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1 | INTRODUCTION

In this paper, the terminology “graph” is used to mean a simple graph and a “multigraph” may
contain parallel edges but no loops. Let G be a multigraph. Denote by V (G) and E (G) the vertex
set and edge set of G, respectively, and by e(G) the cardinality of E(G). Forv € V(G), Nz (v) is
the set of neighbors of v in G, and dg (v), the degree of v in G, is the number of edges of G that
are incident with v. When G is simple, dg (v) = INg(v)I. For S C V (G), N5 (S) = UyesNg (v), the
subgraph of G induced on S is denoted by G[S], and G — S := G[V(G)\S]. If F C E(G), then
G — F is obtained from G by deleting all the edges of F. Let 14, V5, C V (G) be two disjoint vertex
sets. Then Eg (W, V;) is the set of edges in G with one end in 4 and the other end in V5, and
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ec(V1, V) := |[Eg (W, V5)I. We write Eg(v, V3) and eg(v, ;) if V| = {v} is a singleton. Define
#(G) = max{eg(u,v) : u,v € V(G)} to be the multiplicity of G. We also write G[W, V5] to
denote the bipartite subgraph of G with vertex set V; U V5 and edge set Eg(V;, V5).

For two integers p,q, let [p,q] ={i€ Z :p <i < q}. Let k > 0 be an integer. An edge
k-coloring of a multigraph G is a mapping ¢ from E (G) to the set of integers [1, k], called colors,
such that no two adjacent edges receive the same color with respect to ¢. The chromatic index of
G, denoted x'(G), is defined to be the smallest integer k so that G has an edge k-coloring. We
denote by C*(G) the set of all edge k-colorings of G.

In the 1960s, Gupta [11] and, independently, Vizing [26] proved that for all graphs
G, A(G) £ x¥'(G) < A(G) + 1. This leads to a natural classification of graphs. Following Fiorini
and Wilson [8], we say a graph G is of class 1 if y'(G) = A(G) and of class 2 if
x'(G) = A(G) + 1. Holyer [13] showed that it is NP-complete to determine whether an
arbitrary graph is of class 1. Nevertheless, if IE(G)l > A(G)|IV (G)I/2], then we must use
(A(G) + 1) colors to edge color G. Such graphs are overfull. An overfull subgraph H of G with
A(H) = A(G) is called a A(G)-overfull subgraph of G. A number of long-standing conjectures
listed in Twenty Pretty Edge Coloring Conjectures in [24] lie in deciding when a graph is overfull.
Chetwynd and Hilton [3,4], in 1986, proposed the following conjecture.

Conjecture 1.1 (Overfull Conjecture). Let G be a simple graph with A(G) > %IV(G)I.
Then x’'(G) = A(G) if and only if G contains no A(G)-overfull subgraph.

The 3-critical graph P*, obtained from the Petersen graph by deleting one vertex, has
x'(P*) = 4, satisfies A(P*) = %IV(P*)I but contains no 3-overfull subgraph. Thus the degree

condition A(G) > %IV(G)I in the conjecture above is best possible. Applying Edmonds'

matching polytope theorem, Seymour [22] showed that whether a graph G contains an overfull
subgraph of maximum degree A(G) can be determined in polynomial time. Thus if the Overfull
Conjecture is true, then the NP-complete problem of determining the chromatic index becomes
polynomial-time solvable for graphs G with A(G) > %IV(G)I. There have been some fairly

strong results supporting the Overfull Conjecture in the case when G is regular. It is easy to
verify that when G is regular with even order, G has no A(G)-overfull subgraphs if its vertex
degrees are at least 1V (G)1/2. Thus the well-known 1-Factorization Conjecture stated below is a
special case of the Overfull Conjecture.

Conjecture 1.2 (1-Factorization Conjecture). Let G be a regular graph of order 2n with
degree at least n if n is odd, or at least n — 1 if n is even. Then G is 1-factorable;
equivalently, x'(G) = A(G).

Hilton and Chetwynd [2] verified the 1-Factorization Conjecture if the vertex degree is at
least 0.8231V (G)I. Perkovi¢ and Reed [19] showed in 1997 that the 1-Factorization Conjecture is
true for large regular graphs with vertex degree at least |V (G)!/(2 — ¢€). In 2016, Csaba et al. [6]
verified the conjecture for sufficiently large IV (G)I. Much less is known about the truth of the
Overfull Conjecture if we no longer require that G is regular. It was confirmed for graphs with
A(G) > IV (G)l — 3 by Chetwynd and Hilton in 1989 [4]. Plantholt [20] in 2004 verified the
conjecture for graphs of even order and minimum degree at least 0.88191V (G)I. More recently,
Plantholt [21] showed the conjecture is true for sufficiently large even order graphs with



AND 3
PLANTHOLT SHAN Wl L E Y

minimum degree at least 21V (G)!/3. We extend these results and give an asymptotic result for
general graphs that is similar to the Perkovi¢-Reed result for regular graphs, by obtaining the
result below.

Theorem 1.3. Forall0 < ¢ < 1, there exists ny such that the following statement holds: if
G is a graph on 2n > ng vertices with § (G) > (1 + ¢)n, then x'(G) = A(G) if and only if G
contains no A(G)-overfull subgraph. Furthermore, there is a polynomial time algorithm
that finds an optimal coloring.

Define V;(G) = {v € V(G) : dg(v) = i}, and we write V; for V;(G) if G is clear. Furthermore,
Vs(e) and Vj(g) are simply written as V5 and V,, respectively. The proof of Theorem 1.3 is based
on the following result.

Theorem 1.4. Forall0 < € < 1, there exists ny such that the following statement holds. If
G is a graph on 2n > ny vertices satisfying one of the following three conditions:

(a) G is regular with §(G) > (1 + 4¢/5)n,

(b) G has two distinct vertices x,y such that d(x) =d(y) > (1/2 + 3¢/2)n, for all
z2€ V(G)\{x,y},d(z) =A(G) 21 + ¢)n, and A(G) — 6(G) £ (1/2 — ¢/2)n,

©) AG) —=6(G) = n7,1Vsl >n®7 and V| > n+ 1, and 6(G) > (1 + €)n,

then x'(G) = A(G). Furthermore, there is a polynomial time algorithm that finds an
optimal coloring.

The proof of Theorem 1.4 develops an approach to edge coloring even order large graphs G
that have minimum degree arbitrarily close to IV (G)I/2 but are not regular. The approach is
based on the proof scheme of Lemma 14 from [25] by Vaughan but the scheme there is only for
regular graphs. The new technique is essentially different from the main ideas used in [23] by
the second author and in [21] by the first author, where the graphs can be reduced into a
regular graph still with good properties by taking off edge-disjoint linear forests or matchings.

The remainder of this paper is organized as follows. In the next section, we introduce some
notation and preliminary results. In Section 3, we prove Theorem 1.3 by applying Theorem 1.4.
Theorem 1.4 is then proved in the last section.

2 | NOTATION AND PRELIMINARIES

Let G be a multigraph and ¢ € C¥(G) for some integer k > 0. For any v € V(G), the set of
colors present at v is p(v) = {p(e) : e € E(G) is incident with v}, and the set of colors missing
at v is () =[1,k]\¢(v). For a subset X of V(G) and a color i€ [1,k], define

Py () ={v € X:i€ @)}, and we write g1 (i) for @;gG)(i). An edge k-coloring of a multigraph
G is said to be equalized if each color class contains either | IE(G)I/k] or [IE (G)I/k] edges.

For x € V (G), the deficiency of x in G is defs(x) := A(G) — dg(x). For X C V(G), defs(X) =
Yexdefe(x). We simply write defo(V (G)) as def(G). A subgraph H of G with an odd order is
A(G)-full if IE(H) = A(G)|IV (H)1/2).
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We will use the following notation: 0 < a <« b < 1. Precisely, if we say a claim is true
provided that 0 < a < b <1, then this means that there exists a nondecreasing function
f:(0,1] - (0, 1] such that the statement holds for all 0 < a, b < 1 satisfying a < f(b).

In the 1960s, Gupta [11] and, independently, Vizing [26] provided an upper bound on the
chromatic index of multigraphs, and Konig [15] gave an exact value of the chromatic index for
bipartite multigraphs.

Theorem 2.1 (Gupta [11] and Vizing [26]). Every multigraph G satisfies
X' (G) < A(G) + u(G).

Theorem 2.2 (Konig [15]). Every bipartite multigraph G satisfies x'(G) = A(G).
McDiarmid [16] observed the following result.

Theorem 2.3. Let G be a multigraph with chromatic index x'(G). Then for all
k > x'(G), there is an equalized edge-coloring of G with k colors.

Let G be a multigraph, k > 0 be an integer and ¢ € C¥(G). There is a polynomial time
algorithm to modify ¢ into an equalized edge-coloring of G with k colors. To see this, suppose
that ¢ is not equalized and so we take two colors i,j € [1, k] such that llg=1(i)| — Ig~1(j)Il is
largest. Since ¢ is not equalized, lg=1(i)l — Ig71(j)Il > 4. Assume by symmetry that
Ig=1(@)! — 1371(j)I > 4. Consider the submultigraph of G induced on the set of edges colored
by i or j, then the submultigraph must have a component that is a path P starting at an edge
colored by j and ending at an edge colored by j. By swapping the colors i and j along this path
P, we decreased 1571(i)| — I@~1(j)! by 4. Repeating this process, we can obtain an equalized
edge-coloring of G with k colors after at most k2V (G)! rounds.

Given an edge coloring of G and a given color i, since vertices presenting i are saturated by
the matching consisting of all edges colored by i, we have the Parity Lemma below. The result

had appeared in many papers, for example, see [10, lemma 2.1].

Lemma 2.4 (Parity Lemma). Let G be a multigraph and ¢ € CX(G) for some integer
k > A(G). Then 1711 = IV (G)| (mod 2) for every colori € [1, k].

We need the following classic result of Hakimi [12] on multigraphic degree sequence.

Theorem 2.5. Let 0 < d, < .- <d; be integers. Then there exists a multigraph G on
vertices Xi, ..., Xn such that dg(x;) = d; for alli if and only if Y}, d; is even and Y. ,d; > d;.

Though it is not explicitly stated in [12], the inductive proof yields a polynomial time
algorithm which finds an appropriate multigraph if it exists.

Theorem 2.6 (Dirac [7]). Let G be a graph on n > 3 vertices. If 6(G) > % then G is

hamiltonian; and if §(G) > ";1

, then G is hamiltonian-connected.

Following the proof of Dirac [7], a hamiltonian cycle can be constructed in polynomial time
innif §(G) > % In fact, there is a polynomial time algorithm that constructs the closure of a
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graph G and finds a hamiltonian cycle of G if its closure is a complete graph (see [1, exercise
4.2.15, p. 62]).

Lemma 2.7. Let G be an n-vertex graph such that all vertices of degree less than A(G) are
mutually adjacent in G. Then |yl > .

Proof. Suppose the set A of maximum degree vertices has cardinality k, and the number
of vertices of degree less than maximum degree is k + r with r > 0. Deleting r vertices
not in A, we get a new graph H with 2k vertices, k of them forming A, and the remaining
k forming a set of vertices B such that each vertex in B has degree less than each vertex of
A in H. But B induces a complete graph in H so in H the sum of the vertex degrees in A
is less than or equal to the degree sum of the vertices in B. Since every vertex of
V(G)\V (H) is adjacent in G to every vertex of B, it follows that in G the sum of the
vertex degrees in A is less than or equal to the degree sum of the vertices in B. This gives
a contradiction. O

The two lemmas below concern existences of overfull subgraphs in graphs.

Lemma 2.8 (Plantholt [20]). Let G be a graph of even order n with §(G) > % IfH is an

induced proper subgraph of G such that H is either A(G)-overfull or A(G)-full, then
H = G — v for some vertexv € V;.

Lemma 2.9. Let G be a graph of even order n with § (G) > % Then G contains no A(G)-
overfull subgraph if |Vsl > 2.

Proof. Let x,y € Vs be distinct. Then Zvev (G-nA(G) — dg—x(v)) =
de(x) + (A(G) — dg(y)) + defg(V(G)\{x,y}) > A(G). Thus G —x is not A(G)-
overfull. By Lemma 2.8, G contains no A(G)-overfull subgraph. ]

Lemma 2.10. Let 0 < e < 1,ny be a positive integer, and G be a graph on 2n > ng
vertices with §(G) > (1 + €)n. If G contains a A(G)-full subgraph, then G contains a
spanning & (G)-regular subgraph obtained from G by deleting A(G) — 6(G) matchings
iteratively. As a consequence, x'(G) = A(G). Furthermore, there is a polynomial time
algorithm that finds an optimal coloring.

Proof. Define g = A(G) — 6(G). If G is regular, then we are done by Theorem 1.4. Thus G
is not regular and so g > 1. The graph G contains a A(G)-full subgraph, which by Lemma 2.8
must be G — x for some vertex x € V. Also, if G contains a A(G)-overfull subgraph, then
G — x must be A(G)-overfull also by Lemma 2.8. Since G — x is A(G)-full, we conclude that
G contains no A(G)-overfull subgraph and so has another vertex of degree less than A(G).
We let y € V(G)\{x} such that dg(y) is smallest among all vertices in V(G)\ {x}.
Since G — x is A(G)-full, we have A(G) = def(G — x) = dg(x) + (A(G) — dg(¥))+
defo(V(G)\{x,y}). As dg(x) =38(G), if dg(y) =6(G), then defg(V(G)\{x,y}) = 0.
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This implies that if dg(y) = 6(G), then every vertex from V' (G)\ {x, y} has degree A(G) in
G; and if dg(y) > 8(G), then as y is chosen to have smallest degree in G among vertices
from V(G)\{x}, V(G)\{x,y} contains no vertex of degree 5(G) in G. Since
8(G—x—-y)>n—1,G — x —y has a hamiltonian cycle by Theorem 2.6. As n — 2 is
even, we know that G — x — y has a perfect matching M;. Now we have 6 (G — M;) = §(G)
and A(G—M;)) —6(G—M)=g—1<g.Let G; = G — M. Since

def(Gy — x) = dg(x) + (A(G1) — dg(y)) + def,(V(G)\ {x, y})
=dg(x) + def(V(G)\{x}) — 1
=def(G—x)—1=A(G) —1=A(Gy),

we see that G; — x is A(Gy)-full. Thus we may repeat the procedure, and reach a § (G)-
regular graph G* after taking g matchings M, ..., M,.

Now by Theorem 1.4, x'(G*) = A(G*) = 6(G). Coloring each of the g matchings
M, ..., M using a different color together with an edge 6 (G)-coloring of G* gives an edge
A(G)-coloring of G. Thus y'(G) = A(G).

It is polynomial-time to find a hamiltonian cycle in graphs H with § (H) > %IV (H)| by
the comments immediately after Theorem 2.6. Thus all the matchings Mj, ..., M, can be
found in polynomial time. As an optimal edge coloring can be found in polynomial time
for graphs satisfying the conditions in Theorem 1.4, we can find an edge A(G)-coloring of
G* in polynomial time. Therefore, there is a polynomial time algorithm that finds an edge
A(G)-coloring for G. O

Lemma 2.11. Let G[X, Y] be bipartite graph with |X| = IY| = n. Suppose §(G) =t for
somet € [1, n], and except at most t vertices all other vertices of G have degree at least n/2
in G. Then G has a perfect matching.

Proof. We show that G[X, Y] satisfies Hall's Condition. If not, we let S C X with
smallest cardinality such that IS| > INg(S)I. By this choice, ISI = ING(S)I + 1 and
INg(S)! < 1Yl. As ISl > INg(S)|, it follows that IS > §(G) + 1 > t + 1. As G has at most ¢
vertices of degree less than n/2, it then follows that ISI > n/2. Thus IX\SI < n/2. Since
INg (S)! < 1Y1, there exists y € Y\Ng(S) such that Ng(y) € X\S. As §(G) > t, we have
IX\SI > t. As IY\Ng(S)I = 1Yl =1SI+1=IXI —1ISI+1>¢+ 1 and G has at most ¢
vertices of degree less than n/2, Y\ Ng(S) contains a vertex of degree at least n/2 in G.
However IX\ S| < n/2, we obtain a contradiction. Hence G has a perfect matching. []

A path P connecting two vertices u and v is called a (u, v)-path, and we write uPv or vPu to
specify the two endvertices of P. Let uPv and xQy be two disjoint paths. If vx is an edge, we
write uPvxQy as the concatenation of P and Q through the edge vx. If P is a path and
X,y € V(P), then xPy is the subpath of P with endvertices x and y.

Lemma 2.12. Let 0 < 1/ny < e <1, and G be a graph on n > nq vertices such that
8(G) > (1 + €)n/2. Moreover, let M = {a, by, ..., a;b;} be a matching in the complete graph
on V (G) of size at most en /8. Then there exist vertex-disjoint path P, ..., B in G such that
UV (P) = V(G) and P, joins a; to b;, and these paths can be found in polynomial time.
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Proof. For i€ [1,t— 1],INg(a;)) N Ng(b)l > en, so we can greedily find vertices
ci € Ng(a)) N Ng(b;) such that ¢;# ¢ for distinct i,j € [1,t—1]. Thus we let
P =aich. Let G*=G-UZiV(P). Then &(G*)>Q+¢en/2-3t-1)>
(1 + ¢/8)n/2, and so G* is hamiltonian-connected by Theorem 2.6. Thus we can find
an (a;, by)-hamiltonian path P in G*.

It is clear that each of P, ..., B_; can be found in polynomial time. For the path B, we
construct it as follows. By the comments immediately after Theorem 2.6, we can find a
hamiltonian cycle C of G* in polynomial time. By taking a longer segment between a, and
b, from C, we get in G* an (a,, b;)-path Q; that contains at least IV (G*)I/2 vertices.
We will extend Q; into a hamiltonian (a;, b;)-path of G*. Denote by Q, the remaining
segment of C that is disjoint from Q; and let ¢ and d be the endvertices of Q,.
Let IV(Qy)l =p. Then as 6(G*) > (1 + ¢/8)n/2, each of ¢ and d has on Q;
at least Q+e/n/2—-(p—-1)=Q1Q+¢/8)n/2—-—p+1 neighbors. Since
2((1 +€/8)n/2 —p) + p + IV(Qy)! > IV(G*), it follows that one of the following two
situations must happen: (a) there is a vertex c; € Ng<(c) N V(Q;) and a vertex
d; € Ng+<(d) n V(Q,) such that ¢;Q,d; contains less than p + 2 vertices, and (b) ¢ or d
has on Q; two neighbors that are consecutive on Q;. When (a) happens, assume by
symmetry that ¢, is between a, and d; on Q;, then Q;* = a,Q,c;¢Q,dd; Q, b, is longer than
Q; and the component of G* — V (Q;) still contains a hamiltonian path. Similarly, we can
extend Q; into a longer (ay, b;)-path such that the subgraph of G* outside the path is
hamiltonian if (b) happens. Repeating this procedure at most n/2 times, we obtain a
hamiltonian (a;, b;)-path of G*. Therefore, all the paths P, .., B can be found in
polynomial time. ]

3 | PROOF OF THEOREM 1.3

Theorem 1.3. Forall0 < ¢ < 1, there exists no such that the following statement holds: if
G is a graph on 2n > ng vertices with § (G) > (1 + ¢)n, then x'(G) = A(G) if and only if G
contains no A(G)-overfull subgraph. Furthermore, there is a polynomial time algorithm
that finds an optimal coloring.

Proof. Choose positive integer ny such that 0 < 1/ny < €.

If G is regular, then we are done by Theorem 1.4. Thus we assume that G is not
regular. If G contains a A(G)-overfull subgraph, then x'(G)= A(G) + 1. Thus we
assume that G contains no A(G)-overfull subgraph. As a consequence, def(G) > A(G). By
Lemma 2.10, we may assume that G contains no A(G)-full subgraph. Therefore, if two
vertices with degree less than A(G) are not adjacent in G, we may add the edge between
them without creating a A(G)-overfull subgraph, or increasing A(G). We iterate this
edge-addition procedure. If at some point we create a A(G)-full subgraph, the result
follows by Lemma 2.10. Otherwise, we reach a point where we may now assume that in
G all vertices with degree less than A(G) are mutually adjacent, and so by Lemma 2.7, we
have IVAl > n + 1.

Define n; = IV5l. Note that n; < n. If n; > n%7 and A(G) — 6(G) > n®/7, then we are
done by Theorem 1.4. Thus we assume n; < n%7 or A(G) — 8(G) < n%/7, and we
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consider the two cases below. We call a vertex of degree less than A(G) but greater than
8(G) a middle degree vertex.

Case 1. n; < n8/7,

Note that for any ve€ V(G)\V5,6(G—v—"Vs)>n and so both G— V5 and
G — v — Vs are hamiltonian by Theorem 2.6. Thus if G — V5 and G — v — Vj; have even
order, then they each has a perfect matching. Hence if n; is even, we can decrease
A(G) — 8(G) but preserve §(G) in deleting a perfect matching M of G — V;. If n; is odd
but G has a middle degree vertex v, we can decrease A(G) — §(G) but preserve §(G) in
deleting a perfect matching M of G — v — V;. Denote by G; the reduced graph from G by
deleting M in either of these two cases. If V3l > 2, then as V5 C V;(G;), we know that G,
still contains no A(Gy)-overfull subgraph by Lemma 2.9. Thus IVl = 1. Let V5 = {u}. Note
that u € V3(Gy). Then def(G, — u) = dg(u) + (A(G)) — dg(v)) + defs,(V(G)\{u, v}) =
do(w) + (A(G) — 1 = do()) + defe(V (O \ s V) = Shey 6 (AG) — dg_u () — 1.
Since G contains no A(G)-overfull subgraph, we have X ;) (A(G) -
dg_,(w)) > A(G). Thus def(G; — u) > A(G) — 1 =A(G,) and so G, contains no
A(Gy)-overfull subgraph by Lemma 2.8. Furthermore, y’'(G;) = A(G;) implies that
x'(G) = A(G). Thus in these two cases, we can consider G; in place of G and show that
G, is a class 1 graph.

Thus we assume that n; is odd and G has no middle degree vertex. This in
particular, implies that §(G) and A(G) have the same parity. As G has no A(G)-
overfull subgraph, IVl > 3. Let x, y € Vj be distinct. We find a perfect matching Mj; in
G — (V5\{x}) and a perfect matching My, in G — (V3\{y}). The matchings exist by
Theorem 2.6. Let G; = G — Mj; — Mj,. We repeat this same process and find a
perfect matching M, in G; — (V5\ {x}) and a perfect matching M,, in G, — (V5 \ {y}).
For i€ [2,(A(G)-46(G))/2], we let G;j=Giy—My— M. We have
dg,(x) =dg(¥) =6(G) —i. As A(G) —6(G)<2n— (1 + &)n = (1 — €)n, we see that
dg(x) = dg(y) =8(G)—i> (A +en— 31 —e)n=(1/2+ 3/2)n. For any vertex
z € V(G \{x,y}, dg,(z) 2 6(G) > (1 + ¢)n. Let x* be a neighbor of x in G; — (V5\ {x})
and y* be a neighbor of y in G; — (V5\{y}). Then G; — (V5\ {x}) — {x, x*} has a perfect
matching M{,,y;, and G; — (Vs\{»}) — {y,y*} has a perfect matching M{,,),. Let
Mg = M1y, U Doc*) and Mgy = M, U{yy*).  Thus  for  each
ie[2,(A(G) —48(G))/2], we find matchings M;; and M, respectively from
Giot — (V5\ fx}) and Gi—y — (V5 \ (1)).

We claim G* := Gx(6)-5(c))/2 satisfies Condition (b) of Theorem 1.4. By the analysis
above, we have dg+(x) = dg«(y) > (1/2 + 3¢/2)n, dg(z) = A(G*) = 6(G) > (1 + ¢)n for
all ze V(GH\{x,y}. Also A(G*) —46(G*) =46(G) — (6(G) — (A(G) —6(G))/2) =
%(A(G) -58(G)) < %(Zn —(1+¢n)=0Q/2—-¢/2)n. By Theorem 1.4, x'(G*) =
A(G*) = 6(G). Taking an edge & (G)-coloring of G*, coloring edges in M;; with color
8(G)+2i—1 and coloring edges in M; with color &(G)+ 2i for each
i €[1,(A(G) — 6(G))/2], we obtain an edge A(G)-coloring of G.

Case 2. A(G) — 6(G) < nb/7,
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Let V(G) = {x, ..., %,} and we assume def;(x;) > ---> def;(x%,) = 0. Since x; has the
smallest degree in G and G —x is not A(G)-overfull by our assumption,
Yis,defc(x;) > defg(x). Since IV(G)I = 2n is even, 3, defs(x;) is even. Then by
Theorem 2.5, there exists a multigraph H on V (G) such that dy (x) = defs(x;) for each
i € [1, 2n]. This multigraph H will aid us to find a spanning regular subgraph of G.

Note that A(H) = def;(q) = A(G) — §(G) < n®/7 and H contains isolated vertices.
Thus y'(H) < A(H) + u(H) < 2A(H) < 2n°%/7. Hence we can greedily partition E(H)
into k < 10n%/7 /¢ matchings M, ..., M. each of size at most en/5. Now we take out linear
forests from G by applying Lemma 2.12 with Mj, ..., M. More precisely, define spanning
subgraphs Gy, ..., Gy of G and edge-disjoint linear forests F,, ..., Fy such that

(1) Gy:=G and G, = G;_; — E(F) fori € [1, k],
(2) F is aspanning linear forest (each vertex of G;_; has degree 1 or 2 in F) in G;_; whose
leaves are precisely the vertices in M;.

Let Go=G and suppose that for some i€ [1,k], we already defined
Gos ., Gi_1 and F,, .., F_1. As A(F, U ---UF_;) < 2(i — 1) < 20n%/7/¢, it follows that
5(Gi_1) > (1 + &)n — 20n%/7/e > (1 + 4¢/5)n. Since M; has size at most en/5, we can
apply Lemma 2.12 to G;_; and M; and obtain a spanning linear forest F, in G;_; whose
leaves are precisely the vertices in M;. Set G; := G;_; — E(F).

We claim that G; is regular. Consider any vertex u € V(Gy).
For every i€ [1,k],dg(u) =1 if u is an endvertex of some edge of M; and
dr(u) = 2 otherwise. Since M, ..., My partition E(H), we know that Zg{:ld}«‘i(u) =
2k — dy (u) = 2k — defg(u). Thus

k
de, () = dc(u) — Z dr(u) = dg(u) — 2k — defg(u)) = A(G) — 2k.

i=1

Note that A(G) > (1 + &)n — 20n%/7/e > (1 + 4¢/5)n. Now x'(Gy) = A(Gy) by
Theorem 1.4. We color the edges of F wusing two distinct colors from
[A(G) — 2k + 1, A(G)] for each i € [1, k]. It is clear that any edge A(Gy)-coloring of Gy
together with this coloring of (J“,F, gives an edge coloring of G using
A(Gy) + 2k = A(G) colors.

We lastly check that the procedure above yields a polynomial time algorithm. Given
G, taking a vertex u of minimum degree in G, we first check if G — u is A(G)-overfull. If
yes, then x'(G) = A(G) +1 and G can be edge colored using A(G) + 1 colors in
polynomial time [17]. Thus G contains no A(G)-overfull subgraph. If G contains a A(G)-
full subgraph, then an edge A(G)-coloring of G can be found in polynomial time by
Lemma 2.10. Thus G contains no A(G)-full subgraph. If there exist nonadjacent
u,v € V(G)\Va, we add the edge uv in G. If we reach a point where the resulting graph
contains a A(G)-full subgraph, we then find an edge A(G)-coloring of the graph in
polynomial time by Lemma 2.10, which also gives an edge A(G)-coloring of G. Thus we
assume that every two vertices from V' (G)\ Vj, are adjacent in G. If G is in Condition (c) of
Theorem 1.4, then we find an edge A(G)-coloring of G in polynomial time by
Theorem 1.4. Thus we have Case 1 or Case 2 as described in this proof. If G is in Case 1, it
is polynomial time to find the desired matchings (basically find hamiltonian cycles of
even length in graphs with large minimum degree by the comments immediately after
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Theorem 2.6) to reduce G into a graph satisfying one of the conditions in Theorem 1.4.
Then we find an edge A(G)-coloring of G in polynomial time by Theorem 1.4. If G is in
Case 2, then can construct an edge A(G)-coloring of G through the process as described
in Case 2. Since Theorem 2.5, Lemma 2.12 and Theorem 1.4 give appropriate running
time statements, this can be achieved in time polynomial in n. O

4 | PROOF OF THEOREM 1.4
We will need the following result, which was proved using Chernoff bound.

Lemma 4.1 (Shan [23], lemma 3.2). There exists a positive integer n, such that for all
n>ny the following holds. Let G be a graph on 2n vertices, and
N={x,y, X, Y%} € V(G), where t € [1, n]. Then V(G) can be partitioned into two
parts A and B satisfying the properties below:

() 1Al = 1BI;
(i) AN {x;, ¥y}l =1 foreachi € [1,t];
(iii) Idy(v) — dg(v)I < n?/3 — 1 for each v € V(G), where ds(v) = IN;(v) N S| for any
S CV(G).

Furthermore, one such partition can be constructed in O (2n®log,(2n?))-time.

Theorem 1.4. Forall0 < € < 1, there exists ny such that the following statement holds. If
G is a graph on 2n > ny vertices satisfying one of the following three conditions:

(a) G is regular with §(G) > (1 + 4¢/5)n,

(b) G has two distinct vertices x,y such that d(x) =d(y) > (1/2 + 3¢/2)n, for all
z2€ V(G)\{x,»},d(@) = AG) > (1 + ¢)n, and A(G) — 6(G) < (1/2 — ¢/2)n,

(©) A(G) —8(G) > n%7,1V3l > n®7 and \Val > n + 1, and §(G) > (1 + €)n,

then x'(G) = A(G). Furthermore, there is a polynomial time algorithm that finds an
optimal coloring.

Proof. Choose positive integer ny such that 0 < 1/ny < €.

If G is in Condition (a), we let N = @. If G is in Condition (b), we let N = {x, y,},
where x; = x and y, = y. If G is in Condition (c), we take 2| (2n — IV,l) /2] vertices from
V(G)\Va and name them as xi, y,, ..., X;, ), where ¢ := [(2n — IVAl)/2] and we assume
that the first [1Vsl/2] pairs of vertices x;,y, are all from Vs. Let N = {x3,y,, ... X¢, Y}
Applying Lemma 4.1 on G and N, we obtain a partition {A, B} of V (G) satisfying the
following properties:

P.1 1Al = IBI;
P21A N {x;,y}l =1foreachi e [1,t];
P.31dy(v) — dg(w)l < n?/*> — 1 for each v € V(G).

Thus when G is in Condition (b), we may assume x € A and y € B. When G is in Condition
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(c). we know that IA N Vsl > 2(IVsl — 1), 1B N Vsl > 2(IVsl — 1),1A N Val > n/2 and
IBN VAl > n/2. By P.3, for any v € V (G), we have

%(dG(V) — %) < dy (), dp(v) < %(dG(V) + n23).

Let

GA = G[A], GB = G[B], and H= G[A, B]

To prove the theorem, we will construct an edge coloring of G using A(G) colors. We
provide below an overview of the steps. At the start of the process, E (G) is assumed to be
uncolored, and throughout the process, the partial edge coloring of G is always denoted
by ¢, which is updating step by step.

Step 1 DefineS ={v € V(G) : A(G) — dg(v) > 7n?/3}. Let k = max{A(Gy), A(Gp)} + 1.
By Theorem 2.1, we find an edge k-coloring ¢ of G4 U Gg. If there exist distinct
u,v € SN Aordistinctu,v € SN Bsuchthatp(u) N p(v) # &, we add an edge
joining u and v and color the new edge by a color in @ (u) N @ (v). The edge
coloring ¢ is updated and we still call it ¢. We iterate this process of adding and
coloring edges and call the multigraphs resulting from G, and G, respectively, G
and Gy, and call G* the union of G}, Gj and H. We will modify the current edge
coloring, which is still named ¢, such that the following properties are satisfied:

S1.1 When G is in Conditions (a) or (b),
‘gﬁgl(i)‘ = ‘cﬁ;l(i)‘ for every i € [1, k].
When G is in Condition (c), assume by symmetry that e(G}) < e(Gy), then
‘@;1(1')‘ > ‘qﬁB_l(i)‘ for every i € [1, k].

S1.2

Z Icﬁ(u)l < £(n2/3 + 1) + 2(6,12/3) +k < 4n5/3 _ 2”,
ucA 2 2

S ip )l < %(n2/3 +1)+ %(6112/3) +k < 4ns/3 = 2, (SLI)

UEB

@;1(1')‘ <4n?/3 and ‘gﬁ;l(i)‘ < 4n?/3 forevery i € [1,k].

Step 2 Modify the partial edge-coloring of G* obtained in Step 1 by exchanging
alternating paths. When this step is finished, each of the k color class will be a
1-factor of G*. During the process of this step, a few edges of H will be colored
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and a few edges of G5 and Gj will be uncolored. Denote by R4 and Rp,
respectively, the submultigraphs of G} and Gj consisting of the uncolored edges.
The two multigraphs R, and Ry will initially be empty, but one, two or three
edges will be added to at least one of them when each time we exchange an
alternating path. The conditions below will be satisfied at the completion of this
step:

S2.1 The number of uncolored edges in each of G5 and Gj is less than 12n°/3,
When G is in Conditions (a) or (b), G5 and G have the same number of
uncolored edges; and when G is in Condition (c), the number of uncolored
edges in G} is greater than or equal to the number of uncolored edges in G5
(this follows from our assumption that e(G}) < e(G§)).

S2.2 A(R4) and A(Rp) are less than n°/¢ + 1.

S2.3 Define

SA:{u ESNA : dg(u) <k — 2n2/3},

SB:{u €SNB : dg(u) <k — 2n2/3}.

We require
S2.3.1 Every vertex in V' (G*)\ (S4 U Sp) is incident in G* with fewer than
2n°/® colored edges of H.
S2.3.2 When G is in Condition (b), each of the vertex from S, U Sp is

incident in G* with fewer than (% - %a)n colored edges of H.

S2.3.3 When G is in Condition (c), each of the vertex from S, U Sp is

incident in G* with fewer than (% — %E)n colored edges of H.

Step 3 We will edge color R4 and R and a few uncolored edges of H using another
¢ colors, where ¢ = [2n°/¢]. The goal is to ensure that each of these ¢ new color
classes obtained at the completion of Step 3 presents at all vertices from
V(G*)\ Vs while preserving the k 1-factors already obtained through Steps 1
and 2.

Step 4 At the start of Step 4, all of the uncolored edges of G* belong to H. Denote by R
the subgraph of G* consisting of the uncolored edges. It will be shown that
A(R) = A(G*) — k — €. This subgraph is bipartite, so we can color its edges using
A(G*) — k — ¢ colors by Theorem 2.2.

When Step 4 is completed, we obtain an edge coloring of G* using exactly A(G*)
colors. We now give the details of each step, and for concepts that were already defined in
the outline above, we will use them directly.

Step 1: Coloring G4 and Gy

Recall S = {v € V(G) : A(G) — dg(v) > 7n?/3}. Note that when G is in Condition
(a), S = @; when G is in Condition (b), then S C {x, y}; and when G is in Condition (c),
then V5 C S. Following the operations described in the outline of Step 1, for the current
edge coloring ¢ of G5 U Gy, the following statement holds: @ (1) N & (v) = @ for any two
distinct u,v € S N A or any two distinct u, v € S N B. Therefore,
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2

UEANS

= ¥ (k-dgw)<k X

UEANS UEBNS

= X (k - dc;;(u)) <k. (SLID

ueBNS

¢ (u) @ (u)

We will in the rest of the proof show that y’(G*) = A(G*), this is because G is a
subgraph of G* and A(G*) = A(G). The latter is seen as follows: for any u € S N A, we
have

de(u) < k + eg(u, B) < %(A(G) + 414 %(A(G) —Tm2l3 4 213

< A(G).

Similarly, we have dg«(u) < A(G) for any u € SN B. In particular, if u € V3, as
A(G) — §(G) > n®/7, we have

de+(u) < %(A(G) +n¥3)+1+ %(A(G) — n®/7 + n?/3) < A(G) — §n6/7. (S1.III)

Let ¢, and @y be the restrictions of ¢ on G} and G, respectively. By Lemma 2.3 and
the comments immediately below the lemma, we modify ¢, and ¢ into equitable edge k-
colorings of G} and Gj, respectively, and still call ¢ the edge k-coloring of G5 U G5
consisting of the modifications of ¢, and ¢,. Note that under the new colorings, it is
possible that @ (u) N @ (v) # @ for some distinct u,v € SN A or distinct u,v € S n B.
However the inequalities in (S1.IT) still hold.

When G is in Conditions (a) or (b), we have S| < 2 and e(G;) = e(Gp) by the partition
{A, B} of V(G). Since IS N Al = IS n Bl < 1, it follows that G5 = G4 and G} = G. Thus
e(G}) = e(Gg). Since ¢, and ¢, are equitable edge k-colorings of G} and G5, by renaming
some color names in G} if necessary, we assume

\égl(i)\ = ‘gﬁgl(i)‘ for every i € [1, k].

When G is in Condition (c), by symmetry, we assume e(G}) < e(Gp). For the same

reasoning as above, we assume

‘gﬁ;l(i)‘ > ‘agl(i)‘ forevery i € [1, k.
By the Parity Lemma, Ig?;l(i)l - Iq?gl(i)l is even for every i € [1, k]. Therefore, we have
the statement S1.1 as stated in the outline of Step 1.

Next, we verify that every color i € [1, k] is missing at a small number of vertices.
Property P.2 of the partition {4, B} implies IA N VAl > n/2 and IB N VAl > n/2, and each
vertex u € V, satisfies 1¢ (u)l < n?/3 + 1, call this Fact 1. By the definition of S, for every
u € V(GH\S, dg(u) = dg(u) > A(G*) — 7n/3, and Property P.3 of the partition {4, B}
implies dg+(u) > %dG (u) — n?/3 for everyu € A\S and dg:(u) > %dg (u) — n?/3 for every
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u € B\S. Thus 1§ (w)l < k — (%dG(u) — n?/3) < 6n?/3 for every u € V(G*)\S, call this
Fact 2. These two facts together with the fact in (S1.II), give

Z Ip (W)l < E(1’12/3 +1)+ £(6n2/3) + k < 4n3/3 — 2n.
ueA 2 2

Similarly,

D gl < %(nz/3 +1)+ %(6?12/3) + k < 4n’/3 — 2n.

Since ¢, and ¢, are equitable edge k-colorings of G} and Gj, we get
‘@;1(1')‘ <4n?/3 and ‘@;l(i)‘ < an?/3,

Therefore, we have the statement S1.2 as stated in the outline of Step 1.

Step 2: Extending existing color classes into 1-factors

Each of the k color classes obtained in Step 1 will be extended into k 1-factors of G*
through exchanging of alternating paths, which consist of colored edges and uncolored
edges. The colored edges and uncolored edges of these alternating paths are from
G} U Gy and H, respectively. Thus during the procedure of Step 2, we will uncolor some
of the edges of G} and Gj, and will color some of the edges of H. Recall that R4 and Rp are
the submultigraphs of G} and Gj consisting of the uncolored edges, which are empty
initially.

To ensure Condition S2.2 is satisfied, we say that an edge e = uv € E(G} U Gj) is
good if e & E(R4 U Rp) and the degree of u and v in both R4 and Ry is less than n’/®
(actually, note that when uv € E(G}), then the degree of u and v is zero in Rp and vice
versa). Thus a good edge can be added to R4 or Rg without violating S2.2.

By S1.1, for each color i € [1, k], we pair up each vertex from @, (i) with a vertex
from @,'(i), and then pair up the remaining unpaired vertices from @,'(i) as
Iz, () — 1@ (i)l is even and we assumed 13," ()| > 1;" (i)I. Each of those pairs is
called a missing-common-color pair or MCC-pair in short with respect to the color i. In
particular, when G is in Conditions (a) or (b), every vertex from gE;l (i) is paired up with a
vertex from @ (i).

For every MCC-pair (a, b) with respect to some color i € [1, k], we will exchange an
alternating path P from a to b with at most 11 edges, where, if exist, the first, third, fifth,
seventh, ninth, and eleventh edges are uncolored and the second, fourth, sixth, eighth,
and tenth edges are good edges colored by i. After P is exchanged, a and b will be incident
with edges colored by i, and at most three good edges will be added to each of R4 and Rp.
With this information at hand, before demonstrating the existence of such paths, we
show that Conditions S2.1, S2.2, and S2.3 can be guaranteed at the end of Step 2. After
the completion of Step 1, by (S1.I), the total number of missing colors from vertices in A
or from vertices in B is at most 4n°/3 — 2n. Thus there are at most 4n°/3 — 2n MCC-pairs.
For each MCC-pair (a, b) with a, b € V (G*), at most three edges will be added to each of
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R4 and R when we exchange an alternating path from a to b. Thus there will always be
fewer than

3(4n%/3 — 2n) < 12n°/3

edges in each of R4 and Rp. Each of the k color classes is a 1-factor of G* at the end of Step
2. Thus the number of colored edges in G} is the same as that in G;. Since e(G}) = e(Gy)

when G is in Conditions (a) or (b), and e(Gj) > e(G}) when G is in Condition (c), we
have e(R4) = e(Rg) when G is in Conditions (a) or (b), and e(Rg) > e¢(R4) when G is in
Condition (c). Thus Condition S2.1 will be satisfied at the end of Step 2. And as we only
ever add good edges to R4 and Rp, Condition S2.2 will hold automatically. We now show
that Condition S2.3 will also be satisfied. Recall

SA:{ueSnA : dG;(u)gk—znz/S} and SB:{ueSnB :

de:(u) <k — 2n2/3}.

Since ¥,eanstk = dgiU)), Syepns(k — dgw)) < k < S(AG) + n*/?) +1 < 2n, it fol-
lows that

IS4l < nt/3 and 1Sl < n'/3.

Thus for every vertexu € S\ (Sq U Sp), 1o (u)l < 2n?/3, For every vertex u € V(G*)\S, as
dg(u) = de*(u) > A(G) — 7n?/3, it follows that I (u)! < k — (5(A(G) — Tn?/?) — n?/?) < 6n?/2,
Thus for any u € V (G*)\ (Sa U Sp), we have Ip ()| < 6n2/3. In the process of Step 2, the
number of newly colored edges of H that are incident with a vertexu € V (G*)\ (S4 U Sp)
will equal the number of alternating paths containing u that have been exchanged. The
number of such alternating paths of which u is the first vertex will equal the number of
colors that missed at u at the end of Step 1, which is less than 6n2/3. The number of
alternating paths in which u is not the first vertex will equal the degree of u in R4 U R,
and so will be less than n®/° + 1. Hence the number of colored edges of H that are
incident with u will be less than

6n2/3 + n3/6 + 1 < 2n5/8,

This applies to all vertices in V' (G*)\ (S4 U Sp), and so Condition S2.3.1 will be satisfied.
When G is in Condition (b), for any vertex u € Sy U Sg={x,y}, since
A(G) - 8(G) < (1 — €)n, we have

Wl <k — %(dc(u) w2l <k - %(A(G) - %(1 —n— n2/3)
< i(l —on +n?3 + 1.

Hence the number of colored edges of H that are incident with u will be less than
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1 1 1
~Ql-an+nP+1+n/°+1< (— - —E)l’l.
4 4 5

Therefore, Condition S2.3.2 will be satisfied.
When G is in Condition (c), for any vertex u € S4U Sp, since
A(G) — 8(G) £ (1 — ¢)n, we have

P! <k - S(dow) = ) < k= ~(AG) = (1 = n — n/?)

1
< 5(1 —en+n?3+ 1.

Hence the number of colored edges of H that are incident with u will be less than
1 1 1
5(1 —on+nP4+14+n/°+1< (5 - Es)n.

Therefore, Condition S2.3.3 will be satisfied.

We now show below the existence of alternating paths for MCC-pairs. For a given
colori € [1, k], and verticesa € A and b € B, let N3(a) be the set of vertices in B that are
joined with a by an uncolored edge and are incident with a good edge colored i such that
the good edge is not incident with any vertex of Sg, and let Ny (b) be the set of vertices in
A that are joined with b by an uncolored edge and are incident with a good edge colored i
such that the good edge is not incident with any vertex of S;. To estimate the sizes of
N4 (b) and Np(a), we show that A and B contain only a few vertices that either miss the
color i or are incident with a non-good edge colored i. By S2.1, there are at most 12n°/3
edges in Rg, so there are fewer than 24n°/° vertices of degree at least n/¢ in Rg. Each non-
good edge is incident with one or two vertices of Rp through the color i, so there are fewer
than 48n°/° vertices in B that are incident with a non-good edge colored i. Furthermore,
there are at most 21Sgl < 2n!/3 vertices in B that are either contained in Sg or adjacent to a
vertex from Sp through an edge with color i. Finally, there are fewer than 4n?/3 vertices in
B that are missed by the color i. So the number of vertices in B that are not incident with
a good edge colored i such that the good edge is not incident with any vertex from Sg is
less than

48n5/° + 2n1/3 + 4n?/3 < 49n5/°.
By symmetry, the number of vertices in A that are not incident with a good edge colored i
such that the good edge is not incident with any vertex from S, is less than 49n°/¢. By

S2.3.1, when {a, b} N (S4 U Sp) = @,

INA(B)], INp (@)] > %((1 + de/S)n — n?/3) — 20516 — 49nS/6 > (% + %s)n. (S2.1)

When G is in Condition (b) and {a, b} N {x, y} # @, by S2.3.2, we have
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IN, (D)1, INg(a)! > %((1/2 + 3¢/2)n — n?/3) — (% — %s)n — 49n°/6 > %en.

(S2.1D)

When G is in Condition (c) and {a, b} N (Sy U Sg) # @, by S2.3.3, we have

INA(D)1, N (@)] > %((1 +on — n2/3) — G _ %E)n — a93/6 > %sn. (S2.111)

Let Mg (a) be the set of vertices in B that are joined with a vertex in Nz(a) by an edge
of color i, and let M, (b) be the set of vertices in A that are joined with a vertex in Ny (b)
by an edge of color i. Note that (S; U Sg) N (M4 (b) U Mg(a)) = @ by the choice of Ny (b)
and Nz(a). Note also that IMg(a)l = IN3(a)! but some vertices may be in both. Similarly
IM4 (b)| = IN4 (D).

For a MCC-pair (a,b), to have a unified discussion as in the case that
{a,b} N (S4 U Sg) = @, if necessary, by exchanging an alternating path of length 2
from a to another vertex a*, and exchanging an alternating path from b to another vertex
b*, we will replace the pair (a, b) by (a*, b*) such that {a*, b*} N (S4 U Sg) = @. Precisely,
we will implement the following operations to vertices in S4 U Sg. For any vertex a € Sy,
and for each color i € @ (a), we take an edge b, b, with b; € N3(a) and b, € Mg(a) such
that b, b, is colored by i, where the edge b; b, exists by (S2.II)-(S2.III) and the fact that
IMg(a)! = INg(a)l. Then we exchange the path ab;b, by coloring ab; with i and
uncoloring the edge b, b, (See Figure 1A). After this, the edge ab; of H is now colored by i,
and the uncolored edge b, b, is added to Rg. We then update the original MCC-pair that
contains a with respect to the color i by replacing the vertex a with b,. We do this at the
vertex a for every colori € @ (a) and then repeat the same process for every vertex in Sy.
Similarly, for any vertex b € Sg, and for each color i € @ (b), we take an edge a;a, with
a; € Ny(b) and a, € My (b) such that a;a;, is colored by i, where the edge a;a, exists by
(S2.11)—~(S2.11I) and the fact that IMg(b)| = INp(b)|. Then we exchange the path ba;a, by
coloring ba; with i and uncoloring the edge a;a,. The same, we update the original MCC-
pair that contains b with respect to the color i by replacing the vertex b with a,.

After the procedure above, we have now three types MCC-pair (u,v):
u,v € A,u,v € B, and A contains exactly one of u and v and B contains the other.
However, in either case, {u, v} N (Sy U Sg) = @. We will exchange alternating path for
each of such pairs.

We deal with each of the colors from [1, k] in turn. Let i € [1, k] be a color. We
consider first an MCC-pair (a, a*) with respect to i such that a, a* € A. By (S2.I), we have

Mg (a*)l > (% + %E)n. We take an edge b;'by colored by i with b € Np(a*) and
by € Mg(a*). Then again, by (S2.1), we have IMg(a)l, IM4(b))| > (% + %s)n. Therefore,

as each vertex ¢ € M, (b)) satisfies INg(c)l > (% + éa)n, we have INz(c) N Mg(a)l > %sn.
We take aya) colored by i with af € Ny(b)) and a, € My(bS). Then we let

b, € Nz(ay) N Mp(a), and let b; be the vertex in Ng(a) such that b,b, is colored by i.
Now we get the alternating path P = ab,b,a,a;b;b;*a* (See Figure 1C). We exchange P
by coloring aby, b,a,, a;b; and b;"a* with color i and uncoloring the edges b, b,, b;*b} and
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FIGURE 1 The alternating path P. Dashed lines indicate uncolored edges, and solid lines indicate edges
with color i. (A) P with 3 edges (B) P with 5 edges (C) P with 7 edges

a,a;. After the exchange, the color i appears on edges incident with a and a*, the edges
bib, and b;*bj are added to Rg and the edge a,a;" is added to R,. We added at most one
edge to each of R4 and Rg when we updated the original MCC-pair corresponding to
(a, a*). Thus we added at most three edges to each of R4 and Rz when we modify ¢
to have the color i present at both of the vertices in the original MCC-pair corresponding
to (a, a*). By symmetry, we can deal with an MCC-pair (b, b*) with respect to i such that
b, b* € B similarly as above.

Thus we consider an MCC-pair (a, b) with respect to i such that a € A and b € B. By

(S2.I), we have IMg(a)l, IM4(b)! > (% + ée)n. We choose a;a, with color i such that

a; € Ny(b) and a, € My (b). Now as IMg(a)l, INg(ay)! > (% + %s)n by (S2.I), we know

that Nz(a,) N Mg(a) # @. We choose b, € Nz(a,) N Mg(a) and let b; € Nz(a) such that
bib, is colored by i. Then P = abib,a,a;b is an alternating path from a to b
(See Figure 1B). We exchange P by coloring ab,, b,a, and a;b with color i and
uncoloring the edges a;a, and b;b,. After the exchange, the color i appears on edges
incident with a and b, the edge a;a, is added to R4 and the edge b; b, is added to Rg. We
added at most one edge to each of R4 and Ry when we updated the original MCC-pair
corresponding to (a, b). Thus we added at most three edges to each of R4 and Rz when we
modify ¢ to have the color i present at both of the vertices in the original MCC-pair
corresponding to (a, b). By finding such paths for all MCC-pairs with respect to the color
i, we can increase the number of edges colored i until the color class is a 1-factor of G*. By
doing this for all colors, we can make each of the k color classes a 1-factor of G*.
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Step 3: Coloring R4 and Rp and extending the new color classes

Each of the color classes for the colors from [1, k] is now a 1-factor of G*. We now
consider the multigraphs R4 and Ry that consist of the uncolored edges of G5 and Gj. By
Condition S2.1, Ry and Ry each has fewer than 12n°/3 edges, and
A(Ry), A(Rp) < n°/® + 1. Note that R, and Rp might contain parallel edges with
endvertices in S. By Theorem 2.1 and Theorem 2.3, R4 and Rp each have an equalized
edge-coloring with exactly € := [2n°/°] colors k + 1, ..., k + €.

If G is in Conditions (a) or (b), then we have e(R4) = e(Rp). Under these two
conditions, by renaming some color classes of R4 if necessary, we can assume that in the
edge colorings of R4 and Rp, each color appears on the same number of edges in R4 as it
does in Rz. When G is in Condition (c), by our assumption that Gj has more edges than
G} does, we have e(R,4) < e(Rp). In this case, we can assume that in the edge colorings of
R, and Rp, the number of edges with a color i € [k + 1,k + ¢] in Rp is at least the
number of edges with a colori € [k + 1,k + ¢] in Ry.

There are fewer than 12n°/3 edges in each of R4 and R, and ¢ > n’/®, so each of the
colori € [k + 1, k + ¢] appears on fewer than 12rn°/® + 1 edges in each of R4 and Rp. We
will now color some of the edges of H with the ¢ colors from [k + 1, k + €] so that each
of these color classes present at vertices from V (G*)\Vs;. We perform the following
procedure for each of the ¢ colors in turn.

Given a colori withi € [k + 1, k + €], we let A; and B; be the sets of vertices in A and
B respectively that are incident with edges colored i. Note thatl4;l < IBjl < 2(12n%/° + 1)
as R, and Ry each contains fewer than 12n5/6 + 1 edges colored i. Note that if G is in
Conditions (a) or (b), we have |4;| = IBjl; and we might have IB;l > |A;| when G is in
Condition (c). When G is in Condition (c) and IB;l > 14;l, we let

A C (VsnA)\A;

such that IA*I + IA;] = IBjl, and just let A* = @ otherwise. Note that such A;* exists as
Vs N Al > %nﬁﬁ — 1andlA;l, 1Bl < 2(12n°/° + 1). Let H; be the subgraph of H obtained
by deleting the vertex sets A; U A;* and B; and removing all colored edges. We will show
next that H; has a perfect matching and we will color the edges in the matching by the
color i.

Each vertex in V (G*)\ (Sa U Sp) is incident with fewer than 2n%/° + ¢ < 5n°/° edges
of H that are colored, since fewer than 2n°/® were colored in Step 2 by S2.3.1 and at most
2n°/® + 2 < 3n°/® have been colored in Step 3. Also each vertex in G* has fewer than
2(12n/% + 1) edges that join it with a vertex in A; or B;. So each vertex from
V (H;)\ (S4 U Sp) is adjacent in H; to more than

1 1
E((l + 4¢/5)n — n?/3) — 5n%/6 — 2(12n%/° + 1) > 5(1 +¢/2)n

vertices.
When G is in condition (b), each vertex in Sy U Sp is incident with fewer than

(% - éa)n + 3n5/6 edges of H that are colored, since fewer than (% — %s)n were colored

in Step 2 by S2.3.2 and at most 31n°/® have been colored in Step 3. Also each vertex in G*
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has fewer than 2(12n°/° + 1) edges that join it with a vertex in A; or B;. So when G is in
Condition (b), each vertex from Sy U Sp is adjacent in H; to more than

%((1/2 + 3¢/2)n — n?/3) — ((i - %s)n + 3n5/6J —2(12n%/% + 1) > %sn

vertices.
When G is in condition (c), each vertex in S4 U Sp is incident with fewer than
(% — %E)n + 3n%/% edges of H that are colored, since fewer than (% — éz)n were colored

in Step 2 by S2.3.3 and at most 3n°/® have been colored in Step 3. Also each vertex in G*
has fewer than 2(12n°/° + 1) edges that join it with a vertex in A; U A* or B;. So when G
is in Condition (c), each vertex from Sy U S is adjacent in H; to more than

1 1 1 1
5((1 +e)n — n?/3) — ((5 - gs)n + 3n5/6) —2(12n%/% + 1) > Sen

vertices.
Thus 6 (H;) > %En in either case and H; has at most IS, U Spl < 2n!/3 < %En vertices of

degree less than %n. So H; has a 1-factor F by Lemma 2.11. If we color the edges of F with
the color i, then every vertex in V (G*)\ A" is incident with an edge of color i. We repeat
this procedure for each of the colors from [k + 1, k + ¢]. After this has been done, each
of these ¢ colors presents at all vertices from V' (G*) \ 5. So at the conclusion of Step 3, all
of the edges in G and G} are colored, some of the edges of H are colored, each of the k
color classes for colors from [1, k] is a 1-factor of G*, and each of the ¢ colors from
[k + 1, k + ¢] presents at all vertices from V (G*)\ V5.

Step 4: Coloring the graph R

Let R be the subgraph of G* consisting of the remaining uncolored edges. These edges
all belong to H, so R is a subgraph of H and hence is bipartite. We claim that
A(R) = A(G*) — k — ¢. Note that every vertex from V (G*)\ Vs presents every color from
[1, k + ¢] and so those vertices have degree at most A(G*) — k — ¢ in R. For the vertices
from Vj, they present all the colors from [1, k]. Thus by (S1.III), those vertices have degree
at most

A(GY) — §n6/7 Ck<AGH—k—¢

in R. By Theorem 2.2 we can color the edges of R with A(R) colors from
[k+ ¢+ 1,A(G*)]. Thus y'(G)<k+ ¢+ (AG*)—k—-¢)=A(G*) and so
X' (G*) = A(G*), as desired.

Lastly, we check that there is a polynomial time algorithm to obtain an edge A(G)-
coloring of G. By Lemma 4.1, we can obtain a desired partition {4, B} of V(G) in
polynomial time. Also, it is polynomial time to edge color G4 and Gg by an algorithm
described in [17]. Modifying G4 and Gp into G} and Gj and the corresponding edge
colorings into equalized edge-colorings can be done in polynomial time too. In Step 2, the
construction of the alternating paths and swaps of the colors on the paths can be done in
O(n®)-time, as the total number of colors missing at vertices is O(n?) and it takes O (n)-
time to find an alternating path for a MCC-pair. In Step 3, there is a polynomial time
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algorithm (see e.g. [14]) to edge color R4 and Rp using at most € colors. Then by doing
Kempe changes as mentioned in the comments immediately after Theorem 2.3, these
edge colorings can be modified into equalized edge-colorings in polynomial time. The last
step is to edge color the bipartite graph R using A(R) colors, which can be done in
polynomial-time in n, for example, using an algorithm from [5]. Thus, there is a
polynomial time algorithm that gives an edge coloring of G using A(G) colors. |
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