/)2 L isa totally symmetric set in p(wB,) of
size m.

Proof. We will prove this lemma for the case where {A;,---A; } ={A;, - ,A,}, as all other cases
follow from an analogous proof with possible re-indexing.

Let g; = ¢(A;). We will show that the set {g?}", is a totally symmetric set in ¢(wB,) of size m.

By assumption, the g2’s are distinct so the set {g?}", has m elements. Notice that every element of
A; is of the form o;;, where the first index, i, remains fixed. Since ¢ does not split any of the totally
symmetric sets A;, ¢(o;;) is determined by its first index i, that is, ¢(0;;) = g;.

For the commutation condition, applying ¢ to the braid relation in wB, shows

0,j0ik0jx = Ojx0;0i;
$(0:,)9(01)9(014) = P(0;)P(0:)9(03,)
8i8i8j — 8;8i8i>

which shows that for each i and j, g and g; commute. In turn, this implies that g7 and g commute.
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To show the conjugation condition holds, notice that if fg;f~' = g; then fg; f~' = g7. Therefore, it
suffices to show the conjugation condition holds for the set {g;}. The following computations show that
conjugation by ¢(t;) swaps g; and g;,, but fixes all other g;.

First, we show that conjugation by ¢(t;) swaps g; and g,,,. There are two cases to consider:

Case 1: Suppose i <n — 2. A similar computation described in Lemma 4.1 shows that conjugation
by t; swaps o;;, with 0,11 ,,. Thus,

O(T:01,411T) = P(Oi41,42)
d(1)gi(T:) = git1-

Case 2: Suppose i > n — 2, which implies that i=n — 1. A similar computation to the one above
shows that conjugation by t;,_; swaps o;;_; and o,,,,_; and that conjugation by ¢(z;) swaps g; and g,;.

Next, we show that g; is fixed under conjugation by 7;, when k # i, i + 1. Recall that conjugation by t;
on o;, permutes the indices: 7,0, 7; = 07, r,x)- S0, When k # i, i 4 1, g, remains fixed under conjugation
by ¢(t;) as follows:

O (1)8:P (7)) = P(1:04 _T;) = P(Or00,m—) = POk - ) = &k-

This proves the conjugation condition in the definition of a totally symmetric set holds, and we have
proven our claim. O

Remark. The Lemma 4.3 is stated for wB,; however, it is also true for vB,. In vB,, the sets A; are not
totally symmetric, but they do satisfy the conjugation condition, which is the only condition needed in
the proof.

5. Finite image homomorphisms of the virtual and welded braid groups

In this section, we prove the classification theorems on the size of finite images of homomorphisms of
both wB,, and vB,.

5.1. Proof of Theorem 1.2

First, we prove the classification theorem for the welded braid group, wB,. This is a first step in
classifying non-cyclic homomorphisms wB, — G, where G is a finite group.

Theorem 1.2. Let n> 5, and let ¢ : wB, — G be a group homomorphism to a finite group, G, so that
¢(wB,) is not isomorphic to the symmetric group, X,. One of the following must be true:

(1) ¢ is abelian.

(2) @ restricted to PwB, is cyclic.

(3) lpwB,)| =2"*(n—1)!

(4) For alliand j, ¢ maps each A; to a single element with ¢(A,)* # ¢(Aj)2, and

(B, = Q%J + 1) (9 [5]

In the statement of Theorem 1.2, the requirement that n > 5 is only necessary for Part (3) due to the
applications of Lemma 3.3 and Theorem 1.1. All other conditions hold for n > 4.

The proof of Theorem 1.2 is inspired by Figure 4. We consider cases on whether ¢ splits various
rows and columns of the diagrams. The rows of the Full diagram, as seen in Figure 4(b), are the totally
symmetric sets, A;, from Lemma 4.1. In the Left diagram, the rows of the outlined triangle are the
totally symmetric sets, L;. The rows above the outlined triangle are the inverses of the columns within
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the outlined triangle. Both the columns in the outlined triangle and the rows above the outline are not
totally symmetric sets but satisfy the conjugation condition. This can be verified by similar computations
described in Lemma 4.1. The Right diagram has an analogous form. The rows of the outlined triangle
are the totally symmetric sets, R;. The columns below the outlined triangle are the inverses of the rows
within the triangle, and both satisfy the conjugation condition.

Proof of Theorem 1.2. Let us suppose that ¢ is non-abelian and that ¢ restricted to PwB,, is non-cyclic.
We consider cases on whether or not ¢ splits the totally symmetric sets A;.

Case 1: Suppose that there exists an i so that ¢ splits A;. Since A; is a totally symmetric set with size
n — 1, applying Proposition 2.5 yields

lp(wB,)| >2"*(n— .

Case 2: Suppose ¢ does not split any of the A;’s. Denote ¢(A;) = {g,;}. Further suppose that there
exists iy and jj, so that gfo * gjzo. Notice this implies g;, # g;,. Since ¢ is non-abelian, we may assume by
Lemma 4.2 that ¢ is non-cyclic on X, and that ¢(t;) # id. We consider cases on i, and j, with the goal
to apply Lemma 4.3.

Subcase 1: Suppose iy, jo < n. We will use the Right diagram in Figure 4 to conclude that g,, - - - , g,_,
are distinct. By assumption, g;, # g;, which implies that ¢ (o;,,) ;é ¢ (07,..)» and therefore ¢ (o)) #
¢ ( o, n) The bottom row of the Right diagram contains both o, ! and o‘,'l Even though the bottom
row of the Right diagram is not a totally symmetric set, it does satlsfy the conjugation condition. Since
¢ ( lo’,'l) <@ ( M), Remark 2.1 implies that ¢ splits the bottom row. Thus, ¢ (o ( ) #¢ (o ( in ) for all
i,j < n, which shows that g; # g;, for all i,j < n. Since gfo #* gfo by assumption, Remark 2.2 shows the
each of the g7 are unique. Thus, we have shown all of the hypotheses of Lemma 4.3 are satisfied, and
{ gL, gﬁfl} is a totally symmetric set in the image of ¢ of size n — 1. Proposition 2.5 yields

lp(wB,)| > 2"*(n — 1)L

Subcase 2: Suppose iy, jo > 1. An analogous argument to Subcase 1 using the Left diagram from Figure 4
concludes that { &, gﬁ} is a totally symmetric set in the image of ¢ of size n — 1. Proposition 2.5
yields

lp(wB,)| = 2"*(n — 1)\

Subcase 3: Suppose iy =1 and j, =n, which implies that g, # g,, and further that ¢(o,_) # ¢(0, ).
Looking at the Full diagram in Figure 4(b), Subcase 3 analyzes when the top and bottom rows of the
Full diagram are mapped to different elements.

We now analyze where ¢ can send the second row.

Suppose first that ¢ maps A,, or all the elements of the second row, to g,. Then in Figure 4(a), the
Left diagram, we notice that L, and L, map to different elements. Therefore, two elements in the top
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row of Figure 4(a) map to different elements. Since the top row satisfies the conjugation condition, we
have that the top row must split. Since g; # g7 by assumption, Remark 2.2 shows that each g; is unique.

Therefore, by Lemma 4.3, the set {g%, g5 ,gﬁ} is a totally symmetric set of size n — 1. Proposition
2.5 yields

|p(wB,)| >2"*(n— 1.

A similar argument follows for when ¢ maps A,, or all the elements of the second row, to g,, but this
time we consider Figure 4(c), the Right diagram. Since R, and R, map to different elements, the bottom
row of the Right diagram must split as it satisfies the conjugation relation. Since gfo # gfo by assumption,
Remark 2.2 shows that each g7 is unique. Therefore, by Lemma 4.3, the set {g?,¢3,...,¢>_, } is a totally
symmetric set of size n — 1. In this case, Proposition 2.5 will again yield

|p(wB,)| >2"*(n— 1.

Finally, suppose that ¢ sends A, to an element g, where g, # g, g,- Then in Figure 4(a), the Left
diagram, we notice that L, and L, map to different elements. Therefore, two elements in the top row of
Figure 4(a) map to different elements. Since the top row satisfies the conjugation condition, we have
that the top row must split. Similarly, in Figure 4(c), the Right diagram, we notice that R, and R, map to
different elements. Therefore, two elements in the bottom row of Figure 4(c) map to different elements,
and since the bottom row satisfies the conjugation condition the bottom row must split. Notice that we
must have that ¢ sends each A; to a unique element. Indeed, suppose that g; = g; for some i, j. This
implies that either the top row of the Left diagram or the bottom row of the Right diagram cannot split,
since these rows have the conjugation relation, which is a contradiction to the above. Since gl.z0 * gjz0 by
assumption, Remark 2.2 shows the each g7 is unique. By Lemma 4.3, the set {g}, g3, . . ., g2} is a totally
symmetric set of size n. In this case, Proposition 2.5 will yield that

lp(wB,)| = 2" (n)!.

Case 3: Suppose ¢ does not split any of the A;’s, and ¢(A;)* = ¢(A;)* for all i and j. Notice that
Lemma 4.3 does not apply, and that none of the A,’s are split by ¢. In this case, we use the fact that ¢
restricted to B, is non-cyclic. Applying Theorem 1.1 to ¢ restricted to B,, we get

I’l—l n_ n
|p(wB,)| > |¢(B,)] = QTJ + 1) (314 sz.

5.2. Proof of Theorem 1.3

In this section, we provide a proof for Theorem 1.3 which gives a lower bound on the size of vB,’s
smallest non-cyclic finite quotient. By considering whether or not a homomorphism factors through
wB,,, we may apply our classification of homomorphisms from wB, — G, or the necessary condition for
the existence of a homomorphism B, — G, to determine a classification of the size of finite images of
homomorphisms from vB,.

Theorem 1.3. Let n > 5, and let ¢ : vB, — G be a group homomorphism to a finite group, G, so that

¢ (vB,) is not isomorphic to the symmetric group, X,. One of the following must be true:

(1) ¢ is abelian.
(2) @ factors through wB,, and either

a. ¢ restricted to PwB, is cyclic.
b. |p(vB,)| = 2" 2(n - 1)!
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c. Foralliandj, ¢ does not split A;, p(A;)* # ¢(A))*, and

|p(vB,)| > Q%J + 1) (3181 ngv

(3) ¢ does not factor through wB,, and

OSE Q”%J n 1) E5)[2].

Proof of Theorem 1.3. Suppose ¢ is not abelian. If ¢ factors through wB,,, then by Theorem 1.2, one
of either (2)(a), (2)(b), or (2)(c) must be true. If ¢ does not factor through wB, and ¢ is non-abelian,
Lemma 4.2 gives that ¢ restricted to B, is non-abelian, and hence non-cyclic. Applying Theorem 1.1 to
¢ restricted to B, gives that (3) must be true. O]
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