
An Algorithm for the Separation-Preserving

Transition of Clusterings

Steffen Borgwardt1, Felix Happach2, and Stetson Zirkelbach3

1 steffen.borgwardt@ucdenver.edu; University of Colorado Denver
2 felix.happach@tum.de; Technical University of Munich

3 stetson.zirkelbach@ucdenver.edu; University of Colorado Denver

Abstract. The separability of clusters is one of the most desired properties in clustering. There is a
wide range of settings in which different clusterings of the same data set appear. We are interested in
applications where there is a need for an explicit, gradual transition of one separable clustering into
another one. This transition should be a sequence of simple, natural steps that upholds separability of
the clusters throughout.
We design an algorithm for such a transition. We exploit the intimate connection of separability and
linear programming over bounded-shape partition and transportation polytopes: separable clusterings
lie on the boundary of partition polytopes, form a subset of the vertices of the corresponding transporta-
tion polytopes, and circuits of both polytopes are readily interpreted as sequential or cyclical exchanges
of items between clusters. This allows for a natural approach to achieve the desired transition through
a combination of two walks: an edge walk between two so-called radial clusterings in a transporta-
tion polytope, computed through an adaptation of classical tools of sensitivity analysis and parametric
programming; and a walk from a separable clustering to a corresponding radial clustering, computed
through a tailored, iterative routine updating cluster sizes and re-optimizing the cluster assignment of
items.

Keywords: separability; clustering; partition polytopes; linear programming; polyhedral theory
MSC 2010: 90C90, 90C05, 90C31, 62H30, 51M20

1 Introduction

The partitioning or clustering of a data set X = {x1, . . . , xn} into a set C = (C1, . . . , Ck) of disjoint clusters is
arguably the most important task in unsupervised learning. It arises in applications in many fields, including
operations research, machine learning, and statistics, and there is a wealth of literature on theory, algorithms,
and applications (Vapnik 1998, Jain et al. 1999, Schölkopf and Smola 2002, Xu and Wunsch 2008, Basu et al.
2009, Hwang and Rothblum 2012, Aggarwal and Reddy 2013).

Our interest lies not in the task itself, but an application derived thereof: given two so-called separable
clusterings, we design an algorithm to compute a gradual transition between them, in the form of a sequence
of clusterings, retaining separability throughout. We begin with some formal definitions and notation about
clusterings and separability, before turning to motivation of this work and an outline of our contributions.

1.1 Separable Clusterings

Let us provide a formal definition of the term clustering and some related terms.

Definition 1 (Clustering). A clustering of X is a partition C = (C1, . . . , Ck) of X. For i ∈ [k], we call
Ci the i-th cluster and |Ci| denotes its size, i.e., the number of items in Ci. The shape of C is |C| :=
(|C1|, . . . , |Ck|).

Based on a similarity measure for items in the data set, the goal of clustering is to assign items that
are similar to each other to the same cluster. Most clustering tasks are performed in a geometric setting:
the data set X = {x1, . . . , xn} ⊆ R

d is represented as a finite collection of distinct items (i.e., xi 6= xj for

a
rX

iv
:2

0
1
2
.0

5
9
2
9
v
2

[m

a
th

.O
C

]
 2

4
 J

a
n
 2

0
2
2

i 6= j) in a d-dimensional real space, and measures of similarity correspond to a norm or quasi-norm in the
space; the Euclidean norm ‖ · ‖ or squared Euclidean norm ‖ · ‖2 are common. More sophisticated similarity
measures are typically implemented indirectly, through the application of a kernel function to transform the
space Rd underlying X to a different one in which the Euclidean norm or its square again are viable measures
(Schölkopf and Smola 2002). In this paper, we assume that the items in X are distinct and use the squared
Euclidean norm.

In this setting, the desire to create clusters of similar items becomes a desire to partition the data set
into separable clusters. Two clusters C1, C2 are called separable if there exists a (separating) hyperplane that
partitions the underlying space into two halfspaces, each of which contains one of the clusters. A separable
clustering C = (C1, . . . , Ck) requires separability of all pairs of clusters, as well as a special positioning of
the corresponding hyperplanes: they have to create a partition of the underlying space into a cell complex
P = (P1, . . . , Pk) of polyhedral cells, one cell Pi for each cluster Ci formed through the intersection of all
halfspaces that contain Ci.

Separable clusterings have an algebraic representation as (constrained) least-squares assignments. Let
s1, . . . , sk ∈ R

d be a set of sites (or centers) in the same space as data set X. For a simple wording, we call
the collection of all sites, as well as the vector s = (sT1 , . . . , s

T
k)

T , a site vector.

Definition 2 (Least-Squares Assignment (LSA)). A least-squares assignment, or LSA, for a given site
vector s1, . . . , sk ∈ R

d is a clustering C = (C1, . . . , Ck) that minimizes

k∑

i=1

∑

x∈Ci

‖x− si‖
2.

A clustering that minimizes this term over all clusterings with the same shape as C is called a constrained
(or balanced) LSA.

Most LSAs considered in this paper are constrained LSAs, and we simply call them LSAs when the
context is clear. In this paper, we assume that

∑n
j=1 xj = 0. Note that if v =

∑n
j=1 xj 6= 0, the whole data

set X can be translated by − v
n to have this property. This is not a restriction for the computation of an

LSA, which can be seen by translating the site vector s in the same way.
Constrained LSAs are intimately connected to cell complexes called power diagrams. Power diagrams are

a classical topic in computational geometry, and generalize the well-known Voronoi diagrams (Aurenhammer
1987, Aurenhammer et al. 1998). A power diagram can be represented in several ways and it is trivial to
switch between representations (Aurenhammer 1987, Borgwardt 2010). For example, a power diagram can
be specified through the definition of a ball, with site (or center) si and radius ri, for each cell Pi. The
hyperplanes separating pairs of cells are equally far from the sites with respect to a distance measure based
on the corresponding balls. Geometrically, they run through the common intersection points of (a joint
scaling of) the balls. See Figure 1 for an example of this construction. In this paper, we use an alternative,
equivalent representation in which the positions of hyperplanes separating the cells are given explicitly
through differences of values γ1, . . . , γk ∈ R; see Aurenhammer (1987), Borgwardt (2015). We provide a
formal definition.

Definition 3 (Power Diagram). For given γ1, . . . , γk ∈ R and site vector s1, . . . , sk ∈ R
d, the set

Pi := {x ∈ R
d | (sℓ − si)

Tx ≤ γℓ − γi for all ℓ ∈ [k] \ {i}}, (1)

is the i-th cell of the power diagram (P1, . . . , Pk) of R
d.

Aurenhammer et al. (1998) proved the following connection between power diagrams and constrained
LSAs: if a power diagram satisfies Ci ⊆ Pi for all i ∈ [k], then C is a constrained LSA to the site vector
s of the power diagram. We call a power diagram that satisfies this property a separating power diagram
for the underlying LSA. Conversely, if C is a constrained LSA to a given site vector s, then there exists a
power diagram with site vector s that induces C by assigning all items in the same cell to the same cluster
(and for items on the boundary between cells to any of these cells’ clusters). See Figure 2 for an example

2

Fig. 1: A power diagram in R
2. Each cell specifies a site and radius of a ball around it. Separating hyperplanes

between cells run through the common intersection points of a joint scaling of the corresponding balls.

of a separating power diagram. The same concept of cluster separation appears under other names in the
literature, such as multiclass support vector machines (Bredensteiner and Bennett 1999, Vapnik 1998, Weston
and Watkins 1999, Crammer and Singer 2002) or piecewise-linear separability (Bennett and Mangasarian
1992).

Informally, there is a one-to-many correspondence between (separable) clusterings that ‘allow’ separating
power diagrams, and power diagrams that ‘induce’ the clustering by assigning all items in a cell to the same
cluster (Aurenhammer et al. 1998). Importantly, a constrained LSA and corresponding separating power
diagram can be constructed from the same site vectors s1, . . . , sk (marked as crosses in Figure 2 and later
figures).

When two clusterings are equally good with respect to a given site vector, then there exists a power
diagram that serves as a separating power diagram for both clusterings; see Figure 3. We call such a power
diagram a shared (separating) power diagram. Note that clusterings with a shared power diagram can only
differ by items that lie on the separating hyperplanes.

1.2 Transitions between Separable Clusterings

It is common for different separable clusterings of the same data set to become relevant. For example,
different algorithms for the clustering of the same data set return different solutions. Popular algorithms
like the k-means algorithm return different solutions themselves, depending on their input; in the case of
k-means, depending on the inital sites (MacQueen 1967). It is standard practice to run several algorithms
to find several clusterings of the same data set, and then to choose one that exhibits desirable properties.

There is considerable interest in comparing clusterings and measuring their similarity; see, e.g., Morey
and Agresti (1984), Wagner and Wagner (2006), Meilă (2007), Gates et al. (2019). Given two clusterings,
such measures are typically built from pairwise relationships among the data items, such as a ratio of the
number of items that were assigned to the same cluster versus to different clusters. In particular, this is
done to measure the ‘robustness’ of a clustering – if different algorithms return similar clusterings, it is likely
that a natural structure in the data set has been found. Observations on such clusterings are deemed more
reliable.

3

Fig. 2: A separating power diagram for a clustering of five clusters (different colors) in R
2. Items of the

clusters are shown as filled circles, the sites for the cells are shown as crosses.

In this paper, we improve on a recent direction of research in which different clusterings of the same data
set appear in a different way: in some applications, it is of interest to design an explicit transition between
two clusterings. Our goal is to design algorithms for the transition between two separable clusterings of the
same data set; we call them initial clustering and target clustering. Figure 4 shows an example. The transition
should be a sequence of clusterings, each of them retaining separability, that gradually transitions the initial
clustering into the target one. Our key contribution over previous work is the retention of separability. As
previous work (Borgwardt 2013, Borgwardt and Viss 2021) is not designed to take into account locations of
items in R

d, new methodology is required to compute such a transition. We develop it in this paper.

The ability to compute such transitions facilitates a number of applications. For example, it gives a
conceptually different measure for the similarity of two clusterings in the form of a transformation distance
(Borgwardt and Viss 2021). For this work, the most important driver is a common situation in operations
research: there is an (original) initial clustering of a data set reflecting the current state, as well as a (new,
desired) target clustering that should be implemented in practice. The two clusterings may differ significantly,
and one wants to devise an explicit, gradual transition between them over time. Intermediate clusterings are
temporary solutions in practice.

Our original interest in a transition between separable clusterings came from an application in land con-
solidation. The redistribution of farmland can be modeled as a clustering problem (Brieden 2003, Borgwardt
et al. 2011): each cluster represents a farmer and the items are the geographical locations of lots in an
agricultural region. Separable clusterings are desirable due to placing each farmer’s lots in a convex cell –
in practice, this translates to adjacent lots being assigned to the same farmer, low overall driving distances,
and a dramatically more efficient cultivation overall (Borgwardt et al. 2014). Over the last two decades, a
number of such land redistributions have been completed successfully in Southern Germany and the regions
transitioned to a separable clustering. However, the planned redistributions would often trade more than
50% of lots. For stability of their farming processes, the farmers asked for a gradual transition to the target
clustering through a sequence of intermediate clusterings (Borgwardt and Viss 2021).

Such land redistributions are implemented through so-called lend-lease agreements that run for five to ten
years. During the long period of such an agreement, properties of lots and farmers’ possession in the region
change, and a new separable clustering is planned for the next time-period. The goal becomes to gradually
transition from a separable clustering to the new separable clustering. Keeping separability throughout this

4

(a) First clustering (b) Second clustering

Fig. 3: Two clusterings that allow a shared separating power diagram. The clusterings only differ by items
that lie on the separating hyperplanes between clusters.

transition means that an efficient cultivation always remains possible; this has become one of the main
requests of the farmers.

We see similar applications in high-efficiency, large-scale computing. It relies on the scheduling and
grouping of (computation) jobs to computing resources. The scheduling of jobs to resources has become
increasingly complex and there is a wide range of commercial solutions (Reuther et al. 2016). Computing
resources are commonly represented as items of a data set in two- or three-dimensional space, with physical
distances corresponding to the communication times between the resources. For efficiency, the resources
assigned to the same process should be close to each other (Salim et al. 2019). This naturally leads to
an integration of clustering techniques – the aforementioned ‘grouping’ – into the scheduling (Lyakhovets
and Baranov 2021); each job is a cluster, and separable clusterings correspond to an efficient assignment of
resources. As jobs start and end at different times and request different amounts of resources at different
times – freeing unneeded resources or requesting more – schedulers provide regular updates to the current
clustering.

Similar questions also arise in the setting of data storage, where related information (a cluster) is stored
in resources that are physically close to each other for fast access; again separable clusterings are particularly
efficient. The necessity to make changes to current storage is an important consideration for state-of-the art
storage solutions (AWS Whitepaper 2016). For example, a planned maintenance of the resources, such as
rebooting or physical replacement, or the migration to a new storage system would lead to the desire to
transition to a new clustering. Retaining separability throughout would guarantee fast access during the
transition.

There are further promising applications in other areas, such as in the clustering of customers in service,
entertainment, and insurance industries. A company may want to gradually transition their customers to a
new clustering of premium classes over time. Separable clusterings of customers are fair in the sense that there
are no outliers: the underlying separating power diagram serves as a classifier; new customers are assigned
to the cell’s cluster that they fall in (Bennett and Mangasarian 1992, Vapnik 1998). The ability to preserve
separability of the clusterings during a gradual transition retains the ability to fairly assign customers to a
cluster at any time.

5

(a) Initial clustering (b) Target clustering

Fig. 4: An initial and target clustering of the same data set. We design an algorithm to find a sequence of
separable clusterings that gradually transitions the initial clustering into the target clustering.

1.3 Outline

In this paper, we provide the theory and develop methods for a gradual transition between two separable
clusterings in the form of a sequence of clusterings, each retaining separability. In Section 2, we provide
an overview of our strategy, and introduce necessary tools from the literature. In Section 3, we describe
how to algorithmically realize this strategy and discuss the properties of the transition. Sections 4 and 5
are dedicated to the necessary technical details and proofs. We conclude with a brief outlook on some open
questions and natural next steps, in Section 6. Proof-of-concept implementations and some examples are
available at https://github.com/szirkelbach/Transitioning-Separable-Clusterings. We provide a
couple of brief appendices. In Appendix A, we recall some background on ranging for degenerate vertices;
these techniques are required for an implementation of our algorithms. In Appendix B, we take a closer look at
the (restriction of) cluster sizes throughout the transition. In Appendix C, we report on some computational
experiments.

2 The Main Strategy and Important Tools

A key goal in the design of a gradual transition between two separable clusterings is for it to take only few,
simple steps. This drives the design of our approach in two ways, which we describe in Section 2.1. In Section
2.2, we exhibit our tools to keep separability throughout the transition.

2.1 Simple Steps, Direct Transitions

First, the transition should be a sequence of simple steps. We achieve this through the application of a
so-called sequential or cyclical exchange of items in each step. For such an exchange, one selects an ordered
list of clusters and one item from each cluster; the next clustering in the transition is then derived by moving
the items to new clusters following the ordered list. These exchanges are a simple choice that allows for
the construction of the desired transition, and they have been important in the construction of clustering
transitions in easier settings and the studies of combinatorial diameters (Borgwardt 2013, Borgwardt and
Viss 2021).

6

(a) Initial clustering and associated
power diagram

(b) Target clustering that allows the
same, shared power diagram

(c) The cyclical exchange required to transition the
initial into the target clustering.

Fig. 5: Two clusterings (top) that allow a shared power diagram. The two clusterings differ only by a single
cyclical exchange (bottom): the CDG shows clusters as nodes; the arcs between them are labeled with the
items that have to be moved.

To compare two clusterings and to formally define exchanges of items, we make use of a so-called clustering
difference graph. For two clusterings C,C ′, the clustering difference graph CDG(C,C ′) is a labeled directed
multigraph with one node for every i ∈ [k] and an arc (i, ℓ) for distinct i, ℓ ∈ [k] with label x if x ∈ Ci ∩ C ′

ℓ.

Definition 4 (Clustering Difference Graph). The clustering difference graph (CDG) of two clusterings
C,C ′ of X is defined as CDG(C,C ′) = ([k], E) with E = {(i, ℓ, x) | i, ℓ ∈ [k], i 6= ℓ, x ∈ Ci ∩ C ′

ℓ}.

For our purposes, CDGs appear when we compare a current clustering C to a target clustering C ′. The
CDG(C,C ′) is a convenient way to represent the necessary changes in the assignment of items to clusters.
Informally, a CDG contains an arc from node i to node j with label x if the item x has to move from cluster
Ci to cluster C ′

j . One may remove isolated nodes in a CDG; these nodes correspond to clusters that have
the same items in both C and C ′.

We call a cycle in a CDG a cyclical exchange of items between clusters, and a path in the clustering
graph a sequential exchange. If CDG(C,C ′) consists of a single cyclical or sequential exchange, we say that
C and C ′ differ by a single exchange. Applying a cyclical or sequential exchange refers to updating C to the
clustering C ′ that differs from C by only this exchange. Informally, the item reassignments indicated by the
arcs of the cyclical or sequential exchange are performed. Figure 5 depicts an example.

For a transition between two clusterings, we create a sequence of intermediate clusterings that differ
from the next by just a single exchange. There are several arguments why this is a natural choice: the
only conceptually simpler difference between two clusterings takes the form of an exchange of a single item.

7

However, such simpler exchanges would immediately violate cluster size bounds if the shapes of C and C ′

coincide – in this case, CDG(C,C ′) decomposes into arc-disjoint cycles, and only cyclical exchanges may
be applied to retain feasible clusterings. Further, our more general exchanges, in a sense, aggregate several
single-item exchanges, and perform them together. This is beneficial for a low number of steps, i.e., number
of clusterings, in the transition.

Second, the sites used for the construction of both LSAs and separating power diagrams take a central role.
Let s = (sT1 , . . . , s

T
k)

T be the site vector for the initial clustering Cs in the transition, and let t = (tT1 , . . . , t
T
k)

T

be the site vector for the target clustering Ct. We construct a sequence of clusterings that follows a linear
transition from s to t: essentially, we want to identify the intermediate clusterings and power diagrams that
occur if we linearly move the location of the sites s1, . . . , sk of Cs to the sites t1, . . . , tk of Ct. Each of these
clusterings is itself a constrained LSA for a site vector (1− λ)s+ λt for some 0 < λ < 1.

Again, there are several arguments why a linear transition from s to t is a natural choice. It corresponds
to the shortest transition between the site vectors in a Euclidean-distance sense. In turn, this is beneficial
to the number of steps in the transition. Each intermediate clustering stays related to s and t through the
convex construction of its site vector from s and t and some λ ∈ (0, 1). In particular, λ can be used as a
percentage to measure the current progress of the transition.

Figure 6 shows a full transition between two LSAs, as computed using the methods in this paper. Each
consecutive pair of clusterings differs only by a single exchange of items. Subfigures (b) to (e) follow a linear
transition of the sites. (The values λ = 1

2 and 2
3 are rounded for a clean presentation.) The steps from

subfigures (a) to (b) and from (e) to (f) retain the initial and target set of sites. These steps are a form of
pre-processing to facilitate the linear transition of sites. We provide a high-level overview of our algorithms
in Section 3.

2.2 Preserving Separability

Linear programming and polyhedral theory provide several powerful tools to connect exchanges and the
separability of clusterings. We make use of two closely connected special classes of polytopes to this end. We
introduce them in Section 2.2. Section 2.2 explains their relationship to separable clusterings; Section 2.2
explains their relationship to cyclical and sequential exchanges.

Bounded-Shape Partition and Transportation Polytopes For a clustering C and i ∈ [k] and j ∈ [n],
one can introduce binary variables yij that indicate whether xj ∈ Ci (yij = 1) or not (yij = 0). The set
of all feasible clusterings can then be described by the set of all integer vectors that satisfy the following
constraints

k∑

i=1

yij = 1 ∀ j ∈ [n], (2a)

n∑

j=1

yij ≥ κ−
i ∀ i ∈ [k], (2b)

n∑

j=1

yij ≤ κ+
i ∀ i ∈ [k], (2c)

yij ≥ 0 ∀ i ∈ [k], j ∈ [n]. (2d)

We refer to the feasible region (2) as a transportation polytope. (It shares its constraint matrix, with
duplication of some of the rows, with classical transportation problems.) Constraint (2a) ensures that each
item is assigned to exactly one cluster. Constraints (2b) and (2c) ensure that the clustering is feasible,
i.e., each cluster Ci is assigned between κ−

i and κ+
i items. Note that the constraint matrix of (2) is totally

unimodular, and the right-hand side is integer. Thus, the vertices of (2) are integer, and due to Constraint (2a)
in {0, 1}n·k. Every clustering corresponds to a vertex and vice versa. For simplicity, we identify the vertices
with the encoded clusterings.

Let us provide a formal definition and notation for these polytopes, as well as for the closely connected
class of partition polytopes.

8

(a) Initial LSA (sites s) (b) Start of linear transition (sites s)

(c) Step of linear transition
(sites (1− 1

2
)s+ 1

2
t)

(d) Step of linear transition
(sites (1− 2

3
)s+ 2

3
t)

(e) End of linear transition (sites t) (f) Target LSA (sites t)

Fig. 6: A full transition from an initial LSA for sites s to a target LSA for sites t. Consecutive clusterings
differ by a single exchange. The transition may start and end with (one or more) exchanges between LSAs
for the same sites. The main part of the transition follows a linear transition from sites s to t.

9

Definition 5 (Bounded-Shape Polytopes). The feasible region (2) is called the bounded-shape trans-
portation polytope and is denoted by T ±(X, k, κ−, κ+) = T ±(κ−, κ+).

For a clustering C = (C1, . . . , Ck), let w(C) := (
∑

x∈C1
x, . . . ,

∑

x∈Ck
x) ∈ R

d·k be the clustering vector

of C. We call P±(X, k, κ−, κ+) = P±(κ−, κ+) := conv({w(C) | κ− ≤ |C| ≤ κ+}) the bounded-shape
partition polytope.

Informally, clustering vectors w(C) are formed from k vectors, one for each cluster Ci summing up the
locations in R

d of items in the cluster. Bounded-shape partition polytopes encode valuable information
on the locations of items, in contrast to bounded-shape transportation polytopes which only encode item
assignments to the clusters. When we write the data set into the columns of a matrix M = (x1, . . . , xn), it
is not hard to see that P± is the image of T ± under the linear map that first transitions the vector y ∈ R

n·k

into an (n×k)-matrix Y , multiplies this with M , and rewrites the corresponding matrix M ·Y into a column
vector. Note that we may assume that the matrix M has rank equal to d. Otherwise, all items are contained
in some affine subspace of Rd, and we may restrict to this subspace.

Bounded-shape partition polytopes were studied in detail in the literature (Barnes et al. 1992, Hwang
et al. 1998, Fukuda et al. 2003, Borgwardt and Happach 2019, Borgwardt and Viss 2020). There are two
choices for κ± that are particularly well-understood, the single-shape partition polytopes (Borgwardt 2010,
Borgwardt and Happach 2019) and the all-shape partition polytopes (Fukuda et al. 2003, Borgwardt and
Happach 2019). We define these terms.

Definition 6 (Single-Shape and All-Shape Polytopes). For κ− = κ+ = κ, we call P=(κ) = P±(κ−, κ+)
the single-shape partition polytope and T = the corresponding single-shape transportation polytope. For
κ− = (0, . . . , 0) and κ+ = (n, . . . , n), we call P = P±(κ−, κ+) the all-shape partition polytope and T the
corresponding all-shape transportation polytope.

We omit κ− and κ+ and just write T ± or P± if the cluster size bounds are clear from the context.

Bounded-Shape Polytopes and Separability There is a close connection between constrained LSAs and
bounded-shape polytopes. As we will see, constrained LSAs are in one-to-one correspondence to vertices of
single-shape partition polytopes, and all vertices (and possibly some other boundary points) of the bounded-
shape partition polytopes P± correspond to separable clusterings (Barnes et al. 1992, Borgwardt 2010,
Borgwardt and Happach 2019).

We begin by exhibiting the close connection between constrained LSAs and the single-shape transporta-
tion polytope (Borgwardt 2010). Note that computing a constrained LSA to given sites s1, . . . , sk ∈ R

d

is equivalent to minimizing
∑k

i=1

∑n
j=1 ‖xj − si‖

2 yij over T ±. If the cluster sizes are fixed, i.e., in the
single-shape case, this is equivalent to linear optimization over the single-shape transportation polytope T =:

k∑

i=1

n∑

j=1

‖xj − si‖
2 yij =

n∑

j=1

‖xj‖
2

k∑

i=1

yij

︸ ︷︷ ︸

=1 (2a)

−2
k∑

i=1

n∑

j=1

xT
j si yij +

k∑

i=1

‖si‖
2

n∑

j=1

yij .

︸ ︷︷ ︸

=κi (2b),(2c)

(3)

Thus, minimizing (3) over all y ∈ T = is equivalent to

min
y∈T =

n∑

j=1

‖xj‖
2 +

k∑

i=1

κi ‖si‖
2

︸ ︷︷ ︸
= constant

−2

k∑

i=1

n∑

j=1

xT
j si yij ⇐⇒ max

y∈T =

k∑

i=1

n∑

j=1

xT
j si yij . (4)

In the following, we write cij(s) = xT
j si, so it becomes clear that (4) maximizes the linear objective function

c(s) ∈ R
n·k over T =. (We will continue to use the notation c(s) for such an objective function constructed

from a site vector s in the remainder of the paper.) Due to

k∑

i=1

n∑

j=1

xT
j si yij =

k∑

i=1

sTi (
∑

xj∈Ci

xj),

10

this is equivalent to a maximization of the linear objective function s ∈ R
k·d, the site vector itself, over P=.

We obtain the following proposition.

Proposition 1 (Borgwardt (2010)). A clustering C is a constrained LSA to the site vector s ∈ R
d·k if

and only if it maximizes c(s) over T = or, equivalently, if it maximizes s over P=.

Under mild assumptions, the vertices of a partition polytope P= are in one-to-one correspondence to
separable clusterings (Barnes et al. 1992, Hwang et al. 1998). In fact, they allow a separating power diagram
where no items are on the boundary of cells. Again, we identify the vertices with their encoded clusterings.

Bounded-shape polytopes are the convex hull of the union over single-shape polytopes, i.e., T ±(κ−, κ+) =
conv(

⋃

κ−≤κ≤κ+ T =(κ)) and P±(κ−, κ+) = conv(
⋃

κ−≤κ≤κ+ P=(κ)). Thus, a vertex of a bounded-shape
partition polytope is also a vertex of the single-shape partition polytope corresponding to the particular
shape of the encoded clustering. This leads to the following proposition.

Proposition 2 (Barnes et al. (1992), Borgwardt and Happach (2019)). Let C be a clustering C and
s ∈ R

d·k be a site vector. If the clustering vector w(C) maximizes s over P±, then C is a constrained LSA
to the site vector s.

For a given site vector s there always exists a constrained LSA that corresponds to an optimal boundary
point of P± in direction of s (Borgwardt 2010, Brieden and Gritzmann 2012, Borgwardt and Happach 2019)
– we call these radial clusterings with respect to (w.r.t.) s. However, note that Proposition 2 is not an ‘if
and only if’ relationship: a vertex of a single-shape partition polytope P= (of a shape allowed by κ−, κ+)
might not be a vertex of the bounded-shape partition polytope P±. It may lie on the boundary of P± or in
its strict interior. The distinction between radial clusterings and general constrained LSAs will be important
throughout this paper.

Bounded-Shape Polytopes and Exchanges The set of circuits or elementary vectors of bounded-shape
polytopes corresponds to the desired sequential and cyclical exchanges of items (Borgwardt and Viss 2021).
This implies that, under mild assumptions, two neighboring vertices of a bounded-shape partition polytope
correspond to two separable clusterings that differ by just a single exchange of this type. Further, for any
two separable clusterings that lie in the same face of P±, there exists a site vector for which the clusterings
are equally good constrained LSAs. Equivalently, the clusterings allow a shared power diagram. Figure 3
showed an example.

Let us introduce some notation. We say that two clusterings are adjacent in, e.g., T ± if the corresponding
vertices share an edge in the transportation polytope. Further, we say Ci is free if κ−

i < |Ci| < κ+
i . The

following proposition summarizes the edge structure of P± and T ±.

Proposition 3 (Borgwardt and Happach (2019), Borgwardt and Viss (2020)). Let w(C), w(C ′) be
two vertices of P± that share an edge. Then the clustering difference graph CDG(C,C ′) comprises a single
path, a single cycle, or two parallel arcs only.

Two clusterings C and C ′ share an edge in T ± if and only if the clustering difference graph CDG(C,C ′)
consists of a single path in which no interior cluster is free or of a single cycle in which at most one cluster
is free.

In particular, if two clusterings are adjacent in T ± then their CDG consists of a single path or cycle
(Borgwardt and Viss 2020), i.e., adjacent clusterings differ by a single cyclical or sequential exchange. This
is a valuable tool for our purposes: the bounded-shape transportation polytopes have an explicit algebraic
description through Formulation (2). This allows us to adapt classical linear programming techniques to
design part of the desired transition between separable clusterings.

3 The Overall Transition

Given two separable clusterings, an initial clustering Cs and a target clustering Ct with corresponding sites
s and t, our goal is to provide an algorithm that returns a sequence of separable clusterings representing a

11

gradual transition from Cs to Ct. The sequence corresponds to (constrained) LSAs that appear in a linear
transition of the sites from s to t. Two consecutive clusterings in this sequence differ only by a single exchange
of items.

This section is dedicated to a description of how this overarching strategy can be realized through
polyhedral theory and methods of linear programming. In addition to a sequence of LSAs

C1, . . . , Cη,

our algorithm also returns a sequence of power diagrams

P 1, P
2
, P 2, P

3
, . . . , P η−1, P

η
, P η,

where P ν (uniquely) induces Cν from the sequence and P
ν
is a shared power diagram for Cν and Cν−1, for

all 1 ≤ ν ≤ η. The computation of the power diagrams is optional, as they are not required to compute the
sequence of clusterings. However, we can find them at low computational effort and they provide valuable
additional information: they explicitly represent how the separation is realized. In particular, the current
power diagram serves as a classifier at the current step of the transition; a new item added to the data set
would be added to the cluster of the cell it falls in.

Throughout the sequence, the site vectors follow a linear transition from sites s to sites t, i.e., (1−λ)s+λt
for increasing λ. For λ = 0 or 1, multiple clusterings for the same sites s or t may appear. The site vectors of
LSAs Cν and corresponding P ν coincide. Consecutive clusterings Cν and Cν−1 are both constrained LSAs
for the site vector of P

ν
, i.e., their objective function values with respect to these sites are equally good.

We begin our discussion with the computation of the sequence of clusterings, in Section 3.1. We discuss
the computation of the associated power diagrams in Section 3.2.

3.1 Computation of a Sequence of Clusterings

First, we exhibit how to perform a transition between two radial clusterings. Recall that radial clusterings
correspond to boundary points of an underlying bounded-shape partition polytope P±; see Proposition 2.
Due to the close connection of power diagrams and linear programming over bounded-shape partition and
transportation polytopes, a linear transition of radial clusterings from sites s to sites t is related to sensitivity
analysis and so-called ranging; see, e.g., Vanderbei (2016). In a simple form of ranging, one is interested in
when and how an optimal basis or vertex of a linear program changes when altering the objective function
vector slightly. The ‘breakpoint’ when an optimal (degenerate) vertex, not only an optimal basis, changes can
be computed through solving a linear program (LP); see Appendix A. This leads to an algorithm to identify
when (for which values of λ) and how (which items in the data set are moved) clusterings change throughout
the transition. Geometrically, we construct a walk along the boundary of P±.

Let us assume that initial clustering Cs and target clustering Ct are radial clusterings. More precisely, we
assume they satisfy Proposition 2 with respect to the bounded-shape partition polytope P± = P±(θ−, θ+)
using cluster size bounds θ−i ≤ κ−

i = min{|Cs
i |, |C

t
i |} and θ+i ≥ κ+

i = max{|Cs
i |, |C

t
i |} for all i ∈ [k], and

we assume the clustering vectors w(Cs) and w(Ct) are on the boundary of P± in direction of s ∈ R
d·k and

t ∈ R
d·k, respectively. Recall that not all constrained LSAs satisfy this property even if they are feasible

w.r.t. the given θ±.
The cluster sizes θ± are chosen such that the shapes of Cs and Ct lie between the given bounds. They

represent bounds on the shapes of any clusterings that can appear throughout the transition. For a simple
notation, we describe our approach assuming θ± = κ± in the following. However, we would like to stress
that a wider range of cluster sizes could be chosen and that this is not a technical restriction. In fact, Figure
6 showed an example in which the shapes of the intermediate clusterings are from a wider range. The choice
of bounds κ± comes with the additional benefit of keeping the cluster sizes in the intermediate clusterings
as similar as possible to Cs and Ct; it is the smallest range of cluster sizes that allows for a transition. In
Appendix B, we provide another reason why setting θ± = κ± is a good choice: the wider the range of feasible
cluster sizes, the more ‘special’ radial clusterings become compared to general constrained LSAs.

When moving linearly from the site vector s to t, we obtain a sequence of site vectors of the form
(1 − λ)s + λt ∈ R

d·k with λ ∈ [0; 1]. For every λ, we get a clustering vector w(Cλ) that maximizes the

12

objective vector (1−λ)s+λt over P±, where C0 = Cs and C1 = Ct. That is, the clustering Cλ is separable
and is induced by a power diagram with site vector (1− λ)s+ λt.

Recall that an objective vector is maximized at a boundary point x of a polytope P if and only if it is
contained in the normal cone NP (x) := {c ∈ R

d | cTx ≥ cTx′ ∀x′ ∈ P}. Let C be a clustering that is induced
by a power diagram with site vector s ∈ R

d·k and let C ′ be any other clustering. Let i(j), i′(j) ∈ [k] be the
indices such that xj ∈ Ci(j) and xj ∈ C ′

i′(j) for all j ∈ [n]. Let y, y′ ∈ {0, 1}n·k be the feasible solutions

for the bounded-shape transportation polytope T ± that correspond to C and C ′, respectively. We have the
following equivalence:

s ∈ NP±(w(C)) ⇐⇒ sTw(C) ≥ sTw(C ′) ⇐⇒
k∑

i=1

sTi

(
∑

j∈[n]
i=i(j)

xj

)

≥
k∑

i=1

sTi

(
∑

j∈[n]
i=i′(j)

xj

)

⇐⇒

n∑

j=1

xT
j si(j) ≥

n∑

j=1

xT
j si′(j) ⇐⇒

k∑

i=1

n∑

j=1

c(s)ijyij ≥

k∑

i=1

n∑

j=1

c(s)ijy
′
ij

⇐⇒ c(s)T y ≥ c(s)T y′ ⇐⇒ c(s) ∈ NT ±(y).

Hence, the clustering vectors w(Cλ) are radial, i.e., on the boundary of P±, if and only if their 0/1 vectors
in T ± are optimal vertices in direction of c((1 − λ)s + λt). Thus, a linear transition from s to t w.r.t. P±

is equivalent to a linear transition from c(s) to c(t) w.r.t. T ±. Instead of moving along the boundary of the
bounded-shape partition polytope, we can move along the boundary of the bounded-shape transportation
polytope. Recall that feasible clusterings are in one-to-one correspondence to the vertices of T ± and adjacent
vertices differ by a single cyclical or sequential exchange (Proposition 3). This implies that we can perform
the walk along the boundary of T ± as an edge walk. Further, note we have an explicit representation of T ±

(Formulation (2)), so we have all the necessary information for ranging for a current clustering; see Appendix
A. This allows for the design of an iterative scheme, similar to parametric optimization, that finds the values
of λ for which the current clustering changes during the transition (1 − λ)s + λt (for increasing λ), as well
as to identify the exchange of items by which two consecutive clusterings differ.

These steps are summarized in AlgoRadToRad, see Algorithm 3, which is devised and discussed in
Section 5. Geometrically, the algorithm returns a walk along the boundary of P± (and an edge walk in T ±)
from an initial radial clustering Cs

rad to a target radial clustering Ct
rad.

However, recall that not all LSAs are radial clusterings. Suppose that the clustering vector of the initial
clustering Cs or target clustering Ct are not radial, i.e., they are not on the boundary of P±. For example,
if Cs is not radial w.r.t. s, then the clustering Cs is a constrained LSA, i.e., a vertex of the corresponding
single-shape partition polytope P=, but the 0/1 vector of Cs is not an optimum vertex of T ± in direction
of c(s), but only optimal over T =.

For such situations, we design a second algorithm for a transition of a constrained LSA to a corresponding
radial clustering with respect to the same sites s or t. As in the previous algorithm, each step of this transition
is the application of a single exchange of items. Each intermediate clustering is a constrained LSA for the
sites s or t, respectively; only the number of items in the clusters changes. Because of this property, we call
this a fixed-size transition.

The computation of such a transition is described in AlgoLSAtoRad, see Algorithm 2, which is devised
and discussed in Section 4. In particular, we show that all intermediate clusterings on the transition from
Cs to Cs

rad are constrained LSAs w.r.t. s and can be constructed such that two consecutive clusterings differ
by only a single sequential exchange. The same holds for the transition between Ct and Ct

rad. Note that the
transition from Ct

rad to Ct can be computed by applying AlgoLSAtoRad and reversing the order of the
returned sequence of clusterings. We obtain a fixed-site transition for the first and final part of the overall
transition.

A combination of these two algorithms allows for the computation of a transition of any constrained
LSA to any other through a sequence of cyclical and sequential exchanges of items, while retaining separable
clusterings throughout. A conceptual sketch of the overall transition from Cs to Ct is shown in Figure 7. The
shaded area represents an underlying bounded-shape partition polytope P±, as well as two site vectors s and
t. Clusterings Cs and Ct are constrained LSAs for these site vectors, but not radial clusterings w.r.t. P±.

13

Cs

Ct

Cs
rad Ct

rad

C1/2

s t

Fig. 7: Sketch of a transition from Cs to Ct over P±. Clustering Cs is first transitioned into a radial clustering
Cs

rad for the same sites; then Cs
rad is transitioned into Ct

rad, the radial clustering corresponding to Ct, through
a walk along the boundary of the polytope; finally Ct

rad is transitioned into Ct. The current site vectors stay
fixed in the blue part of the transition, and change linearly from s to t in the red part.

The transitions from the initial clustering Cs to its radial clustering Cs
rad and from the radial clustering

Ct
rad to the target clustering Ct are depicted in blue. They begin or stop at the radial ‘counterparts’ of Cs

and Ct, respectively. The transition between the two radial clusterings is depicted in red in Figure 7. The
intermediate clustering named C1/2 is radial w.r.t. P± for the site vector 1

2s+
1
2 t.

Algorithm 1 summarizes our approach. We formally state correctness of Algorithm 1, and the many
favorable properties of the constructed walk, in the following theorem.

Theorem 1. Let Cs and Ct be two constrained LSAs with site vectors s and t. Algorithm 1 returns a
sequence of clusterings

(Cs,0, Cs,1, . . . , Cs,p, Cλ1 , . . . , Cλm , Ct,q−1, . . . , Ct,1, Ct,0)

and a sequence of power diagrams

(P s,0, P
s,1

, . . . , P
s,p

, P s,p, P
λ1

, . . . , Pλm−1 , P
λm

, P t,q, P
t,q
, P t,q−1, . . . , P

t,1
, P t,0)

that satisfy the following properties:

1. Cs,0 = Cs, Ct,0 = Ct

2. all clusterings are constrained LSAs (and thus separable)
3. all clusterings C have cluster sizes |Ci| satisfying κ−

i := min{|Cs
i |, |C

t
i |} ≤ |Ci| ≤ κ+

i := max{|Cs
i |, |C

t
i |}

for all i ≤ k
4. consecutive clusterings differ by a single cyclical or sequential exchange of items
5. The power diagrams in the sequence satisfy:

– P s,i is a separating power diagram for sites s for Cs,i

– Pλi is a separating power diagram for Cλi

– P t,i is a separating power diagram for sites t for Ct,i

6. The clusterings in the sequence satisfy:

– for consecutive clusterings Cs,i−1, Cs,i, P
i
is a shared power diagram for sites s

– for consecutive clusterings Cλi , Cλi+1 , P
λi

is a shared power diagram for sites (1−λi)s+λit

– for consecutive clusterings Ct,i, Ct,i−1, P
i
is a shared power diagram for sites t

7. Cs
rad

= Cs,p = Cλ0 , Cλ1 , . . . , Cλm = Ct,q = Ct
rad

are radial clusterings for sites (1 − λi)s + λit for all
i ≥ 0 w.r.t. P±(κ−, κ+) and T ±(κ−, κ+) (with κ± as defined in 3.)

8. Cs,0, Cs,1, . . . , Cs,p are constrained LSAs for sites s
9. Ct,q−1, . . . , Ct,1, Ct,0 are constrained LSAs for sites t

14

Algorithm 1: Linear transition from initial LSA Cs to target LSA Ct.

Input: Initial and target constrained LSAs Cs and Ct w.r.t. site vectors s ∈ R
d·k and t ∈ R

d·k, respectively.
Output: Sequence of constrained LSAs and sequence of corresponding power diagrams that satisfy the

properties of Theorem 1

1 Set κ−

i ← min{|Cs
i |, |C

t
i |} and κ+

i ← max{|Cs
i |, |C

t
i |} for all i ∈ [k];

2 Call AlgoLSAtoRad(Cs, s, κ−, κ+) and let (Cs,0, Cs,1, . . . , Cs,p) be the returned sequence of clusterings

where Cs,0 = Cs and let (P s,0, P
s,1

, . . . , P
s,p

, P s,p) be the returned sequence of power diagrams; set
Cs

rad ← Cs,p;
3 Call AlgoLSAtoRad(Ct, t, κ−, κ+) and let (Ct,0, Ct,1, . . . , Ct,q) be the returned sequence of clusterings

where Ct,0 = Ct and let (P t,0, P
t,1

, . . . , P
t,q

, P t,q) be the returned sequence of power diagrams; set
Ct

rad ← Ct,q;

4 Call AlgoRadToRad(Cs
rad, C

t
rad, s, t, κ

−, κ+) and let (Cλ0 , Cλ1 , . . . , Cλm) be the returned sequence of

clusterings where Cλ0 = Cs
rad and Cλm = Ct

rad and let (P
λ1 , Pλ1 , . . . , P

λm−1 , Pλm−1 , P
λm

) be the
returned sequence of power diagrams;

5 return sequence of clusterings

(Cs,0, Cs,1, . . . , Cs,p, Cλ1 , . . . , Cλm , Ct,q−1, . . . , Ct,1, Ct,0)

and sequence of power diagrams

(P s,0, P
s,1

, . . . , P
s,p

, P s,p, P
λ1 , . . . , Pλm−1 , P

λm
, P t,q, P

t,q
, P t,q−1, . . . , P

t,1
, P t,0)

10. the shapes |Cs,i| of Cs,0, Cs,1, . . . , Cs,p are all distinct; the number of clusterings in this part of the
sequence is bounded by the number of shapes

11. the shapes |Ct,q| of Ct,q, Ct,q−1, . . . , Ct,0 are all distinct; the number of clusterings in this part of the
sequence is bounded by the number of shapes.

Proof. Proof. Note that Algorithm 1 essentially consists of two calls to AlgoLSAtoRad (lines 2 and 3)
and a call to AlgoRadToRad (line 4). The two calls to AlgoLSAtoRad provide a transition of Cs into
radial Cs

rad and Ct into radial Ct
rad. The call to AlgoRadToRad provides a transition of Cs

rad to Ct
rad.

Along with these sequences of clusterings, a corresponding sequence of power diagrams is computed. The
returned walk is a concatenation of the sequence of clusterings from Cs to Cs

rad (line 2), from Cs
rad to Ct

rad

(line 4), and from Ct
rad to Ct (line 3). The latter is a simple reversal of the transition from Ct into radial

Ct
rad computed in line 3. The order for the calls to the algorithms, in particular the call to AlgoLSAtoRad

in line 3 before the call to AlgoRadToRad in line 4, is based on the fact that AlgoRadToRad requires
Ct

rad as input, and Ct
rad is found as a part of the earlier run of AlgoLSAtoRad.

The claimed properties of the constructed sequence of clusterings are now a direct consequence of correct-
ness, and precisely these properties, of the three parts of the walk. We prove correctness of AlgoLSAtoRad

in Theorem 2 and correctness of AlgoRadToRad in Theorem 3.
Claim 1 (in this theorem) corresponds to property 1 in Theorem 2. Claims 2 to 6 follow from properties

2 to 6, respectively, in Theorems 2 and 3. Claim 7 follows from property 1 in Theorem 2 and property 2
in Theorem 2. Claims 8 and 9 correspond to property 2 in Theorem 2, and claims 10 and 11 correspond to
property 7 in Theorem 2. ⊓⊔

Some of the steps in Algorithm 1 can be simplified if the cluster sizes of the initial and target clustering
coincide. Then κ− = κ+ and Proposition 1 yields that a clustering is an LSA w.r.t. a site vector a ∈ R

d·k if
and only if it is radial w.r.t. a. Thus Cs = Cs

rad and Ct = Ct
rad, and one can omit AlgoLSAtoRad.

3.2 Computation of Separating Power Diagrams

In addition to the construction of a sequence of clusterings, we construct a sequence of corresponding sep-
arating power diagrams. Let ν be an iterator for the sequence of clusterings. The power diagrams are of
two types: power diagrams P ν = P s,i, Pλi , P t,i are supposed to be ‘good’ power diagrams inducing clus-
tering Cν = Cs,i, Cλi , Ct,i in the sequence (and no other clusterings from the sequence); power diagrams

15

P
ν
= P

i
, P

λi
are shared for two consecutive clusterings Cν−1 and Cν , inducing both Cs,i−1, Cs,i or Ct,i,

Ct,i−1, or Cλi , Cλi+1 , depending on the part of the sequence. In this section, we discuss the computation of
these power diagrams.

To this end, recall from Proposition 2 that for every clustering C with clustering vector w(C) on the
boundary of P± or P=, and every vector s ∈ R

d·k that is contained in the normal cone at w(C), there exists
a power diagram for site vector s that induces the clustering C. The scalars γ1, . . . , γk in Definition 3 only
depend on X and s and can be constructed for any s in the normal cone (Barnes et al. 1992, Borgwardt
2010, Brieden and Gritzmann 2012).

Let us first discuss the construction of a good power diagram P ν that induces clustering Cν in the
sequence: we want a good site vector, and good positions of the separating hyperplanes. First, note that
we are given a site vector in the normal cone for every clustering Cν . For the clusterings Cs,0, . . . , Cs,p and
Ct,q, . . . , Ct,0 (blue arcs in Figure 7) that are returned by AlgoLSAtoRad, we know that s and t are
contained in the normal cone of the clustering vector in the respective single-shape partition polytopes. For
the clusterings Cλr (1 ≤ r ≤ m) along the linear transition (1 − λ)s + λt (red arcs in Figure 7), the value
λr ∈ [0; 1] is chosen such that sλr = (1 − λr)s + λrt is contained in the intersection of the normal cones of
w(Cλr−1) and w(Cλr), as we will see in AlgoRadToRad and Section 5. Hence, a natural choice of a site
vector that is in the normal cone at w(Cλr), but not in the normal cone of the previous or next clustering
vector, is a convex combination of s and t in the form 1

2 (s
λr + sλr+1) for 1 ≤ r < m. Note that this choice

of site vector for Cλr implies that the constructed power diagram uniquely induces Cλr from the sequence.
(The clustering vectors of the first and last clustering of this sequence Cλ0 = Cs

rad and Cλm = Ct
rad contain s

and t in their normal cone by construction, respectively.) Summing up, there is a natural choice for the site
vector for each power diagram P ν . These follow a linear transition from s to t. Second, for given sites, we
also want good positions of the separating hyperplanes in the underlying space. A common approach is to
maximize the so-called margin, i.e., maximize the minimum Euclidean distance of any item to the boundary
of its cell; see, e.g., Bennett and Mangasarian (1992), Borgwardt (2015).

It remains to address the actual computation of a (maximum-margin) power diagram for a given site
vector. Given a clustering C and a site vector s = (s1, . . . , sk) ∈ NP=(|C|)(w(C)), we can maximize the
margin ε of a power diagram with site vector s by solving the following LP (Bennett and Mangasarian 1992,
Borgwardt 2015):

max ε (5a)

s.t.

(
sℓ − si

‖sℓ − si‖

)T

xj + ε ≤
γℓ − γi
‖sℓ − si‖

∀ i ∈ [k], ∀ ℓ ∈ [k] \ {i}, ∀xj ∈ Ci, (5b)

γ1 = 0, (5c)

γi ∈ R ∀ i ∈ [k], (5d)

ε ≥ 0. (5e)

A notable feature of this LP is the constraint γ1 = 0; without it, whenever the system has a feasible
solution, it would also contain a one-dimensional lineality space. LP (5) is guaranteed to have a feasible
solution if and only if there exists a power diagram with site vector s that induces C. If ε > 0 no item is
on the boundary of the cell of the resulting power diagram. In fact, because of the scaling by ‖sℓ − si‖

−1

in (5b), ǫ corresponds to the minimal Euclidean distance of an item to the boundary of its cell. We can
simplify the LP if we first compute maxxj∈Ci

(sℓ − si)
Txj for all i ∈ [k] and ℓ ∈ [k] \ {i}, and use this term

in the constraints (5b). The resulting LP takes the smaller and simpler form

16

max ε (6a)

s.t.

(
maxxj∈Ci

(sℓ − si)

‖sℓ − si‖

)T

xj + ε ≤
γℓ − γi
‖sℓ − si‖

∀ i ∈ [k], ∀ ℓ ∈ [k] \ {i}, (6b)

γ1 = 0, (6c)

γi ∈ R ∀ i ∈ [k], (6d)

ε ≥ 0. (6e)

Note that LP (6) has only k variables and less than k2 main constraints, and setup only requires processing
each item k− 1 times. Compared to Formulation (2), which is an integral part of the two algorithms for the
computation of the sequence of clusterings, it is trivial to solve.

Finally, for the construction of the shared power diagram P
ν
that induces both Cν−1 and Cν , suppose

we are given a site vector s ∈ R
d·k that is contained in the intersection of the normal cones of w(Cν−1) and

w(Cν). For the clusterings Cλr , Cλr−1 (1 ≤ r ≤ m) along the linear transition (1 − λ)s + λt (red arcs in
Figure 7), we can choose the site vector s = sλr = (1− λr)s+ λrt for P

λr , see AlgoRadToRad. For two
consecutive clusterings in {Cs,0, . . . , Cs,p} and {Ct,q, . . . , Ct,0} (blue arcs in Figure 7), s ∈ {s, t} allows for
the computation of a shared power diagram, too. The somewhat technical proof of this claim is part of the
proof of Theorem 2 in Section 4.

In both situations, we obtain a shared power diagram that induces Cν−1 and Cν by adding the con-
straints (6b) for Cν−1 to LP (6) for Cν . The items by which Cν−1 and Cν differ lie on the boundary of the
respective cells; see Borgwardt (2010), Borgwardt and Happach (2019). Thus, the optimal objective value
of LP (6) is equal to zero and computing a power diagram that induces both clusterings simultaneously can
be done by finding a feasible solution γ = (γ1, . . . , γk) to the following set of linear constraints that does not
contain a scaling by ‖sℓ − si‖

−1:

max
xj∈Cν

i

(sℓ − si)
Txj ≤ γℓ − γi ∀ i ∈ [k], ∀ ℓ ∈ [k] \ {i}, (7a)

max
xj∈Cν−1

i

(sℓ − si)
Txj ≤ γℓ − γi ∀ i ∈ [k], ∀ ℓ ∈ [k] \ {i}, (7b)

γ1 = 0, (7c)

γi ∈ R ∀ i ∈ [k]. (7d)

This system can be considered an LP with trivial objective function max 0T γ or solved through a Fourier-
Motzkin elimination.

4 A Fixed-Site Transition between LSAs and Radial Clusterings

In this section, we provide an algorithm called AlgoLSAtoRad to transition from a constrained LSA
w.r.t. some site vector s ∈ R

d·k to a radial clustering w.r.t. s. This algorithm can be seen as a pre-processing
step for the linear transition along radial clusterings from an initial site vector s to a target site vector t, which
is discussed in Section 5. Recall that we do not have an explicit algebraic representation of the bounded-shape
partition polytope P±, which is why we perform the computations over the corresponding bounded-shape
transportation polytope T ±. We enter the algorithm with cluster size bounds as part of the input; see lines
2 and 3 of Algorithm 1.

To ensure separability of all intermediate clusterings in the transition, we repeat the following steps: the
initial clustering C is a vertex of the bounded-shape transportation polytope T ±. First, we walk along an
improving edge in T ± to an adjacent vertex. This vertex corresponds to a better (w.r.t. the objective vector
c(s)) clustering C ′ of different shape. (Note C already was a constrained LSA, i.e., optimal over all clusterings
of the same shape.) Then, we fix the lower and upper bounds on the cluster sizes to |C ′| and transition in
the corresponding single-shape transportation polytope T =(|C ′|) until we reach an optimal clustering with
shape |C ′| in direction of c(s), i.e., a constrained LSA w.r.t. s for shape |C ′|. As we will show in Lemma 1

17

and explain in the paragraph following it, there exists such an optimal clustering that differs from the initial
clustering C by a single sequential exchange, and it is easy to devise it from C ′. Not only does this mean we
take a step of the desired form, but it also makes it possible to compute a shared separating power diagram
for two consecutive clusterings; we prove this as part of Theorem 2. This concludes the first iteration.

(a) Initial LSA (b) Intermediate LSA (c) Target LSA

Fig. 8: Initial, target, and one intermediate LSA in a fixed-site transition as in AlgoLSAtoRad. The target
LSA is a radial clustering for the (implicit) cluster size bounds. The three clusterings are constrained LSAs
for the same sites, but different shapes.

We update the initial clustering from C to C ′ and repeat this scheme until we reach a clustering that
maximizes c(s̄) over T ±, i.e., the desired radial clustering. See AlgoLSAtoRad, Algorithm 2, for a descrip-
tion of this scheme in pseudocode. Figure 8 depicts an initial and target clustering, as well as an intermediate
clustering in the transition. Note that each clustering Cr (r ≥ 1) is a constrained LSA w.r.t. s for its own
shape |Cr|, as we optimize over the single-shape transportation polytope in line 4 in direction of c(s) in each
iteration. The constructed sequence is the desired fixed-site transition. We sum up the favorable properties
of the algorithm, and its output, in the following theorem.

Theorem 2. Let Cs be a constrained LSA with site vector s, and let κ−, κ+ be cluster size bounds such that
κ− ≤ |C| ≤ κ+. AlgoLSAtoRad returns a sequence of clusterings

(C0, C1, . . . , Cr)

and a sequence of power diagrams

(P 0, P
1
, P 1, . . . , P

r
, P r)

that satisfy the following properties:

1. C0 = Cs; Cr is a radial clustering for sites s
2. all clusterings are constrained LSAs for sites s
3. all clusterings C have cluster sizes |Ci| satisfying κ−

i ≤ |Ci| ≤ κ+
i for all i ≤ k

4. consecutive clusterings differ by a single sequential exchange of items
5. P i is a separating power diagram for sites s for Ci

6. for each pair Ci−1, Ci of consecutive clusterings, P
i
is a shared power diagram for sites s

7. the shapes |Ci| are all distinct; the number of clusterings in the sequence is bounded by the number of
shapes.

Proof. Proof. Recall the informal description of AlgoLSAtoRad above. Most of the claimed properties are
direct consequences of the design of the algorithm:

The initial clustering C0 = C is a constrained LSA w.r.t. s. This is equivalent to C0 being optimal over
T =(|C0|), the single-shape transportation polytope of all clusterings of the same shape. Each other clustering

18

Algorithm 2: AlgoLSAtoRad(C, s, κ−, κ+). Fixed-site transition from initial LSA w.r.t. site
vector s to corresponding radial clustering.

Input: Constrained LSA C w.r.t. a site vector s ∈ R
d·k; cluster size bounds κ±

Output: Sequence of constrained LSAs and sequence of corresponding power diagrams that satisfy the
properties of Theorem 2

1 r ← 0 and C0 ← C;
2 while Cr is not optimal in T ±(κ−, κ+) in direction of c(s) do
3 Perform a simplex step from Cr w.r.t. objective max c(s)T y in T ±(κ−, κ+) to an adjacent

vertex/clustering; update C to the new clustering;
4 Find an optimal clustering in T =(|C|) that differs from Cr by a single sequential exchange; update C

to the new clustering;
5 Solve LP (6) with s and let P r be the corresponding power diagram;
6 if r ≥ 1 then

7 Compute a feasible solution for (7) with s and Cν = C, Cν−1 = Cr−1, and let P
r
be the

corresponding power diagram;

8 end

9 r ← r + 1 and Cr ← C;

10 end

11 return sequence of clusterings
(C0, C1, . . . , Cr)

and sequence of power diagrams

(P 0, P
1
, P 1, . . . , P

r
, P r)

C in the produced sequence is computed as an optimum w.r.t. c(s) over T =(|C|) (line 4), and thus also is a
constrained LSA w.r.t. s̄.

The improving simplex step in line 3 guarantees that each consecutive clustering C is strictly better
w.r.t. c(s). Each clustering is an optimum w.r.t. c(s̄) over T =(|C|), so this strict improvement can only come
from finding a clustering of a new shape that is distinct from the shapes of all previous clusterings in the
sequence. Thus, the sequence of clusterings is finite; in fact, it is bounded by the number of possible shapes.
The algorithm terminates with a radial clustering Cr after r runs of the while-loop. This proves properties
1, 2, and 7.

Further, line 3 is the only step that can change the clustering shape. As the simplex step is taken over
T ±(κ−, κ+), cluster sizes |Ci| are bounded throughout by κ−

i ≤ |Ci| ≤ κ+
i for all i ≤ k. This gives property

3.

We will show property 4, i.e., the fact that two consecutive clusterings only differ by a single sequential
exchange of items, in Lemma 1 below.

Property 5 follows immediately from each clustering Ci in the sequence being optimal for sites s over
T =(|Ci|). LP (6) has a feasible solution and returns the desired P i.

It remains to prove property 6. Let Ci−1 and Ci denote two consecutive clusterings. Recall that a
clustering C allows a separating power diagram for sites s if the vector s lies in the normal cone of the
clustering vector w(C) in any partition polytope (Borgwardt 2010). In fact, this property also holds for
fractional clusterings, where items can be assigned partially to multiple clusters (adding up to 1) and the
corresponding partition polytopes (Brieden and Gritzmann 2012).

We have to show that there exists a shared power diagram that induces both Ci−1 and Ci for sites s.
Let yi−1 and yi be the 0/1-vectors corresponding to Ci−1 and Ci. Recall that Ci−1 and Ci only differ by
a single sequential exchange of items (property 4). Consider the fractional clustering Cfrac corresponding to
yfrac = 1

2 (y
i−1 + yi). The vector yfrac has components 0, 0.5, or 1, and is informally obtained from applying

‘half’ of the sequential exchange applied to Ci−1: each item moved now belongs 50% to its original cluster
in Ci−1 and 50% to its new cluster in Ci – the corresponding variables in yfrac are 0.5.

Let θ± and η+ be cluster size bounds derived as θ−l = min{|Ci−1
l |, |Ci

l |}, θ
+
l = max{|Ci−1

l |, |Ci
l |}, and

η+l = max{|Ci−1
l |, |Cfrac

l |} for all l ∈ [k]. Recall Ci−1 is optimal w.r.t s over P(|Ci−1|), As Ci is optimal

19

w.r.t. s over P±(θ−, θ+), Cfrac is optimal w.r.t s over P±(θ−, η+). In fact, the same sequential exchange
used to obtain Ci from Ci−1 (property 4) leads to the new optimal fractional clustering Cfrac when moving

only 50% of each item involved. This implies the existence of a separating power diagram P
i
for sites s

for the fractional clustering Cfrac. This power diagram P
i
induces both Ci−1 and Ci, so it is the desired

shared power diagram. For consecutive clusterings Ci−1 and Ci, such a power diagram P i is found through
a solution of LP (7) with sites s and ν = i, and denoted in lines 6 to 8 of AlgoLSAtoRad. This proves the
claim. ⊓⊔

To complete the proof of Theorem 2, it remains to show correctness of property 4. We do so in the
following lemma. In particular, it shows that the choice of C in line 4 is well-defined: there always exists an
optimal constrained LSA for the new clustering shapes identified in line 3 such that the difference to the
previous clustering is only a single sequential exchange.

Lemma 1. Let s ∈ R
d·k be a site vector and consider the i-th iteration of AlgoLSAtoRad. Let Ci−1 refer

to the constrained LSA from the previous iteration, and let C correspond to the clustering of updated shape
(line 3 of AlgoLSAtoRad). There exists a constrained LSA Ci w.r.t. s in T =(|C|) such that Ci−1 and
Ci differ by a single sequential exchange of items.

Proof. Proof. For a simple wording, we indicate that a clustering is optimal over some transportation polytope
w.r.t c(s) by saying it is optimal over the polytope.

We begin the i-th iteration of AlgoLSAtoRad with Ci−1, which is optimal over T =(|Ci−1|). Clustering
C, as devised in line 3 of the algorithm, is of different shape and of strictly better objective function value than
Ci−1. Let yi−1 and y be the 0/1 vectors in T ± corresponding to Ci−1 and C, respectively. By Proposition 3,
we get that CDG(Ci−1, C) contains a single path P , which, without loss of generality, starts at cluster 1
and ends at cluster k. If C is optimal over T =(|C|), we set Ci = C and are done.

So suppose C is not optimal over T =(|C|). This means there exists a different optimal clustering
Copt over T =(|C|) with |Copt| = |C| and corresponding yopt satisfying c(s)T (yopt − y) > 0. Consider
CDG(Ci−1, Copt). Note all nodes in {2, . . . , k− 1} have even degree and the nodes 1 and k have odd degree.
Hence, CDG(Ci−1, Copt) greedily decomposes into a path P from node 1 to k and a set of arc-disjoint cycles
CY (Borgwardt 2013, Borgwardt and Viss 2020).

Let y(CY) := yopt − yi ∈ {−1, 0, 1}n·k; it has components ylj = −1 and yℓj = 1 if and only if there is
a cycle in the set CY that contains an arc (l, ℓ) with label xj . We use the same notation y(CYv) for single
cycles CYv in CY and the path P , too. The entries of y(CY), y(CYv) or y(P), represent the removal of item
xj from cluster Ci−1

l and addition of it to cluster Copt
ℓ .

Note that c(s)T y(CYt) ≤ 0 for any cycle CYt from CY; otherwise Ci−1 would not be optimal over
T =(|Ci−1|). Thus, we have c(s)T y(CY) ≤ 0. By applying the sequential exchange corresponding to P to
Ci−1, we obtain a clustering Ci with |Ci| = |Copt| and corresponding yi satisfying

c(s)T (yopt − yi−1) = c(s)T (y(P) + y(CY)) ≤ c(s)T y(P) = c(s)T (yi − yi−1)

and thus

c(s)T (yi − yopt) ≥ 0

As Copt was optimal over T =(|C|), Ci is optimal, too; the inequality is satisfied with equality. Clustering
Ci differs from Ci−1 by a single sequential exchange. This proves the claim. ⊓⊔

The proof shows that finding the next clustering Ci in the sequence (i.e., line 4 of AlgoLSAtoRad) can
be done by computing an optimal clustering Copt using the simplex method over T =(|C|) (starting from C
from line 3), then setting up CDG(Ci−1, Copt) and greedily deleting all cycles from it, and finally applying
the single sequential exchange corresponding to the only remaining path P in the CDG to clustering Ci−1.

Summing up, AlgoLSAtoRad finds the desired fixed-site transition from a constrained LSA to a radial
clustering, which is used as the first and final part of the overall transition in Theorem 1 and Algorithm 1.

20

5 A Linear Transition between Radial Clusterings

In this section, we devise an algorithm called AlgoRadToRad to compute a transition between two radial
clusterings Cs

rad and Ct
rad. Each step of the transition corresponds to a single exchange of items, and each

intermediate clustering is a radial clustering itself.
Geometrically, both Cs

rad and Ct
rad lie on the boundary of P± (for cluster size bounds κ± induced by Cs

rad

and Ct
rad) and the transition forms a walk along the boundary of this polytope. The sequence of clusterings

follows the linear transition (1− λ)s+ λt of site vectors for increasing λ. In the corresponding T ±, Cs
rad and

Ct
rad are vertices and the transition takes the form of an edge walk, following a linear transition of objective

functions (1−λ)c(s)+λc(t) for increasing λ. For this transition, we need to identify when and how clusterings
change.

By performing our computations over T ± (for which there exists an explicit representation), this can be
done by adapting classical tools of sensitivity analysis and ranging. Generally, vertices of T ± can be highly
degenerate. As a service to the reader, we recall how ranging works for degenerate vertices in Appendix A.
In particular, it is possible to provide an explicit range for λ for which a current optimal vertex, not only
basis, remains optimal.

Let us adapt this to an iterative scheme over T ±. We represent the feasible set (2) in standard form
through the addition of some slack variables for constraints (2b) and (2c). All feasible clusterings correspond
to vertices of T ±, and Cs

rad is optimal w.r.t. c(s). The desired transition (1 − λ)c(s) + λc(t) for increasing
λ can equivalently be written in the form c(s) + λ∆c for ∆c = c(t)− c(s). Then LP (9) in Appendix A can
be applied to compute the breakpoint λ > 0 beyond which the current vertex is not optimal anymore. An
update of the underlying clustering happens and we take a step along an edge of T ± to a new, adjacent
vertex.

We repeat this analysis iteratively, updating to the new vertex and an associated basis, to identify a
sequence of breakpoints in the transition from c(s) to c(t). The result is a variant of a parametric linear
programming algorithm over T ±. See AlgoRadToRad, Algorithm 3, for a description of the scheme in
pseudocode. The algorithm also performs the computation of a sequence of power diagrams associated to
the clusterings. Figure 9 depicts an initial and target clustering, as well as an intermediate clustering in the
transition.

AlgoRadToRad is phrased in reference to the normal cones of consecutive vertices of T ±. Note that λr

(1 ≤ r ≤ m) indicates the breakpoint where the objective vector c((1− λr)s+ λrt) lies in the intersection of
the normal cones of Cλr−1 and Cλr w.r.t. T ±. Each clustering in the sequence is distinct from its predecessor,
and we perform an edge walk over T ±. At the end of this section, we show that the corresponding clustering
vectors are distinct, too, so that we obtain a proper walk along boundary points over P±, as well.

(a) Initial radial clustering (b) Intermediate radial clustering (c) Target radial clustering

Fig. 9: Initial, target, and one intermediate radial clustering in a linear transition as in AlgoRadToRad.
The sites follow a linear transition from s, for the initial clustering, to t, for the target clustering. The sites
for the intermediate clustering lie on the line segment between their initial and target positions.

21

Algorithm 3: AlgoRadToRad(Cs
rad, C

t
rad, s, t, κ

−, κ+). Linear transition from radial clustering
Cs

rad w.r.t. s to radial clustering Ct
rad w.r.t. t.

Input: Radial clusterings Cs
rad and Ct

rad w.r.t. site vectors s ∈ R
d·k and t ∈ R

d·k;
cluster size bounds κ±

Output: Sequence of radial clusterings and sequence of corresponding power diagrams that satisfy the
properties of Theorem 3

1 Set λ← 0, λ0 ← 0, r ← 0 and Cλ0 = Cs
rad;

2 while Cλr 6= Ct
rad do

3 Increase λ to the next ranging breakpoint such that c(sλ) = λc(t) + (1− λ)c(s) satisfies

c(sλ) ∈ NT ±(κ−,κ+)(C
λr) ∩NT ±(κ−,κ+)(C

λ) for some adjacent vertex/clustering Cλ 6= Cλr ;

4 Set r ← r + 1, λr ← λ and Cλr ← Cλ;

5 Compute a feasible solution for LP (7) with s = sλr and Cν−1 = Cλr−1 , Cν = Cλr , and let P
r
be the

corresponding power diagram;
6 if r ≥ 2 then

7 Solve LP (6) with s = 1
2
(sλr−1 + sλr) and Cν = Cλr−1 and let Pλr−1 be the corresponding power

diagram;

8 end

9 end

10 return sequence of clusterings
(Cλ0 , Cλ1 , . . . , Cλr)

and sequence of power diagrams

(P
λ1 , Pλ1 , P

λ2 , . . . , Pλr−1 , P
λr
)

We prove correctness of AlgoRadToRad, along with a number of favorable properties of the transition
and output, in the following theorem.

Theorem 3. Let Cs
rad

and Ct
rad

be radial clusterings w.r.t. site vectors s and t. Further, let κ−, κ+ be cluster
size bounds such that κ− ≤ |Cs

rad
|, |Ct

rad
| ≤ κ+, and let sλ = (1 − λ)s + λt. AlgoRadToRad returns a

sequence of clusterings
(Cλ0 , Cλ1 , . . . , Cλr)

and a sequence of power diagrams

(P
λ1

, Pλ1 , P
λ2

, . . . , Pλr−1 , P
λr
)

that satisfy the following properties:

1. Cλ0 = Cs
rad

, Cλr = Ct
rad

2. the Cλi are radial clusterings for sites sλi = (1− λi)s+ λit for all i ≥ 0
3. all clusterings C have cluster sizes |Ci| satisfying κ−

i ≤ |Ci| ≤ κ+
i for all i ≤ k

4. consecutive clusterings differ by a single cyclical or sequential exchange of items
5. Pλi is a separating power diagram for Cλi for sites 1

2 (s
λi−1 + sλi)

6. for consecutive clusterings Cλi−1 , Cλi , P
λi

is a shared power diagram for sites sλi .

Proof. Proof. Recall the informal description of AlgoRadToRad above. As before, most of the claimed
properties are direct consequences of the design of the algorithm.

Line 1 is the initialization of the algorithm with Cλ0 = Cs
rad. Clustering Cλr for increasing r is the one

being worked on. Lines 3− 7 are the steps in the main loop of the algorithm. They describe a step from the
current clustering to a next one (lines 3 and 4), along with the computation of associated power diagrams
(lines 5 to 8), until Cλr becomes equivalent to Ct

rad (line 2). The main idea is the creation of a sequence
of clusterings (Cλ0 = Cs

rad, C
λ1 , . . . , Cλr = Ct

rad) for increasing λi, where each clustering Cλi is a radial
clustering for sites sλi = (1− λi)s+ λit. Let us take a closer look at why such a sequence is created:

22

The algorithm keeps running as long as the current clustering is not Ct
rad (line 2). The number λ satisfies

λ = λi−1 at the beginning of the i-th run of the while loop. In line 3, we increase λ until a ranging breakpoint
is hit. Recall that a breakpoint is a value of λ for which the current vertex and a new vertex are equally
good with respect to the objective function c(sλ). As we perform the computations over T ±, whose vertices
can be highly degenerate, we solve LP (9).

A strict increase in λ happens, which must lead to a new vertex/clustering: c(sλ) = λc(t) + (1 − λ)c(s)
now is optimal over T ±(κ−, κ+) for both the current clustering Cλi−1 and a new, next clustering Cλ. Both
clusterings are radial for the sites sλ over P±(κ−, κ+). (In Lemma 2 below, we prove that the two clusterings
have distinct clustering vectors, too – but this is not required for our arguments here.) The vectors c(sλ)
and sλ are on the shared boundary of the normal cones for the clusterings in T ±(κ−, κ+) and P±(κ−, κ+),
respectively. The actual algebra to find a breakpoint is the solution of LP (9) for the current clustering and
c = c(sλi−1); the result gives λ− λi−1.

In the i-th iteration, line 4 is an increase of the iteration counter, the labeling of the breakpoint λ as λi,
and the labeling of the new clustering Cλ as Cλi . Lines 5 to 8 describe the computation of the associated
power diagrams, which we turn to below. Then the next iteration of the loop is started. The parameter
λ increases strictly throughout the algorithm and, at the end of the algorithm, it approaches 1. There
are only finitely many clusterings (or vertices of T ±), so there exists a λr ≤ 1 for which Cλr = Ct

rad, as
c(t) ∈ NT ±(Ct

rad) by construction. The algorithm then terminates due to a successful check of Cλr = Ct
rad

(line 2). All computations are done over T ± = T ±(κ−, κ+), so all clusterings in the returned sequence have
cluster sizes satisfying κ−

i ≤ |Ci| ≤ κ+
i for all i ≤ k. This proves properties 1, 2, and 3.

The ranging-based computation of a breakpoint and adjacent vertex (not only basis) of T ± means that
two consecutive clusterings are connected by a shared edge. They differ by a single cyclical or sequential
exchange of items; see Proposition 3. This gives property 4. Overall, this proves that the algorithm terminates
with a sequence of clusterings (Cλ0 , Cλ1 , . . . , Cλr) of the claimed properties.

It remains to prove properties 5 and 6, i.e., to prove that the constructed sequence of power diagrams

(P
λ1

, Pλ1 , P
λ2

, . . . , Pλr−1 , P
λr
) satisfies the claimed properties. In Section 3.2, we described the LPs to find

a separating power diagram for given sites and a given clustering and to find a shared power diagram for
given sites and a pair of clusterings. We have to show that our input allows for feasible solutions.

In the i-th iteration, the computation of a feasible solution for LP (7) in line 5 refers to the computation

of a shared power diagram P
λi

for sites s = sλi and the consecutive clusterings Cν = Cλi and Cν−1 =
Cλi−1 . The existence of a feasible solution, i.e., of a shared power diagram, follows from c(sλi) being in
the intersection of the normal cones c(sλi) ∈ NT ±(Cλi−1) ∩ NT ±(Cλi) (line 3). Recall that Cλi−1 and Cλi

correspond to adjacent vertices in T ±. Geometrically, any point on the edge between the vertices (and
possibly a face of higher dimension) of T ± contains c(sλi) in its normal cone. Equivalently, there is a face
of P± of at least dimension 1 with sλi in its normal cone. Similar to the proof of Theorem 2, the fractional
clusterings corresponding to points in this face allow a separating power diagram that induces both Cλi−1

and Cλi – the desired shared power diagram P
λi
. This shows property 6.

Lines 6 to 8 describe the computation of a ‘good’ separating power diagram, maximizing the margin,
for all intermediate clusterings. The power diagram Pλi−1 is computed for Cλi−1 in the i-th iteration (for
i ≥ 2). It is performed through a solution of LP (6) for sites s = 1

2 (s
λi−1 + sλi) and Cν = Cλi−1 . Note

that information on λi is required for the definition of s, which is why the computation of Pλi−1 for Cλi−1

appears at the end of the iteration that found the next Cλi .
The site vector s lies on the line segment between the sites sλi−1 at the breakpoints when transitioning

to Cλi−1 and the sites sλi when transitioning away from it, to Cλi . Thus, the vector s lies in the normal cone
of w(Cλi−1), and c(s) ∈ NT ±(κ−,κ+)(C

λi−1). This implies that Cλi−1 allows a separating power diagram for
sites s, and such a power diagram is found as a feasible solution to LP (6). This shows property 5.

Summing up, the returned sequence (P
λ1

, Pλ1 , P
λ2

, . . . , Pλr−1 , P
λr
) is an alternating sequence of shared

power diagrams and good separating power diagrams following the sequence of clusterings and satisfying
properties 5 and 6. This completes the proof. ⊓⊔

We conclude this section by showing that AlgoRadToRad, which is designed to construct a sequence
of clusterings through an edge walk over a bounded-shape transportation polytope, also computes a (well-
defined) walk along the boundary of the corresponding partition polytope. More specifically, we prove that

23

consecutive clusterings in the returned sequence have distinct clustering vectors. Thus, each step along
an edge in the transportation polytope corresponds to a proper step along the boundary of the partition
polytope.

Lemma 2. Let (Cλ0 , Cλ1 , . . . , Cλr) be a sequence of clusterings returned by AlgoRadToRad. For every
1 ≤ i ≤ r, w(Cλi) 6= w(Cλi−1).

Proof. Proof. Line 3 of AlgoRadToRad ensures that Cλi−1 6= Cλi for all i ≥ 1. Further, the corre-
sponding vertices yλi−1 and yλi of T ± share an edge. By Proposition 3, the clustering difference graph
CDG(Cλi−1 , Cλi) contains a single cycle or path. For any fixed node l ∈ [k] on this cycle or path, let x+

l

and x−
l be the label of the arc that enters and leaves node l in the CDG, respectively.

Since the items in data set X ⊂ R
d are distinct, i.e., we have x+

l 6= x−
l . The component of the vector

w(Cλi)−w(Cλi−1) corresponding to cluster l equals
∑

x∈C
λi
l

x−
∑

x∈C
λi−1

l

x = x+
l − x−

l 6= 0, i.e., w(Cλi)−

w(Cλi−1) 6= 0. This implies w(Cλi) 6= w(Cλi−1). ⊓⊔

6 Conclusion

In this paper, we designed an algorithm to transition between two given constrained LSAs in the form of a
sequence of clusterings that satisfies the many favorable properties listed in Theorem 1. We would like to
highlight a few natural questions to study for further improvements.

First, a study and optimization of the efficiency of our methods would be of interest. While most of
the applications that we have encountered were not sensitive to computation times for the transition, of
course the scalability of our methods is of interest. In Appendix C, we show some running times for our
proof-of-concept implementation. As we use steps of the simplex method, and information from an optimal
simplex tableau, its bottleneck lies in the setup and solution of the underlying LPs. These LPs are simple
generalizations of classical transportation problems, and as such are well-understood. Essentially, we can
scale to problem sizes for which transportation problems are still solvable. In addition to a bound based
on LP theory, it would be promising to study whether some of the LP-based steps of our algorithm (such
as lines 3 and 4 in AlgoLSAtoRad and line 3 in AlgoRadToRad) can be replaced by more efficient
combinatorial algorithms.

Second, related to this is a desire for a bound on the number of steps of the transition. In particular,
we are interested in the number of steps for AlgoRadToRad, where radial clusterings are traversed. This
part of the transition corresponds to an edge walk over T ±, so that some first bounds come from the
combinatorial diameter or so-called circuit diameter of these polytopes; see Borgwardt (2013), Borgwardt
and Viss (2021). However, previous literature only takes into account the assignment of items to clusters,
and not the locations of items or sites in the underlying space. For the fixed-site transition from a general
LSA to its radial counterpart, we only have a bound in the form of the number of feasible clustering shapes;
see Theorem 2, property 7. Again, this bound does not take into account any geometric information. In the
computations for Appendix C, we have seen that, in practice, the number of steps required is much lower
than the number of shapes for the fixed-site transitions. There is plenty of room for improved theoretical
bounds in both cases through a use of the locations of items and sites.

Third, there are several ways to try to improve on the design of the current approach. We broke up the
walk into three parts. Essentially, the walk from an initial LSA to its corresponding radial clustering (and
from the target radial clustering to target LSA) serves as a pre-processing such that the main part of the
transition is a walk between radial clusterings. In turn, this allowed for the direct use of LP theory in the
design of AlgoRadToRad. While the cluster sizes of initial and target clustering are typically very similar,
and thus the use of radial clusterings in the transition not a noteworthy restriction, the first and final part
of the transition do not change the sites. It would be interesting to study whether a similar walk can be
computed without this hard three-part split, where a linear transition from the initial sites to the target sites
happens throughout the whole walk. Such a transition could be more ‘direct’, and result in a lower number
of steps. There are many other ways that a ‘better’ transition could be designed – for example, a transition
can be influenced by a translation of the data set itself, because the locations of items influence which LSAs
are radial and which are not. One could impose additional restrictions of ‘monotone’ cluster sizes during the

24

transition, i.e., cluster sizes may either only increase (if |Ct
i | > |Cs

i |) or only decrease (if |Ct
i | < |Cs

i |) – our
algorithms in this paper only guarantee that we lie between the given bounds. Further, in some applications
a transition where each step consists of the parallel execution of multiple exchanges of items may be desired.
For all of these possible improvements, we expect the design of a (combinatorial) algorithm to be challenging,
because it does not suffice to use the well-understood relationship between LSAs (and power diagrams) and
linear programming over partition and transportation polytopes.

Finally, we worked in a setting in which initial and target clustering are known and separable. Our key
goal was to preserve separability throughout. The desire to construct explicit transitions between clusterings
can appear in a wide range of settings. In some of these, the way that the target clustering is found may have
implications on what a transition should look like. For example, a data set may be clustered as an LSA with
outliers, i.e., items that fall out of their cluster’s cell. It would be interesting to study a possible generalization
of our methods in which outliers, appropriately penalized, are allowed in the transition. Another example
would be applications in which the target clustering changes dynamically and frequently, to a point where a
‘re-optimization’ during the transition becomes necessary. And finally, it is possible that the target clustering
is not given explicitly, but that only a general goal is stated – such as “gradually transition as many customers
as possible to fair premium classes in this many steps”. Then the search for a target clustering and the
computation of the transition become intimately connected.

Acknowledgment

Borgwardt gratefully acknowledges support of this work through NSF award 2006183 Circuit Walks in Optimization,
Algorithmic Foundations, Division of Computing and Communication Foundations, through AFOSR award FA9550-
21-1-0233 The Hirsch Conjecture for Totally-Unimodular Polyhedra, Airforce Office of Scientific Research, and through
Simons Collaboration Grant 524210 Polyhedral Theory in Data Analytics before. Happach has been supported by
the Alexander von Humboldt Foundation with funds from the German Federal Ministry of Education and Research
(BMBF).

Biographies

Steffen Borgwardt is an Associate Professor in the Department of Mathematical and Statistical Sciences at the
University of Colorado Denver. His research lies on the intersection of combinatorial optimization, polyhedral theory,
and linear programming. He holds a habilitation on Data Analysis through Polyhedral Theory, is a lifetime Humboldt
fellow, and received a joint EURO Excellence in Practice Award for his work on optimization in land consolidation.

Felix Happach received his Ph.D. in 2020 from the Technische Universität München, as a member of the Operations
Research Group that bridges the School of Management and Department of Mathematics. His research interests are
in the geometric representation of applied problems from Operations Research and Data Analysis. He received a
Master’s Thesis Award 2017 of the German Operations Research Society (GOR) and a second place in the Student
Paper Prize 2018 of the INFORMS Optimization Society.

Stetson Zirkelbach is a Ph.D. student at the University of Colorado Denver. He has a background in software
development and holds an M.S. in Applied Mathematics, with an emphasis in optimization.

During studies of the combinatorial diameters of partition and transportation polytopes, surprisingly direct ap-
plications for the constructed walks came up. They reflected the need for a sequence of clusterings that would retain
separability throughout. The research took an algorithmic turn and, through generalizations of edge walks, deeper
studies of the geometric properties of the underlying polytopes, and the adaptation of classical linear programming
techniques, led to this work.

25

Bibliography

Aggarwal C, Reddy C (2013) Data Clustering: Algorithms and Applications (Taylor & Francis).

Aurenhammer F (1987) Power diagrams: Properties, algorithms and applications. SIAM Journal on Computing
16(1):78–96.

Aurenhammer F, Hoffmann F, Aronov B (1998) Minkowski-type theorems and least-squares clustering. Algorithmica
20(1):61–76.

AWS Whitepaper (2016) AWS Storage Services Overview: A Look at Storage Services Offered.

Barnes ER, Hoffman AJ, Rothblum UG (1992) Optimal partitions having disjoint convex and conic hulls. Mathemat-
ical Programming 54(1-3):69–86.

Basu S, Davidson I, Wagstaff KL (2009) Clustering with Constraints: Advances in Algorithms, Theory and Applications
(Chapman & Hall).

Bennett KP, Mangasarian OL (1992) Multicategory discrimination via linear programming. Optimization Methods
and Software 3:27–39.

Borgwardt S (2010) A Combinatorial Optimization Approach to Constrained Clustering. Ph.D. thesis, Technische
Universität München.

Borgwardt S (2013) On the diameter of partition polytopes and vertex-disjoint cycle cover.Mathematical Programming
141(1-2):1–20.

Borgwardt S (2015) On soft power diagrams. Journal of Mathematical Modelling and Algorithms in Operations
Research 14(2):173–196.

Borgwardt S, Brieden A, Gritzmann P (2011) Constrained minimum-k-star clustering and its application to the
consolidation of farmland. Operational Research 11(1):1–17.

Borgwardt S, Brieden A, Gritzmann P (2014) Geometric clustering for the consolidation of farmland and woodland.
The Mathematical Intelligencer 36(2):37–44.

Borgwardt S, Happach F (2019) Good clusterings have large volume. Operations Research 67(1):215–231.

Borgwardt S, Viss C (2020) Circuit walks in integral polyhedra. Discrete Optimization, in press.

Borgwardt S, Viss C (2021) Constructing Clustering Transformations. SIAM Journal on Discrete Mathematics
35(1):152–178.

Bredensteiner EJ, Bennett KP (1999) Multicategory classification by support vector machines. Computational Opti-
mization and Applications 12:53–79.

Brieden A (2003) On the approximability of (discrete) convex maximization and its contribution to the consolidation
of farmland. Habilitationsschrift, Technische Universität München.

Brieden A, Gritzmann P (2012) On optimal weighted balanced clusterings: Gravity bodies and power diagrams. SIAM
Journal on Discrete Mathematics 26(2):415–434.

Crammer K, Singer Y (2002) On the algorithmic implementation of multiclass kernel-based vector machines. Journal
on Machine Learning Research 2:265–292.

Fukuda K, Onn S, Rosta V (2003) An adaptive algorithm for vector partitioning. Journal of Global Optimization
25(3):305–319.

Gates AJ, Wood IB, Hetrick WP, Ahn Y (2019) Element-centric clustering comparison unifies overlaps and hierarchy.
Scientific Reports 9(1):8574.

Hwang FK, Onn S, Rothblum UG (1998) Representations and characterizations of vertices of bounded-shape partition
polytopes. Linear Algebra and its Applications 278(1-3):263–284.

Hwang FK, Rothblum U (2012) Partitions: Optimality and Clustering, Volume I: Single-Parameter (World Scientific).

Jain AK, Murty MN, Flynn PJ (1999) Data clustering - a review. ACM Computing Surveys, volume 31-3, 264–323.

Lyakhovets DS, Baranov AV (2021) Group Based Job Scheduling to Increase the High-Performance Computing
Efficiency. Lobachevskii Journal of Mathematics 41:2558–2565.

MacQueen JB (1967) Some methods of classification and analysis of multivariate observations. Proceedings of the
Fifth Berkeley Symposium on Mathematical Statistics and Probability, 281–297.

Meilă M (2007) Comparing clusterings - an information based distance. Journal of Multivariate Analysis 98(5):873–
895.

Morey LC, Agresti A (1984) The measurement of classification agreement: An adjustment to the rand statistic for
chance agreement. Educational and Psychological Measurement 44(1):33–37.

Reuther A, Byun C, Arcand W, Bestor D, Bergeron B, Hubbell M, Jones M, Michaleas P, Prout A, Rosa A, Kepner J
(2016) Scheduler technologies in support of high performance data analysis. IEEE High Performance Extreme
Computing Conference, 1–6.

Salim MA, Uram TD, Childers JT, Balaprakash P, Vishwanath V, Papka ME (2019) Balsam: Automated Scheduling
and Execution of Dynamic, Data-Intensive HPC Workflows. eprint arXiv:1909.0874.

Schölkopf B, Smola A (2002) Learning with Kernels (MIT Press, Cambridge).

Vanderbei RJ (2016) Linear Programming (Springer, New York), fourth edition.

Vapnik V (1998) Statistical learning theory (Wiley, Hoboken).

Wagner S, Wagner D (2006) Comparing clusterings - an overview. Technical report 2006-04, KIT Karlsruhe Institute
of Technology.

Weston J, Watkins C (1999) Support vector machines for multi-class pattern recognition. Proceedings of the Seventh
European Symposium On Artificial Neural Networks (ESANN), 219–224.

Xu R, Wunsch D (2008) Clustering (Wiley-IEEE Press).

27

Appendix A Ranging for degenerate vertices

Consider a linear program in standard form given as

min cTx
s.t. Ax = b

x ≥ 0.

(8)

A particularly simple variation of sensitivity analysis is called ranging: given a change to the objective function c in
the form of c+ λ∆c for some λ ∈ R and some vector ∆c, one has to devise upper (and lower) bounds on λ at which
the current optimal basis is left. For a nondegenerate optimal vertex x∗, information from a simplex tableau for x∗

can be used to devise an exact formula; see for example Vanderbei (2016).
In this paper, we perform ranging for the possibly highly degenerate vertices of T ±. A degenerate vertex is

represented by multiple bases. We are interested in finding the positive λ for when the vertex, not only the current
basis, is left. To this end, recall that LP optimality requires primal and dual feasibility. Thus, one can solve an LP over
the dual feasible region where strong duality has to remain valid when changing c to c+∆c. For LP (8), the following
LP finds the maximum λ such that dual feasibility is retained and strong duality still holds, i.e., the maximum λ
before leaving the current vertex:

max λ

s.t. AT y ≤ c+ λ ·∆c
bT y = cTx∗ + λ · (∆c)Tx∗.

(9)

Appendix B Radial clusterings for different cluster size bounds

Let us take a brief look at the role of radial clusterings as intermediate steps of the transitions in our approach.
A transition to radial clusterings is necessary such that ranging techniques allow for the computation of a linear
transition from initial sites s to target sites t; see AlgoRadToRad. Radial clusterings, however, are not only LSAs,
but optimizers of c(s) over clusterings of all feasible shapes given by θ± or κ±. The wider the range of θ± (or κ±),
the more special these LSAs become.

(a) A radial clustering (single-shape) (b) A radial clustering (all-shape)

Fig. 10: Two radial clusterings. In (a), the computation was done over T =, a single-shape transportation
polytope. In (b), it was done over T , the all-shape polytope. Note that (a) is a ‘normal’ constrained LSA,
while the clusters in (b) are arranged ‘radially’ around the origin, and there is an empty cluster.

28

Figure 10 shows two examples. In a single-shape setting, any LSA is a radial clustering and vice versa, so there is
no restriction; see Figure 10(a). In contrast, in the all-shape setting where all clustering shapes are feasible, items xj

are assigned to the sites si (and thus cluster Ci) with the largest scalar product xT
j si. Thus, the clusters are arranged

‘radially’ around the origin, and it is even possible to get empty clusters; see Figure 10(b). In fact, this geometric
observation is the reason for the naming of the term. This gives yet another justification for choosing θ± = κ±, i.e.,
for using the smallest range of shapes that allow for a transition. By doing so, no ‘additional structure’ is imposed
on the intermediate clusterings: all of them – radial or not – are (general) constrained LSAs for prescribed cluster
sizes between those of Cs and Ct. The only restriction happening in view of our transition is that we do not (need
to) consider all constrained LSAs (of other shapes) to construct it.

Appendix C Computational Experiments

All examples in this paper were created through a sample implementation and some proof-of-concept computations.
An implementation of our algorithms, some examples, and some instructions to run them are available at https:

//github.com/szirkelbach/Transitioning-Separable-Clusterings. The implementation is in python and uses
Gurobi as an LP solver. We ran our computations on a standard laptop (Intel i7-7700HQ, CPU at 2.80 GHz, 16 GB
RAM).

While computational speed is not a primary concern in the applications that we encountered, the scalability of the
designed algorithms and the number of steps in the transition are of interest. We briefly report on some observations
from computational experiments. We used randomly generated data sets of items in a unit box, as well as random,
evenly spread initial and target site vectors, and ran experiments for different numbers k of clusters, n of items, and
cluster size bounds. All of the numbers provided in Tables 1 and 2 are averages for twenty runs. As we use steps of
the simplex method in both AlgoLSAtoRad and AlgoRadToRad, our current implementations have bottlenecks
in the setup and solution of the underlying LPs.

Let us first take a look at AlgoLSAtoRad, the computation of a radial clustering from an LSA. Recall that LSAs
and radial clusterings are equivalent if cluster sizes are fixed. When generating an instance for our computations, we
randomly generated cluster size bounds between (1− ǫ) · n

k
and (1 + ǫ) · n

k
for various values of a cluster size slack ǫ.

In Table 1, we report on our observations. The first three columns represent the scale of the problem: the number k
of clusters and n of items, and the resulting matrix size for the underlying LP, i.e., the number of coefficients in the
constraint matrix of Formulation (2), derived as (2k + n) · kn. The cluster size slack ǫ is represented as a percentage
of n

k
. The final columns show the number of steps and total time for different values of ǫ.

We were able to implement AlgoLSAtoRad as a single run of primal simplex that stays in memory. Dynamic
updates to the right-hand sides and optimality checks for different cluster size bounds are performed. As such, we
observe low computation times until the underlying matrix becomes very large. Essentially, performance and scaling
of our algorithm are similarly behaved to solving a linear program, with some overhead due to data processing and
entering the optimization process for updates. The number of steps in the transition increases about linearly with
the number of items and more than linearly with ǫ. Note that a large ǫ (such as 40%) allows for a dramatic difference
in clustering shapes. In practice, we only encountered low values of ǫ and only few steps were required.

Next, we turn to AlgoRadToRad, the transition between radial clusterings. The number of steps in such a
transition depends on the ‘distance’ between the initial and target sites or the ‘difference’ between initial and target
radial LP. This information can be represented in multiple ways. To have a measure that takes into account both
sites and data set, we distinguish our runs by the percentage δ of items assigned to different clusters. For example
25% for n = 2, 500 would refer to 625 items assigned to different clusters. In Table 2, we report on our observations.
The first three columns again represent the scale of the problem. For AlgoRadToRad, the matrix size is relevant

number of steps total time (in sec)

k n matrix size ǫ = 10% ǫ = 25% ǫ = 40% ǫ = 10% ǫ = 25% ǫ = 40%

5 100 55,000 1.55 5.35 8.56 0.01 0.04 0.06

10 100 120,000 1.60 5.88 11.8 0.01 0.12 0.23

10 500 2,600,000 12.5 24.0 50.2 0.96 3.07 4.87

10 1000 10,200,000 24.6 70.2 132 4.88 11.1 19.6

10 5000 251,000,000 157 380 625 180 377 579

20 5000 504,000,000 129 335 640 213 659 1,260

Table 1: Computational experiments for AlgoLSAtoRad, the transition from an LSA to a radial clustering.

29

time per iteration number of steps total time (in sec)

k n matrix size (in sec) δ = 10% δ = 25% δ = 10% δ = 25%

5 100 55,000 < 0.1 6 13 0.2 0.4

10 100 120,000 < 0.1 6 12 0.2 0.5

10 500 2,600,000 0.2 29 68 5.7 14.0

10 1000 10,200,000 0.7 58 124 39.9 87.5

10 2500 63,000,000 6.2 121 380 747 2,364

20 2500 127,000,000 16.1 104 345 1,675 5,554

10 5000 251,000,000 34.5 232 702 8,007 24,205

20 5000 504,000,000 113.2 220 685 24,794 77,655

Table 2: Computational experiments for AlgoRadToRad, the transition between radial clusterings.

in two ways: it is not only the size of Formulation (2), but also roughly the size for LP (9) used in the breakpoint
computation. For the different problem sizes, we show the average time per iteration, i.e., for the computation of a
breakpoint, as well as overall number of steps and total time for δ = 10% and δ = 25%.

There are a couple of interesting observations. First, the overall computation times are significantly larger than
for AlgoLSAtoRad and this effect becomes more pronounced for larger data sets. Because of this, it is appropriate
to think of AlgoLSAtoRad as a pre-processing step for AlgoRadToRad.

In each iteration of AlgoRadToRad, LP (9) is solved to find a breakpoint and the clustering is updated. Both
right-hand side and some coefficients of this LP change every time, so while we are able to keep it in memory and
update it dynamically, a full solution is required in the current implementation. Additionally, LP (9) has complicated
coefficients ∆c in the constraint matrix associated to the breakpoint variable λ (and for cTx∗), so even at the same
matrix size, the LP is harder to solver than an LP over Formulation (2), which has only zeroes and ones. For increasing
problem sizes, Gurobi uses more and more time to verify correctness of its intermediate results to guarantee numerical
stability. We added a few extra rows to Table 2 compared to Table 1 to exhibit where this effect becomes noticeable. In
contrast, the update to the new clustering through a few primal simplex steps over Formulation (2), kept in memory
and warm started with a vertex that is already adjacent to the new optimum, is negligible.

It is important to note that different values of δ do not impact the size of underlying LPs and thus the average
time per iteration. (Note that the dimension of a data set only goes into the computation of distances and does not
impact the size of the LPs either.) Memory requirements remain constant throughout. Despite long computation
times and a large number of steps for large problem sizes, they are readily solvable on a normal laptop. The scaling
of AlgoRadToRad is limited not by memory, but issues of numerical stability in the LP solver and time available.

However, of course different values of δ strongly affect the total number of steps. We observed a roughly linear
dependence of the number of steps on δ, independently of the number of clusters. For the number of clusters itself,
we did not see a clear effect. When the number of clusters was higher, longer exchanges of items were constructed
in the iterations and the total number of steps remained similar (or became slightly lower). In all of our runs, the
number of steps remained below the total number of items to be moved.

30

