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Abstract

A decision tree recursively splits a feature space R
d and then assigns class labels

based on the resulting partition. Decision trees have been part of the basic machine-
learning toolkit for decades. A large body of work treats heuristic algorithms to
compute a decision tree from training data, usually aiming to minimize in particular
the size of the resulting tree. In contrast, little is known about the complexity
of the underlying computational problem of computing a minimum-size tree for
the given training data. We study this problem with respect to the number d of
dimensions of the feature space. We show that it can be solved in O(n2d+1d) time,
but under reasonable complexity-theoretic assumptions it is not possible to achieve

f(d) · no(d/ log d) running time, where n is the number of training examples. The

problem is solvable in (dR)O(dR) · n1+o(1) time, if there are exactly two classes
and R is an upper bound on the number of tree leaves labeled with the first class.

1 Introduction

A decision tree is a useful tool to classify and describe data [18]. It takes the feature space R
d,

recursively performs axis-parallel cuts to split the space into two subspaces, and then assigns class
labels based on the resulting partition (see Figure 1). Because of their simplicity, decision trees
are particularly attractive as interpretable models of the underlying data [16]. In this context, small
trees are preferable, i.e., trees that have a small number of nodes, or in other words, perform a small
number of cuts [17]. Such trees are also desired in the context of classification, because it is thought
that minimizing the number of nodes reduces the chances of overfitting [5].

In the learning phase, we are given a finite set of examples E ⊆ R
d labeled with classes and we want to

find a decision tree that optimizes certain performance criteria and that is consistent with E, that is, the
classes assigned by the tree agree with the class labels of the examples. Among other criteria, the num-
ber of nodes is often minimized for the above-mentioned reasons. There is a plethora of implementa-
tions for learning decision trees (e.g., [1, 2, 10, 19, 22]). One of the heuristics herein is among the Top
10 Algorithms of Data Mining chosen by the ICDM [23, 24] and several implementations are based on
exact algorithms minimizing the size of the produced trees. Despite this, our knowledge of the com-
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putational complexity of learning (minimum-node) decision trees is limited: Several classical results
show NP-hardness [8, 11] (see also the survey by Murthy [18]) and we know that even if we require
parameters such as the number of nodes of the tree, or the number of different feature values, to be
small, we still cannot achieve efficient algorithms in terms of upper bounds on the running time [21].

In this paper, we study the influence of the number d of dimensions of the feature space on the complex-
ity of learning small decision trees. This problem can be phrased as the decision problem MINIMUM

DECISION TREE SIZE (DTS): The input is a tuple (E, λ, s) consisting of a set E ⊆ R
d of examples,

a class labeling λ : E → {blue, red}, and an integer s, and we want to decide whether there is a deci-
sion tree for (E, λ) of size at most s. Herein, a binary tree T is decision tree for (E, λ) if the labeled

partition of Rd associated with T agrees with the labels λ of E, see Section 2 for a precise definition.

We provide three main results. First, we show that DTS can be solved in O(n2d+1d) time (Theo-
rem 3.1), where n is the number of input examples. In other words, for fixed number of dimensions,
DTS is polynomial-time solvable. Contrast this with the variant where, instead of axis-parallel cuts,
we allow linear cuts of arbitrary slopes. The problem then becomes NP-hard already for d = 3 [8].

Second, complementing the first result, we show that the dependency on d in the exponent cannot

be substantially reduced. More precisely, we show that a running time of f(d) · no(d/ log d) would
contradict well-known reasonable complexity-theoretic assumptions (Theorem 4.1). This implies
that the running time of algorithms for DTS has to scale exponentially with d. In other words, any
provably efficient algorithm for DTS has to exploit other properties of the input or desired solution.

Our third pair of results determines more closely what parameters influence the combinatorial
explosion, offering two tractability results. A crucial property of a construction that we use in
Theorem 4.1 is that the size of the optimal decision tree is unbounded. Informally, this result thus
shows intractability only in situations where the smallest decision tree for our input data is rather large.
This may be the case for practical data (partially overlapping classes of Gaussian-distributed data), but
it begs the question whether we can find particularly small decision trees provably efficiently if the data
allow for it. As Ordyniak and Szeider showed, without further restrictions, this is not possible as DTS
is W[2]-hard with respect to the solution size s [21]. In contrast, we show that in the small-dimension

regime we do obtain a prospect for an efficient algorithm with running time O((s3d)s · n1+o(1))
(Theorem 3.2). An intermediate result towards this is inspired by and improves upon an algorithm
by Ordyniak and Szeider [21] for determining a smallest decision tree that cuts only a given set of

features; we decrease the running time from 2O(s2) · poly(n) to 2O(s log s) · n1+o(1) for our purpose.

Finally, we show that in the tractability result with respect to s and d, the size s can be replaced by an
a priori even smaller parameter: Let R be an upper bound on the number of leaves in the decision
tree labeled with any one class. Equivalently, R is an upper bound on the number of parts in the
partition induced by the tree that contain examples of the first class, or that only contain examples of

the second class, whichever number is smaller. Then, DTS is solvable in (dR)O(dR) · n1+o(1) time
(Theorem 3.6). While mostly interesting from a theoretical perspective, as DTS is NP-hard even for
R = 1 in the unbounded-dimension regime [21], we believe that restricting the desired decision tree
to a small number R of leaves labeled with one class has a reasonable practical motivation: In some
situations the distribution of the data may not allow for particularly small decision trees, hampering
interpretability. In this case, it may be useful to look for trees in which one class labels few leaves.

Summarizing, while nO(d)-time algorithms for DTS are achievable, they cannot be substantially
improved in general, but when restricting to small solution sizes or a class with small number of
leaves, there are prospects for efficient algorithms.

2 Preliminaries

For n ∈ N we use [n] := {1, 2, . . . , n}. For a vector x ∈ R
d we denote by x[i] the ith entry of x.

Let E ⊆ R
d and λ : E → {blue, red}. Furthermore, let the domain Di := {x[i] | x ∈ E} of E

consist of all distinct coordinate values for dimension i occurring in examples of E. We aim to define
what a decision tree for (E, λ) is. Let T be a rooted and ordered binary tree and let dim : V (T ) → [d]
and thr : V (T ) → R be labelings of each inner node t ∈ V (T ) by a dimension dim(t) ∈ [d] and a
threshold thr(t) ∈ R. For each inner node t of T there is a left and a right child of t, labeled by ≤
and >, respectively; see Figure 1 for an illustration.
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Figure 1: Left: An instance (E, λ) of DTS with two dimensions x (horizontal) and y (vertical).
Points are examples and the blue and red color represents their labels assigned by λ. Right: A
minimum decision tree T for (E, λ). Each internal node t ∈ T is labeled by (dim(t), thr(t)).

We use E[fi ≤ t] = {x ∈ E | x[i] ≤ t} and E[fi > t] = {x ∈ E | x[i] > t} to denote the set
examples of E whose ith dimension is less or equal and strictly greater than some threshold t,
respectively. Each node t ∈ V (T ), including the leaves, defines a subset E[T, t] ⊆ E as
follows. For the root t of T , we define E[T, t] := E. For each non-root node t let p denote the
parent of t. We then define E[T, t] := E[T, p] ∩ E[fdim(p) ≤ thr(p)] if t is the left child of p
and E[T, t] := E[T, p] ∩ E[fdim(p) > thr(p)] if t is the right child of p. If the tree T is clear from

the context, we simplify E[T, t] to E[t].

Now T and the associated labelings are a decision tree for (E, λ) if for each leaf ℓ of T we have that
all examples in E[ℓ] have the same label under λ. Below we will sometimes omit explicit reference
to the labelings of the nodes and edges of T and simply say that T is a decision tree for (E, λ). The
size of T is the number of its inner nodes. We conveniently call the nodes of T and their associated
labels cuts. The problem MINIMUM DECISION TREE SIZE (DTS) is defined as in the introduction.
For most of our results, the number of classes of the labeling λ does not have to be restricted to two.
We therefore also introduce k-DTS as the generalization of DTS in which λ : E → [k].

Our analysis is within the framework of parameterized complexity [9]. Let L ⊆ Σ∗ be a computational
problem specified over some alphabet Σ and let p : Σ∗ → N a parameter, that is, p assigns to each
instance of L an integer parameter value (which we simply denote by p if the instance is clear from
the context). We say that L is fixed-parameter tractable (FPT) with respect to p if it can be decided
in f(p) · poly(n) time where n is the input encoding length. A complement to fixed-parameter
tractability is W[t]-hardness, t ≥ 1; if problem L is W[t]-hard with respect to p then it is thought to
not be fixed-parameter tractable; see [3, 4, 7, 20] for details. The Exponential Time Hypothesis (ETH)

states that 3SAT on n-variable formulas cannot be solved in 2o(n) time, see refs. [12, 13] for details.

3 Algorithms

We now present our algorithmic results, that is, that k-DTS is polynomial-time solvable for constant
number of dimensions, an improved algorithm for the case where we are restricted to a given set of
dimensions to cut, a fixed-parameter algorithm for d+s and one for d+R. For simplicity, we give our
algorithms for the decision problem (k-)DTS, but with standard techniques they are easily adaptable to
also producing the corresponding tree if it exists and to the corresponding size-minimization problem.

For the first result we use the order of the examples E in each dimension. In a dimension i, let
c1, c2, . . . , cn be the coordinate values in Di in ascending order. We use the set Si of splits, that
is, cuts that each partition E in a combinatorially distinct way. Specifically, we can define the set
Si := {(cj + cj+1)/2 | j ∈ [n − 1]} ∪ {−∞,∞}. When there are at most Dmax different values
used in each dimension, we have the following bound: |Si| = |Di| − 1 + 2 ≤ Dmax + 1 = O(n).

Theorem 3.1. k-DTS is solvable in O(D2d
maxdn) = O(n2d+1d) time.

Proof. Observe that, by adjusting the thresholds, a minimum decision tree for E can be modified
such that for each node t it is thr(t) ∈ Sdim(t). Let S = S1 × S2 × . . .× Sd.

We do dynamic programming on hyperrectangles defined by two points: for u, v ∈ S, let box(u, v) be
an axis-aligned hyperrectangle with u and v as antipodal corners. We require that each coordinate of
u is smaller than the respective coordinate of v. We are interested in computing a minimum decision
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Figure 2: 3D instance where hyperplane H cuts box(u, v) into box(u, v′) and box(u′, v), and splits
examples E ∩ box(u, v) into E ∩ box(u, v′) and E ∩ box(u′, v).

tree T for the examples in E ∩ box(u, v). This solution can be found by cutting box(u, v) with an
axis-aligned hyperplane H , and combining the minimum-size decision trees T1, T2 for the examples
on either side of the hyperplane. Since hyperplane H is defined by a dimension i and threshold t ∈ Si,
we can find two new points u′ and v′, whose coordinates coincide with u and v, respectively, but
in dimension i they have coordinate t. Note that, since no example has coordinate t in dimension i,
E ∩ box(u, v′) and E ∩ box(u′, v) partition the examples in E ∩ box(u, v); see Figure 2.

We can therefore use hyperplane H to define the root node (i, t) of decision tree T , with T1 and
T2 as subtrees. These subtrees are found by recursively computing a solution for E ∩ box(u, v′) and
E ∩ box(u′, v). Since there are i dimensions, and each of them admits at most Dmax + 1 distinct
hyperplanes that we can use to split, an optimal solution for E ∩ box(u, v) can be computed by
trying all O(Dmax · d) hyperplanes defined by distinct splits in each dimension.

Formally, let T be a dynamic programming table, in which for each u, v ∈ S with u ≤ v, entry T [u, v]
holds the minimum size of a decision tree for E ∩ box(u, v). Define the volume of box(u, v) as the
number of grid points contained within it, that is, |S ∩ box(u, v)|. We fill the table in a bottom-up
fashion from smaller-volume boxes to larger-volume boxes. We iterate over the range of possible
volumes k from one to |S| and we compute T [u, v] for all u, v ∈ S such that box(u, v) has volume k.
For each such u, v, we first take O(nd) time to check whether the examples in box(u, v) all have the
same label. If so, then we put T [u, v] = 0. Otherwise, T [u, v] is defined by the following recurrence:

T [u, v] = min
i∈[d]

min
σ∈Si

T [u, vi(σ)] + T [ui(σ), v] + 1.

Thus, for each coordinate i of u and v, we use the values Si as options. Note that each considered table
entry on the right-hand side corresponds to a box of strictly smaller volume than the box on the left-
hand side. To see that the recurrence is correct, observe that a minimum-size decision tree T for E ∩
box(u, v) requires at least one cut. Consider the cut t at the root of T , shifted to a closest split if neces-
sary. At some point while taking the minimum we have i = dim(t) and σ = thr(t). The subtrees of T
rooted at the children of t are decision trees for E∩box(u, vi(σ)) and E∩box(ui(σ), v), respectively.
Thus, the left-hand side upper bounds the right-hand side. For the other direction, observe that combin-
ing any two decision trees for E∩box(u, vi(σ)) and E∩box(ui(σ), v) with a cut at σ in dimension i
gives a decision tree for E ∩ box(u, v), as required. Finally, the size of the minimum-size decision
tree for E can be found in T [u∗, v∗], where all coordinates of u∗ and v∗ are −∞ and ∞, respectively.

As to the running time, table T has O(D2d
max) entries, each of which each takes O(nd) time to fill:

checking for consistency and then trying each distinct split and looking up the size of the respective
minimum-size subtrees. We proceed by increasing the domain in each dimension by one split at a time,
one coordinate at a time. Thus, the total running time adds up to O(D2d

maxnd) = O(n2d+1d).

Before we elaborate on our next result, we first show how to improve Theorem 4 in [21], which
shows that, given an instance (E, λ, s) of DTS, and given a subset D of the dimensions, it is possible

to compute in 2O(s2)|E|1+o(1) log |E| time the smallest decision tree among all decision trees of size
at most s (if they exists), that use exactly the given subset D in their cuts — none can be left out. The
main idea is to first enumerate the structure of all possible decision trees of size s, before finding
thresholds that work for the instance. Instead of enumerating all possible decision trees and finding
the right thresholds afterwards, we interleave the two processes, see Algorithm 1. Furthermore, we
no longer take as input a subset D of dimensions, which will be used for labeling internal nodes in
the decision tree, but we simply bound the number d of dimensions in the instance. By iterating over
a subset D instead of all d dimensions, Algorithm 1 can be adapted towards the initial setting.
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Algorithm 1 SMALLESTDECISIONTREE(E, d, s)

Input: Example set E and numbers s and d
Output: Decision tree T for E with at most s internal nodes using d dimensions to label internal

nodes.

1: Set sdt to nil, with |nil| = ∞
2: if s = 0 then
3: if E is uniform then
4: return leaf , with |leaf | = 0
5: else
6: return nil, with |nil| = ∞
7: for i = 1 to d do
8: for j = 0 to s− 1 do
9: t = BINARYSEARCH(E, i, j)

10: r = SMALLESTDECISIONTREE(E[fi > t], d, s− j − 1)
11: l = SMALLESTDECISIONTREE(E[fi ≤ t], d, j)
12: dt = (fi = t) ∪ (l, r), with |dt| = |l|+ |r|+ 1
13: if |dt| < |sdt| then
14: sdt = dt
15: return sdt

Algorithm 2 BINARYSEARCH(E, i, j)

Input: Example set E and numbers i and j
Output: Largest threshold t for which E[fi ≤ t] has a decision tree of size j

1: Set D to be an array containing Di in ascending order
2: Set L = 0, R = |Di| − 1, b = 0
3: while L ≤ R do
4: m = ⌊(L+R)/2⌋
5: if SMALLESTDECISIONTREE(E[fi ≤ D[m]], d, j) 6= nil then
6: L = m+ 1, b = 1
7: else
8: R = m− 1, b = 0
9: if b = 1 then

10: return D[m]
11: return D[m− 1], with D[−1] = D[0]− 1

Theorem 3.2. k-DTS is solvable in O((s3d)s|E|1+o(1)) time, and is FPT parameterized by s+ d.

Proof. Similar to the algorithm by Ordyniak and Szeider [21], we binary search for the largest
threshold value t in dimension i for which the left subtree can still have a decision tree of size j on
the example set E[fi ≤ t]. If we can find a decision tree of size at most s− j − 1 for the remaining
examples in the right subtree, then we have found a decision tree. However, if we cannot find such a
decision tree for the right subtree, then we could not find a decision tree even for smaller threshold
values of the root: there would be even more examples left for the right decision tree, which should
still be of size at most s− j − 1.

However, instead of enumerating all trees and assignments of dimension labels to internal nodes, we
loop over these options during the main procedure in Algorithm 1. We first prove that this still leads
to an algorithm that correctly solves k-DTS. When Algorithm 1 returns a decision tree T (not nil),
then this decision tree can have at most s internal nodes and uses at most d dimensions to make cuts.
Thus T is proof that there is a solution to k-DTS parameterized by s+ d.

In the other direction, assume there is a solution T ∗ for an instance (E, λ, s) of k-DTS. We show
by induction over s that Algorithm 1 finds a decision tree of size at most s. In the base case, where
s = 0, the existence of T ∗ shows that all examples in E have the same label, which is also detected
in Line 3 of Algorithm 1. Assume as an induction hypothesis that the statement holds for all instances
of k-DTS in which we seek for decision trees of size less than s. Consider the root p∗ of T ∗ and let
s∗ be the number of internal nodes of T ∗. Let j∗ be the number of internal nodes in the left subtree;
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then the number of internal nodes in the right subtree T ∗

r of T ∗ is necessarily s∗ − j∗ − 1. Since
Algorithm 1 loops through all dimensions and all ways of dividing the number of internal nodes
over the left and right subtrees, there is one iteration of the loops in Line 7 and 8 in Algorithm 1
where the chosen dimension is dim(p∗), the chosen number of internal nodes for the left subtree
equals j∗, and hence the right subtree should have at most s∗ − j∗ − 1 internal nodes. Decision tree
T ∗

r witnesses that there is a decision tree for E[fdim(p∗) ≤ thr(p∗)] with at most s∗ − j∗ − 1 internal

nodes. Thus, in Line 9 of Algorithm 1, Algorithm 2 will find a threshold t ≥ thr(p∗) because, by
the induction hypothesis, the calls to Algorithm 1 in Algorithm 2 in which D[m] ≤ thr(p∗) will
return with a positive answer. Again by the induction hypothesis we will thus obtain decision trees
of the corresponding sizes in Lines 10 and 11 of Algorithm 1. As we check in Line 13 whether the
found decision tree is smaller than the decision tree in another iteration, we will output a tree of
size s or smaller. Thus, Algorithm 1 finds a decision tree that has at most s internal nodes.

We now prove the running-time bound. Algorithms 1 and 2 together build a recursion tree in which
the nodes correspond to calls of Algorithm 1. In each node, corresponding to a call to Algorithm 1
with some set E and numbers s, d, there are at most sd(2 + log |E|) = sd log(4|E|) recursive calls
to Algorithm 1: For each iteration of the two loops in Algorithm 1 there are two direct recursive
calls and at most log |E| in Algorithm 2. In each recursive call the parameter s decreases by at least
one. Hence, the overall size of the recursion tree is O((sd log(4|E|))s). For each node N of the
recursion tree, we spend O(|E|) time, as the main running time incurred by the call to Algorithm 1
(corresponding to N ) is in the uniformity check of E (Line 3 of Algorithm 1); the running time of
the remaining bookkeeping tasks in Algorithm 1 and 2 can be charged to the child nodes of N .

Finally, bounding (log(4|E|))s uses the following well-known technique: We claim that

(logm)s = O(s2s · m1/s). To see this, observe that the claim is trivial for m < s2s (as
then (logm)s < (2s log s)s = ss(2 log s)s ≤ s2s). Otherwise, if m ≥ s2s, then we have

logm ≤ s2m1/s2 because this holds for m = s2s (observe that dividing both sides by s yields

2 log s ≤ s1+2/s which clearly holds) and the derivative wrt. m of the left-hand side is at most as

large as the derivative (wrt. m) of the right-hand side, that is, 1/(ln(2)m) < m1/s2−1. Thus, in this

case (logm)s ≤ s2sm1/s, showing the claim. Substituting 4|E| for m in (logm)s = O(s2s ·m1/s)
we get the overall running time bound of O((sd)s · s2s · |E|1+1/s) = O((s3d)s · |E|1+o(1)).

The strategy employed by Ordyniak and Szeider to solve DTS is to first find a subset D of dimensions
which should be cut to find a smallest decision tree [21]. Once the set D has been determined, they
use their Theorem 4 to find a smallest decision tree. In our case, Algorithm 1 works directly towards
the final goal, both selecting dimensions to cut and finding a smallest decision tree at the same time.
We can adapt the algorithm to Ordyniak and Szeider’s setting of cutting only within a specified set of
dimensions by simply restricting the the dimensions to select in Line 7 in Algorithm 1, obtaining a
more efficient running time.

Corollary 3.3. Given a subset D of dimensions, with |D| ≤ s, where we are allowed to cut only (a

subset of) dimensions in D, DTS is solvable in 2O(s(log s))|E|1+o(1) time.

We now consider the parameter R. For simplicity, we will in the following assume that R restricts the
number of red leaves in a decision tree, and we assume that there are at least as many blue leaves as
red leaves. Observe that this is without loss of generality, because to solve the general case where R
bounds the smaller one of the number of red leaves or the number of blue leaves we may simply try
both options. Below, we call an internal node that has red leaves in both subtrees an essential node.

Lemma 3.4. A minimum-size decision tree T with R red leaves has at most R− 1 essential nodes.

Proof. Consider the subtree T ′, whose root is the essential node closest to the root of T . There is
only one such node, as either the root of T is essential, or one of its subtrees contains only blue leaves.
Remove from T ′ all maximal rooted subtrees that contain only blue leaves (possibly consisting of
only a single blue leaf). The resulting tree contains degree-2 nodes, which must be non-essential.
Contracting the degree-2 nodes, we again obtain a binary tree T ∗. Note that the internal nodes of
T ∗ one-to-one correspond to the essential nodes of T . Tree T ∗ still has all R red leaves of T (and
no blue ones), and thus consists of at most R− 1 internal nodes.

Lemma 3.5. In a minimum-size decision tree T with R red leaves, each root-to-leaf path has at most
2d consecutive non-essential nodes, where d is the number of dimensions.

6
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Figure 3: Construction of Lemma 3.5: path p in
yellow, and nodes n1 and n2 respectively have
thresholds t1 and t2 in dimension i.

G
H

φ

Figure 4: A subgraph isomor-
phism φ (in gray) is a mapping from
the vertices of H to vertices of G.

Proof. Assume for a contradiction that a minimum-size decision tree T exists for example set E that
has 2d+ 1 consecutive non-essential nodes on a root-to-leaf path p. Let n0 be the essential node that
is the child of the 2d+ 1-th consecutive non-essential node in p. Since there are 2d+ 1 non-essential
nodes, there must be three nodes n1 = (i, t1), n2 = (j, t2), and n3 = (l, t3) such that i = j = l.
Additionally, at least two of those nodes have a blue leaf as their right (or left) child. Assume w.l.o.g.
that n1 and n2 have a blue leaf as their right child, t1 < t2, and either t3 < t1 or t2 < t3. Thus, n1 is
closer to n0 than n2 on the root-to-leaf path p (see Figure 3).

Now consider a decision tree T ∗ that is identical to T , except it does not contain n2, nor the blue
leaf n4 attached at n2 (as its right child) — the parent of n2 is directly connected to the internal
node that is the left child of n2. The node n∗

0 in T ∗, corresponding to n0 in T , is unaffected by this
change, meaning that E[T, n0] = E[T ∗, n∗

0], for the following reason. All blue examples in E[T, n4]
which follow the root-to-leaf path to n∗

1 in T ∗ (corresponding to n1 in T ), will not reach n∗

0, since in
dimension i = j each such example e has a coordinate ce, for which holds that t1 < t2 < ce. Thus,
such examples belong in the leaf node connected to n∗

1. As a result, T ∗ must be a smaller decision
tree for E than T , contradicting the assumption that T is a minimum-size decision tree.

Lemmas 3.4 and 3.5 together show that a minimum size decision tree has at most 2d non-essential
nodes before each essential node and each red leaf. Thus such a tree has at most 2d(2R− 1) internal
nodes. We can therefore apply Theorem 3.2 to prove that DTS is FPT with d and R as parameters.

Theorem 3.6. DTS is solvable in O((s3d)s|E|1+o(1)) time, with s = 2d(2R− 1), and hence DTS
is FPT parameterized by d+R.

4 Running-time lower bound

We now prove the following lower bound for computing decision trees.

Theorem 4.1. MINIMUM DECISION TREE SIZE (DTS) is W[1]-hard with respect to the number d
of dimensions. Assuming the Exponential Time Hypothesis there is no algorithm solving DTS in time
f(d)no(d/ log d) where n is the input size and f is a computable function.

The remainder of this section is devoted to the proof of Theorem 4.1. Below, for a graph G we use
V (G) to denote its vertex set and E(G) for its edge set. We give a reduction from the PARTITIONED

SUBGRAPH ISOMORPHISM (PSI) problem. Its input consists of a graph G with a proper K-
coloring col : V (G) → [K], such that no two adjacent vertices share a color, and a graph H with
vertex set [K] that has no isolated vertices. The question is whether H is isomorphic to a subgraph
of G that respects the colors, i.e., whether there exists a mapping φ : V (H) → V (G) such that (i)
each vertex of H is mapped to a vertex of G with its color, i.e., col(φ(c)) = c for each c ∈ V (H) and
(ii) for each edge {c, c′} in H , {φ(c), φ(c′)} ∈ E(G) is an edge of G. See Figure 4 for an example
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of such a mapping. In that case, we also say that φ is a subgraph isomorphism from H into G. In the
following, we let mG = |E(G)|, nH = |V (H)| and mH = |E(H)|. Observe that nH ≤ 2mH since
H has no isolated vertices. For each color k ∈ [K], we denote by Vk = {v ∈ V (G) | col(v) = k} the
vertices of G with color k. We assume without loss of generality that there is n ∈ N such that for all
k ∈ [K] we have |Vk| = n (otherwise add additional isolated vertices to G as needed) and that if there
is no edge in H between two vertices u, v ∈ V (H), then there are no edges between Vu and Vv in G.

Since PSI contains the MULTICOLORED CLIQUE problem [6] as a special case, PSI is W[1]-hard

with respect to mH . Moreover, Marx [15, Corollary 6.3] observed that an f(mH) · no(mH/ logmH)-
time algorithm for PSI would contradict the Exponential Time Hypothesis. Our reduction will
transfer this property to DTS parameterized by the number of dimensions.

Outline. Given an instance (G,H) of PSI we now describe how to construct an equivalent instance
(E, λ) of DTS. Our construction consists of two types of gadgets. First, for each edge {c, c′} ∈ E(H),
we use a two-dimensional edge-selection subspace to model the choice for an edge {u, v} ∈ E(G)
with col(u) = c, col(v) = c′. Second, for each vertex c ∈ V (H), we use a one-dimensional vertex-
verification subspace to check whether the chosen edges with an endpoint of color c consistently end
in the same vertex u ∈ V (G) with col(u) = c. Furthermore, we classify examples in our construction
into two types: primary and dummy examples. We use primary examples to model vertices and edges
in G, while dummy examples are used only to force certain cuts in the constructed instance.

We first describe the constructed instance (E, λ) of DTS by giving the labeled point sets that we
obtain when projecting the examples in E to the edge-selection and vertex-verification subspaces.
Later, we define the examples in E by giving the points they project to in each of the subspaces.
We specify labels for most of these points, and primary examples may project only to points with
a matching label (red or blue), whereas dummy examples can project to any point. In each subspace
there will be several points that will be used by examples in order to achieve the correct behavior
of each gadget. On the other hand, most examples will play a role only in very few subspaces and
the other dimensions shall not be relevant for them. To achieve this property, we reserve in each
subspace one unlabeled point (usually with the minimum or the maximum coordinate) that can
be used by all examples that shall not be separated from each other in this specific subspace. The
vertex-verification subspaces have a second unlabeled point that can only be used by dummy vertices.
We call an example that projects to the unlabeled point of some subspace irrelevant for this subspace
and conversely, the subspace is irrelevant for this example.

We need some more tools to describe the points in the edge-selection and vertex-verification subspaces:
In one-dimensional subspaces, the precise coordinates of the points do not matter and we rather
specify their order. The main ingredient in the construction are pairs of a red and a blue point that
need to be separated: An rb-pair is a pair (r, b) of points that are consecutive in the linear order with
the red point preceding the blue point. To avoid that rb-pairs interfere with each other, we separate
them with forced cuts. To achieve this, we use what we call dummy tuples. A dummy tuple consists
of 2(mG + 2) points (dummy points) to which only dummy examples can project. The first two are
red, the second two are blue, and so on, and the last two are blue (without loss of generality, we
assume that mG is even); see Figure 5a. Dummy tuples are placed between consecutive rb-pairs.
We later project dummy examples to the points in a dummy tuple so to ensure the following two
properties. First, only examples with colors matching the respective point in the tuple can project to
such a point. Second, these examples force mG + 3 cuts in the corresponding subspace as follows. A
number of mG + 1 cuts must be placed between each pair of equally colored and adjacent middle
dummy points, since we ensure that the examples that project here differ only in the subspace of this
dummy tuple and in no other subspace. Additionally, two cuts must be placed between the outer
dummy points and the adjacent rb-pair, since we ensure that the dummy examples that project to
the outer points differ from an example projecting to the neighboring point in the rb-pair only in the
subspace of the dummy tuple.

Edge-selection. We now describe a two-dimensional edge-selection subspace Se for an edge e of H ,
see Figure 5b for an illustration. We refer to the two dimensions of Se by x and y-dimension of Se.
Except for the unlabeled point, each point p has coordinates of the form (cp, cp), and we therefore
simply specify the linear point order. Let e1, e2, . . . , ej denote the edges of G whose endpoints have
the same colors as e. For each edge ei, we place an rb-pair called ei’s edge pair. Between any two
edge pairs we put a dummy tuple. We place an unlabeled point whose x-coordinate is smaller than
that of any other point and whose y-coordinate is larger than that of any other point. We allocate
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(a) (b)

Figure 5: (a) Two rb-pairs (disks) and a dummy tuple (squares) between them, along with cuts forced
by the dummy tuple. Examples projecting to connected points differ only in this dimension. (b) An
edge-selection subspace. Consecutive red-blue pairs are shown as disks, while dummy examples
are squares. The unlabeled point is shown in white. The yellow cuts show how one pair will be left
unseparated, and cuts can be placed such that this pair is not separated from the unlabeled point either.

a budget of (j − 1) · (mG + 4) cuts that shall be used for performing cuts in these two dimensions.
The idea is that, by using (j − 1) · (mG + 3) cuts, it is possible to have a cut between every edge
pair and the dummy tuples adjacent to it (2(j − 1) cuts) and the inner pairs of each dummy tuple
((j − 1) · (mG + 1) cuts), and the remaining j − 1 cuts can then be used to cut all but one of the
edge pairs, which corresponds to choosing the edge whose edge pair is not cut. Conversely, for
each edge e of H , there is a decision tree of size (j − 1) · (mG + 4) for the points in the subspace,
for which only the example set of a single leaf contains both red and blue points, and it contains
precisely the edge pair of the edge ei of G and the unlabeled point; see Figure 5b.

Vertex-verification. Next, we describe a vertex-verification subspace for a vertex v of H . The vertex-
verification subspace of v is one-dimensional, and we again describe its projection by giving the order
of the labeled points. We first place a left unlabeled point, then one rb-pair, called a vertex pair, for
each vertex of G whose color is v, and then a right unlabeled point; see Figure 6. We allocate a budget
of a single cut for each vertex-verification space. This budget allows to place a cut that separates
one vertex pair as well as the left unlabeled and the right unlabeled point. The idea is that all but the
vertex pair that corresponds to the vertex of G that has been selected shall be separated by cuts in
the edge-selection subspaces, and therefore a single cut suffices in the vertex-verification subspace.

Synthesis and examples. We now describe the instance (E, λ, s) of DTS that we construct for a
given instance (G,H) of PARTITIONED SUBGRAPH ISOMORPHISM. Our examples are elements
of a space that contains mH two-dimensional edge-selection subspaces and nH one-dimensional
vertex-verification subspaces, i.e., our points are in dimension d = 2mH + nH . According to the
budgets of cuts for the subspaces given above, we put the upper bound s on the size of the desired
decision tree to be s = (mG + 4) · (mG −mH) + nH .

Our construction contains two red and two blue primary examples for each edge of G. For each
edge e = {u, v} of G, let Suv denote the edge-selection subspace corresponding to the edge
{col(u), col(v)} of H and let Su and Sv denote the vertex-verification subspaces corresponding
to col(u) and col(v), respectively. We create two primary example pairs U and V , each consisting
of a red and a blue example, which project to the vertex pair corresponding to u and v in Su and
in Sv, respectively. They both project to the edge pair of e in Suv. In all other dimensions, these
pairs project to the (right) unlabeled point. This finishes the construction of our primary examples.

We now describe the dummy examples. We create for each dummy tuple D con-
tained in an edge-selection subspace S a number of 2(mG + 1) + 1 pairs of examples
L1, L2, . . . , LmG+1, R1, R2, . . . , RmG+1, P that each consist of a red and a blue dummy exam-
ple. In the subspace S, the pairs Li and Ri project to pairs of adjacent red and blue points in the
middle of D. In all other edge-selection subspaces, they project to the unlabeled point. In each
vertex-verification subspace, the pairs Li and Ri project to the left and the right unlabeled point,
respectively. The red example of the pair P projects in S to the outer red point of D, and it coincides
in all other subspaces with some fixed blue primary example b that projects to the blue point preceding
the outer red point of D in S. Likewise, the blue example of P projects in S to the outer blue point
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Figure 6: An instance (E, λ) for graphs G and H . The gray squares show edge-selection subspaces
for the each color combination. The combinations and indices of colored vertices in G are shown left
of each subspace. The colored rectangles show vertex-verification dimensions for the corresponding
color, with vertex pairs per index having gray backgrounds. Unlabeled points are shown in white.
Edges connecting points in different subspaces correspond to examples of vertices in H , and show
the projection of those examples in the respective subspaces. The yellow cuts correspond to a solution
to DTS in (G,H, col), with dashed cuts indicating multiple cuts through (omitted) dummy tuples.

of D, and it coincides in all other subspaces with some fixed red primary example r that projects
to the red point succeeding the outer red point of D in S. Observe that the examples of P can be
separated from r and b only in subspace S, and therefore force the presence of two cuts. Similarly,
each of L and R and the remaining examples can be separated only in S.

Finally, we create for each vertex-verification subspace S one dummy pair U whose red and blue
examples project to the left and to the right unlabeled point in S, respectively. In all other dimensions,
they project to the (right) unlabeled point. A key technical point is that the pair U enforces at least
one cut in S. However, if we separate U by some cut C before separating both of the pairs L and R of
some dummy tuple D, then L and R end up on different sides of C, thereby increasing the necessary
number of cuts in the edge-selection subspace of D.

Lemma 4.2. The instance (G,H, col) of PSI is a yes-instance, if and only if the instance (E, λ, s)
of DTS is a yes-instance.

Proof. ⇒: If (G,H, col) is a yes-instance for PSI, then there is a subgraph isomorphism φ from
H to G. We construct a decision tree for (E, λ, s) as follows. The decision tree’s inner nodes
form a path and thus we specify the sequence of cuts that we make in the nodes of the path. We
start by placing cuts in the edge-selection subspace Se for each edge e ∈ E(H). Denote the edges
of G whose endpoints match the colors of e by e1, e2, . . . , en as in the description of Se. Let i
be such that φ(e) = ei. We first make the following cuts in the y-dimension of Se in ascending
order. Cut between the edge pairs of e1, e2, . . . , ei−1, and make all cuts prescribed by dummy tuples
succeeding e1, . . . , ei−1. Then we make the following cuts in the x-dimension of Se in descending
order. Cut between the edge pairs of en, en−1, . . . , ei+1, and make all cuts prescribed by dummy
tuples preceding en, en−1, . . . , ei+1; see Fig. 5b. Note that these are (mG + 4) · (n − 1) cuts in
this subspace, and in total (mG + 4) · (mG −mH) cuts in all of the mH edge-selection subspaces.
Additionally, note that each cut has one side on which there are only red or only blue examples, i.e.,
these cuts correspond to a decision tree whose internal nodes form a path. After performing these
cuts for all edges of H , all pairs of dummy examples associated with dummy tuples are separated
from each other. The only primary example pairs that are not yet separated are those that correspond
to the edges whose edge pairs have not been cut in the edge-selection subspaces. These examples are
not separated from each other either, because they are not separated from the irrelevant examples in
their respective subspaces.

Afterwards, for each vertex c of H , we cut between the vertex pair of the vertex φ(c) ∈ V (G) in the
vertex-verification subspace S of c. Observe that this separates both the dummy example D of S and
one of the two pairs of examples that corresponds to the selected edges incident to φ(c) (the other one
is separated by the corresponding cut in the vertex-verification subspace of the other endpoint). Note
that each of these nH cuts separates a set of red examples from the remaining examples, and they can
be performed in an arbitrary order. In total, we have used (mG +4) · (mG −mH) + nH = s cuts, to
separate the red from the blue examples, and in fact, the internal nodes of the decision tree form a path.

⇐: Now assume that (E, λ) admits a decision tree T with s cuts. First, observe that for each dummy
tuple, the tree T contains mG + 3 distinct cuts by the way we have defined the projections of the
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dummy examples. In total, there are (mG + 3) · (mG −mH) such cuts. Furthermore, since in each
vertex-verification subspace there is a dummy pair, there are further nH distinct cuts in T . Call all
of these cuts required.

Say that an edge of G is chosen if its primary red and blue examples are not cut apart in an
edge-selection subspace by T . Among all solution decision trees, pick T such that it has the
minimum number of nodes that make cuts in vertex-verification subspaces. We claim that, for
each edge e of H , there is at most one chosen edge in G whose endpoints have the same colors
as e. For a contradiction, assume that edges f and f ′ of G are chosen and their endpoints’ colors
are the endpoints of e ∈ E(H). Since the primary examples of f and f ′ only differ in Se and
in vertex-verification subspaces, these examples are cut apart in vertex-verification subspaces.
Let t, t′ denote nodes in T that cut the primary examples of f and f ′, respectively, via a cut in a
vertex-verification subspace. Consider the lowest common ancestor a of t and t′. Observe that E[a]
contains both the primary examples of f and f ′. Thus, E[a] also contains all examples that occur
in the dummy tuples between f and f ′ in the edge-selection subspace Se.

Consider one such dummy tuple D and let b, b′ be the children of a. Consider the case where a
equals t or t′, that is, a is a cut in a vertex-verification subspace corresponding to the endpoints
of e. Then, a cuts each Ri of D from each Li of D. Thus for each i ∈ {1, 2, . . . ,mG + 1} it is
impossible for T to cut the pair Ri and Li at the same time in the subtree of T rooted at a and thus,
in addition to the required cuts, there are mG + 1 further cuts in T . That is, the number of cuts in
T is at least (mG + 3) · (mG − mH) + nH + mG + 1 > (mG + 4) · (mG − mH) + nH = s, a
contradiction. Thus, a is not equal to t or t′. If a does not cut at least one primary example of f from
at least one primary example of f ′, then we may choose t or t′ instead in a subtree rooted at b or b′.
Thus, assume that a cuts at least one primary example of f from at least one primary example of f ′.
Again, these primary examples only differ in Se and in vertex-verification subspaces. This implies
that a is either a cut in a vertex-verification subspace corresponding to an endpoint of e or a cut in Se

somewhere between the primary examples of f and f ′. In the first case, we get a contradiction in
the same way as for the case where a is equal to t or t′. So assume that a is a cut in Se somewhere
between the primary examples of f and f ′. Since the unlabeled point in Se is on exactly one side
of this cut and all examples that are irrelevant for Se project to the unlabeled point, it follows that
either E[b] or E[b′] contains only dummy examples or primary examples of edges with the same
colors as e; say E[b] does. Assume that t is in the subtree of T rooted at b. This is without loss of
generality by renaming. Note that E[t] cannot contain two pairs of primary examples corresponding
to different edges: In this case, E[t] contains also all examples of the dummy tuples between the two
edges in Se. Performing the cut at t in a vertex-verification subspace would hence introduce mG + 1
cuts in addition to the required ones (as before), a contradiction. Thus, E[t] contains among primary
examples only those of f . Hence, we may replace t by a cut in Se, a contradiction, because T has
the minimum number of nodes that make cuts in vertex-verification subspaces. Thus, indeed, for
each edge e of H , there is at most one chosen edge in G whose endpoints have the same colors as e.

By the calculation of required edges it now follows that also there is at least one chosen edge for
each edge e of H . For each edge e in H the primary examples of the chosen edge for e need to be
separated in both vertex-verification subspaces corresponding to the endpoints of e. Furthermore,
for each vertex-verification subspace there is one required cut in that subspace. Thus, two chosen
edges whose endpoints have the same color are adjacent to the same vertex of that color. Thus, the
chosen edges induce a subgraph isomorphism φ from H to G.

Since the reduction takes polynomial-time, and d = 2mH+nH ≤ 4mH , Theorem 4.1 readily follows.

5 Conclusion

We have begun charting the boundary of tractability for learning small decision trees with respect
to the number d of dimensions. While exponents in the running time need to depend on d, this
dependency is captured by the number of leaves labeled with the first class, the class with the fewest
leaves. It would be interesting to analyse what other features of the input or output can capture the
combinatorial explosion induced by dimensionality; this can be done by deconstructing our hardness
result [14]. Interesting parameters that are necessarily unbounded for the reduction to work include
the number of examples that have the same feature values and the maximum number of alternations
between labels when sorting the examples according to their feature values in a dimension.
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