
THEME ARTICLE: EFFECTIVE NETWORK ANALYTICS: NETWORK
VISUALIZATION AND GRAPH DATAMANAGEMENT

Splitting Vertices in 2-Layer Graph Drawings
Reyan Ahmed , Colgate University, Hamilton, NY, 13346, USA

Patrizio Angelini , John Cabot University, 00165, Rome, Italy

Michael A. Bekos, University of Ioannina, 451 10, Ioannina, Greece

Giuseppe Di Battista , Roma Tre University, 00154, Rome, Italy

Michael Kaufmann, Universit€at T€ubingen, 72074, T€ubingen, Germany

Philipp Kindermann, Universit€at Trier, 54296, Trier, Germany

Stephen Kobourov , University of Arizona, Tucson, AZ, 85721, USA

Martin N€ollenburg , TU Wien, 1040, Vienna, Austria

Antonios Symvonis , NTUA, 10682, Athens, Greece

Anaïs Villedieu and Markus Wallinger , TU Wien, 1040, Vienna, Austria

Bipartite graphsmodel the relationships between two disjoint sets of entities in several
applications and are naturally drawnas 2-layer graph drawings. In such drawings, the
two sets of entities (vertices) are placed on two parallel lines (layers), and their
relationships (edges) are represented by segments connecting vertices.Methods for
constructing 2-layer drawings often try tominimize the number of edge crossings.We
use vertex splitting to reduce the number of crossings, by replacing selected vertices on
one layer by two (ormore) copies and suitably distributing their incident edges among
these copies.We study several optimization problems related to vertex splitting, either
minimizing the number of crossings or removing all crossingswith fewest splits.While
we prove that some variants areNP-complete, we obtain polynomial-time algorithms
for others.We run our algorithms on a benchmark set of bipartite graphs representing
the relationships between human anatomical structures and cell types.

Multilayer networks are used in many applica-
tions to model complex relationships
between different sets of entities in inter-

dependent subsystems.1 When analyzing and explor-
ing the interaction between two such subsystems St

and Sb, bipartite or 2-layer networks arise naturally.
The nodes of the two subsystems are modeled as a
bipartite vertex set V ¼ Vt [Vb with Vt \ Vb ¼ ;, where
Vt contains the vertices of the first subsystem St and
Vb those of Sb. The interlayer connections between St

and Sb are modeled as an edge set E � Vt � Vb, form-
ing a bipartite graph G ¼ ðVt [Vb; EÞ. Visualizing this
bipartite graph G in a clear and understandable way is
then a key requirement for designing tools for visual
network analysis.2

In a 2-layer graphdrawingof a bipartite graph, the ver-
tices are drawn as points on two distinct parallel lines ‘t
and ‘b, and edges are drawn as straight-line segments.3

The vertices in Vt (top vertices) lie on ‘t (top layer) and
those in Vb (bottom vertices) lie on ‘b (bottom layer). In
addition to direct applications of 2-layer networks for
modeling the relationships between two communities as
mentioned above,2 such drawings also occur in tangle-
gram layouts for comparing phylogenetic trees4 or as
components in layered drawings of directed graphs.5

The primary optimization goal for 2-layer graph
drawings is to find permutations of one or both vertex
sets Vt, Vb to minimize the number of edge crossings.

0272-1716 � 2023 IEEE
This article has supplementary downloadable material avail-
able at https://doi.org/10.1109/MCG.2023.3264244, provided
by the authors.
Digital Object Identifier 10.1109/MCG.2023.3264244
Date of publication 6 April 2023; date of current version 18
May 2023.

IEEE Computer Graphics and Applications Published by the IEEE Computer Society May/June 202324Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

While the existence of a crossing-free 2-layer drawing
can be tested in linear time,6 the crossing minimization
problem is NP-complete even if the permutation of one
layer is given.3 Hence, both fixed-parameter algorithms7

and approximation algorithms8 have been published.
Further, graph layouts on two layers have also been
widely studied in the area of graph drawing beyond pla-
narity.9 However, from a practical point of view,minimiz-
ing the number of crossings in 2-layer drawingsmay still
result in visually complex drawings.10

Hence, in this article, as an alternative approach to
construct readable 2-layer drawings, we study vertex
splitting.11,14,12,13 The vertex-split operation (or split, for
simplicity) for a vertex v deletes v from G, adds two
new copies v1 and v2 (in the original vertex subset of
G), and distributes the edges originally incident to v

among the two new vertices v1 and v2. Placing v1 and
v2 independently in the 2-layer drawing can in turn
reduce the number of crossings.

Vertex splitting has been studied in the context of
the splitting number of an arbitrary graph G, which is
the smallest number of vertex-splits needed to trans-
form G into a planar graph. The splitting number prob-
lem is NP-complete, even for cubic graphs,15 but the
splitting numbers of complete and complete bipartite
graphs are known.16,17 Vertex splitting has also been
studied in the context of split thickness, which is the
minimum maximum number of splits per vertex to
obtain a graph with a certain property (e.g., a planar
graph or an interval graph).12

We study variations of the algorithmic problem of
constructing planar or crossing-minimal 2-layer drawings
with vertex splitting. In visualizing graphs defined on ana-
tomical structures and cell types in the human body,18

the two vertex sets of G play different roles and vertex
splitting is permitted only on one side of the layout. This
motivates our interest in splitting only the bottom verti-
ces. The top verticesmay either be specifiedwith a given
context-dependent input ordering, e.g., alphabetically,
following a hierarchy structure, or sorted according to an
important measure, or we may be allowed to arbitrarily
permute them to perform fewer vertex splits.

CONTRIBUTIONS
We prove that for a given integer k it is NP-complete to
decidewhetherG admits a planar 2-layer drawingwith an
arbitrary permutation on the top layer and at most k ver-
tex splits on the bottom layer (see Theorem 1). NP-com-
pleteness also holds if at most k vertices can be split, but
each an arbitrary number of times (see Theorem3).

If, however, the vertex order of Vt is given, then we
present two linear-time algorithms to compute planar

2-layer drawings, one minimizing the total number of
splits (see Theorem 2), and one minimizing the number
of split vertices (see Theorem 4). In view of their linear-
time complexity, our algorithms may be useful for
practical applications; we perform an experimental
evaluation of the algorithm for Theorem 2 using real-
world datasets stemming from anatomical structures
and cell types in the human body.18

We further study the setting in which the goal is to
minimize the number of crossings (but not necessarily
remove all of them) using a prescribed total number of
splits. For this setting, we prove NP-completeness
even if the vertex order of Vt is given (see Theorem 5).
On the other hand, we provide an XP-time algorithm
parameterized by the number of allowed splits (see
Theorem 6), which, in other words, means that the
algorithm has a polynomial running time for any fixed
number of allowed splits.

PRELIMINARIES
We denote the order of the vertices in Vt and Vb in a
2-layer drawing by pt and pb, resp. If a vertex u pre-
cedes a vertex v, then we denote it by u � v. Although
2-layer drawings are defined geometrically, their cross-
ings are fully described by pt and pb, as in the following
folklore lemma.

Lemma 1. Let G be a 2-layer drawing of a bipartite
graph G ¼ ðVt [Vb;EÞ. Let ðv1; u1Þ and ðv2; u2Þ be two
edges of E such that v1 � v2 in pt. Then, edges ðv1; u1Þ
and ðv2; u2Þ cross each other in G if and only if u2 � u1
in pb.

In the following, we formally define the problems
we study. For all of them, the input contains a bipartite
graph G ¼ ðVt [Vb; EÞ and a split parameter k.

› Crossing Removal with k Splits—CRS(k):Decide if
there is a planar 2-layer drawing of G after apply-
ing at most k vertex-splits to the vertices in Vb.

› Crossing Removal with k Split Vertices—CRSV(k):
Decide if there is a planar 2-layer drawing of G
after splitting at most k original vertices of Vb.

› Crossing Minimization with k Splits—CMS(k;M):
Decide if there is a 2-layer drawing of G with at
most M crossings after applying at most k vertex-
splits to the vertices in Vb, whereM is an additional
integer specified as part of the input.

Note that in CRSV(k), once we decide to split an
original vertex, then we can further split its copies
without incurring any additional cost. The example in
Figure 1(a)–(c) demonstrates the difference between
CRS and CRSV.

May/June 2023 IEEE Computer Graphics and Applications 25

EFFECTIVE NETWORK ANALYTICS

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

For all problems, we refer to the variant where the
order pt of the vertices in Vt is given as part of the
input by adding the suffix “with Fixed Order.”

The following lemma implies conditions under
which a vertex split must occur.

Lemma 2: Let G ¼ ðVt [Vb;EÞ be a bipartite graph
and let u 2 Vb be abottomvertex adjacent to two top ver-
tices v1; v2 2 Vt, with v1 � v2 in pt. In any planar 2-layer
drawing ofG in which u is not split, we have that:

C.1) A top vertex that appears between v1 and v2
in pt can only be adjacent to u;

C.2) In pb, u is the last neighbor of v1 and the first
neighbor of v2.

Proof: If there is a top vertex v0 between v1 and v2
adjacent to a bottom vertex u0 6¼ u, then ðv;0 u0Þ
crosses ðv1; uÞ or ðv2; uÞ. If there is a neighbor u00 of v1
after u in pb, then the edges ðv1; u00Þ and ðv2; uÞ cross. A
symmetric argument holds when there is a neighbor
of v2 before u in pb. tu

CROSSING REMOVALWITH kkkkkkk
SPLITS

In this section, we prove that the CRS(k) problem is
NP-complete in general and linear-time solvable

when the order pt of the top vertices is part of the
input.

Theorem 1: The CRS(k) problem is NP-complete.

Proof: The problem belongs to NP since, given a set
of at most k splits for the vertices in Vb, we can check
whether the resulting graph is planar 2-layer.6 tu

We use a reduction from theHamiltonian Path prob-
lem to show the NP-hardness. Given an instance G ¼
ðV;EÞ of the Hamiltonian Path problem, we denote by
G0 the bipartite graph obtained by subdividing every
edge of G once [see Figure 1(d)]. We construct an
instance of the CRS(k) problem [see Figure 1(e)] by set-
ting the top vertex set Vt to consist of the original verti-
ces of G, the bottom vertex set Vb to consist of the
subdivision vertices ofG0, and the split parameter to k ¼
jEj � jV j þ 1. The reduction can be easily performed in
linear time.We prove the equivalence.

Suppose that G has a Hamiltonian path v1; . . . ; vn.
Set pt ¼ v1; . . . ; vn, and split all the vertices of Vb, except
for the subdivision vertex of the edge ðvi; viþ1Þ, for each
i ¼ 1; . . . ; n� 1 [see Figure 1(f)]. This results in jVbj �
ðn� 1Þ splits, which is equal to k, since jVbj ¼ jEj and
n ¼ jV j. We then construct pb such that, for each i ¼
1; . . . ; n� 1, all the neighbors of vi appear before all the

FIGURE 1. Differences between CRS and CRSV problems (a)–(c); illustrations for the reduction in Theorem 1 (d)–(f); illustrations

for the optimization algorithm for CRS(k) with fixed order, where vertices in Nþ are colored in shades of gray (g)–(i). (a) Instance

G. (b) Optimal CRS solution of G with three splits of three different vertices. (c) Optimal CRSV solution of G with two split verti-

ces. (d) Subdivided graph G0. (e) Instance of CRS(k) for G0 . (f) Splits are minimized if and only if G has a Hamiltonian path.

(g) Case 1. (h) Case 2. (i) Case 3.

26 IEEE Computer Graphics and Applications May/June 2023

EFFECTIVE NETWORK ANALYTICS

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

neighbors of viþ1, with their common neighbor being the
last neighbor of vi and the first of viþ1. This guarantees
that both conditions of Lemma 2 are satisfied for every
vertex of Vb. Together with Lemma 1, this guarantees
that the 2-layer drawing is planar.

Suppose now that G0 admits a planar 2-layer
drawing with at most jEj � jV j þ 1 splits. Since
jEj ¼ jVbj and every vertex of Vb has degree exactly
2 (subdivision vertices), there exist at least jV j � 1

vertices in Vb that are not split. Consider any such
vertex u 2 Vb. By C.1 of Lemma 2, the two neighbors
of u are consecutive in pt. Also, these vertices are
connected in G by the edge whose subdivision ver-
tex is u. Since this holds for each of the at least
jV j � 1 nonsplit vertices, we have that each of the
jV j � 1 distinct pairs of consecutive vertices in Vt

(recall that Vt ¼ V) is connected by an edge in G.
Thus, G has a Hamiltonian path.

Next, we focus on the optimization version of the
CRS(k) with the Fixed Order problem. Our recursive
algorithm considers a constrained version of the prob-
lem, where the first neighbor in pb of the first vertex in
pt may be prescribed. At the outset of the recursion,
there exists no prescribed first neighbor. The algorithm
returns the split vertices in Vb and the corresponding
order pb.

In the base case, there is only one top vertex v (i.e.,
jVtj ¼ 1). Since all vertices in Vb have degree 1, no split
takes place. We set pb to be any order of the vertices
in Vb where the first vertex is the prescribed first neigh-
bor of v, if any.

In the recursive case when jVtj > 1, we label the ver-
tices in Vt as v1; . . . ; vjVtj, according topt. If the first neigh-
bor of v1 is prescribed,wedenote it byu�

1. Also, wedenote
byN1 the set of degree-1 neighbors of v1, and byNþ the
other neighbors of v1. Note that only the vertices in Nþ

are candidates to be split for v1. In particular, by C.1 of
Lemma 2, a vertex inNþ can avoid being split only if it is
also incident to v2. Further, since any vertex inNþ that is
not split must be the last neighbor of v1 in pb, by C.2 of
Lemma 2, at most one of the common neighbors of v1
and v2 will not be split. Analogously, if u�

1 is prescribed,
then itmust be split, unless v1 has degree 1.

In view of these properties, we distinguish three
cases based on the common neighborhood of v1 and
v2. In all cases, we will recursively compute a solution
for the instance composed of the graph G0 ¼
ðV 0

t [Vb;
0 E0Þ obtained by removing v1 and the vertices

in N1 from G, and of the order p0
t ¼ v2; . . . ; vjVtj. We

denote by p0
b and s0 the computed order and the num-

ber of splits for the vertices in V 0
b . In the following, we

specify for each case whether the first neighbor of v2

in the new instance is prescribed or not, and how to
incorporate the neighbors of v1 into p0

b.
Case 1: v1 and v2 have no common neighbor; see

Figure 1(g). In this case, we do not prescribe the first
neighbor of v2 in the instance composed of G0 and p0

t.
To compute a solution for the original instance, we
split each vertex inNþ so that one copy becomes inci-
dent only to v1. We construct pb by selecting the pre-
scribed vertex u�

1, if any, followed by the remaining
neighbors of v1 in any order and, finally, by appending
p0
b. This results in s ¼ jNþj þ s0 splits.
Case 2: v1 and v2 have exactly one common neigh-

bor u: If u ¼ u�
1 and v1 have a degree larger than 1,

then u cannot be the last neighbor of v1 and must be
split. Thus, we perform the same procedure as in
Case 1. Otherwise, in the instance composed of G0 and
p0
t, we set u as the prescribed first neighbor of v2; see

Figure 1(h). To compute a solution for the original
instance, we split each vertex in Nþ, except u, so that
one copy becomes incident only to v1. We construct
pb by selecting the prescribed vertex u�

1, if any, fol-
lowed by the remaining neighbors of v1 different from
u in any order and, finally, by appending p0

b. This results
in s ¼ jNþj � 1þ s0 splits.

Case 3: v1 and v2 have more than one common
neighbor: If v1 and v2 have exactly two common neigh-
bors u; u0 and one of them is u�

1, say u ¼ u�
1, then u can-

not be the last neighbor of v1, as v1 has degree larger
than 1. Thus, we proceed exactly as in Case 2, using u0

as the only common neighbor of v1 and v2.
Otherwise, there are at least two neighbors of v1 dif-

ferent from u�
1; see Figure 1(i). We want to choose one of

these vertices as the last neighbor of v1, so that it is not
split. However, the choice is not arbitrary as this may
affect the possibility for v2 to save the split for a neigh-
bor it shares with v3. In the instance composed of G0

and p0
t, we do not prescribe the first vertex of v2. To com-

pute a solution for the original instance, we simply
choose as the last neighbor of v1 any of its common
neighbors with v2 that has not been set as the last
neighbor of v2 in p0

b. Such a vertex, say u, always exists
since v1 and v2 have at least two common neighbors dif-
ferent from u�

1, and can be moved to become the first
vertex in p0

b. Specifically, we split all the vertices in Nþ,
except for u, so that one copy becomes incident only to
v1. We construct pb by selecting the prescribed vertex
u�
1, if any, followed by the remaining neighbors of v1 dif-

ferent from u in any order. We thenmodify p0
b bymoving

u to be the first vertex. Note that this operation does
not affect planarity, as it only involves reordering the set
of consecutive degree-1 vertices incident to v2. Finally,

May/June 2023 IEEE Computer Graphics and Applications 27

EFFECTIVE NETWORK ANALYTICS

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

we append the modified p0
b. This results in s ¼

jNþj � 1þ s0 splits.

Theorem 2: For a bipartite graph G ¼ ðVt [Vb; EÞ
and an order pt of Vt, the optimization version of CRS
(k) with fixed order can be solved in OðjEjÞ time.

Proof: By construction, for each i ¼ 1; . . . ; jVtj � 1,
all neighbors of vi precede all neighbors of viþ1 in pb.
Thus, by Lemma 1, the drawing is planar. The minimal-
ity of the number of splits follows from Lemma 2, as
discussed before the case distinction. In particular,
any minimum-splits solution can be shown to be
equivalent to the one produced by our algorithm. The
time complexity follows as each vertex only needs to
check its neighbors a constant number of times. tu

We conclude this section by mentioning that the
CRS(k) problem had already been considered, under a
different terminology, in the context of molecular QCA
circuits design.20 Here, the problem was claimed to be
NP-complete, without providing a formal proof. In the
same work, when the order pt of the top vertices is
part of the input, an alternative algorithm was pro-
posed based on the construction of an auxiliary graph
that has superlinear size. Exploiting linear-time sorting
algorithms and observations that allow avoiding
explicitly constructing all edges of this graph, the
authors were able to obtain a linear-time implementa-
tion. We believe that our algorithm of Theorem 2 is
simpler and more intuitive, and directly leads to a lin-
ear-time implementation.

CROSSING REMOVALWITH kkkkkkk
SPLIT VERTICES

In this section, we prove that the CRSV(k) problem is
NP-complete in general and linear-time solvable when
the order pt of the top vertices is part of the input.
Ahmed et al.19 showed that CRSV(k) is FPT when
parameterized by k. To prove the NP-completeness,
we can use the reduction of Theorem 1. In fact, in the
graphs produced by that reduction all vertices in Vb

have degree 2. Hence, the number of vertices that are
split coincides with the total number of splits.

Theorem 3: The CRSV(k) problem is NP-complete.

For the version with fixed order, we first use C.1 of
Lemma 2 to identify vertices that need to be split at
least once, and repeatedly split them until each has
degree 1. For a vertex u 2 Vb, we can decide if it needs
to be split by checking whether its neighbors are con-
secutive in pt and, if u has degree at least 3, all its
neighbors different from the first and last have degree
exactly 1.

We first perform all necessary splits. For each i ¼
1; . . . ; jVtj � 1, consider the two consecutive top verti-
ces vi and viþ1. If they have no common neighbor, no
split is needed. If they have exactly one common
neighbor u, then we set u as the last neighbor of vi
and the first of viþ1, which allows us not to split u,
according to C.2. Since u did not participate in any
necessary split, if u is also adjacent to other vertices,
then all its neighbors have degree 1, except possibly
the first and last. Hence, C.2 can be guaranteed for all
pairs of consecutive neighbors of u.

Otherwise, vi and viþ1 have at least two common
neighbors and thus have degree at least 2. Hence, all
common neighbors of vi and viþ1 must be split, except
for at most one, namely the one that is set as the last
neighbor of vi and as the first of viþ1. Since all these
vertices are incident only to vi and viþ1, as otherwise
they would have been split by C.1, we can arbitrarily
choose any of them, without affecting the splits of
other vertices.

At the end, we construct the order pb so that, for
each i ¼ 1; . . . ; jVtj � 1, all the neighbors of vi pre-
cede all the neighbors of viþ1, and the unique com-
mon neighbor of vi and viþ1, if any, is the last
neighbor of vi and the first of viþ1. By Lemma 1, this
guarantees planarity. Identifying and performing all
unavoidable splits and computing pb can be easily
done in OðjEjÞ time. Since we only performed
unavoidable splits, as dictated by Lemma 2, we have
the following.

Theorem 4: For a bipartite graph G ¼ ðVt [Vb; EÞ
and an order pt of Vt, the optimization version of CRSV
(k) with fixed order minimizing the number of split ver-
tices can be solved in OðjEjÞ time.

CROSSINGMINIMIZATIONWITH kkkkkkk
SPLITS

In this section, we consider minimizing crossings (not
necessarily removing all), by applying at most k splits.
We first prove NP-completeness of the decision prob-
lem CMS(k;M) with fixed order and then give a poly-
nomial-time algorithm assuming the integer k is a
constant.

Theorem 5: For a bipartite graph G ¼ ðVt [Vb; EÞ,
an order pt of Vt, and integers k;M , problem CMS
(k;M) with fixed order is NP-complete.

Proof:We reduce from the NP-complete DECISION
CROSSING PROBLEM (DCP),3 where given a bipartite
2-layer graph with one vertex order fixed, the goal is to
find an order of the other set such that the number of
crossings is at most a given integer M . Given an

28 IEEE Computer Graphics and Applications May/June 2023

EFFECTIVE NETWORK ANALYTICS

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

instance of DCP, i.e., a 2-layer graph G ¼ ðVt [Vb; EÞ,
with ordering pt of Vt and integer M , we construct an
instance G0 of CMS(k;M) where k ¼ jVbj. First let G0 ¼
ðV 0

t [V 0
b ; E

0Þ be a copy of G. We give an arbitrary order-
ing pb to the vertices of V 0

b . We then add, respectively,
to each vertex set Vt and Vb a set Ut and Ub of M þ 1

vertices and connect each u 2 Ut to exactly one v 2
Ub, forming a matching of sizeM þ 1. We add the verti-
ces of Ut to pt (resp. Ub to pb) after all the vertices of Vt

(VbÞ. We lastly add a set Wt of k vertices to V 0
t , placed

at the end of pt, such that each wi 2 Wt (i ¼ 1; . . . ; k)
has exactly one neighbor vi 2 Vb and vice versa; see
Figure 2(a). tu

Given an ordering p�
b of Vb that results in a draw-

ing of G with at most M crossings, we show that
we can solve the CMS(k;M) instance G0. In G0, we
split each vertex of Vb to obtain the sets V 1

b and V 2
b

in which we place exactly one copy of each original
vertex. We place V 2

b after the vertices of Ub in pb in
the same order that the vertices of Wt appear in pt

and draw a single edge between the copies and
their neighbor in Wt. We place V 1

b before the verti-
ces of M2 in pb in the same order as in p�

b . The
graph induced by V 1

b and Vt is the same graph as G,
hence it has at most M crossings. Since Vt only has
neighbors in Vb and all those neighbors are in V 1

b , it

has no other outgoing edges, similarly, all edges inci-
dent to vertices in Wt are assigned to the copies in
V 2
b . The remaining graph is crossing-free as the verti-

ces in Ut and Wt form a crossing-free matching with
the vertices in Ub and V 2

b .
Conversely, let G� be a 2-layer drawing obtained

from G0 after k split operations that has at most M

crossings. Since each vertex v 2 Vb has a neighbor w 2
Wt, it induces M þ 1 crossings with edges induced by
the vertices in Ut [Ub. Since the vertices in Ub have a
single neighbor, they cannot be split, thus every vertex
in Vb is split once, and their neighborhood are parti-
tioned for each copy in the following way: one copy
receives the neighbor in Wt and one copy receives the
remaining neighbors, which are in Vt [see Figure 2(b)],
thus avoiding at leastM þ 1 crossings induced by Ut [
Ub. Any other split would imply at least M þ 1 cross-
ings. The graph induced by the copies that receive the
neighbors in Vt has at most M crossings, thus, the
ordering found for those copies is a solution to the
DCP instance G.

Next, we present a simple XP-time algorithm for
the crossing minimization version of CMS(;) parame-
terized by the number k of splits, i.e., the algorithm
runs in polynomial time OðnfðkÞÞ, where n is the input
size, k is the parameter, and f is a computable

FIGURE 2. Illustrations for Theorem 5 (a)–(b); illustration for the crossing reduction heuristics (c). (a) Instance of CMS(k)

constructed from a DCP instance, in light gray the vertices in Ut [Ub ; before splitting. (b) After splitting. (c) Vertex vi with span 6

and a split in V l (span 1) and V r (span 3). The barycenter of V r is pr. When moving right from pi in CR-count we process viþ1

(reduces jV rj crossings) and viþ2 (reduces jV rj but adds 1 crossing), but not viþ3.

May/June 2023 IEEE Computer Graphics and Applications 29

EFFECTIVE NETWORK ANALYTICS

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

function. Let G ¼ ðVt [Vb; EÞ be a 2-layer graph with
vertex orders pt and pb and let k be the desired num-
ber of splits. Our algorithm executes the following
steps. First, it determines a set of splits by choosing k

times a vertex from the n vertices in Vb—we enumer-
ate all options. For any vertex v 2 Vb split i times in the
first step, v is replaced by the set of copies
fv1; . . .; viþ1g. The neighborhood NðvÞ of a vertex v 2
Vb is a subset of Vt ordered by pt. We partition this
ordered neighborhood into iþ 1 consecutive subsets,
i.e., for each subset, all its elements are sequential in
NðvÞ—again, we enumerate all possible partitions.
Each set is assigned to be the neighborhood of one of
the copies of v. The algorithm then chooses an order-
ing of all copies of all split vertices and attempts all
their possible placements by merging them into the
order pb of the unsplit vertices of Vb. The crossing
number of every resulting layout is computed and the
graph with minimum crossing number yields the solu-
tion to our input. It remains to show that the running
time of this algorithm is polynomial for constant k.

Theorem 6: For a 2-layer graph G ¼ ðVt [Vb; EÞ
with vertex orders pt;pb and a constant k 2 N, we can
minimize the number of crossings by applying at most
k splits in time Oðn4 kÞ.

Proof: Let G� be a crossing-minimal solution after
applying k splits on Vb and let us assume that our algo-
rithm would not find a solution with this number of
crossings. As our algorithm considers all possibilities
to apply k splits, it also attempts the splits applied in
G�. Similarly, the neighborhood partition of G� and the
copy placement are explicitly considered by the
algorithm as it enumerates all possibilities. Hence, a
solution at least as good as G� is found, proving
correctness. tu

Let nt ¼ jVtj and nb ¼ jVbjwith n ¼ nt þ nb. The algo-
rithm initially chooses k times from nb vertices leading to
nk
b possible sets of copies. Since a vertex has degree at

most nt, there are at most nk
t possible neighborhoods for

each copy. Additionally, there are ð2 kÞ! orderings of at
most 2 k copies. Finally, there are n2 k

b possible placement
of the 2 k ordered copies between the most nb unsplit
vertices inpb. This leads to anoverall runtimeofOðð2 kÞ! �
n4 kÞ ¼ Oðn4 kÞ to iterate through all possible solutions
and select the onewith aminimumnumber of crossings.

CROSSING REDUCTION
HEURISTICS

In this section we present two greedy heuristics to
iteratively reduce crossings in a two-layer drawing by
selecting and splitting vertices; see Algorithms 3–4 in

the supplemental material for the pseudocode. The
input to the algorithm is a bipartite graph G ¼
ðVt [Vb; EÞ, order pt of Vt and order pb of Vb. Here we
use the barycenter heuristic for the initial orders, but
any initial order computed by a crossing-reduction
algorithm can also be used. Additionally, an input
parameter k is specified that represents a budget of
available split operations. For both heuristics, we itera-
tively perform k splits by selecting the most promising
vertex in Vb and a partition of its respective neighbors
in Vt into a consecutive set of left neighbors V l and a
consecutive set of right neighbors V r. After splitting,
the original vertex receives the set V l assigned as
neighbors and the copy receives the set V r. Next we
describe how the vertex to be split is selected in each
of the heuristics.

First, in the case of the max-span heuristic we
select the vertex v with the maximum span (i.e., the
maximum distance between its leftmost neighbor and
rightmost neighbor in pt). Then, we process v by
iterating in order over its neighbors and assigning
them to either the set of left neighbors V l or right
neighbors V r depending on the index; see Figure 2(c).
In each iteration, we compute the sum of the
squared span of V l and V r. The minimum value
indicates the best partition of v’s neighbors. The
complexity of the heuristic is linear in the number
of edges OðjEjÞ.

Second, the CR-count heuristic selects promising
split vertices by computing crossings that can be
reduced and selects the vertex with potentially most
reduced crossings. First, we assign each vertex vi in
Vb a position pi 2 R, which is the barycenter of posi-
tions in pt of its neighbors in Vt. Similarly to max-
span, we iterate in order over the neighbors of all vi
creating partitions V l and V r. In each iteration, we
compute the barycenter pl of V l and pr of V r; see
Figure 2(c). Next, we start from position pi and move
in ascending order processing all other vertices in Vb

until we reach pr. To process a vertex vj 2 Vb, we look
at all edges to its neighbors NðvjÞ � Vt and use a
case distinction to count how many crossings can be
reduced. In the first case, a neighbor in Vt is left of
the leftmost vertex in V r. Here, we would reduce jV rj
crossings as the new position of vr would not cross.
In the second case, a neighbor is between the left-
most and rightmost vertex in V r (i.e., we would
reduce some crossings but add others). In the third
case a neighbor is right of the rightmost vertex in V r,
i.e., no crossings can be reduced. Likewise, we pro-
cess vertices to the left of vi up to the barycenter pl.
Finally, after computing all potentially reducible
crossings for each vertex and split combination, we

30 IEEE Computer Graphics and Applications May/June 2023

EFFECTIVE NETWORK ANALYTICS

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

select the combination reducing the crossings most,
assign Vl to the original vertex and Vr to the new
copy. Both vertices are positioned in their respective
barycenters pl and pr in the order. The complexity of
the algorithm is OðjVbj2jVtjÞ.

EXPERIMENTAL RESULTS
We have experimentally evaluated four of the five
algorithms described earlier with 22 real-world data-
sets: the exact algorithm of CRS(k) with fixed order,
the exact algorithm of CRSV(k) with fixed order, and
two heuristics for crossing reduction. The algorithm
behind Theorem 6 is inefficient in practice. We analyze
performance w.r.t. the number of crossings in the lay-
outs, number of vertex splits, number of vertices that
we split, the maximum number of splits, and running
time.

Experimental Design
We have mentioned that 2-layer drawings have been
applied in visualizing graphs defined on anatomical
structures and cell types in the human body.18 There
exists a variety of cell types, genes, and proteins
related to different organs of the human body. Hierar-
chical structures have been used to show the relation-
ship between organs to anatomical structures,
anatomical structures to cell types, and cell types to
genes/proteins. Cell types and genes/proteins situate
on a particular layer, unlike anatomical structures.
Hence, we can consider a 2-layer graph G, where cell
types represent one layer and genes/proteins repre-
sent another layer and analyze G before and after
splitting. In this section, we consider the real-world
2-layer graphs generated from the dataset of different
organs and show the experimental results obtained
on those graphs.

TABLE 1. Statistics about the organ graphs from the hubmap dataset.18 The density of a graph g ¼ ðv; eÞ with v ¼ vt [vb is

defined as 2jej=ðjvjðjvj � 1ÞÞ.

Organ jV j jEj Cell types Genes/proteins Density Max degree

Blood 179 461 30 149 0.0289 57

Fallopian Tube 42 32 19 23 0.0371 3

Lung 231 231 69 162 0.008 8

Peripheral Nervous System 3 2 1 2 0.666 2

Thymus 552 658 41 511 0.00432 93

Heart 60 51 15 45 0.028 7

Lymph Nodes 299 491 44 255 0.0110 36

Prostate 43 36 12 31 0.039 3

Ureter 44 53 14 30 0.0560 9

Bone Marrow 343 662 45 298 0.011 25

Kidney 201 237 58 143 0.011 8

Skin 102 90 36 66 0.017 7

Urinary Bladder 46 55 15 31 0.053 9

Brain 381 346 127 254 0.004 5

Large Intestine 124 139 51 73 0.0182 8

Ovary 9 6 3 6 0.166 2

Small Intestine 18 13 5 13 0.084 4

Uterus 61 65 16 45 0.035 9

Eye 145 270 47 98 0.0258 68

Liver 73 57 26 47 0.0216 5

Pancreas 69 100 29 40 0.042 12

Spleen 290 414 65 225 0.009 23

May/June 2023 IEEE Computer Graphics and Applications 31

EFFECTIVE NETWORK ANALYTICS

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

Datasets
We use 22 real-world instances of 2-layer graphs;18 see
Table 1.

Interactive Tool Design
We developed an interactive tool, where the user can
upload a dataset and visualize the corresponding
2-layer graph; see Figure 4. A dataset can be loaded by
pasting JSON-formatted text in the input area on the
left-hand side of the interface. We use blue and red
colors to draw nodes that represent cell types and
genes/proteins, respectively. There is a legend in the
top left corner of the interface to describe the color
code. Instead of using top and bottom layers, we use
left and right layers, for easier node labeling (i.e., the
left and right layers represent Vt and Vb). There are
multiple radio buttons to the configuration of the
drawing. The user can fix the order of either the blue
vertices or the red vertices by selecting one set of
radio buttons. The number of vertex splits depends on
the initial layout. We consider two types of initial lay-
outs: the vertices in each layer are positioned in alpha-
betical order, or in barycentric order.5 The user can
select an initial order from the input interface by using
another set of radio buttons. There are “Draw” and
“Split” buttons in the interface. Once the user selects
an order for the left layer and clicks the draw button,
then the initial ordered layout will be shown on the
right side of the interface. Clicking the split button
replaces the initial layout and shows the final layout
on the right side of the interface.

The right output interface is interactive; the user
can see further details using different interactions.
When the graph is large the user can scroll up and
down to see different parts of the layout. The user
can highlight the adjacent edges by clicking on a par-
ticular vertex in case of dense layouts. We keep the
label texts less than or equal to ten characters. If a
label is longer then we show the first ten characters
and truncate the rest. If the user puts the mouse
over the label or the corresponding vertex, a pop-up
message will show the full label. If the user moves
out the mouse, the message will be removed too.
Besides showing the full label, we also provide other
useful information (e.g., the degree and ID of the ver-
tex; see Figure 3).

Evaluation Results
We first evaluate the exact algorithms for CRS(k) and
CRSV(k) with fixed order. We have run experiments on
22 organ graphs on four settings:

1) The blue vertices (cell type) are fixed and the
initial layout is generated using alphabetical
order.

2) The red vertices (gene/protein) are fixed and the
initial layout is generated using alphabetical
order.

3) The blue vertices are fixed and initial layout is
generated using barycentric heuristic.

4) The red vertices are fixed and initial layout is
generated using the barycentric heuristic.

For each setting, we provide the initial number
of crossings, number of vertices in the top (or left)
layers that have fixed order, the number of bottom
(or right) vertices, the number of splits, the num-
ber of split vertices, and the maximum number of
splits; see Tables 2–5 in the supplemental material.
The number of crossings in the initial layouts gen-
erated from alphabetical order is 2.7 times larger
in total than in layouts generated by the barycen-
tric heuristic. The number of splits is 1.58 times
larger in total when we fix the gene/protein verti-
ces (Tables 3 and 5). Note that for all organ
graphs, the number of gene/protein vertices is rel-
atively larger compared to the cell type vertices.
When the cell-type vertices are fixed, there is
more flexibility for splitting. Hence, the number of
splits in Tables 2 and 4 are smaller than in Tables 3
and 5. Similarly, the maximum number of splits is

FIGURE 3. Interacting with the system. (a) The system high-

lights the adjacent edges when the user clicks on a vertex

(‘‘basophil’’ in this case). (b) A pop-up message showing the

full label, and other related information.

32 IEEE Computer Graphics and Applications May/June 2023

EFFECTIVE NETWORK ANALYTICS

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

2.5 times larger in total when the gene/protein verti-
ces are fixed.

A second set of experiments was conducted on
the same 22 organ graphs to evaluate the crossing
minimization heuristics. We set the maximum bud-
get k of splits to 200 and computed the number of

remaining crossings after each split. Additionally, we
measured wall clock time after each iteration.
Figure 5 shows the number of crossings in regards
to k for one example graphs. Examples of other
graphs, as well as runtime plots can be found in the
supplemental material; see Figures 6–11. For both

FIGURE 4. User interface. Datasets of the human body18 can be uploaded, processed with the presented algorithms, and visualized.

(a) The input layout on the right side appears after inserting the dataset into the text area and clicking the draw button. (b) The output

layout appears on the right side after clicking the split button.

May/June 2023 IEEE Computer Graphics and Applications 33

EFFECTIVE NETWORK ANALYTICS

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

algorithms, we observed a similar performance
regarding crossing reduction. In some cases, one
algorithm slightly outperformed the other, but no
clear trend is visible in the data. Intuitively, it seems
that in the case of max-span the length of edges
correlates with the number of crossings. Further-
more, the number of crossings declines steeply at
the beginning and for some graphs nearly 30% of
crossings are removed by the first ten splits.

The runtime experiments confirmed the asymptotic
runtime analysis. max-span outperforms CR-count on
every datasets in regards to total runtime and scalability.

All codes for user interface, algorithms, experimen-
tal data, and analysis are available on Github at
https://github.com/abureyanahmed/split_graphs.

OPEN PROBLEMS
Minimizing the total number of splits, or the number of
split vertices are natural problems. Other variants include
minimizing themaximum number of splits per vertex and
considering the case, where splits are allowed in both
layers. Vertex splits can also be used to improve other
quality measures of a 2-layer layout (besides crossings).
When visualizing large bipartite graphs, a natural goal is
to arrange the vertices so that a small window can cap-
ture all the neighbors of a given node, i.e., minimize the
maximum distance between the first and last neighbors
of a top vertex in the order of the bottom vertices.

ACKNOWLEDGMENTS
This work started at Dagstuhl Seminar 21152 “Multi-
Level Graph Representation for Big Data Arising in Sci-
ence Mapping.” The authors would like to thank the
organizers and participants for the discussions, partic-
ularly C. Raftopoulou.

REFERENCES
1. F. McGee et al., Visual Analysis of Multilayer Networks.

San Rafael, CA, USA: Morgan & Claypool, 2021.

2. N. Pezzotti, J. D. Fekete, T. H€ollt, B. P. F. Lelieveldt, E.

Eisemann, and A. Vilanova, “Multiscale visualization

and exploration of large bipartite graphs,” Comput.

Graphics Forum, vol. 37, no. 3, pp. 549–560, 2018.

3. P. Eades and N. C. Wormald, “Edge crossings in

drawings of bipartite graphs,” Algorithmica, vol. 11,

no. 4, pp. 379–403, 1994.

4. C. Scornavacca, F. Zickmann, and D. H. Huson,

“Tanglegrams for rooted phylogenetic trees and

networks,” Bioinformatics, vol. 27, no. 13, pp. i248–i256,

2011.

5. K. Sugiyama, S. Tagawa, and M. Toda, “Methods for

visual understanding of hierarchical system

structures,” IEEE Trans. Syst., Man, Cybern., vol. 11,

no. 2, pp. 109–125, Feb. 1981.

6. P. Eades, B. McKay, and N. Wormald, “On an edge

crossing problem,” in Proc. 9th Australian Comput. Sci.

Conf., 1986, pp. 327–334.

7. Y. Kobayashi and H. Tamaki, “A fast and simple

subexponential fixed parameter algorithm for one-

sided crossing minimization,” Algorithmica, vol. 72,

no. 3, pp. 778–790, 2015.

8. C. Demetrescu and I. Finocchi, “Removing cycles for

minimizing crossings,” J. Exp. Algorithmics, vol. 6, no. 2,

pp. 1–39, 2001.

9. W. Didimo, G. Liotta, and F. Montecchiani, “A survey on

graph drawing beyond planarity,” ACM Comput.

Surveys, vol. 52, no. 1, pp. 4:1–4:37, 2019.

10. M. J€unger and P. Mutzel, “2-layer straightline crossing

minimization: Performance of exact and heuristic

algorithms,” J. Graph Algorithms Appl., vol. 1, no. 1,

pp. 1–25, 1997.

11. P. Eades and C. F. X. de Mendonça N, “Vertex-splitting

and tension-free layouts,” in Proc. Symp. Graph

Drawing, 1996, vol. 1027, pp. 202–211.

12. D. Eppstein et al., “On the planar split thickness

of graphs,” Algorithmica, vol. 80, pp. 977–994,

2018.

13. K. Knauer and T. Ueckerdt, “Three ways to cover a

graph,” Discrete Math., vol. 339, no. 2, pp. 745–758, 2016.

14. A. Liebers, “Planarizing graphs–A survey and

annotated bibliography,” J. Graph Algorithms Appl.,

vol. 5, no. 1, pp. 1–74, 2001.

15. L. Faria, C. M. H. de Figueiredo, and C. F. X. Mendonça,

“Splitting number is NP-complete,” Discrete Appl.

Math., vol. 108, no. 1, pp. 65–83, 2001.

16. N. Hartsfield, B. Jackson, and G. Ringel, “The splitting

number of the complete graph,” Graphs Combinatorics,

vol. 1, no. 1, pp. 311–329, 1985.

FIGURE 5. max-span and CR-count heuristic applied to the

bone marrow dataset. Both algorithms have nearly identical

performance regarding crossing reduction.

34 IEEE Computer Graphics and Applications May/June 2023

EFFECTIVE NETWORK ANALYTICS

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

17. B. Jackson and G. Ringel, “The splitting number of

complete bipartite graphs,” Archiv der Mathematik,

vol. 42, no. 2, pp. 178–184, 1984.

18. “ASCT+B reporter,” 2021. [Online]. Available: https://

hubmapconsortium.github.io/ccf-asct-reporter/

19. R. Ahmed, S. G. Kobourov, and M. Kryven, “An FPT

algorithm for bipartite vertex splitting,” in Proc. 30th Int.

Symp. Graph Drawing Netw. Vis., 2022, vol. 13764,

pp. 261–268, doi: 10.1007/978-3-031-22203-0_19.

20. A. Chaudhary, D. Z. Chen, X. S. Hu, M. T. Niemier, R.

Ravichandran, and K. Whitton, “Fabricatable

interconnect and molecular QCA circuits,” IEEE Trans.

Comput. Aided Des. Integr. Circuits Syst., vol. 26, no. 11,

pp. 1978–1991, Nov. 2007.

REYAN AHMED is a visiting assistant professor with Colgate

University, Hamilton, NY, 13346, USA. His research interests

include graph algorithms, network visualization, and data

science. Ahmed received his Ph.D. degree in computer sci-

ence from the University of Arizona. He is the corresponding

author of this article. Contact him at rahmed1@colgate.edu.

PATRIZIOANGELINI is an associate professor of computer sci-

ence with John Cabot University, 00165, Rome, Italy. His

research interests includegraphdrawing, network visualization,

and graph algorithms. Angelini received his Ph.D. degree in

computer science and engineering from Roma Tre University,

Rome, Italy. Contact him at pangelini@johncabot.edu.

MICHAELA. BEKOS is an assistant professor with the Depart-

ment of Mathematics, University of Ioannina, 451 10, Ioannina,

Greece; when the work on this project was conducted he was

a postdoc at the University of T€ubingen, 72074, T€ubingen, Ger-

many. His research interests stem from graph drawing, graph

theory, and map labeling. Bekos received his Ph.D. degree

from the National Technical University of Athens, Athens,

Greece. Contact him at bekos@uoi.gr.

GIUSEPPE DI BATTISTA is a professor with the Department

of Engineering, Roma Tre University, 00154, Rome, Italy. His

research interests include graph drawing and networking.

Contact him at giuseppe.dibattista@uniroma3.it.

MICHAEL KAUFMANN is a professor with the Wilhelm-

Schickard-Institute for Informatics, University of T€ubingen,

72074, T€ubingen, Germany, since 1993. Kaufmann received his

Graduate degree from the Universit€at des Saarlandes,

Saarbr€ucken. Contact him atmk@informatik.uni-tuebingen.de

PHILIPP KINDERMANN is an assistant professor for algorith-

mics with the University of Trier, 54296, Trier, Germany. His

research interests include graph drawing, network visualiza-

tion, computational geometry, and graph algorithms. Kinder-

mann received his Ph.D. degree in computer science from

University of W€urzburg, W€urzburg, Germany. Contact him at

kindermann@uni-trier.de.

STEPHEN KOBOUROV is a professor with the Department of

Computer Science, University of Arizona, Tucson, AZ, 85721,

USA. His research interests include information visualization,

graph theory, and geometric algorithms. Kobourov received

his Ph.D. degree from Johns Hopkins University. Contact him

at kobourov@cs.arizona.edu.

MARTIN N€OLLENBURG is a professor in the Algorithms and

Complexity Group, TU Wien, 1040, Vienna, Austria. His

research interests include graph drawing, information visuali-

zation, computational geometry, and algorithm engineering.

N€ollenburg received his Ph.D. degree in computer science

from Karlsruhe Institute of Technology, Germany. Contact

him at noellenburg@ac.tuwien.ac.at.

ANTONIOS SYMVONIS is a professor with the School of

Applied Mathematical and Physical Sciences, National Tech-

nical University of Athens, 10682, Athens, Greece. His

research interests include algorithms and complexity, graph

drawing, and data visualization. Symvonis received his Ph.D.

degree in computer science from the University of Texas at

Dallas, USA. Contact him at symvonis@math.ntua.gr.

ANA€IS VILLEDIEU is currently working toward the Ph.D. degree

with the Algorithms and Complexity Group, TU Wien, 1040,

Vienna, Austria. Her research focuses on graph drawing and

information visualization questions, with a focus on vertex split-

ting problems. Contact her at avilledieu@ac.tuwien.ac.at.

MARKUS WALLINGER is currently working toward the Ph.D.

degree in the Algorithms and Complexity Group, TU Wien,

1040, Vienna, Austria. He received his M.S. degree in visual

computing from TU Wien, Vienna, Austria. His research

focuses on algorithms for information visualization, graph

drawing, and linear orders. He is a graduate student member

of IEEE. Contact him at mwallinger@ac.tuwien.ac.at.

May/June 2023 IEEE Computer Graphics and Applications 35

EFFECTIVE NETWORK ANALYTICS

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on June 07,2023 at 18:36:55 UTC from IEEE Xplore. Restrictions apply.

