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Abstract— Large tree structures are ubiquitous and real-world relational datasets often have information associated with nodes (e.g.,
labels or other attributes) and edges (e.g., weights or distances) that need to be communicated to the viewers. Yet, scalable, easy
to read tree layouts are difficult to achieve. We consider tree layouts to be readable if they meet some basic requirements: node
labels should not overlap, edges should not cross, edge lengths should be preserved, and the output should be compact. There
are many algorithms for drawing trees, although very few take node labels or edge lengths into account, and none optimizes all
requirements above. With this in mind, we propose a new scalable method for readable tree layouts. The algorithm guarantees
that the layout has no edge crossings and no label overlaps, and optimizing one of the remaining aspects: desired edge lengths
and compactness. We evaluate the performance of the new algorithm by comparison with related earlier approaches using several
real-world datasets, ranging from a few thousand nodes to hundreds of thousands of nodes. Tree layout algorithms can be used to
visualize large general graphs, by extracting a hierarchy of progressively larger trees. We illustrate this functionality by presenting
several map-like visualizations generated by the new tree layout algorithm.

Index Terms—Tree layouts, force-directed, readability

Fig. 1: A map of a real-world research topics network with over 5,000 nodes that provides semantic zooming, generated
with the scalable method for readable tree layout. The visualization provides an overview of the dataset, showing the
high-level structure, including important nodes and edges. Zooming into a particular area of interest provides more
details. The layout obtained by the proposed algorithm is compact, there are no edge crossings, and there are no label
overlaps.

1 Introduction

Many real-world datasets can be represented by a network
where each node represents an object and each link rep-
resents a relationship between objects; e.g., the tree of
life captures the evolutionary connections between species
and a research topics network captures relationships be-
tween research areas; see Fig. 1. Abstract networks can be
modeled by node-link diagrams, with points representing
nodes and segments/curves representing the edges. How-
ever, real-world datasets have labels associated with nodes
and attributes such as edge lengths that are not captured
in node-link diagrams. For example, the tree of life has
species names as node labels and evolutionary distance
between the corresponding species as edge data. These
networks would benefit from a visualization that shows
the labels and captures the desired edge lengths. How-
ever, just adding labels to an existing layout will result
in an unreadable visualization with many overlapping la-

bels. One could scale the layout to remove such overlaps,
but this would blow up the drawing area to an unman-
ageable size. Label overlaps could also be removed with
specialized overlap removal algorithms but result in lay-
out changes: not just changing edge lengths, but also the
topology (e.g., breaking up clusters, or introducing new
edge crossings).

We consider tree layouts to be readable if they meet
some basic requirements: node labels should not over-
lap, edges should not cross, edge lengths should be pre-
served, and the output should be compact. This gives us
two hard constraints: (C1) No edge crossings, (C2) No la-
bel overlaps. We also consider two additional desirable
properties that the algorithm optimizes: (O1) desired edge
lengths and (O2) compactness of the drawing area. Fi-
nally, to efficiently handle large networks, we also paral-
lelize the computation.

Preserving pre-specified, desired edge lengths is impor-
tant to many real-world datasets, but is not taken into ac-
count by most network and tree layout algorithms. Keep-
ing track of the drawing area required (e.g., by comparing
to the sum of areas of all labels), makes it clear that sim-
ply scaling up a given layout until labels do not overlap
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Fig. 2: Comparison of the layout of the Last.fm graph with uniform edge lengths. The CIR layout produces edges with
very different lengths, while the sfdp+p has crossings, and neither of them captures the structure of the underlying
tree. On the other hand, our algorithms generate layouts that show the structure of the input network. In an overview
such as this one, several of the results look similar, but in these zoomed-out layouts we cannot see all the crossings,
label overlaps, and area used; we provide a detailed quantitative evaluation in Table 1, which shows differences as
large as orders of magnitude.

results in unusable layouts with areas that are 4-6 orders
of magnitude greater than needed. Finally, the scalabil-
ity of the algorithm is important when dealing with larger
datasets containing hundreds of thousands of nodes.

Despite there being more than 300 algorithms for draw-
ing trees [50], none can guarantee the two constraints (no
crossings, no overlaps), while also optimizing desired edge
lengths and area. With this in mind, we propose a scalable
method that can guarantee both constraints while opti-
mizing desired edge lengths and area. We evaluate four
variants of the proposed method for Readable Tree lay-
out (RTL, RTC , PRTL, PRTC ) with 4 different real-world
datasets of different sizes: from trees with 2,588 nodes,
up to trees with 100,347 nodes; see Fig. 2. We further
compare our method against state-of-the-art general net-
work layout and tree layout algorithms, by relaxing some
of the constraints. We experimented with half a dozen
prior methods, but none of them are directly comparable
(as discussed in detail in Sec. 2). In this paper we re-
port the results obtained by two of these prior methods:
(spfd+p) the scalable force directed placement [30] algo-
rithm together with label overlap removal via the PRoxIm-
ity Stress Model in GraphViz [20], and (CIR) the CIRcular
tree layout algorithm from yED [54].

We also show the utility of the proposed readable tree
layouts method in visualizing general networks. There
are many algorithms for extracting important trees from a
given network: minimum spanning trees, maximum span-
ning trees, network backbone trees, etc. Motivated by peo-
ple’s familiarity with maps [9], we use a multi-level Steiner
tree algorithm [1] to create a level-of-detail representation
of an underlying general network, which underlies an in-
teractive map-like representation that provides semantic
zooming; see Fig. 1.

We propose a new scalable method for visualizing large,
labeled trees. The method maintains the two hard con-
straints (C1) No edge crossings and (C2) No label overlaps,
while optimizing two desirable properties (O1) desired edge
lengths and (O2) compactness of the drawing area. The

two constraints and two optimization goals underlie read-
able layouts, as shown in prior work:

Edge crossings are known to make network layouts less
readable [46]. Since trees are planar, it is possible to
create layouts without crossings, justifying the first con-
straint (C1). Overlapping labels detract from readability
and are often a metric for the usability of the labeled net-
work layouts [32,51]. This supports the second constraint
(C2).

Preserving desired edge lengths is a standard require-
ment in instances where edge lengths capture important
information, e.g., evolutionary time in the tree of life, and
phylogenetic trees in general [3, 4, 7, 16, 31, 37]. Edge-
length preservation is also used for sensor network re-
construction [19] and when representing similarity ma-
trices [55]. This property is also needed in the final step
of creating map-like visualization: semantic zooming de-
pends on linearly increasing edge lengths. Uniform edge
lengths (a special case where all desired edge lengths are
the same) are preferable in cases where all edges represent
the same notion of connectivity [46, 51]. These reasons
validate the first optimization goal (O1). Note that simul-
taneously ensuring C1 and O1 is an NP-hard problem [18],
which is why O1 is optimized, rather than guaranteed.

Layout compactness is an important feature for provid-
ing an effective overview of the underlying network [46] as
a lot of white space can be detrimental to readability [43].
This justifies the second optimization goal O2.

Fig. 3 shows the workflow of the proposed readable tree
(RT) layout method. The input is a node-labeled tree with
pre-specified edge lengths from which a multi-level Steiner
tree is computed to provide semantic zooming. The al-
gorithm next computes a crossing-free initial layout (C1)
of the tree and maintains this property in every subse-
quent step. In the iterative refinement step, the algorithm
employs force-directed layout improvement, tailored to re-
move label overlaps, preserve desired edge lengths (O1),
and minimize the drawing area (O2). In the final iteration
step any remaining overlaps are removed, thus enforcing
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(C2). The output is used to provide a map-like represen-
tation with semantic zooming, which utilizes linearly in-
creasing edge lengths for the different levels of detail.

For consistency in the experimental evaluation, we use
the same methodology to assign desirable edge lengths
to all datasets. Specifically, we extract multi-level Steiner
trees (described in Sec. 7.1) and assign desired lengths
proportional to the level where the edge first appears.

Note that simultaneously improving the desirable prop-
erties is a non-trivial task, as the individual properties
could require contradictory layout changes. For example,
consider a high-degree node with all adjacent edges having
the same desirable length. It is not possible to preserve
the edge lengths and obtain a compact layout simultane-
ously (with no label overlaps). To preserve edge lengths
without overlapping labels we need a larger drawing area.
To obtain a compact layout with no label overlaps we need
to distort edge lengths; see Fig. 4.

With this in mind, our proposed method can empha-
size desired edge length preservation or compactness.
This is determined by selecting one of the two initial lay-
outs. Edge-Length-Initialization preserves desired edge
lengths but allows label overlaps. Compact-Initialization

prioritizes compactness but does not preserve desired
edge lengths. In the following steps, (iterative refinement
and final iteration) these initial layouts are modified to en-
sure C1 and C2 and optimize O1 and O2.

We provide two implementations of the proposed
method: one that requires parallel hardware and one that
does not. The d3.js [10] version works well for smaller
instances. The parallel variant of our method, using
OpenMP [14], is 1-2 orders of magnitude faster and can
handle trees with hundreds of thousands of nodes. Note
that the interactive map-like visualization with semantic
zooming relies on the readable tree layout algorithm which
is run just once per dataset as a pre-processing step, and
we consider runtime in minutes to be acceptable.

We quantitatively evaluate our algorithms by measur-
ing compactness, desired edge length preservation, and
runtime. For comparison, we use two state-of-the-art lay-
out methods. Note that the two prior methods do not take
desired edge lengths into account, and to make the com-
parison somewhat fair we use uniform edge lengths. Also,
one of the two methods can produce edge crossings.

Since even the smallest tree we work with has more
than 2500 labeled nodes, we also make the results ac-
cessible via interactive, map-like visualizations. Specifi-
cally, using the multi-level Steiner tree hierarchy extracted
from the input, we provide semantic zooming functional-
ity that allows us to see the global structure (high level)
and local details (low level). The interactive visualization is
accessible here: https://tiga1231.github.io/zmlt/demo/
overview.html

2 Related Work

Tree and Network Layout Algorithms: Drawing trees
has a rich history: Treevis.net [50] contains over three
hundred different types of visualizations. Here we briefly
review algorithms for 2D node-link representations, start-
ing with arguably the best-known one by Reingold and
Tilford [49]. This and other early variants draw trees re-
cursively in a bottom-up sweep. These methods produce
crossings-free layouts but do not consider node labels or
edge lengths. We will now broaden our scope to gen-
eral graphs. While general graphs are not necessarily
planar, the layout techniques and ideas can be applied
to trees. Most general network layout algorithms use a
force-directed [17,21] or stress model [12,35] and provide
a single static drawing. The force-directed model works

well for small networks but does not scale to large net-
works. Speedup techniques employ a multi-scale vari-
ant [22, 28] or use parallel and distributed computing
architecture such as VxOrd [11], BatchLayout [48], and
MULTI-GILA [2]. Libraries such as GraphViz [20] and
OGDF [15] provide many general network layouts, but may
not support interactions. Whereas visualization toolkits
such as Gephi [5] and yEd [54] support visual network ma-
nipulation, and while they can handle large networks, the
amount of information rendered statically on the screen
makes the visualization difficult to use for large networks.

Overlap Removal and Topology Preservation: In the-
ory, nodes can be treated as points, but in practice, nodes
are labeled and these labels must be shown in the lay-
out [29, 45]. Overlapping labels pose a major problem for
most layout generation algorithms, and severely affect the
usability of the resulting visualizations. A simple solution
to remove overlaps is to scale the drawing until the la-
bels no longer overlap. This approach is straightforward,
although it may result in an exponential increase in the
drawing area. Marriott et al. [39] proposed to scale the
layout using different scaling factors for the x and y coor-
dinates. This reduces the overall blowup in size but may
result in a poor aspect ratio. Gansner and North [26],
Gansner and Hu [25], and Nachmanson et al. [42] de-
scribe overlap-removal techniques with better aspect ratio
and modest additional area. However, these approaches
can and do introduce edge-crossings, even when starting
with a crossings-free input. Placing labeled nodes with-
out overlaps has also been studied [32, 38, 41], but these
approaches also cannot guarantee crossings-free layouts.

The need for new algorithms: While there exist many
algorithms for generating tree and network layouts, to the
best of our knowledge, no existing algorithm considers the
four aspects of the readability of labeled tree layouts: no
edge crossings, no node overlaps, compact drawing area,
and preserved desired edge lengths. For example, one of
the most frequently used network visualization systems,
GraphViz [20], has an efficient layout algorithm based on
the scalable force directed placement (sfdp) algorithm [30]
and can remove label overlaps via the PRoxImity Stress
Model (PRISM) [25]. The output, however, does not opti-
mize the given edge lengths and cannot ensure the cross-
ing constraint; examples in this paper contain 100-1000
crossings.

The popular visualization library d3.js provides a link-
force feature to optimize desired edge lengths, but cannot
ensure the crossing constraint and cannot remove label
overlaps without blowing up the drawing area. Another
excellent visualization toolkit, yEd [54], provides a method
that can draw trees without edge crossings and optimize
compactness. However, none of the methods available in
yED can preserve the desired edge lengths and one can-
not remove label overlap without blowing up the drawing
area. Nguyen and Huang [44] describe an algorithm for
compact tree layouts (note that we use a similar initializa-
tion step), however, their approach is not concerned with
edge lengths and node labels.

Different dimensionality reduction techniques such as
t-SNE [53] and its variants [33,36] are hard to use to visu-
alize tree networks since they do not guarantee crossing-
free and label overlap-free drawing; in one of our experi-
ments, we observed that t-SNE can generate more than 50
crossings in a small tree of 100 nodes. We believe our pa-
per fills this gap in the literature by developing and making
available a scalable method for readable tree layouts.
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Fig. 3: Overview of the readable tree (RT) method. The input is a node-labeled tree with pre-specified edge lengths
from which a multi-level Steiner tree (MLST) is computed. (1) RT initializes with a crossing-free layout, with options
targeting compactness or edge length preservation. (2) A force-directed improvement removes label overlaps, preserves
desired edge lengths, and minimizes the drawing area. (3) Remaining label overlaps are removed through resizing and
position fine tuning. Note that we have two options for prioritizing either compactness or edge length preservation,
matching the corresponding initialization. The tree layout together with the MLST drive a Map-like visualizations with
semantic zooming.

(a) (b)

Fig. 4: Preserving desired edge lengths and maintaining
compactness can be contradictory goals, especially when
maintaining no label overlaps. In this example, all edge
lengths should be the same. A layout algorithm can either
(a) preserve edge lengths at the expense of layout compact-
ness; or (b) optimize compactness at the expense of edge
lengths.

3 Readable Tree Layout Algorithm

Our algorithm has several parts: multi-level Steiner tree
extraction, an initial layout, a force-directed layout im-
provement, a final iteration ensuring no label overlaps,
and a map-like visualization; see Fig. 3. We provide two
options for the initialization, which results in two different
potential outputs. Since we rely on existing techniques for
the first step and the last steps, we briefly discuss them
in Sec. 7. In this section, we discuss the remaining three
steps in detail.

3.1 Initialization

As mentioned in Sec. 1, desired edge length preservation
and compactness are contradictory optimization goals.
Hence, our algorithm can produce two different types of
layouts: one emphasizing the desired edge length preser-
vation and the other emphasizing compactness. The two
initialization steps below influence the end results, these

are discussed in the evaluation section, Sec. 6.

Edge Length Initialization:
The first initialization creates a layout that is crossing-

free and preserves all edge lengths, although it may have
label overlaps. Our crossings-free initialization is sim-
ilar to a prior work [3]. We select a root node and
assign a wedge region (sector) to every child. Each
child is then placed along an angle bisector of the as-
signed wedge, away from its parent by the desired edge
length. We continue this process until the coordinates
for each node have been computed; see pseudocode Alg.
Edge-Length-Initialization. We traverse the nodes using
breadth-first search (BFS) which visits parents before chil-
dren. Since the angular regions are unbounded, the al-
gorithm can preserve all the desired edge lengths exactly.
When we assign wedge regions to child nodes, the angles
are proportional to the size of the subtree rooted from the
child; see Fig. 6. When the input is a balanced tree this
algorithm computes a symmetric layout; see Fig. 5.

(a) (b) (c) (d)

Fig. 5: Illustrating the output layout of
Edge-Length-Initialization w.r.t. different types of
inputs. If the tree is a) balanced then the output is b)
symmetric. If the tree is c) not balanced then the output
is d) not symmetric.

Compact Initialization:
The second initialization also creates a crossing-free lay-

out that is compact, although desired edge lengths might
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Algorithm Edge-Length-Initialization

Input: G = (V,E) // The tree network
1 root ∈ V // root of the tree
2 {. . . , nv, . . . } // Size of subtree rooted from v ∈ V
3 {. . . , DELuv, . . . } // Desired edge length from u to

v ∈ V
Output: X // Crossing-free initial layout for

RT_L
4 Function Initial_Layout(G, root):
5 Xroot ← (0, 0);
6 Wroot ← wedge(center = root,
7 radius = DELroot, angle_range = [0, 2π));
8 for parent node p ∈ BFS(G, root) do
9 {c1, c2 . . . c|C|} ← children(p);

10 angle_ranges = {. . . Aci . . . } ←
partition(angle_range(Wp);nc1 , nc2 , . . . );

11 for ci ∈ C do
12 Wci ← wedge(center = p,
13 radius = DELci , angle_range = Aci);
14 Xci ← midpoint(arc(Wci));
15 return X;

Fig. 6: Left: Illustration of initial radial layout of RT_L.
The numbers indicate the proportion of wedge sectors de-
termined by the size of induced subtrees of child nodes.
Right: Initial layout of the last.FM network.

be distorted. Instead of assigning wedge regions to chil-
dren of a node, we assign the entire fan area to the chil-
dren and place children along the arc of the fan; see pseu-
docode Alg. Compact-Initialization. This results in a
wider spread of nodes, but does not preserve the desired
edge lengths; see Fig. 7 and compare it with Fig. 6.

3.2 Force Directed Improvements

The next step is to use a force directed algorithm to op-
timize our soft constraints. Here we describe all of the
forces used, as well as how we prevent edge crossings at
every step of the force directed improvement.

3.2.1 Maintaining the Crossings-Free Constraint

The force-directed algorithm improves the layout by ap-
plying different forces while ensuring that there are no
edge crossings introduced in any iteration of the algo-
rithm. The algorithm starts with a layout computed in
the previous initialization step. In each iteration of the
algorithm, it computes different forces for each node as
discussed in the next sections. Then for each node v, it
computes the movement Tv applied by the forces. The
algorithm combines the forces linearly, with scaling fac-
tors discussed in Sec. 5. If Tv introduces any edge cross-
ings, then the algorithm does not apply the movement.
Otherwise, it computes the new coordinate of v accord-
ing to Tv. The algorithm continues this step until a max-
imum number of iterations is reached; see pseudocode
Alg. Force-Directed-Improvement.

Fig. 7: Left: Illustration of initial radial layout of RT_C.
The number indicates the proportion of wedge sectors, de-
termined by the size of induced subtrees of child nodes.
Right: Initial layout of the last.FM network by RT_C.

Algorithm Compact-Initialization

Input: G = (V,E) // The tree network
1 root ∈ V // root of the tree
2 {. . . , nv, . . . } // Size of subtree rooted from v ∈ V
3 {. . . , dv, . . . } // Number of hops from the root to

v ∈ V
Output: X // Crossing-free initial layout for

RT_C
4 Function Initial_Layout(G, root):
5 Xroot ← (0, 0);
6 Wroot ← wedge(center = root,
7 radius = 1, angle_range = [0, 2π));
8 for parent node p ∈ BFS(G, root) do
9 {c1, c2 . . . c|C|} ← reorder(children(p),

10 mode = ’centralize heavy subtrees’);
11 angle_ranges = {. . . Aci . . . } ←

partition(angle_range(Wp);nc1 , nc2 , . . . );
12 for ci ∈ C do
13 Wci ← wedge(center = root,
14 radius = dci , angle_range = Aci);
15 Xci ← midpoint(arc(Wci));
16 return X;

3.2.2 Label Overlap Force

We use an elliptical force by modifying the traditional col-
lision force to help remove the label overlaps. Since labels
are typically wider than they are tall, a circular collision
region potentially wastes space above and below the la-
bels. We build an elliptical force out of a circular collision
force by stretching the y-coordinate by a constant factor
b (e.g., by default we use b = 3) before a circular collision
force is applied, and restoring the coordinates after the
force is applied. The velocity computed by the collision
force is processed in a similar manner, with a reciprocal
scaling factor. Formally, let Xv denote the coordinate of
node v. We specify a different collision radius depend-
ing on label size, denoted by rv, for every node v. Note
that the collision radius depends on both the font size of
a label and the number of characters in the label. A cir-
cular collision force first calculates a movement T ′

v, and
then the elliptical movement Tv is computed by stretching
the x-coordinate and compressing the y-coordinate, e.g.,
Tv.x = T ′

v.x×b, Tv.y = T ′
v/y. Then we update the coordinate

Xv by adding Tv.

3.2.3 Edge Length Force

The edge length force is designed to maintain the desired
edge lengths. For every edge, we apply either a repulsive
force fe

r = K/d · Id<le(d) (when the edge is compressed)
or an attractive force fe

a = Kd · Id>le(d) (when the edge
is stretched), determined by the indicator function. The
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Algorithm Force-Directed-Improvement

Input: G = (V,E) // The tree network
1 X // Crossing-free initial layout
2 niter // Number of iterations

Output: X // Improved crossing-free layout
3 Function Force_Directed_Improvement(G,X):
4 for i = 1, 2, . . . , niter do
5 for each node u ∈ V do

// Label overlap force
6 for each node v ∈ collision_region(u) do
7 Tv ← ∆Tv + fc(Xv, Xu) ;

// Edge length force
8 for each neighbor v of u do
9 if length(Xu, Xv) > luv then

10 Tv ← Tv + fa(Xu, Xv);
11 else
12 Tv ← Tv − fr(Xu, Xv);

// Distribution force
13 for each node v of u do
14 Tv ← Tv − fd(Xu, Xv) ;

// Node-edge force
15 for each neighbor v of u do
16 Tv ← Tv − fnode−edge(Xu, Xv) ;

// Maintaining no edge crossings
17 if Tv does not introduce edge-crossing

then
18 Xv ← Xv + Tv;

19 return X;

force is proportional/reciprocal to distance d.

3.2.4 Distribution Force

We define a global node distribution force as a repul-
sive force between every pair of nodes. We set the re-
pulsive force between two nodes inversely proportional
to the squared distance in the current layout; simi-
lar to an electrical charge between nodes: |fd(u, v)| =
s(u, v)/||Xu − Xv||

2, where s(u, v) denotes the strength of
the force between nodes and depends on the longest de-
sired edge length adjacent to u and v. We set s(u, v) =
maxw∈V,(u,w)∈E {luw} ∗maxw∈V,(v,w)∈E {lvw}.

3.2.5 Node-Edge Force

Finally, we define a force between nodes and edges. This
improves readability by reducing the number of instances
where labels are placed over edges. This force is inversely
proportional to the distance between the node and edge,
acting orthogonally from the edge (evaluating to zero if the
node does not project onto the edge segment or is too far
from the edge): |fnode−edge(v, e)| = c/d(v, e), where c is a
constant across all pairs and d(v, e) denotes the Euclidean
distance between node v and edge e.

3.3 Final Iteration

The final iteration is needed to ensure any remaining over-
laps are removed. It is possible that this step will have no
work to do, but this check is necessary in order to enforce
our hard constraint (C2).

In this step, we go over all pairs of overlapping nodes
and move them until the overlap is repaired. To do this we
check whether we can move one of the overlapping nodes
so that the distance between two nodes increases without
introducing any crossing and label overlap. Specifically,
for each node v of the pair of nodes, we consider a square
bounding box that has a small area. We denote the set of
nodes in that bounding box by V ′. We then sample some

random points from that bounding box. For each of these
sample points, we check whether we have an overlap-free
and crossing-free drawing. If we find such a point, then we
move v to that point and consider the next label overlap;
see pseudocode Alg. Final-Iteration.

Note that in some cases this step is not needed at all, as
all overlaps are removed during the force-directed layout
improvement step. In other cases (e.g., larger input in-
stances with denser subtrees) a handful of final iteration
steps are needed to remove remaining overlaps.

Algorithm Final-Iteration

Input: steps // Sample size
1 size // Width of sample area

Output: X // A crossing-free layout with
reduced label overlaps

2 Function Final_Overlap_Removal(steps, size):
3 for u, v ∈ V × V s.t. u and v overlaps do
4 for k = 1, 2, · · · , steps do
5 r = random(0, 1);
6 ∆Xu = (r ∗ size)− (size/2);
7 if ∆Xu does not introduce crossing and

new overlap then
8 Xu ← Xu +∆Xu

9 if u and v overlaps then
10 ∆Xv = (r ∗ size)− (size/2);
11 if ∆Xu does not introduce crossing

and new overlap then
12 Xv ← Xv +∆Xv

13 return X;

4 Parallel Readable Tree Drawing

Here we describe the parallel version of the algorithm
(PRT), which again maintains the hard constraints, but
now also adds scalability to handle larger trees. The pre-
vious algorithm, RT, generates good-quality layouts that
satisfy all the hard constraints and optimize the soft con-
straints well. Additionally, RT does not require any spe-
cialized equipment and can be run on any computer. How-
ever, it is sequential in nature and does not work well for
networks with more than about 5000 nodes. The paral-
lel tree version takes advantage of opportunities to speed
up some of the necessary computations. As before, there
are two variants: Edge Length Initialized Parallel Readable
Tree (PRT_L) algorithm and Compactness Initialized Par-
allel Readable Tree (PRT_C) algorithm that emphasize the
preservation of desired edge lengths and compactness.

Note that force calculations in the PRT algorithm has
an inherent dependence on neighbors and non-neighbors
(i.e., collision/edge forces for a node depend on the coor-
dinates of other nodes). If such forces are computed in
different threads, they cannot be seamlessly integrated.
Instead of running the entire algorithm in parallel, we
use the mini-batch approach, similar to BatchLayout [48].
The mini-batch technique is commonly used for parallel
Stochastic Gradient Descent (SGD) training, where one
gradient update has a dependency on other gradient up-
dates [27].

The PRT algorithm follows the same workflow shown
in Fig. 3: a crossings-free initial layout, followed by cus-
tomized force-directed improvement, and a final iteration
that enforces the overlaps constraint.

Initialization: We create an initial layout of
the tree with no edge crossings using parallelized
versions of Alg. Edge-Length-Initialization and
Alg. Compact-Initialization. The most time-consuming
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Algorithm PRT-Center-Node

Input: G = (V,E) // The tree network
Output: nc // center node id nc

1 Function PRT_Center_Node(G):
2 Cu ← 0.0, ∀u ∈ V
3 for each node u ∈ V in parallel do
4 D ←

∑

v∈V
dist(u, v)

5 Cu ←
|V |
D

6 nc ← arg max
u

Cu

7 return nc

part here is determining the center node that serves as
root. The time complexity of this step is O(n2), where n
is the number of vertices in G. Thus, we fully parallelize
Alg. PRT-Center-Node, where normalized closeness cen-
trality [6] is computed for each vertex. Then, we take the
node with the maximum score as the root. Since G is a
tree, we can apply BFS to compute the distance between
vertices u and v as shown in line 3 of Alg. PRT-Center-Node.

We place the center node at the origin of the Cartesian
coordinate system and iteratively traverse the tree in a BFS
fashion, placing nodes so that they do not introduce edge-
crossings. The runtime of this part of the algorithm is
O(n). Thus, finding the center node is the slowest step of
Initialization, and that has been effectively parallelized so
that it has minimal effect on the overall runtime.

Algorithm PRT-Force-Directed-Improvement

Input: G = (V,E) // The tree network
1 X // Crossing-free initial layout
2 batch // No. of vertex batches form V
3 samples // Sample size
4 niter // Number of iterations

Output: X // Improved crossing-free layout
5 Function PRT_Force_Directed_Improvement(G,X):
6 for i = 1, 2, . . . , niter do
7 T ← {0}|V |×2

8 Partition V into B = ⌈ |V |
batch

⌉ batches

9 for each batch B ∈ V do
10 for each node u ∈ B in parallel do

// Label overlap force
11 for each node v ∈ collision_region(u)

do
12 Tv ← ∆Tv + fc(Xv, Xu)

// Edge length force
13 for each neighbor v of u do
14 if length(Xu, Xv) > luv then
15 Tu ← Tu + fa(Xu, Xv)
16 else
17 Tu ← Tu − fr(Xu, Xv)

// Distribution force
18 for a random node w upto samples

times do
19 Tu ← Tu − fd(Xu, Xw)

// Node-edge force
20 for each neighbor v of u do
21 Tu ← Tu − fnode−edge(Xu, Xv)

// Maintaining no edge crossings
22 if Tu does not introduce edge-crossing

then
23 Xu ← Xu + Tu

24 return X;

Parallel Force-directed Improvement: We describe
the parallel force-directed improvement of layout in
Alg. PRT-Force-Directed-Improvement. In each iteration of
the algorithm, we select a batch B from the set of nodes
V and compute attractive and repulsive forces in parallel
similar to the BatchLayout method [48]. We apply label
overlap forces, edge length forces, and node-edge forces
to each node and edge of B in a similar way described in
Sec. 3.2. To compute repulsive distribution forces with
respect to the non-neighboring nodes, we select sample
nodes at random, to speed up the process by approximate
repulsive force computation [47]. For each random node
w, we compute repulsive force fd(Xu, Xw) and update the
temporary coordinates Tu. Note that this force computa-
tion for nodes within the same batch is independent and
thus we can run it in parallel. Before updating the coor-
dinates of a batch, we check whether it introduces edge-
crossings (line 22). Even though an increased number of
batches exposes more parallelism, the quality of the lay-
out may be negatively impacted, as observed in stochastic
gradient descent (SGD) [47]. We found that a batch size
of 128 or 256 gives a good balance between speed and
quality [48]. Since the batch size is small compared to the
size of the tree, we perform sequential updates in line 23.
However, we perform the edge-crossing check in parallel.

Parallel Final Iteration: This step checks for
any remaining label overlaps and repairs them
in parallel. The underlying edge crossings check
method is similar to the parallel force computation in
Alg. PRT-Force-Directed-Improvement. Other than the
parallel edge crossings check, the algorithm is similar to
Alg. Final-Iteration. For each overlapping pair of nodes,
we sample some random points from a square bounding
box that has a small area. For each of these sample
points, we check whether we have an overlap-free and
crossing-free drawing. When we find such a point, we
move the node there.

5 Algorithm Parameters

Like many force-directed algorithms, our RT and PRT
methods depend on several parameters. We set some de-
fault parameter values based on prior work. For exam-
ple, we select effective approximation algorithms to com-
pute multi-level Steiner trees and the number of levels
in the trees proportional to the size of the underlying
data based on prior work [1]. We set the batch size of
Alg. PRT-Force-Directed-Improvement equal to 128-256 as
in BatchLayout [48]. Repulsive force parameters are based
on those in Force2Vec [47].

We performed a small-scale parameter search for most
of the remaining parameters. To determine good values for
these parameters we extracted samples with 2,000 nodes
from each of our datasets and analyzed the effect of pa-
rameter modification. We do this by setting default values
from pilot experiments and modifying one parameter at a
time while fixing the remaining ones.

5.1 Different Forces

In Alg. Force-Directed-Improvement (lines 6-16) and
Alg. PRT-Force-Directed-Improvement (lines 11-21), we
combine several different forces acting on each node of
the input network. Specifically, there are four types of
forces: the label overlap force Fc to remove label over-
laps, the edge length force Fl to achieve the desired edge
lengths, the distribution force Fd to distribute the nodes
in the drawing area uniformly, and the node-edge force Fne

to keep adjacent nodes closer. Each of these forces has a
strength, or scaling factor, that indicates its impact on the
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overall force. We denote the strengths of the label overlap
force, edge length force, distribution force, and node-edge
force by Sc, Sl, Sd and Sne, respectively. The range of the
strength values is [0−1]. Then the total force F (u) applied
on a node u is calculated by the following equation:

F (u) = Sc · Fc(u) + Sl · Fl(u) + Sd · Fd(u) + Sne · Fne(u)

Edge Length Force: The edge length force, Fl, plays a
very important role in all RT and PRT variants as it cor-
responds to one of the two optimization goals (O1). With
this in mind, we use the highest strength for this force:
Sl = 1.

Label Overlap Force: The initialization based on edge
length preservation consistently results in more overlaps
than the compactness-based one. Hence to determine an
appropriate strength for the label overlap force, we use
Alg. Edge-Length-Initialization in the parameter search.
Fig. 8a shows the percentage of label overlaps of all net-
works, with respect to the initial overlaps, after 50 itera-
tions of Alg. Force-Directed-Improvement. As we increase
the strength of this force from 0 to 1, overlaps decrease,
while edge length preservation decreases, as illustrated
in Fig. 8b. To balance this, we set the strength of label
overlap force to 0.16, leaving around 10% overlaps (which
are removed in the final step), while providing good edge
length preservation.

(a) (b)

Fig. 8: Illustrating the impact of the label overlap force
strength. (a) shows the percentage of label overlaps with
respect to the label overlap force. (b) shows the edge length
preservation with respect to the label overlap force.

We also explore the aspect ratio of the ellipse in the label
overlap force. The aspect ratio, or the parameter b defined
in Sec. 3.2.2), denotes a wide elliptical collision force when
b > 1 and a tall one when 0 < b < 1. As shown in Fig. 9, the
edge lengths can be preserved with a wide range of ellipse
aspect ratios with the best compaction achieved when the
aspect ratio is set to 5.

(a) (b)

Fig. 9: Impact of label overlap force directions (ellipse as-
pect ratio) on the two quality metrics: Edge length (a)
and compactness (b). Diamonds mark the best parameter
setup for the specific network.

Distribution and Node-Edge Forces: The distribution
force and the node-edge force play a larger role in the com-
pactness initialization, and we experimentally determine
suitable strengths with Alg. Compact-Initialization. As
shown in Fig. 10, smaller force strength leads to better
edge length preservation and better compactness for all
datasets, and so we set Sd = 0.003

(a) (b)

Fig. 10: Impact of distribution force on the two quality
metrics: Edge length (a) and compactness (b). Diamonds
mark the best parameter setup for the specific network.

We also explore the strength of node-edge force de-
fined in Sec. 3.2.5. As shown in Fig. 11, both edge
lengths preservation and compactness are better with a
weak node-edge force. Setting node-edge force strength
Sne = 0.1 seems to provide a reasonable balance between
the two metrics.

(a) (b)

Fig. 11: Impact of node-edge force on the two quality met-
rics: Edge length (a) and compactness (b). Diamonds
mark the best parameter setup for the specific network.

5.2 Number of Iterations

The force-directed improvement step of the algorithm and
the final iteration both use iterative refinements; the num-
ber of iterations of each of these steps impacts the quality
of the layouts and the runtime of the overall algorithm.

Number of Force-directed Iterations: The force-
directed algorithm converges relatively quickly when ini-
tialized using Alg. Compact-Initialization. On the other
hand, Alg. Edge-Length-Initialization needs more force-
directed iterations to remove all label overlaps. Hence we
analyze the impact of the number of iterations when ini-
tializing with Alg. Edge-Length-Initialization. As illus-
trated in Fig. 12a, early iterations remove many overlaps,
with diminishing returns after 40-50 iterations. On the
other hand, the running time increases with the number
of iterations as shown in Fig. 12b. Hence, we set the num-
ber of iterations equal to 50.

Final Iteration: Since the force-directed improvement
step terminates after 50 iterations, it may not have re-
moved all overlaps. The final iteration step enforces the
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(a) (b)

Fig. 12: Illustrating the impact of the number of itera-
tions on overlaps and time. (a) shows the percentage of
overlaps by iterations and (b) shows the time by the num-
ber of iterations. We choose a value to balance the two
considerations.

no-overlaps constraint (C2) by removing any remaining
overlaps. Its performance depends on two parameters:
the number of samples and the width of the square sam-
ple area. As illustrated in Fig. 13a, the running time in-
creases as the number of samples increases. We can re-
duce the number of samples by tuning the width of the
sample area. We denote the width of the sample area by
the percentage of the minimal square box that contains
the drawing. As illustrated in Fig. 13b, as the width of the
sample area increases, the number of needed samples is
reduced. Hence, we set the sample width to 0.01 − 0.02%
of the total area and the number of samples to 20.

(a) (b)

Fig. 13: Illustrating the impact of the number of samples
and sample area width of the final overlap removal algo-
rithm. (a) shows the running time by the number of sam-
ples. (b) shows the width of the sample area for the num-
ber of samples needed. We choose a value that allows for
fewer samples to reduce the runtime.

6 Evaluation

In this section, we evaluate different algorithms
using four real-world datasets. We denote the
RT algorithm by RT_L and RT_C when initial-
ized by Alg. Edge-Length-Initialization and
Alg. Compact-Initialization, respectively. Similarly,
we denote the PRT algorithm by PRT_L and PRT_C when
initialized by Alg. Edge-Length-Initialization and Alg.
Compact-Initialization, respectively.

Prior Methods: As there are no prior algorithms that
guarantee the two constraints (no crossings, no overlaps),
while optimizing desired edge lengths and compactness,
it can be somewhat unfair to compare against prior ap-
proaches. Nevertheless, with some careful modifications
(and clarifications) we can use existing tree/network lay-
out algorithms in a comparison. We chose two such algo-
rithms as described below.

GraphViz [20] can efficiently lay out a given tree or net-
work with sfdp [30], label the nodes and then remove over-
laps via the PRoxImity Stress Model (PRISM) [25]. Note
that the output does not optimize given edge lengths and
does not guarantee that trees are drawn in a crossings-
free manner. We denote this by sfdp+p.

The yED [54] system provides several methods that can
draw trees without edge crossings and optimize compact-
ness. Note that yED does not optimize edge lengths and
the only way to remove label overlap is to scale the draw-
ing area. We use the Circular Layout (CIR) in yED as it
produces the most compact layouts.

To provide a fair comparison, we consider two settings
for the evaluation: one in which we have different desired
edge lengths and the other one considers uniform edge
lengths (to make it possible to compare with sfdp+p and
CIR).

Datasets: We extract seven networks from four datasets.
Last.FM Network [24], extracted from the last.fm Inter-

net radio station with 2588 nodes and 28221 edges. The
nodes are popular musical artists with weights corre-
sponding to the number of listeners. Edges are placed
between similar artists, based on listening habits.

Google Topics Network [13] has as nodes research
topics from Google Scholar’s profiles, with weights corre-
sponding to the number of people working on them. Edges
are placed between pairs of topics that co-occur in pro-
files. We work with two versions of this network: one with
34, 741 nodes and 646, 565 edges, and the other a smaller
subset with 5001 nodes.

Tree of Life1, extracted from the tree of life web project.
This dataset contains a node for every species, with an
edge between two nodes representing the phylogenetic
connection between the two. We work with two versions of
this network: one with 35, 960 nodes, and the other with
2, 934 nodes.

Math Genealogy Network2, every node represents a
mathematician with edges capturing (advisor, advisee) re-
lationship. We work with two versions of this network:
one with 257, 501 nodes, and the other with 3, 016 nodes.

Dataset Processing: We compute the multi-level Steiner
tree as described in Sec. 7. The details about the ter-
minal selection method, number of levels, and desired
edge lengths are provided in that section. We assign edge
lengths, increasing linearly as we go from the lowest level
to the top. Note that we can equivalently consider such
a multi-level tree as a single-level tree with different edge
lengths. Specifically, a multi-level tree has a hierarchical
structure: all the nodes and edges of a particular level
are also present in the lower levels. Hence, for each edge,
we consider the highest level where the edge is present.
We assign the desired edge length of this edge to the edge
length of that level.

With this in mind, we compare the performance of the
four variants of our algorithm using a single-level tree,
where all edges are present and have different desired edge
lengths.

Since the sfdp+p and CIR methods cannot handle differ-
ent edge lengths when comparing them to our algorithm,
we consider the setting where the trees are given as above,
but the edge lengths are uniform.

Quantitative Evaluation: We measure the optimization
goals: desired edge length preservation and compactness,
as well as the runtime.

1http://tolweb.org/tree/
2https://genealogy.math.ndsu.nodak.edu/

9



Network Desired Edge Length ↓ Compactness ↑ Runtime (sec) ↓ Crossings ↓
Name |V | Edge Length CIR sfdp+p RT_L RT_C PRT_L PRT_C CIR sfdp+p RT_L RT_C PRT_L PRT_C CIR sfdp+p RT_L RT_C PRT_L PRT_L∗ PRT_C PRT_C∗ sfdp+p others

Last.FM 2,588
uniform 2.06 0.56 0.18 0.45 0.19 0.42 3e-7 0.04 0.01 0.13 0.02 0.11 5 8 926 309 54 15 26 7 147 0
linear - - 0.13 0.45 0.15 0.43 - - 0.01 0.07 0.02 0.05 - - 1635 233 55 15 31 9 - 0

Topics 5,001
uniform 1.93 0.72 0.27 0.38 0.28 0.36 7e-6 0.03 0.01 0.05 0.02 0.04 44 22 3997 1000 175 32 142 23 203 0
linear - - 0.14 0.30 0.16 0.28 - - 0.01 0.05 0.01 0.04 - - 8456 1096 178 32 147 25 - 0

Tree of Life 2,934
uniform 1.24 0.53 0.43 0.49 0.42 0.47 6e-6 0.09 0.01 0.09 0.02 0.08 7 7 3157 333 62 36 43 21 134 0
linear - - 0.45 0.47 0.46 0.47 - - 0.01 0.10 0.01 0.07 - - 1178 698 61 55 49 26 - 0

Math Genealogy 3,016
uniform 3.15 0.78 0.21 0.40 0.23 0.34 3e-6 0.13 0.02 0.02 0.02 0.02 5 6 2067 774 57 14 46 11 1508 0
linear - - 0.29 0.34 0.31 0.36 - - 0.02 0.03 0.02 0.03 - - 1340 563 64 14 51 12 - 0

Topics (large) 34,758 uniform 3.88 0.76 - - 0.84 0.91 3e-6 0.005 - - 0.001 0.004 1259 258 - - 9346 2925 8375 2658 7713 0
Tree of Life (large) 35,960 uniform 2.17 0.83 - - 1.29 1.36 3e-6 0.006 - - 0.001 0.006 792 455 - - 8780 2184 7194 1856 12088 0
Genealogy (large) 100,347 uniform - 0.88 - - 0.83 0.87 - 0.007 - - 0.002 0.006 - 2041 - - - 8689 - 7675 27478 0

Table 1: Quantitative algorithmic comparison using desired edge length preservation, compactness, and runtime for
different algorithms. The ↓ next to a criterion indicates lower scores are better and ↑ indices that higher scores are
better. PRT_L∗ and PRT_C∗ refer to the experiments run on the Skylake server, while PRT_L and PRT_C refer to the
experiments run on the laptop.

Desired Edge Length (DEL): evaluates the normalized de-
sired edge lengths in each layer. Given the desired edge
lengths {lij : (i, j) ∈ E}, defined in Sec. 7, and coordinates
of the nodes X in the computed layout, we evaluate DEL
with the following formula:

DEL =

√

√

√

√

1

|E|

∑

(i,j)∈E

(

||Xi −Xj || − lij
lij

)2

(1)

This measures the root mean square of the relative error,
producing a positive number, with 0 corresponding to per-
fect preservation.

Compactness Measure (CM): measures the ratio between
the total areas of labels (the minimum possible area
needed to draw all labels without overlaps) and the area
of the actual drawing (measured by the area of the small-
est bounding rectangle). CM scores are in the range [0, 1],
where 1 corresponds to perfect area utilization, this mea-
sure is the fourth found in the work by McGuffin and
Robert [40].

CM =

∑

v∈V

label_area(v)

(Xmax,0 −Xmin,0)(Xmax,1 −Xmin,1)
(2)

Experimental Environment: We conducted all but one
experiment on a laptop, configured with MacOS, 2.3 GHz
Dual-Core Intel Core i5, 8GB RAM, and 4 logical cores.
The server is configured with Linux OS, Intel(R) Xeon(R)
Platinum 8160 CPU @ 2.10GHz, 256GB RAM, 2 sockets,
and 24 cores per socket. The remaining experiment used
a Skylake server (indicated by PRT_L∗ and PRT_C∗).

Results: We evaluate the performance of all algorithms on
seven trees extracted from the four datasets above. Our
two RT variants (algorithms RT_L and RT_C) are applied
only to the 4 small trees. The two PRT variants, sfdp+p,
and CIR are applied to all 7 trees. Note that for each of
the 4 small trees we consider two different desired edge
lengths: the linear edge setting used to drive the interac-
tive, zoomable visualization, and the uniform edge setting
which makes it possible to compare our algorithms to the
prior ones (sfdp+p and CIR). We show all Last.fm trees lay-
outs (with the uniform edge length setting) in Fig. 2. We
provide additional layouts in the supplementary materi-
als. These figures highlight some significant differences
which stand out visually, which we discuss in Sec. 8.

We provide all quantitative data in Table 1. From these
results, we can see that in the linear edge length set-
ting RT_L does best in all instances. As expected, PRT_L
provides similar scores. When looking at the compact-
ness measure, RT_C performs best and, again, the paral-
lel variant PRT_C performs nearly as well. Blank entries

in the Desired Edge Length or Compactness scores indi-
cate that the experiment was not performed for this setting
(e.g., the linear setting for sfp+p and CIR) or the compu-
tation did not terminate by the maximum time limit of 8
hours (e.g., CIR with the large Math Genealogy tree).

Overall, the RT variants provide slightly better results
than the PRT variants, both in edge length preservation
and in compactness. We believe this due to RT utilizing
the fine-tuned force-directed algorithm in d3.js, while the
PRT force-directed algorithm is our own, and not as well
tuned.

The PRT variants are usually more than an order of
magnitude faster than the RT variants. This is due to
parallelizing the underlying computations and implemen-
tation in C++, which is faster than d3.js. Note that we re-
port four parallel runtimes: PRT_L, PRT_C (running on a
laptop), and PRT_L∗, PRT_C∗ (running on a server). Blank
entries in the runtime columns indicate that the algo-
rithm did not terminate by the maximum time limit of 8
hours.

Recall that the uniform edge length setting for the small
networks makes it possible to compare the prior algo-
rithms (sfdp+p and CIR) against PR and PRT. Here ei-
ther RT_L or PRT_L performs best in desired edge length
preservation and the scores of the two algorithms are sim-
ilar. On the other hand, RT_C and PRT_C performs well
in compactness, although sfdp+p outperforms our algo-
rithms in some instances (at the expense of edge cross-
ings). The CIR method is the fastest in most of the in-
stances (at the expense of both compactness and edge
lengths), and the running times of sfdp+p and PRT_C∗ are
comparable.

For the 3 large networks, we only consider the uniform
edge setting. The desired edge length scores of sfdp+p and
PRT_L are comparable, with sfdp+p outperforming PRT in
two of the three cases. Similarly, sfdp+p and PRT_C are
the best in compactness. sfdp+p is the clear winner in
speed, at the expense of thousands of edge crossings; see
last two columns of Table 1.

7 Multi-Level Interactive Visualization

The focus of this paper is the algorithmic framework for
creating readable tree layouts. However, on a desktop, lap-
top, or phone screen, even viewing a large tree with thou-
sands of labeled nodes, requires more than a good layout.

With this in mind, we process all trees and their lay-
outs further, to provide an interactive visualization envi-
ronment. The idea is to create a hierarchy of trees, starting
with the input and extracting progressively smaller trees
that capture more and more abstract views, recalling in-
teractive geographic maps. Important nodes (like large
cities) and edges (like highways) are present in all repre-
sentation levels. Less important nodes (like smaller towns)
and edges (like smaller roads) appear when zooming in.
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We create such a hierarchy using multi-level Steiner trees
and combine the results with the readable tree layout and
an interactive map-like environment. Note that this ap-
proach is applicable to arbitrary networks and not just
trees.

7.1 Multi-Level Steiner Trees

A Steiner tree minimizes the total weight of the subtree
spanning a given subset of nodes (called the terminals).
The multi-level Steiner tree problem is a generalization of
the Steiner tree problem where the objective is to minimize
the sum of the edge weights at all levels. As both problems
are NP-hard, we use approximation algorithms that have
been shown to work well in practice [1].

Formally, given a node-weighted and edge-weighted net-
work G = (V,E), we want to visualize G with the aid of
a hierarchy of progressively larger trees T1 = (V1, E1) ⊂
T2 = (V2, E2) ⊂ · · · ⊂ Tn = (Vn, En) ⊆ G, such that
V1 ⊂ V2 ⊂ · · · ⊂ Vn = V and E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ E.
We use multi-level Steiner trees in order to make the hier-
archy representative of the underlying network, based on
a node filtration V1 ⊂ V2 ⊂ · · · ⊂ Vn = V with the most
important nodes (highest weight) in V1, the next most im-
portant nodes added to form V2, and so on. A solution to
the multi-level Steiner tree problem then creates the set
of progressively larger trees T1 = (V1, E1) ⊂ T2 = (V2, E2) ⊂
· · · ⊂ Tn = (Vn, En) ⊆ G using the most important (highest
weight) edges.

7.2 Dataset Processing

Many real-life networks come with well-defined notions
of the importance of nodes and edges. Node importance
can be determined by the number of listeners for a spe-
cific band in the Last.FM network, or by the number of
researchers of a specific topic in the Google Topics net-
work. In the absence of such node information, impor-
tance can be computed based on structural properties of
the network, such as degree centrality, eigenvector cen-
trality, etc [8]. Similarly, edge importance can be given
(e.g., number of listeners of a pair of bands in the Last.FM
network, number of researchers listing a pair of topics in
the Google Topics network), or can be computed based on
structural properties (e.g., betweenness centrality, PageR-
ank).

Node Weights: The Last.FM network and the topics net-
work have node weights (number of listeners and number
of researchers, respectively) and we use the heavy nodes in
the higher levels and lighter nodes in the lower levels. For
the tree of life and math genealogy networks, we set the
node weight equal to the node degree (degree centrality).

We select the terminals of the multi-level Steiner tree
instance according to the node weights: higher-level ter-
minal sets contain heavy nodes since the larger the weight
is the more important the node is. The size of the ter-
minal sets grows linearly. If we have n nodes and h lev-
els then the top terminal set contains the most important
n/h nodes. The next terminal set contains all the nodes
of the top terminal set, together with the next n/h impor-
tant nodes. We continue the process until the bottom level
when all nodes are present.

Edge Weights: Edge weights in the Last.FM network are
given by the number of listeners of the corresponding pair
of bands. Similarly, edge weights in the Google Topics
network are the number of researchers listing the corre-
sponding pair of topics. Edge lengths in the Tree of Life
network are given by the phylogenetic distance between
the two endpoints. The math genealogy network is un-
weighted, and we use uniform edge lengths.

Desired Edge Length Settings: The edge weights de-
scribed above can be used for desired edge lengths by
computing the reciprocal of the original edge weights (con-
verting similarities into dissimilarities). We have used this
setting in experimenting with our algorithms but this set-
ting is not what we report in the paper as it does not lend
itself to semantic zooming and prior methods cannot han-
dle desired edge lengths.

The simplest desired edge length setting used in the pa-
per is the uniform edge length setting. We need such a
setting to be able to compare the performance of our al-
gorithms against those of prior methods (sfdp+p and CIR)
that do not take edge lengths into account.

We can use the given edge weights and combine them
with the multi-level Steiner tree solution to create edge
lengths that work well with semantic zooming. This is
the linear edge setting used in some of the experiments
discussed in the paper. While in the uniform setting, edge
lengths are set to 200 in the linear setting the edge lengths
depend on the level on which the edge first appears in
the multi-level Steiner tree (which in turn depends on the
underlying edge weights). The desired edge length on the
lowest level is lmin = 200 and this value is increased by
ladd each time we got to a higher level. In our examples,
ladd varies depending on the number of levels. We use
a different number of levels for different networks, with
more levels for larger networks. For the smallest dataset,
the Last.FM network, we have only 8 levels while for the
largest dataset, the math genealogy tree, there are more
than 100 levels.

7.3 Map-like Visualization

From the tree layout, we generate a map using the GMap
system [23]. The map generation method depends on a
clustering step, and by default we use the MapSets [34]
clustering technique. Our system uses OpenLayers [52]
with zooming and panning provided via buttons, mouse
scrolling, or through the mini-map.When viewing level i,
all nodes at this or higher levels are labeled and there are
no label overlaps. Edge widths are determined based on
their levels: higher-level edges are thicker, and lower-level
edges are thinner. A search bar allows for direct queries
with auto-complete suggestions and clicking on a search
result recenters the map on the selected node. By default,
we show labels with at most 16 characters (truncating
longer ones) but the full label is shown on a mouse-over
event. Node attributes and edge attributes are provided
when clicking on the node/edge. An example of this visu-
alization can be seen in Fig. 1.

8 Discussion

Comparing our algorithms shows that they do well in their
respective optimization goals. Table 1 confirms that the
RT_L and PRT_L algorithms outperform the other two in
desired edge length preservation, RT_C and PRT_C al-
gorithms outperform the other two in compactness, and
PRT_C∗ is the fastest of the variants.

Comparing the new algorithms to the two prior ones
(only possible when using uniform edge lengths) also seem
encouraging, even though sfdp+p introduces crossings in
all layouts and CIR has compactness scores that are or-
ders of magnitude worse:

• RT_L and PRT_L outperform sfdp+p w.r.t. edge
lengths on all 4 small networks

• RT_C and PRT_C outperform sfdp+p w.r.t. compact-
ness on 2/4 small networks, and they are almost
equal in another dataset
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• RT_L and PRT_L outperform CIR w.r.t. edge lengths
on all 4 small networks

• RT_C and PRT_C outperform CIR w.r.t. compactness
on all 4 small networks

• PRT_L∗ and PRT_C∗ are slower than both sfdp+p and
CIR on the large networks, but not by much.

8.1 Qualitative Analysis

Here we take a closer look at the results returned by the
new algorithms and the two prior ones. Fig. 2 shows the
results of last.FM networks. As the name implies, the cir-
cular layout (CIR) wraps branches of the tree into spiraling
circles to form a compact layout. Edges close to the center
of the tree are stretched in order to provide large areas for
the subtrees, resulting in poor edge length preservation.
Since leaves are drawn in small regions, the overall layout
must be scaled a lot in order to show the labels without
overlaps, yielding poor compactness. The sfdp+p results
are consistently good in compactness, at the expense of
many crossings. Our new methods are better at captur-
ing the global structure.

(a) RT_L (b) RT_C

Fig. 14: Analysis of failure modes in desired edge length
preservation. Top left: In the layout of the topic network
computed by RT_L, most edges are drawn with their de-
sired edge lengths. Bottom left: A histogram of relative
errors in desired edge length preservation, colored in the
same way as the layout. Right: The same analysis on
the RT_C algorithm, showing RT_C stretches (blue) more
edges to improve compactness.

Next, we look more closely at the layouts obtained from
RT_L and RT_C. First, we focus on desired edge length
preservation. Fig. 14 colors individual edges in the layout
by their relative error. Recall that we use the relative error
to measure the desired length preservation in Eqn. 1. For
each edge (u, v) ∈ E, it measures the discrepancy between
the actual edge length ||Xu −Xv|| in the drawing and the
given desired edge length luv: relative_error(u,v) = (||Xu −
Xv|| − luv)/luv.

With RT_L, we observed from the left layout and his-
togram in Fig. 14 that most edges are drawn with their
desired edge lengths due to its edge-length guided initial-
ization. We can see a few stretched or compressed edges
(colored in blue and red in Fig. 14), but since most of
the other edges are drawn near perfectly in terms of edge
length, the drawing has a low variation in relative error.
The errors are larger in RT_C, which seems to be due to
the way label overlaps are handled: in dense regions, e.g.
around high-degree nodes, the edges are more likely to be
stretched, whereas on the periphery the edge lengths are
better preserved.

Next, we look at the compactness of the two layouts.
Consider the difference between the two algorithms in
their rendering of the region around the ‘Artificial Intel-
ligence’ node in the maps, as shown in Fig. 15. From
the layout overview in Fig. 15, we can already see that
RT_L uses space less efficiently, it has more empty, white
space. The ‘Artificial Intelligence’ node, highlighted in blue
in Fig. 15, is close to multiple heavy subtrees such as
those from the nodes ‘natural language processing’, ‘ma-
chine learning’, and ‘computer vision’. RT_C distributes
the heavy trees evenly, due to its initial layout. RT_L, on
the other hand, places most heavy branches on the left
side, resulting in less efficient use of the drawing area.

Fig. 15: Analysis of failure modes in layout compact-
ness. Left: The topic network layout returned by RT_L
has more unused space and fails to distribute heavy sub-
trees around the ‘Artificial Intelligence’ node (pointed and
circled in blue) evenly. Right: RT_C generates a more
balanced layout and is able to distribute subtrees more
evenly.

8.2 Scalability

We experimented further with the PRT algorithm to eval-
uate how it behaves with a larger number of cores and
with a larger number of nodes, shown in Fig. 16(a) and
Fig. 16(b), respectively. In Fig. 16(a), we show strong
scaling results for the Tree of Life and Math Genealogy
datasets. For both datasets, we observe that the run-
time decreases almost linearly as the number of cores in-
creases. In Fig. 16(b), we report the per-iteration runtime
on the Math Genealogy tree when increasing the size of
the trees. We observe that the runtime increases almost
linearly with the size of the tree. This provides support
for the scalability of the PRT algorithm. It is notable that
while PRT does not outperform RT, PRT’s numbers are
very close to the best values; see Table 1. For example, we
can see that in the linear edge length setting the desired
edge length measure for PRT_L is 0.15 and RT_L is 0.13.

Fig. 16: (a) Strong scaling results of Tree of Life (TOL)
dataset (35,960 nodes) and Math Genealogy (MG) dataset
(52,257 nodes). (b) Network scaling results for different
size of MG trees using 48 cores. Only per-iteration run-
time is reported.
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In general, most PRT_C and RT_C values are within a few
percentage points.
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Fig. 17: Runtime distribution of different steps of the par-
allel PRT Algorithm for several input trees.

Runtime Analysis of the PRT Algorithm
There are three main steps in the PRT algorithm: (i) Ini-

tialization, (ii) Parallel Force-directed Improvement of Lay-
out, and (ii) Parallel Label Overlap Removal. In Fig. 17,
we report the percentage of total runtime spent in the
different steps for several input trees. In all cases, we
observe that the initialization step takes little time (less
than a millisecond). This is expected since we run this
step only once and the most time-consuming part of this
step (finding center node by Alg. PRT-Center-Node) is fully
parallelized. On the other hand, we iteratively run the
crossing-free force update (parallel force-directed improve-
ment) and label overlap removal steps multiple times. The
force-directed update and label overlap removal steps con-
sume almost 50% of the total runtime for the large Topics
tree, respectively.

9 Limitations

While we attempted to compare our readable tree lay-
out framework with prior algorithms, we only compared
against two. Similarly, we used only four real-world
datasets and seven trees extracted from them for our eval-
uation. Further experiments with different types of trees,
and with synthetically generated trees that test the limits
of the prior and proposed methods (e.g., with respect to
balance, degree distribution, diameter, etc.) are needed.

The utility of crossings-free, compact layouts that cap-
ture pre-specified edge lengths and show all node labels
without overlaps needs to be evaluated. While intuitively
these seem like desirable features (non-overlapping la-
bels make for readable layouts, non-crossing layouts help
grasp the underlying structure, compact layouts require
less panning and zooming), a human subjects study can
further validate these goals.

We use a simple overlap removal technique to improve
the compactness of the algorithm. Overlap removal is a
well-studied problem and there are several advanced al-
gorithms [25, 39, 42]. Modifying such algorithms to en-
sure they do not change the topology of the current layout
(e.g., by introducing edge crossings) remains an interest-
ing open problem.

Since we optimize compactness, our algorithms might
create zigzag-like paths, making it difficult to quickly esti-
mate paths lengths and to compare different paths. Bal-
ancing the need for compactness with such distortions re-
quires further examination.

Force directed algorithms often have a large parameter
space. We add on to this with parameters from two ini-
tial layouts and a final overlap step. This gives us a very

large parameter space. While we have done some small-
scale parameter space searches, a more careful and de-
tailed analysis will likely yield better results.

Balancing multiple and contradictory optimization
goals (e.g., compactness and edge length preservation) is
difficult, and other optimization goals may create better
layouts. We note that most of the “squished” layouts tend
to result from the Edge-Length-Initialization and can
be avoided when selecting Compact-Initialization. The
quality of the layouts degrades in the parallel version (PRT)
since some advanced force-directed features are not avail-
able in OpenMP [14]. A better implementation of the force-
directed algorithms as well as consideration of other ob-
jectives besides desired edge length preservation and com-
pactness remains a worthwhile future direction.

10 Conclusions

Both the quantitative evaluation and the visual analysis
provide evidence of the utility of the proposed Readable
Tree (RT) framework. The parallel version (PRT) makes the
framework applicable to large instances, without much
degradation in quality (edge length preservation and com-
pactness).

Comparing RT and PRT with sfdp+p and CIR also seems
encouraging. On all 4 small networks RT_L outperforms
sfdp+p and CIR in edge length preservation; RT_C outper-
forms CIR and sfdp+p in compactness in most cases; PRT
is slower than both sfdp+p and CIR, but not by much, es-
pecially given that sfdp+p introduces crossings in all lay-
outs and CIR has compactness scores that are orders of
magnitude worse.

Even though the layout of trees is a well-known and
arguably solved problem, the readable tree layout prob-
lem shows that there is more work to be done in this
domain. We propose an algorithmic framework for cre-
ating readable tree layouts that guarantee crossings-free
layouts with non-overlapping node labels. Our RT algo-
rithm works well on smaller networks and can be executed
on any computer, and our PRT algorithm speeds up the
computation making it applicable to larger networks but
relies on more advanced hardware. The utility of such al-
gorithms goes beyond drawings of trees to help provide
an interactive exploration of large networks, as illustrated

by several examples and a video on the project website3.
All source code, datasets, and analysis can be found at
https://github.com/abureyanahmed/multi_level_tree.
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11 Supplementary Material

In this section, we provide additional example layouts from
the different datasets, and that show a zoomed-in view of
the images. We also discuss topology preservation using
an example.

11.1 Evaluation

We now provide some images that show the outputs from
different algorithms on different graphs. In Fig. 19, we
give layouts of uniform Topics Graph computed by two ex-
isting algorithms (CIR and sfdp+p) and ours (RT_L and
RT_C). In Fig. 20, we compare the layout of the Last.FM
graph generated using RT_L and RL_C. Note that these
overviews do not show details such as label overlaps,
crossings, or compactness, but they do provide a feel for
how the graphs are laid out. For instance, it is easy to see
that CIR does not preserve edge lengths while SFDP+P ap-
pears to do well. However, when zooming in we see many
crossings and label overlaps in SFDP+P. The RT_L is able
to preserve desired edge lengths more which helps to cap-
ture the overall topology of the layout. However, if we zoom
in then we can see that the drawing is not compact: there
are some free spaces among the labels. On the other hand,
RT_C focuses more on compactness and by zooming in the
layout shows that relatively more labels are drawn com-
pactly. Similarly, RT_L preserve the desired edge lengths
while RT_C optimizes compactness for topics and tree of
life graphs, see Fig. 21 and Fig. 22 respectively.

11.2 A Note on Topology Preservation

We discuss topology preservation in Sect 2, but here we
illustrate the concept with an example. In Fig. 18 we illus-
trate how prior methods that remove overlaps may do so
at the expense of changing the topology of the underlying
graph. Even then initialized with a crossings-free layout,
sfdp+p removes the overlaps by introducing crossings and
reordering node neighbors, thus changing the topology of
the input layout.

(a) (b)

(c) (d)

Fig. 18: A crossings-free initial layout of the uniform
last.FM network (a) and the corresponding output gener-
ated by sfdp (b). A zoomed in view in the two layouts in
(a-b) shows that the many overlaps in the initial layout (c)
were corrected at the expense of edge crossings (d).

(a) CIR

(b) sfdp+p

(c) RT_L

(d) RT_C

Fig. 19: Comparison of the tree layout structure of the
uniform Google Topics graph drawn with CIR, sfdp+p,
RT_L, and RT_C

1



(a) RT_L

(b) RT_C

Fig. 20: Comparing Last.FM linear layouts drawn with our algorithms.

(a) RT_L

(b) RT_C

Fig. 21: Comparing Topics linear layouts drawn with our algorithms.
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(a) RT_L

(b) RT_C

Fig. 22: Comparing Tree of Life linear layouts drawn with our algorithms.
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