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Abstract
A graph is P

8
-free if it contains no induced subgraph isomorphic to the path P

8
 on 

eight vertices. In 1995, Erdős and Gyárfás conjectured that every graph of minimum 
degree at least three contains a cycle whose length is a power of two. In this paper, 
we confirm the conjecture for P

8
-free graphs by showing that there exists a cycle of 

length four or eight in every P
8
-free graph with minimum degree at least three.

Keywords  Erdős–Gyárfás conjecture · P
8
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1  Introduction

All graphs considered in this paper are undirected and simple. Let G be a graph. 
The vertex set, the edge set, the maximum degree and the minimum degree of G are 
denoted by V(G), E(G), Δ(G) and �(G) , respectively. For a vertex v ∈ V(G) , the set 
of neighbors of v in G is denoted by NG(v) or N(v) if G is understood. Let S ⊆ V(G) , 
we use G[S] to denote the subgraph of G induced by S and G − S to denote the sub-
graph G[V(G) ⧵ S] . For any two vertices u, v ∈ V(G) , we write u ∼ v if uv ∈ E(G) 
and u ≁ v otherwise. A uv-path is a path having endvertices as u and v.

A path on k vertices is denoted by Pk . A cycle on k vertices is denoted by Ck and 
is called a k-cycle. A 3-cycle is also called a triangle. The length of a path or cycle 
is the number of edges it contains. The girth of a graph G, denoted by g(G), is the 
length of a shortest cycle in G. The well-known Erdős–Gyárfás Conjecture [3] states 
that every graph of minimum degree at least three contains a 2m-cycle for some inte-
ger m ≥ 2 . The conjecture is confirmed for some graph classes including K

1,m-free 
graphs of minimum degree at least m + 1 or maximum degree at least 2m − 1  [8], 
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3-connected cubic planar graphs [6], planar claw-free graphs [2] and some Cayley 
graphs [4, 5]. In [7], it is proved that every cubic claw-free graph contains a cycle 
whose length is 2k , or 3 ⋅ 2k , for some positive integer k.

Given a graph H, a graph G is H-free if G does not contain any induced subgraph 
isomorphic to H. In this paper, we confirm Erdős–Gyárfás Conjecture for P

8
-free 

graphs by showing the following two theorems.

Theorem 1.1  Every P
5
-free graph with minimum degree at least three contains a C

4
.

Theorem 1.2  Every P
8
-free graph with minimum degree at least three contains a C

4
 

or C
8
.

Theorem 1.1 is best possible in terms of the order of the forbidden path, as the 
Petersen graph (see Fig. 1a) is P

6
-free and C

4
-free. In confirming the Erdős–Gyárfás 

Conjecture for P
8
-free graphs, Theorem  1.2 alone suffices. But we include Theo-

rem 1.1 as it is stronger than the restriction of Theorem 1.2 on P
5
-free graphs. The 

remainder of this paper is organized as follows. In Sect. 2, we prove Theorem 1.1. In 
Sect. 3, we prove Theorem 1.2.

2 � Proof of Theorem 1.1

We will prove Theorem 1.1 by applying the following lemma which was shown in 
[7].

Lemma 2.1  [7] Let G be a graph with �(G) ≥ 3 . If G does not contain C
4
 , then G has 

an induced cycle Ck for some k ≥ 5.

Proof of Theorem 1.1  Let G be a P
5
-free graph with �(G) ≥ 3 . Suppose that G does 

not contain C
4
 . By Lemma  2.1, G contains an induced cycle C = v

1
v
2
… vkv1 for 

some k ≥ 5 . Since G is P
5
-free, k = 5 . As �(G) ≥ 3 and G contains no C

4
 , v

1
 has a 

neighbor v
6
∉ {v

1
, v

2
,… , v

5
} and v

6
≁ vi for i ∈ {3, 4} . If v

6
≁ v

2
 , then v

6
v
1
v
2
v
3
v
4
 is 

Fig. 1   Illustration of Lemma 3.1
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an induced P
5
 , a contradiction. Assume that v

6
∼ v

2
 , then v

6
≁ v

5
 otherwise there is 

a C
4
 . It follows that v

6
v
1
v
5
v
4
v
3
 is an induced P

5
 , a contradiction. 	�  ◻

3 � Proof of Theorem 1.2

We will need the lemma below in proving Theorem 1.2.

Lemma 3.1  [1] Let G be a connected P
8
-free graph with g(G) ≥ 5 and �(G) ≥ 3 . 

Then one of the following holds: 

	 (i)	 G is the Petersen graph (Fig. 1a);
	 (ii)	 G is the Heawood graph (Fig. 1b);
	 (iii)	 G is the graph obtained by contracting one edge in the Heawood graph 

(Fig. 1c).

Proof of Theorem 1.2  Let G be a P
8
-free graph with �(G) ≥ 3 . We may assume that 

G is connected. Otherwise, we just consider a component of G. Suppose to the con-
trary that G contains neither C

4
 nor C

8
 . Since each of the Petersen graph, the Hea-

wood graph, and the graph obtained by contracting one edge in the Heawood graph 
contains a C

8
 (see the red cycles in Fig. 1), it follows that g(G) = 3 by Lemma 3.1. 

Let C = v
1
v
2
v
3
v
1
 be a triangle in G. Then vi has a neighbor vi+3 for i ∈ {1, 2, 3} by 

�(G) ≥ 3 . Furthermore, v
4
, v

5
 and v

6
 are all distinct and pairwise nonadjacent as G 

contains no C
4
.

We say that two cycles are adjacent if they share a common edge. We claim that 
triangles in G are not adjacent to any 5-cycles or 6-cycles. 	�  ◻

Claim 3.2  No C
3
 and C

5
 are adjacent.

Proof  We still use C to denote an arbitrary C
3
 of G. It is sufficient to prove that 

v
4
 and v

5
 have no common neighbor. Suppose not, let v

7
∉ {v

1
, v

2
,… , v

6
} 

be a common neighbor of v
4
 and v

5
 . As �(G) ≥ 3 and G contains no C

4
 , vi has a 

neighbor vi+4 ∉ {v
1
,… , v

7
} for i ∈ {4, 5} and v

8
≠ v

9
 . If v

8
∼ v

7
 , v

9
∼ v

7
 , then 

v
1
v
3
v
2
v
5
v
9
v
7
v
8
v
4
v
1
 is a C

8
 . So at least one of v

8
 and v

9
 is not adjacent to v

7
 . By sym-

metry, we assume that v
8
≁ v

7
 . As G contains no C

4
 , v

6
≁ vi for i ∈ {1, 2, 4, 5} . Fur-

thermore, v
6
≁ v

8
 , as otherwise v

6
v
3
v
1
v
2
v
5
v
7
v
4
v
8
v
6
 is a C

8
 ; and v

6
≁ v

9
 , as otherwise 

v
6
v
3
v
2
v
1
v
4
v
7
v
5
v
9
v
6
 is a C

8
 . We consider two cases regarding whether v

6
∼ v

7
.

Case 1 v
6
≁ v

7
.

As �(G) ≥ 3 , v
6
 has two neighbors v

10
, v

11
∉ {v

1
, v

2
,… , v

9
} . For each 

i ∈ {10, 11} , we have the following nonadjacencies:
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vi ≁ v
2
 : otherwise viv6v3v2vi is a C

4
;

vi ≁ v
4
 : otherwise viv6v3v1v2v5v7v4vi is a C

8
;

vi ≁ v
5
 : otherwise viv6v3v2v1v4v7v5vi is a C

8
;

vi ≁ v
8
 : otherwise viv6v3v2v5v7v4v8vi is a C

8
.

If one of v
10

 and v
11

 , say v
11

 , is adjacent to v
3
 , then v

10
≁ v

3
 , as otherwise 

v
10
v
6
v
11
v
3
v
10

 is a C
4
 ; and v

10
≁ v

7
 , as otherwise v

10
v
6
v
11
v
3
v
2
v
1
v
4
v
7
v
10

 is a C
8
 . As G 

has no C
4
 , it then follows that v

10
v
6
v
3
v
2
v
5
v
7
v
4
v
8
 is an induced P

8
 , a contradiction. 

Now assume that vi ≁ v
3
 for each i ∈ {10, 11} . As G contains no C

4
 , at most one 

of v
10

 and v
11

 is adjacent to v
7
 . Assume by asymmetry that v

10
 is nonadjacent to v

7
 . 

Then v
10
v
6
v
3
v
2
v
5
v
7
v
4
v
8
 is an induced P

8
 , a contradiction. (See Fig. 2a).

Case 2 v
6
∼ v

7
.

As �(G) ≥ 3 , v
6
 has a neighbor v

10
∉ {v

1
, v

2
,… , v

9
} . Note that v

10
≁ vi 

for i ∈ {1, 2, 4, 5} as G contains no C
4
 . Furthermore, v

10
≁ v

8
 , as otherwise 

v
10
v
6
v
3
v
2
v
5
v
7
v
4
v
8
v
10

 is a C
8
 ; and v

10
≁ v

9
 , as otherwise v

10
v
6
v
3
v
1
v
4
v
7
v
5
v
9
v
10

 is a C
8
.

Subcase 2.1 v
10

∼ v
3
.

In this case, v
10

≁ v
7
 , as otherwise v

10
v
3
v
6
v
7
v
10

 is a C
4
 . So v

10
 has a neighbor 

v
11

∉ {v
1
, v

2
,… , v

10
} . Then

v
11

≁ v
3
 : otherwise v

11
v
10
v
6
v
3
v
11

 is a C
4
;

v
11

≁ v
2
 : otherwise v

11
v
10
v
3
v
2
v
11

 is a C
4
;

v
11

≁ v
5
 : otherwise v

11
v
10
v
3
v
2
v
1
v
4
v
7
v
5
v
11

 is a C
8
;

v
11

≁ v
7
 : otherwise v

11
v
10
v
6
v
7
v
11

 is a C
4
;

v
11

≁ v
4
 : otherwise v

11
v
10
v
6
v
3
v
2
v
5
v
7
v
4
v
11

 is a C
8
;

v
11

≁ v
8
 : otherwise v

11
v
10
v
3
v
2
v
5
v
7
v
4
v
8
v
11

 is a C
8
.

However v
11
v
10
v
3
v
2
v
5
v
7
v
4
v
8
 is an induced P

8
 , a contradiction. (See Fig. 2b).

Subcase 2.2 v
10

≁ v
3
.

Fig. 2   Illustration of Claim 3.2
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We claim that v
10

 has a neighbor v
11

 such that v
11

≁ v
6
 . If v

10
∼ v

7
 , then 

v
11

≁ v
6
 , as otherwise v

11
v
10
v
7
v
6
v
11

 is a C
4
 . If v

10
≁ v

7
 , then v

10
 has two neighbors 

v
11
, v

12
∉ {v

1
, v

2
,… , v

10
} . At least one of v

11
 and v

12
 , say v

11
 , is nonadjacent to v

6
 . 

Then

v
11

≁ v
1
 : otherwise v

11
v
10
v
6
v
7
v
5
v
2
v
3
v
1
v
11

 is a C
8
;

v
11

≁ v
2
 : otherwise v

11
v
10
v
6
v
7
v
4
v
1
v
3
v
2
v
11

 is a C
8
;

v
11

≁ v
3
 : otherwise v

11
v
10
v
6
v
3
v
11

 is a C
4
;

v
11

≁ v
4
 : otherwise v

11
v
10
v
6
v
3
v
2
v
5
v
7
v
4
v
11

 is a C
8
;

v
11

≁ v
5
 : otherwise v

11
v
10
v
6
v
3
v
1
v
4
v
7
v
5
v
11

 is a C
8
;

v
11

≁ vi for each i ∈ {7, 8} : otherwise v
11
v
10
v
6
v
3
v
2
v
1
v
4
viv11 is a C

8
;

v
11

≁ v
9
 : otherwise v

11
v
10
v
6
v
3
v
1
v
2
v
5
v
9
v
11

 is a C
8
.

Then v
11

 has a neighbor v
13

 such that v
13

≁ v
10

 . Furthermore,

v
13

≁ vi for i ∈ {1, 3} : otherwise v
13
v
11
v
10
v
6
v
7
v
5
v
2
viv13 is a C

8
;

v
13

≁ v
2
 : otherwise v

13
v
11
v
10
v
6
v
7
v
4
v
1
v
2
v
13

 is a C
8
;

v
13

≁ v
4
 : otherwise v

13
v
11
v
10
v
6
v
3
v
2
v
1
v
4
v
13

 is a C
8
;

v
13

≁ v
5
 : otherwise v

13
v
11
v
10
v
6
v
3
v
1
v
2
v
5
v
13

 is a C
8
;

v
13

≁ v
6
 : otherwise v

13
v
11
v
10
v
6
v
13

 is a C
4
;

v
13

≁ vi for i ∈ {7, 8} : otherwise v
13
v
11
v
10
v
6
v
3
v
1
v
4
viv13 is a C

8
;

v
13

≁ v
9
 : otherwise v

13
v
11
v
10
v
6
v
3
v
2
v
5
v
9
v
13

 is a C
8
.

If v
8
≁ v

1
 , then v

13
v
11
v
10
v
6
v
3
v
1
v
4
v
8
 is an induced P

8
 , a contradiction. (See Fig. 2c). 

Now assume that v
8
∼ v

1
 , then v

9
≁ v

2
 as otherwise v

1
v
3
v
2
v
9
v
5
v
7
v
4
v
8
v
1
 is a C

8
 . Fur-

thermore, v
9
≁ v

3
 , otherwise v

9
v
5
v
2
v
3
v
9
 is a C

4
 . It follows that v

13
v
11
v
10
v
6
v
3
v
2
v
5
v
9
 

is an induced P
8
 , a contradiction. 	�  ◻

Claim 3.3  No C
3
 and C

6
 are adjacent.

Proof  Suppose that C� = u
1
u
2
u
3
u
1
 and C�� = u

1
u
2
u
4
u
5
u
6
u
7
u
1
 are two cycles shar-

ing a common edge u
1
u
2
 . As G contains no C

4
 , we have u

1
≁ u

4
 and u

3
≁ ui for 

i ∈ {4,… , 7} . Then by Claim 3.2 and the fact that u
1
≁ u

4
 , we know that C′′ is an 

induced cycle. Since �(G) ≥ 3 , u
3
 has a neighbor u

8
∉ {u

1
,… , u

7
} . It can be seen 

that u
8
≁ ui for i ∈ {1, 2, 4, 7} as G contains no C

4
 , and u

8
≁ ui for i ∈ {5, 6} by 

Claim 3.2. So u
8
 has two neighbors u

9
, u

10
∉ {u

1
,… , u

8
} . At least one of u

9
 and u

10
 , 

say u
9
 , is nonadjacent to u

3
 , as otherwise u

9
u
8
u
10
u
3
u
9
 is a C

4
 . Furthermore, u

9
≁ ui 

for i ∈ {1, 2} as G contains no C
4
 , u

9
≁ ui for i ∈ {4, 7} by Claim 3.2, u

9
≁ ui for 

i ∈ {5, 6} as G contains no C
8
 . It follows that u

9
u
8
u
3
u
1
u
7
u
6
u
5
u
4
 is an induced P

8
 , a 

contradiction. (See Fig. 3a). 	�  ◻

Since �(G) ≥ 3 , vi has two neighbors v
2i−1, v2i for i ∈ {4, 5} . By Claim  3.2, 

v
7
, v

8
, v

9
, v

10
 are pairwise distinct. At least one of v

7
 and v

8
 , say v

7
 , is nonadjacent 

to v
1
 . Furthermore, v

7
≁ vi for i ∈ {2, 3} since G contains no C

4
 , and v

7
≁ vi for 

i ∈ {5, 6, 9, 10} by Claim 3.2 and Claim 3.3. As �(G) ≥ 3 and G has no C
4
 , v

7
 has 
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a neighbor v
11

∉ {v
1
, v

2
,… , v

10
} for which v

11
≁ v

4
 . Furthermore, v

11
≁ v

1
 , as oth-

erwise v
11
v
7
v
4
v
1
v
11

 is a C
4
 ; v

11
≁ vi for i ∈ {2, 3, 5, 6} by Claim 3.2 and Claim 3.3; 

and v
11

≁ v
9
 , as otherwise v

11
v
7
v
4
v
1
v
3
v
2
v
5
v
9
v
11

 is a C
8
 . Similarly, we can assume 

that v
9
≁ v

2
 and v

9
 has a neighbor v

12
∉ {v

1
, v

2
,… , v

11
} such that v

12
≁ vi for 

i ∈ {1, 2,… , 8} . It can be seen that v
11

≁ v
12

 , as otherwise v
11
v
7
v
4
v
1
v
2
v
5
v
9
v
12
v
11

 
is a C

8
 . It follows that v

11
v
7
v
4
v
1
v
2
v
5
v
9
v
12

 is an induced P
8
 , a contradiction. (See 

Fig. 3b).
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