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Abstract. When interacting with a visualization of a bipartite graph,
one of the most common tasks requires identifying the neighbors of a
given vertex. In interactive visualizations, selecting a vertex of interest
usually highlights the edges to its neighbors while hiding/shading the rest
of the graph. If the graph is large, the highlighted subgraph may not fit in
the display window. This motivates a natural optimization task: find an
arrangement of the vertices along two layers that reduces the size of the
window needed to see a selected vertex and all its neighbors. We consider
two variants of the problem; for one we present an efficient algorithm,
while for the other we show NP-hardness and give a 2-approximation.

Keywords: Graph drawing - Bipartite graphs - 2-layer drawings - Win-
dow width

1 Introduction

Two-layer networks model relationships between two disjoint sets of entities
in various applications. Such networks are naturally modeled by bipartite graphs
and are usually visualized with 2-layer drawings, where vertices are drawn
as points on two distinct parallel lines ¢; and ¢, and edges are straight-line
segments [5]. Such drawings occur as components in layered drawings of directed
graphs [15] and also as final drawings, e.g., in tanglegrams for phylogenetic
trees [1,2,6,14] or in network layouts highlighting relationships between two
communities [4,10,13].

A common task in the exploration of such networks is to identify the neigh-
bors of a vertex of interest. A typical approach is to click on this vertex and
highlight the edges to its neighbors, while hiding/shading the rest of the graph.

* H. Forster, M. Kaufmann and A. Kuckuk are supported by DFG grant Ka512/18-2.
L. Schlipf is supported by the Ministry of Science, Research and the Arts Baden-
Wirttemberg (Germany).
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Fig. 1: The z-spans of vertices v and w.

Of course, the highlighted edges should fit in the display window. This motivates
a natural optimization task: find permutations of the vertices that minimize the
size of the window needed to see any vertex and all its neighbors. Related is the
problem of minimizing the number of crossings instead, which is an NP-complete
problem [5,7,11] and does not always result in easy-to-read drawings.

In applications, the vertex orders cannot always be treated as permutations;
the vertices may have specific coordinates in one of the two layers ¢; or ¢,. For
instance, the ASCT+B Reporter [8], a tool for displaying anatomical struc-
tures, cell types, and biomarkers, exemplifies this issue; by selecting a cell type its
related biomarkers are highlighted. Minimizing the actual window width makes
the tool easier to use. Note that in this use-case, the window widths of cell types
are very important while the corresponding widths for biomarkers are negligible.

Our contribution. Motivated by the discussion above, we study the following prob-
lem. The input consists of a bipartite graph G = (AU B, E). The output is a
2-layer drawing I" of G, that is, one in which the vertices in A and B are placed at
distinct integer coordinates on two parallel lines ¢; and ¢, respectively (w.l.o.g.,
4y =1and ¥4, : y = 0; top and bottom layers). The objective is to minimize
the window width of I', i.e., the maximum taken over all vertices v in A of the
maximum z-distance between all neighbors of v along ¢, including the projection
of v to £,. Motivated by common assumptions in layered graph drawing [3,9] we
consider two variants, where the z-coordinates of the vertices of either A or B
on ¢; or ly, respectively, are fixed. The former is NP-complete (Theorem 3); the
latter is efficiently solvable (Theorem 1).

Preliminaries. For a vertex v in a drawing I" denote by xr(v) and yr(v) the
z- and y-coordinate of v in drawing I'; when the reference drawing is clear, we
simplify the notation to z(v) and y(v). Given a bipartite graph G = (AU B, E)
with na = |A| and ng = |B|, the z-span xsr(v) of a vertex v € A in a 2-layer
drawing I" of G is the maximum z-distance of all neighbors of v in B including
v itself. To be more formal, xsr(v) = max, wenilrr(u) — zr(w)|} where
N[v] = {v} U {w|(v,w) € E} is the closed neighborhood of v. We define the
window width ww(I") of the drawing I' as the maximum of the z-spans over
all vertices in A, that is, ww(I') = max,ca{xsr(v)}, see Fig. 1. In the 2-layer
window width minimization problem, we seek to determine the window width
ww(G) of a graph G, which is the minimum window width of all of its 2-layer
drawings.
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2  Window Width Minimization with Bottom Layer Fixed

We present an efficient algorithm to find a 2-layer drawing of minimum window
width when the z-coordinates of the vertices of B along ¢, are fixed.

Theorem 1. Given a bipartite graph G = (AU B, E) and a function {g: B — Z,
there is an O(nalogna + |E|)-time algorithm to determine a 2-layer drawing I’
of G with minimum window width k* and xp(b) = £g(b) for each b € B.

Proof. For each vertex v € A it suffices to focus on its leftmost neighbor ¢(v) in
&p and rightmost neighbor r(v) in g (ignoring intermediate ones). Note that
£(v) = r(v) is possible. This preprocessing, which can be done in O(|E|) time,
allows us to continue with a graph of O(n4) vertices and edges, called the critical
part of G. We now determine the z-coordinate of each vertex v in A.

Let ko be the maximum z-distance between ¢(v) and r(v) over all vertices v
in A and note that kg is a lower bound for k*. We describe an O(n 4 logn 4)-time
algorithm to compute k* and a corresponding solution. In this process, we start
by attempting to find a drawing with window width k& = kq. If at some point, we
conclude that the current value of k is too small, we increase k by 1 and proceed.
When the algorithm terminates it will hold that k = k*.

Let I(v) = [z(r(v)) — k, 2(£(v)) + k] be the interval of v € A; the z-distance
of v to £(v) and r(v) is at most k if and only if its z-coordinate is in I(v).

We sweep the intervals of the vertices from left-to-right by a vertical sweep
line L, which is a data-structure maintaining a set of active intervals (i.e., those
intersected by L whose vertices in A have not been placed yet) assumed to be
sorted by their right endpoints. In this process, we distinguish three different
types of events: start, placement and end. If during the sweep multiple events
occur at the same x-coordinate i we first perform all start events at i, followed
by a possible placement event at ¢ before finally performing the end events at i.

Start event. It occurs at the left endpoint ¢ of each interval I(v). Here, the interval
I(v) is inserted into L. We add a placement event at 4, if there is none.

Placement event at i. We remove the first active interval I(v) from L, set z(v) := 4
and mark I(v) as inactive. If L is not empty, we add a placement event at ¢ + 1.
Note that placement events always place a vertex, hence there is only a linear
number of placement events in total.

End event. It occurs at the right endpoint ¢ of each interval I(v). We check if I(v)
is marked as inactive. If this is the case, we proceed. If not, we failed to place v
at a position within I(v). We increase k by 1 (i.e., all start events and already
placed vertices are moved by —1 and all end events by +1 on the z-axis) and
replace the already existing placement event with a new placement event at .

Correctness. We begin with two useful observations. First, once our algorithm
failed to place a vertex v within I(v), the partial solution obtained by increasing
k by one and shifting all placed vertices one unit to the left is identical to the
one that would be obtained by restarting the algorithm with window width k4 1.
Second, by increasing k the ordering of the start events of the intervals remains
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the same and the same holds true for the end events. Consequently, the following
property holds. Assume that we increased k by 1 at x-coordinate i after failing
to place a vertex v with I(v) = [¢,r]. Note that r = ¢ before increasing k and
r = i+ 1 after increasing k. Now let P; denote the set of vertices that has
been placed by our algorithm so far and let S; denote the set of vertices whose
start event occurs at ¢ after increasing k to k + 1. Then, after handling the end
event, for each p € P, with interval I(p) = [¢,,7,] it holds for each s € S; with
I(s) = [ls,7s] that 7, <rgsincer, <r=i+1andi=~; <r.?

To complete the correctness proof, we show that we increase k only if it
is necessary. Recall that we increase k if a vertex v cannot be placed within
I(v) = [¢,r]. Hence, all z-coordinates of I(v) have been assigned to previously
placed vertices. Let £/ < ¢ be the largest z-coordinate our algorithm assigned no
vertex from A and let A, C A be the vertices placed in I'(v) = [¢/ + 1,r]. We
prove that in each solution with window width k, all vertices in A, have to be
placed in I’(v). Assume for a contradiction that there is a vertex a € A, that can
be placed outside of I’(v) such that its z-span is at most k. To this end, recall
that a has z-span at most k if and only if it is placed within I(a). First, a cannot
be placed at an z-coordinate greater than z,, since a has been placed before
v by the algorithm, i.e., the right end of I(a) is at an a-coordinate of at most
z,. Second, a cannot be placed at an z-coordinate smaller than z, + 1 as our
algorithm would have placed a at coordinate zj, (or even beforehand) if its interval
would have started at an z-coordinate smaller or equal to x}; contradiction.

Time complezity. We store the start and end events in two left-to-right sorted lists,
while we maintain at most one placement event (with associated z-coordinate).
The active intervals are stored in a binary min heap (the keys are the right
endpoints). By keeping offset values for start and end events, as well as for the last
placed vertex, the performed shifts can be done in O(n 4) time with one additional
right-to-left pass. Since L maintains at most O(n4) intervals the running time is
O(nalognya), after computing the critical part of G in O(|V| + |E|) time. O

Remark 1. The core of the algorithm, given sorted start and end events, can be
completed in O(ny logk*) time since the number of intervals in L is actually
bounded by 2k*.

Proof. Consider some z-coordinate ¢ at which there are 2k* + 2 intervals main-
tained in L. Since there can only be one vertex placed on each integer coordinate,
there must be one placed on z-coordinate i + 2k* + 1, let this be vertex v with
interval I(v) = [¢,7]. Note that since this interval is active at ¢ it must hold
that ¢ < i. With the definition of I(v) it follows z(r(v)) < £+ k* < i+ k. The
interval is maximal if r(v) = £(v), thus z(£(v)) + k* < r(v)) + k* < i+ 2k* which
contradicts the placement of v at i + 2k* + 1. O

Next, we show that a variant of our algorithm can be used to optimize the
mazximum edge-length.

L We point out that the latter relation ¢s < rs does not hold if £ = 0, but since we
increased k by 1, it holds k > 1.
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Theorem 2. Given a bipartite graph G = (AUB, E) and a function {g: B — Z,
there is an O(nalogna + |E|)-time algorithm to determine a 2-layer drawing I’
of G that minimizes the maximum x-distance k* between any vertex in A and
any adjacent vertex in B and xp(b) = £p(b) for each b € B.

Proof. As in the proof of Theorem 1, we first identify the critical part of G which
has O(n4) vertices and edges. In the following, we determine the x-coordinate of
each vertex v in A such that the maximum z-distance between adjacent vertices,
denoted by k, is minimized in the critical part, which implies that it is minimized
in G as well. As in the proof of Theorem 1, for a sufficiently large value of k,
we define for each vertex v € A an interval I(v) such that v is placed on any
a-coordinate in I(v) if and only if its z-distance to any neighbor of v is at most
k. More precisely, I(v) = [z(r(v)) — k,z(£(v)) + k]. We start the algorithm of
Theorem 1 with k = kg, where kg := f’“‘z&W and kpax denotes the maximum
a-distance between £(v) and r(v) over all vertices v in A (that is, ko is the trivial
lower bound for k*). During the algorithm, we might conclude that the current
value of k is not sufficient, thus k is increased by 1 before proceeding.

Since the rest of the algorithm of Theorem 1 consists of finding placements of
all vertices within their intervals and increasing the intervals if necessary, this
part of the algorithm can be completely adopted. Both the correctness and the
time complexity of the algorithm follow analogously to Theorem 1. O

3 Window Width Minimization with Top Layer Fixed

In contrast to the positive result from Theorem 1, we prove here that the problem
is NP-complete when the order of the vertices A on the top layer /; is fixed.

Theorem 3. Given a bipartite graph G = (AU B, E), a function {4: A — Z
and an integer k, it is NP-complete to test whether a 2-layer drawing I' of G
exists, such that ww(I') =k and xr(a) = £a(a) for each a € A.

Proof. Membership in NP is obvious. To prove NP-hardness, we adapt a re-
duction by Papadimitriou from the EXACT-3-SAT problem to the BANDWIDTH
problem [12]. Let ¢ be an instance of EXACT-3-SAT, that is, a Boolean formula
with n variables and m clauses (each with 3 different literals). We assume w.l.o.g.
that n > 5 and reduce the problem of determining whether ¢ is satisfiable to
an instance of our problem consisting of a bipartite graph G = (AU B, E), a
function £4: A — Z and the integer k = 6n + 3. We first sketch the general idea
of the reduction by Papadimitriou and discuss the relation to our construction;
for an example illustration see Fig. 2.

Introduction to the reduction. A central concept in the reduction for the BAND-
WIDTH problem? is a subgraph H that contains a literal-vertex for each possible
literal (i.e., for each variable z;, it contains vertices ¢,, and ¢-,,) and two addi-
tional vertices denoted by M and M’. By fixing the value of the bandwidth, it

2 Given k € N and a graph G = (V, E) the BANDWIDTH problem asks for an ordering
< of V so that for each (u,v) € E there are at most k vertices between v and v in <.
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can be ensured that in any layout of H exactly n of the literal-vertices appear in
a sequence P to the left of M and M’ whereas the remaining n literal-vertices
appear to the right of M and M’ in a sequence ). The vertices placed in P
correspond to the satisfied literals, while the vertices placed in @) correspond
to unsatisfied literals. In our reduction, we achieve the same behavior using
block-gadgets and H-gadgets where our Bs-blocks correspond to vertices M and
M’ in Papadimitriou’s reduction.

In the reduction for the bandwidth problem, there are n+m consecutive copies
of H that are “synchronized” via the bandwidth restriction. Namely, additional
edges ensure that each literal consistently occurs either in every sequence P or in
every sequence (). We achieve the same behavior using the propagation gadgets.
Papadimitriou associates each of the first n copies of H with a wvariable-gadget
that checks that only one of the literal-vertices corresponding to x and —z occurs
within @, namely, as the leftmost vertex in @Q. Finally, each of the last m copies
of H is associated with a clause-gadget that ensures that at most two literals of
a given clause can occur within sequence @), namely, as the leftmost two vertices.
In our construction, we use similar gadgets exploiting this idea.

Finally, it is worth remarking that in contrast to the bandwidth problem, in
the window width minimization problem vertices in B are restricted to certain
positions along ¢, by inputs £4 and k. With these additional restrictions fixing
vertices to certain intervals (e.g., one copy of each literal in each H-gadget) is
simplified, however, it also becomes less apparent that the model still allows for
enough flexibility to show NP-hardness (as for instance required in the propagation
between consecutive H-gadgets).

Next, we provide a description of the gadgets of our construction. The
functionality of each gadget is ensured by introducing one or two vertices at
appropriate coordinates along ¢;. We start by introducing the basic structure of
our construction consisting of block- and H-gadgets.

Block-gadget. The purpose of the block-gadget is to fix a certain number 8 of
vertices of B to be consecutive at fixed x-coordinates i,...,7+ 8 — 1 so that no
other vertex can be placed there; see Fig. 3a. Hence, these 8 block vertices occupy
a block of z-coordinates where no other vertex of B may be placed. To achieve
this property, we introduce two vertices ag, a, € A with €a(ag) =i — (k— 5+ 1)
and €4(a,) = i + k which both are connected to all 8 block vertices. It is easy
to verify that each block vertex has z-distance at most k to both a; and a, if
and only if it is located inside the interval [¢,7 + 8 — 1] in B (the order of the
vertices inside the interval is free).

We use two types of blocks, namely, one with 8; = 2n+ 3 vertices of B (empty
dark gray circles in Fig. 2a) and one with 83 = n + 1 vertices of B (filled dark
gray circles in Fig. 2a). We call the B-vertices of such blocks B;- and Bs-blocks,
respectively. Further, we assume that the vertices of a Bi-block are partitioned
into three parts BY, Bf* and B}. Part BJ" has exactly n vertices, while BY and
BJ have |(n+ 3)/2] and [(n + 3)/2)] vertices, respectively; see Fig. 3b.

B;- and Bs-blocks alternate from left-to-right so that in total there are n4+m+1
Bj-blocks and n + m Bs-blocks. Between a Bj-block and a Bs-block there is a
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Fig.3: (a) Block-gadget. (b) H-gadget and propagation-gadget.

Table 1: First and last x-coordinate of the i-th Bi-, P-, Bo-, and @-block as
enumerated from left-to-right starting at 1.
Block Type First z-coordinate Last z-coordinate
Bi-block p-(t—1)+1 p-(i—1)+2n+3

P-block p-(i—1)+2n+4 p-(i—1)+3n+3
By-block  p-(i—1)+3n+4 p-(i—1)+4n+4
Q@-block p-(i—1)+4n+5 p-(i—1)+5n+4

P-block while between a Bs-block and a Bi-block there is a QQ-block. Both P-
and @Q-blocks are intervals supporting n z-coordinates each and correspond to
sequences P and @ in Papadimitriou’s reduction. Note that the total number of
vertices in a Bi-, P-, Bo- and @Q-block is p = 5n + 4. We let the first Bj-block
start at z-coordinate 1 and obtain intervals for the block types shown in Table 1.

More precisely, we ensure the correct positions of Bi- and Bs-blocks as follows.
For the i-th B;-block, vertex ay is placed at £4(a¢) = p- (i —2) +n+4 while vertex
a, is placed at £4(a,) = p-i+n. In other words, ay is placed above the (n+4)-th
vertex (left-to-right) of the previous Bj-block and a, is placed above the n-th
vertex of the next Bi-block. Further, for the i-th Bs-block, vertex ay is placed at
€alag) =p- (i —2)+3n+ 5 whereas vertex a, is placed at £4(a,) = p-i+4n+3.
Intuitively, vertex a, is placed above the n-th vertex of the next Bs-block and
vertex ay is placed above the second vertex of the previous Bs-block.

H-gadget. The purpose of the H-gadget is to introduce literal-vertices for all liter-
als of ¢, that is, literals ¢,, and ¢, for each variable x; (2n in total; see red, blue,
green, yellow and pink vertices in Figs. 2b and 3b). Each -gadget is associated
with a Bo-block b and ensures that each of its 2n literal-vertices is placed either in
the P-block preceding b (containing all satisfied literals) or in the Q-block succeed-
ing b (containing all unsatisfied literals); Fig. 3b depicts two consecutive copies
of the #H-gadget; note that there is a shared part of n vertices, denoted by B7*.

More precisely, there exists one H-gadget H for each Bs-block b. H contains a
vertex h in A that is incident to all vertices of b, to the Bf*- and B{-vertices of the
Bi-block preceding b and to the BY- and BJ"-vertices of the B;-block succeeding b,
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i.e., H-gadgets corresponding to consecutive Ba-blocks share n = | BJ"| vertices. If
H corresponds to the i-th By-block, vertex h is placed at £4(h) = p-(i—1)+3n+4,
that is, above the first B-vertex of its associated Bs-block. Further, h is connected
to a literal-vertex for each literal of ¢. Since the leftmost vertex of the B{"-block
preceding b and the rightmost vertex of the B{"-block succeeding b are at distance
k, all literal-vertices connected to h must be placed between these two blocks.
The only available positions in this range are covered by the P-block preceding
b and the @-block succeeding b. Note that in the following, no further edges
incident to vertices in a Bi-block are introduced, i.e., the vertex-order inside a
Bi-block is only restricted by h-vertices. Finally, observe that the h-vertices have
z-span k if the vertices in Bf precede (left-to-right) those in B, which precede
those in BY.

In the following, we assume literal-vertices in P-blocks and @-blocks to
correspond to satisfied and unsatisfied literals, respectively. Next, we ensure
consistency.

Propagation-gadget. The propagation-gadgets (see red, blue, green, yellow and
pink vertices and edges in Figs. 2b and 3b) ensure consistency, that is, literals
in P-blocks are satisfied, while literals in @)-blocks are unsatisfied in . Namely,
the propagation gadget for z; ensures that the literal-vertex £y € {{,, ¢z}
occurring in the P-block of an H-gadget H; will also occur in the P-block of the
next H-gadget Ho in their left-to-right order. Since all vertices from P-blocks are
propagated, literal-vertices in the Q-blocks are also propagated from H; to Ho.
Note that literal-vertices do not necessarily have the same order in H; and Hs.

More formally, for each Bj-block b and for each variable x; there is a copy of
the propagation-gadget containing two propagation-vertices py, and p—,. Let H
and Hs be the two (consecutive) H-gadgets incident to the Bj*-vertices of b.
Then, vertex p,, is connected to the literal-vertices ¢,, of H; and Hy while p_,
is connected to the literal-vertices /-, of H; and Hs. If b is the j-th B;-block,
i.e., all propagation-vertices with positive literals are to the left of the a,-vertex
above b while all propagation-vertices with negative literals are to the right of the
ae-vertex above b. Note that p,, is above the last vertex in the ()-block preceding
b while p_,, is above the first vertex in the P-block succeeding b; the remaining
literal-vertices are placed on unique z-coordinates above b. Since the distance
between the leftmost literal-vertex in the P-block of H; and the rightmost literal-
vertex in the P-block of Hy is K — n + 1, we can reorder all literal-vertices freely
in the P-blocks of H; and Hs; the same holds for the corresponding @-blocks.
On the other hand, the rightmost literal-vertex ¢, of the P-block of H; cannot
occur in the Q-block of Hy as otherwise their connecting vertex py has x-span
at least k + 3; see Fig. 3b. As already mentioned above, since all literals from
the P-block are propagated from H; to Hs, all literals from the @-block are
propagated as well.

Now each literal is either consistently satisfied (in P-blocks) or unsatisfied (in
Q@-blocks). It remains to encode the logic of ¢ with variable- and clause-gadgets.
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Fig.4: (a) Variable-gadget. (b) Clause-gadget.

Variable-gadget. The variable-gadget for variable x; ensures that only one of the
literal-vertices ¢,, and /-, can be placed within @)-blocks. Since these gadgets
guarantee that at most one literal for each variable is false, it is only possible to
place all 2n literals if exactly one literal per variable is true while the other is
false. Hence, each variable is either true or false consistently in all H-gadgets.

More precisely, the first n (in left-to-right-order) H-gadgets are augmented
with a variable-gadget. Namely, each variable gadget is associated with a unique
variable x and ensures that one of the literals x and -z must be true. The variable
gadget associated with H-gadget H consists of both literal-vertices ¢, and ¢, of
H and an additional variable-vertex v, connected to ¢, and ¢_,; see Fig. 4a and
purple vertices and edges in Fig. 2c. We set the z-coordinate of v, so that it is
at distance k to the left of the leftmost vertex in the Q-block of H, i.e., if H is
the i-th H-gadget we have £4(v;) = p- (1 —2) 4+ 3n + 6. As a result, v, is placed
above the third vertex of the Bs-block preceding the Bs-block of H. Clearly,
the z-span of v, is at most k if at most one of £, and /_, is in the Q-block of
H. As mentioned above, since for each variable the variable gadget guarantees
this property, it is only possible to place all 2n literals if exactly one literal per
variable is true while the other is false. Thus, each variable is either consistently
true or consistently false.

Clause-gadget. There are m clause-gadgets associated with the last m copies of
H-gadgets. The clause-gadget for a clause k = (A1 V Ay V A3) ensures that at
most two of the literal-vertices £,, £5, and ¢), can be placed within @-blocks.
At least one literal must be placed inside the P-blocks and thus, k contains at
least one satisfied literal.

To this end, the clause gadget for clause k = (A1 V A2 V A3) consists of a vertex
¢ € A connected to the three literal-vertices £y, £x,, ¢x,; see Fig. 4b and brown
vertices and edges in Fig. 2c. We assign the z-coordinate of ¢, so that it is at
distance k£ — 1 to the left of the leftmost vertex in the @-block of H, i.e., if H is
the i-th H-gadget, then £4(c) = p(i — 2) + 3n + 7. Hence, ¢, is placed above
the fourth vertex of the Bs-block preceding H. Since the distance between the
second vertex in the @-block of H and ¢, is k, the z-span of ¢, is at most k if at

most two of £y, %y,, 0, are in the @-block, i.e., one of Aj, Ag, Az is true.
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Table 2: Placements of vertices in A above the j-th vertex within B;- and
Bs-blocks. If a vertex z of A is above the j-th vertex of the i-th Bj-block,
Ealx)=p-(i—1)+4, while a(x) =p- (i — 1)+ 3n+ 3+ j if  is above the j-th
vertex of the i-th By-block.

Bi-block i Bs-block
1 h of associated H-gadget
2 ay of next Bs-block
Px;, of prop.-gadget 3 vz associated with the next H-gadget
4 ¢, associated with the next H-gadget
[5,n —1] —
a, of previous Bi-block n ar of previous Ba-block
—_— [n+1,n+ 3]
ay of next Bi-block n-+4 }
P-o;_(,_4 ©f prop.-gadget [n+5,2n + 3]

Polynomial time of the reduction and equivalence. The construction can clearly
be done in O(n - (n +m)) time. Next, we prove that no two vertices of A share
the same x-coordinate, i.e., £4 is injective.

Recall that we have placed vertices in A only on coordinates that are covered
by Bj- and Bs-blocks (or are located to the left of the first Bi-block or to
the right of the last Bj-block); see Fig. 2. Table 2 summarizes the positioning
described in the construction. The two exceptions to this are vertices p,, and
DP-z, of propagation gadgets which are located above the last vertex of P-blocks
and above the first vertex of @-blocks, respectively. For n > 5 (as assumed at
the beginning) indeed no z-coordinate is assigned twice by £4.

It remains to prove that ¢ is satisfiable if and only if there is a drawing I’
with ww(I") <k and zr(a) = €a(a) for a € A. First, assume that ¢ is satisfiable.
We can construct a drawing with window width at most k by placing all satisfied
literals in the P-block and each unsatisfied literal in the Q-block of each H-gadget.
The literal-vertices are sorted so that the unsatisfied literals in a variable- or
clause-gadget are the leftmost ones in the corresponding @-block. Second, assume
that there is a drawing I with ww(I") < k and zp(a) = a(a) for a € A. As
discussed above, each variable is either true or false while each clause contains a
satisfied literal. Thus, a satisfying truth assignment for ¢ can be read from any
P-block of I'. O

Next, we prove that our algorithm from Theorem 2 can be used for a 2-
approximation algorithm for the window width minimization problem with
fixed top layer.

Theorem 4. Given a bipartite graph G = (AUB, E) and a function £4: A — Z,
there is an O(nplognp + |E|)-time 2-approxzimation algorithm for computing the
minimum value k* such that there is a 2-layer drawing I' of G with ww(I") = k*
and xr(a) = €a(a) for each a € A that also produces a corresponding solution.
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Proof. The idea is to use the optimization algorithm from the proof of Theorem 2,
where the vertex sets A and B are interchanged, to compute a placement of the
vertices of B in time O(nglogng + |E|), so that the length k" of the longest edge
is minimized. Let k denote the window width of the obtained 2-layer drawing I
Let k* be the minimum window width of a 2-layer drawing I'* of G with
xr«(a) = €a(a). We show that k& < 2k*. First, recall that the longest edge in I"
has length k. Thus k& < 2k’ as in the worst case, a vertex v € A has distance k" to
both its leftmost and its rightmost neighbor. Second, consider the 2-layer drawing
I'™. Since the longest edge in I'* has length at most k&* and &’ is chosen optimally,
we obtain k' < k*. Combining both arguments, we obtain k < 2k’ < 2k*.
Finally, drawing I" is a corresponding solution as stated in the theorem. O

4 Open Problems

We conclude with some open problems. First, the case where all vertices can be
freely positioned along ¢; and ¢, may be investigated in future work. Second,
the setting of Theorem 3 with the additional constraint that the vertices in A
are degree-restricted, is of interest. Third, other optimization criteria could be
useful in practice. For instance, one may try to minimize the average x-span
while potentially also weighting spans of important vertices differently.
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