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Abstract

Let G be a simple graph with maximum degree GΔ( ). A

subgraph H ofG is overfull if ∕    E H G V H( ) > Δ( ) ( ) 2 .

Chetwynd and Hilton in 1986 conjectured that a graph G

with ∕ G V GΔ( ) > ( ) 3 has chromatic index GΔ( ) if and

only ifG contains no overfull subgraph. The best previous

results supporting this conjecture have been obtained for

regular graphs. For example, Perković and Reed verified

the conjecture for large regular graphs G with degree

arbitrarily close to ∕ V G( ) 2. We provide a similar result

for general graphs asymptotically, showing that for any

given 0 < ϵ < 1, there exists a positive integern0 such that

the following statement holds: if G is a graph on ≥n n2 0

vertices with minimum degree at least n(1 + ϵ) , then G

has chromatic index GΔ( ) if and only if G contains no

overfull subgraph.
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1 | INTRODUCTION

In this paper, the terminology “graph” is used to mean a simple graph and a “multigraph” may
contain parallel edges but no loops. LetG be a multigraph. Denote byV G( ) and E G( ) the vertex
set and edge set ofG, respectively, and by e G( ) the cardinality of E G( ). For ∈v V G N v( ), ( )G is
the set of neighbors of v in G, and d v( )G , the degree of v in G, is the number of edges of G that
are incident with v. WhenG is simple,  d v N v( ) = ( )G G . For ⊆ ∈S V G N S N v( ), ( ) = ( )G v S G , the
subgraph of G induced on S is denoted by G S[ ], and ≔ ⧹G S G V G S− [ ( ) ]. If ⊆F E G( ), then
G F− is obtained fromG by deleting all the edges of F . Let ⊆V V V G, ( )1 2 be two disjoint vertex
sets. Then E V V( , )G 1 2 is the set of edges in G with one end in V1 and the other end in V2, and
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≔  e V V E V V( , ) ( , )G G1 2 1 2 . We write E v V( , )G 2 and e v V( , )G 2 if V v= { }1 is a singleton. Define
∈μ G e u v u v V G( ) = max{ ( , ) : , ( )}G to be the multiplicity of G. We also write G V V[ , ]1 2 to

denote the bipartite subgraph of G with vertex set ∪V V1 2 and edge set E V V( , )G 1 2 .
For two integers p q, , let ∈ ≤ ≤p q i p i q[ , ] = { : }. Let ≥k 0 be an integer. An edge

k‐coloring of a multigraphG is a mapping φ from E G( ) to the set of integers k[1, ], called colors,
such that no two adjacent edges receive the same color with respect to φ. The chromatic index of
G, denoted χ G′( ), is defined to be the smallest integer k so that G has an edge k‐coloring. We
denote by  G( )k the set of all edge k‐colorings of G.

In the 1960s, Gupta [11] and, independently, Vizing [26] proved that for all graphs
≤ ≤G G χ G G, Δ( ) ′( ) Δ( ) + 1. This leads to a natural classification of graphs. Following Fiorini

and Wilson [8], we say a graph G is of class 1 if χ G G′( ) = Δ( ) and of class 2 if
χ G G′( ) = Δ( ) + 1. Holyer [13] showed that it is NP‐complete to determine whether an
arbitrary graph is of class 1. Nevertheless, if ∕    E G G V G( ) > Δ( ) ( ) 2 , then we must use

G(Δ( ) + 1) colors to edge color G. Such graphs are overfull. An overfull subgraph H of G with
H GΔ( ) = Δ( ) is called a GΔ( )‐overfull subgraph of G. A number of long‐standing conjectures

listed in Twenty Pretty Edge Coloring Conjectures in [24] lie in deciding when a graph is overfull.
Chetwynd and Hilton [3,4], in 1986, proposed the following conjecture.

Conjecture 1.1 (Overfull Conjecture). Let G be a simple graph with  G V GΔ( ) > ( )
1

3
.

Then χ G G′( ) = Δ( ) if and only if G contains no GΔ( )‐overfull subgraph.

The 3‐critical graph P*, obtained from the Petersen graph by deleting one vertex, has
χ P′( *) = 4, satisfies  P V PΔ( *) = ( *)

1

3
but contains no 3‐overfull subgraph. Thus the degree

condition  G V GΔ( ) > ( )
1

3
in the conjecture above is best possible. Applying Edmonds'

matching polytope theorem, Seymour [22] showed that whether a graphG contains an overfull
subgraph of maximum degree GΔ( ) can be determined in polynomial time. Thus if the Overfull
Conjecture is true, then the NP‐complete problem of determining the chromatic index becomes
polynomial‐time solvable for graphs G with  G V GΔ( ) > ( )

1

3
. There have been some fairly

strong results supporting the Overfull Conjecture in the case when G is regular. It is easy to
verify that when G is regular with even order, G has no GΔ( )‐overfull subgraphs if its vertex
degrees are at least ∕ V G( ) 2. Thus the well‐known 1‐Factorization Conjecture stated below is a
special case of the Overfull Conjecture.

Conjecture 1.2 (1‐Factorization Conjecture). Let G be a regular graph of order n2 with
degree at least n if n is odd, or at least n − 1 if n is even. Then G is 1‐factorable;
equivalently, χ G G′( ) = Δ( ).

Hilton and Chetwynd [2] verified the 1‐Factorization Conjecture if the vertex degree is at
least  V G0.823 ( ) . Perković and Reed [19] showed in 1997 that the 1‐Factorization Conjecture is
true for large regular graphs with vertex degree at least ∕ V G( ) (2 − ϵ). In 2016, Csaba et al. [6]
verified the conjecture for sufficiently large  V G( ) . Much less is known about the truth of the
Overfull Conjecture if we no longer require that G is regular. It was confirmed for graphs with

≥  G V GΔ( ) ( ) − 3 by Chetwynd and Hilton in 1989 [4]. Plantholt [20] in 2004 verified the
conjecture for graphs of even order and minimum degree at least  V G0.8819 ( ) . More recently,
Plantholt [21] showed the conjecture is true for sufficiently large even order graphs with
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minimum degree at least ∕ V G2 ( ) 3. We extend these results and give an asymptotic result for
general graphs that is similar to the Perković‐Reed result for regular graphs, by obtaining the
result below.

Theorem 1.3. For all ε0 < < 1, there exists n0 such that the following statement holds: if
G is a graph on ≥n n2 0 vertices with ≥δ G ε n( ) (1 + ) , then χ G G′( ) = Δ( ) if and only ifG
contains no GΔ( )‐overfull subgraph. Furthermore, there is a polynomial time algorithm
that finds an optimal coloring.

Define ∈V G v V G d v i( ) = { ( ) : ( ) = }i G , and we write Vi for V G( )i ifG is clear. Furthermore,
Vδ G( ) and V GΔ( ) are simply written as Vδ and VΔ, respectively. The proof of Theorem 1.3 is based
on the following result.

Theorem 1.4. For all ε0 < < 1, there exists n0 such that the following statement holds. If
G is a graph on ≥n n2 0 vertices satisfying one of the following three conditions:

(a) G is regular with ≥ ∕δ G ε n( ) (1 + 4 5) ,
(b) G has two distinct vertices x y, such that ≥ ∕ ∕d x d y ε n( ) = ( ) (1 2 + 3 2) , for all

∈ ⧹ ≥z V G x y d z G ε n( ) { , }, ( ) = Δ( ) (1 + ) , and ≤ ∕ ∕G δ G ε nΔ( ) − ( ) (1 2 − 2) ,
(c) ≥ ≥∕ ∕ G δ G n V nΔ( ) − ( ) , δ

6 7 6 7 and ≥ V n + 1Δ , and ≥δ G ε n( ) (1 + ) ,

then χ G G′( ) = Δ( ). Furthermore, there is a polynomial time algorithm that finds an
optimal coloring.

The proof of Theorem 1.4 develops an approach to edge coloring even order large graphs G
that have minimum degree arbitrarily close to ∕ V G( ) 2 but are not regular. The approach is
based on the proof scheme of Lemma 14 from [25] by Vaughan but the scheme there is only for
regular graphs. The new technique is essentially different from the main ideas used in [23] by
the second author and in [21] by the first author, where the graphs can be reduced into a
regular graph still with good properties by taking off edge‐disjoint linear forests or matchings.

The remainder of this paper is organized as follows. In the next section, we introduce some
notation and preliminary results. In Section 3, we prove Theorem 1.3 by applying Theorem 1.4.
Theorem 1.4 is then proved in the last section.

2 | NOTATION AND PRELIMINARIES

Let G be a multigraph and ∈φ G( )k for some integer ≥k 0. For any ∈v V G( ), the set of
colors present at v is ∈φ v φ e e E G v( ) = { ( ) : ( ) is incident with }, and the set of colors missing
at v is ⧹φ v k φ v( ) = [1, ] ( ). For a subset X of V G( ) and a color ∈i k[1, ], define

∈ ∈φ i v X i φ v( ) = { : ( )}X
−1 , and we write φ i( )−1 for φ i( )V G( )

−1 . An edge k‐coloring of a multigraph
G is said to be equalized if each color class contains either ∕  E G k( ) or ∕  E G k( ) edges.

For ∈x V G( ), the deficiency of x inG is ≔x G d xdef ( ) Δ( ) − ( )G G . For ⊆X V G X( ), def ( ) =G

∈ xdef ( )x X G . We simply write V Gdef ( ( ))G as Gdef( ). A subgraph H of G with an odd order is
GΔ( )‐full if ∕    E H G V H( ) = Δ( ) ( ) 2 .
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We will use the following notation: ≪ ≤a b0 < 1. Precisely, if we say a claim is true
provided that ≪ ≤a b0 < 1, then this means that there exists a nondecreasing function

→f : (0, 1] (0, 1] such that the statement holds for all ≤a b0 < , 1 satisfying ≤a f b( ).
In the 1960s, Gupta [11] and, independently, Vizing [26] provided an upper bound on the

chromatic index of multigraphs, and König [15] gave an exact value of the chromatic index for
bipartite multigraphs.

Theorem 2.1 (Gupta [11] and Vizing [26]). Every multigraph G satisfies
≤χ G G μ G′( ) Δ( ) + ( ).

Theorem 2.2 (König [15]). Every bipartite multigraph G satisfies χ G G′( ) = Δ( ).

McDiarmid [16] observed the following result.

Theorem 2.3. Let G be a multigraph with chromatic index χ G′( ). Then for all
≥k χ G′( ), there is an equalized edge‐coloring of G with k colors.

Let G be a multigraph, ≥k 0 be an integer and ∈φ G( )k . There is a polynomial time
algorithm to modify φ into an equalized edge‐coloring of G with k colors. To see this, suppose
that φ is not equalized and so we take two colors ∈i j k, [1, ] such that    φ i φ j( ) − ( )−1 −1 is
largest. Since φ is not equalized, ≥   φ i φ j( ) − ( ) 4−1 −1 . Assume by symmetry that

≥   φ i φ j( ) − ( ) 4−1 −1 . Consider the submultigraph of G induced on the set of edges colored
by i or j, then the submultigraph must have a component that is a path P starting at an edge
colored by j and ending at an edge colored by j. By swapping the colors i and j along this path
P, we decreased    φ i φ j( ) − ( )−1 −1 by 4. Repeating this process, we can obtain an equalized
edge‐coloring of G with k colors after at most  k V G( )2 rounds.

Given an edge coloring of G and a given color i, since vertices presenting i are saturated by
the matching consisting of all edges colored by i, we have the Parity Lemma below. The result
had appeared in many papers, for example, see [10, lemma 2.1].

Lemma 2.4 (Parity Lemma). Let G be a multigraph and ∈φ G( )k for some integer
≥k GΔ( ). Then ≡   φ i V G( ) ( ) (mod 2)−1 for every color ∈i k[1, ].

We need the following classic result of Hakimi [12] on multigraphic degree sequence.

Theorem 2.5. Let ≤ ≤ ⋯ ≤d d0 n 1 be integers. Then there exists a multigraph G on
vertices x x, …, n1 such that d x d( ) =G i i for all i if and only if di

n
i=1 is even and ≥ d di i>1 1.

Though it is not explicitly stated in [12], the inductive proof yields a polynomial time
algorithm which finds an appropriate multigraph if it exists.

Theorem 2.6 (Dirac [7]). Let G be a graph on ≥n 3 vertices. If ≥δ G( )
n

2
, then G is

hamiltonian; and if ≥δ G( )
n + 1

2
, then G is hamiltonian‐connected.

Following the proof of Dirac [7], a hamiltonian cycle can be constructed in polynomial time
in n if ≥δ G( )

n

2
. In fact, there is a polynomial time algorithm that constructs the closure of a
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graph G and finds a hamiltonian cycle of G if its closure is a complete graph (see [1, exercise
4.2.15, p. 62]).

Lemma 2.7. LetG be an n‐vertex graph such that all vertices of degree less than GΔ( ) are
mutually adjacent in G. Then  V >

n
Δ 2

.

Proof. Suppose the set A of maximum degree vertices has cardinality k, and the number
of vertices of degree less than maximum degree is k r+ with ≥r 0. Deleting r vertices
not in A, we get a new graph H with k2 vertices, k of them forming A, and the remaining
k forming a set of vertices B such that each vertex in B has degree less than each vertex of
A in H . But B induces a complete graph in H so in H the sum of the vertex degrees in A

is less than or equal to the degree sum of the vertices in B. Since every vertex of
⧹V G V H( ) ( ) is adjacent in G to every vertex of B, it follows that in G the sum of the

vertex degrees in A is less than or equal to the degree sum of the vertices in B. This gives
a contradiction. □

The two lemmas below concern existences of overfull subgraphs in graphs.

Lemma 2.8 (Plantholt [20]). Let G be a graph of even order n with δ G( ) >
n

2
. If H is an

induced proper subgraph of G such that H is either GΔ( )‐overfull or GΔ( )‐full, then
H G v= − for some vertex ∈v Vδ.

Lemma 2.9. Let G be a graph of even order n with δ G( ) >
n

2
. Then G contains no GΔ( )‐

overfull subgraph if ≥ V 2δ .

Proof. Let ∈x y V, δ be distinct. Then ∈ G d v(Δ( ) − ( )) =v V G x G x( − ) −

⧹ ≥d x G d y V G x y G( ) + (Δ( ) − ( )) + def ( ( ) { , }) Δ( )G G G . Thus G x− is not GΔ( )‐
overfull. By Lemma 2.8, G contains no GΔ( )‐overfull subgraph. □

Lemma 2.10. Let ε n0 < < 1, 0 be a positive integer, and G be a graph on ≥n n2 0

vertices with ≥δ G ε n( ) (1 + ) . If G contains a GΔ( )‐full subgraph, then G contains a
spanning δ G( )‐regular subgraph obtained from G by deleting G δ GΔ( ) − ( ) matchings
iteratively. As a consequence, χ G G′( ) = Δ( ). Furthermore, there is a polynomial time
algorithm that finds an optimal coloring.

Proof. Define g G δ G= Δ( ) − ( ). IfG is regular, then we are done by Theorem 1.4. ThusG
is not regular and so ≥g 1. The graphG contains a GΔ( )‐full subgraph, which by Lemma 2.8
must be G x− for some vertex ∈x Vδ. Also, if G contains a GΔ( )‐overfull subgraph, then
G x− must be GΔ( )‐overfull also by Lemma 2.8. SinceG x− is GΔ( )‐full, we conclude that
G contains no GΔ( )‐overfull subgraph and so has another vertex of degree less than GΔ( ).
We let ∈ ⧹y V G x( ) { } such that d y( )G is smallest among all vertices in ⧹V G x( ) { }.
Since G x− is GΔ( )‐full, we have G G x d x G d yΔ( ) = def( − ) = ( ) + (Δ( ) − ( ))+G G

⧹V G x ydef ( ( ) { , })G . As d x δ G( ) = ( )G , if d y δ G( ) = ( )G , then ⧹V G x ydef ( ( ) { , }) = 0G .
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This implies that if d y δ G( ) = ( )G , then every vertex from ⧹V G x y( ) { , } has degree GΔ( ) in
G; and if d y δ G( ) > ( )G , then as y is chosen to have smallest degree in G among vertices
from ⧹ ⧹V G x V G x y( ) { }, ( ) { , } contains no vertex of degree δ G( ) in G. Since

≥δ G x y n G x y( − − ) − 1, − − has a hamiltonian cycle by Theorem 2.6. As n − 2 is
even, we know thatG x y− − has a perfect matchingM1. Now we have δ G M δ G( − ) = ( )1

and G M δ G M g gΔ( − ) − ( − ) = − 1 <1 1 . Let G G M= −1 1. Since

⧹

⧹

G x d x G d y V G x y

d x V G x

G x G G

def( − ) = ( ) + (Δ( ) − ( )) + def ( ( ) { , })

= ( ) + def ( ( ) { }) − 1

= def( − ) − 1 = Δ( ) − 1 = Δ( ),

G G G

G G

1 1

1

1

we see that G x−1 is GΔ( )1 ‐full. Thus we may repeat the procedure, and reach a δ G( )‐
regular graph G* after taking g matchings M M, …, g1 .

Now by Theorem 1.4, χ G G δ G′( *) = Δ( *) = ( ). Coloring each of the g matchings
M M, …, g1 using a different color together with an edge δ G( )‐coloring ofG* gives an edge
GΔ( )‐coloring of G. Thus χ G G′( ) = Δ( ).

It is polynomial‐time to find a hamiltonian cycle in graphs H with ≥  δ H V H( ) ( )
1

2
by

the comments immediately after Theorem 2.6. Thus all the matchings M M, …, g1 can be
found in polynomial time. As an optimal edge coloring can be found in polynomial time
for graphs satisfying the conditions in Theorem 1.4, we can find an edge GΔ( )‐coloring of
G* in polynomial time. Therefore, there is a polynomial time algorithm that finds an edge

GΔ( )‐coloring for G. □

Lemma 2.11. Let G X Y[ , ] be bipartite graph with    X Y n= = . Suppose δ G t( ) = for
some ∈t n[1, ], and except at most t vertices all other vertices of G have degree at least ∕n 2

in G. Then G has a perfect matching.

Proof. We show that G X Y[ , ] satisfies Hall's Condition. If not, we let ⊆S X with
smallest cardinality such that    S N S> ( )G . By this choice,    S N S= ( ) + 1G and
   N S Y( ) <G . As    S N S> ( )G , it follows that ≥ ≥ S δ G t( ) + 1 + 1. As G has at most t
vertices of degree less than ∕n 2, it then follows that ∕ S n> 2. Thus ⧹ ∕ X S n< 2. Since
   N S Y( ) <G , there exists ∈ ⧹y Y N S( )G such that ⊆ ⧹N y X S( )G . As ≥δ G t( ) , we have
⧹ ≥ X S t . As ⧹ ≥         Y N S Y S X S t( ) = − + 1 = − + 1 + 1G and G has at most t

vertices of degree less than ∕ ⧹n Y N S2, ( )G contains a vertex of degree at least ∕n 2 in G.
However ⧹ ∕ X S n< 2, we obtain a contradiction. Hence G has a perfect matching. □

A path P connecting two vertices u and v is called a u v( , )‐path, and we write uPv or vPu to
specify the two endvertices of P. Let uPv and xQy be two disjoint paths. If vx is an edge, we
write uPvxQy as the concatenation of P and Q through the edge vx. If P is a path and

∈x y V P, ( ), then xPy is the subpath of P with endvertices x and y.

Lemma 2.12. Let ∕ ≪n ε0 < 1 < 10 , and G be a graph on ≥n n0 vertices such that
≥ ∕δ G ε n( ) (1 + ) 2. Moreover, let M a b a b= { , …, }t t1 1 be a matching in the complete graph

on V G( ) of size at most ∕εn 8. Then there exist vertex‐disjoint path P P, …, t1 in G such that
V P V G( ) = ( )i and Pi joins ai to bi, and these paths can be found in polynomial time.
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Proof. For ∈ ∩ ≥ i t N a N b εn[1, − 1], ( ) ( )G i G i , so we can greedily find vertices
∈ ∩c N a N b( ) ( )i G i G i such that ≠c ci j for distinct ∈i j t, [1, − 1]. Thus we let

P a c b=i i i i. Let G G V P* = − ( )i
t

i=1
−1 . Then ≥ ∕ ≥δ G ε n t( *) (1 + ) 2 − 3( − 1)

∕ ∕ε n(1 + 8) 2, and so G* is hamiltonian‐connected by Theorem 2.6. Thus we can find
an a b( , )t t ‐hamiltonian path Pt in G*.

It is clear that each of P P, …, t1 −1 can be found in polynomial time. For the path Pt, we
construct it as follows. By the comments immediately after Theorem 2.6, we can find a
hamiltonian cycleC ofG* in polynomial time. By taking a longer segment between at and
bt from C, we get in G* an a b( , )t t ‐path Q1 that contains at least ∕ V G( *) 2 vertices.
We will extend Q1 into a hamiltonian a b( , )t t ‐path of G*. Denote by Q2 the remaining
segment of C that is disjoint from Q1 and let c and d be the endvertices of Q2.
Let  V Q p( ) =2 . Then as ≥ ∕ ∕δ G ε n( *) (1 + 8) 2, each of c and d has on Q1

at least ∕ ∕ ∕ ∕ε n p ε n p(1 + 8) 2 − ( − 1) = (1 + 8) 2 − + 1 neighbors. Since
∕ ∕    ε n p p V Q V G2((1 + 8) 2 − ) + + ( ) > ( *)2 , it follows that one of the following two

situations must happen: (a) there is a vertex ∈ ∩c N c V Q( ) ( )G1 * 1 and a vertex
∈ ∩d N d V Q( ) ( )G1 * 1 such that c Q d1 1 1 contains less than p + 2 vertices, and (b) c or d

has on Q1 two neighbors that are consecutive on Q1. When (a) happens, assume by
symmetry that c1 is between at and d1 on Q1, thenQ a Q c cQ dd Q b* = t t1 1 1 2 1 1 is longer than
Q1 and the component ofG V Q* − ( *)1 still contains a hamiltonian path. Similarly, we can

extend Q1 into a longer a b( , )t t ‐path such that the subgraph of G* outside the path is
hamiltonian if (b) happens. Repeating this procedure at most ∕n 2 times, we obtain a
hamiltonian a b( , )t t ‐path of G*. Therefore, all the paths P P, …, t1 can be found in
polynomial time. □

3 | PROOF OF THEOREM 1.3

Theorem 1.3. For all ε0 < < 1, there exists n0 such that the following statement holds: if
G is a graph on ≥n n2 0 vertices with ≥δ G ε n( ) (1 + ) , then χ G G′( ) = Δ( ) if and only ifG
contains no GΔ( )‐overfull subgraph. Furthermore, there is a polynomial time algorithm
that finds an optimal coloring.

Proof. Choose positive integer n0 such that ∕ ≪n ε0 < 1 0 .
If G is regular, then we are done by Theorem 1.4. Thus we assume that G is not

regular. If G contains a GΔ( )‐overfull subgraph, then χ G G′( ) = Δ( ) + 1. Thus we
assume thatG contains no GΔ( )‐overfull subgraph. As a consequence, ≥G Gdef( ) Δ( ). By
Lemma 2.10, we may assume that G contains no GΔ( )‐full subgraph. Therefore, if two
vertices with degree less than GΔ( ) are not adjacent in G, we may add the edge between
them without creating a GΔ( )‐overfull subgraph, or increasing GΔ( ). We iterate this
edge‐addition procedure. If at some point we create a GΔ( )‐full subgraph, the result
follows by Lemma 2.10. Otherwise, we reach a point where we may now assume that in
G all vertices with degree less than GΔ( ) are mutually adjacent, and so by Lemma 2.7, we
have ≥ V n + 1Δ .

Define  n V= δ1 . Note that n n<1 . If ≥ ∕n n1
6 7 and ≥ ∕G δ G nΔ( ) − ( ) 6 7, then we are

done by Theorem 1.4. Thus we assume ∕n n<1
6 7 or ∕G δ G nΔ( ) − ( ) < 6 7, and we
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consider the two cases below. We call a vertex of degree less than GΔ( ) but greater than
δ G( ) a middle degree vertex.

Case 1. ∕n n<1
6 7.

Note that for any ∈ ⧹ ≥v V G V δ G v V n( ) , ( − − )δ δ and so both G V− δ and
G v V− − δ are hamiltonian by Theorem 2.6. Thus if G V− δ and G v V− − δ have even
order, then they each has a perfect matching. Hence if n1 is even, we can decrease
G δ GΔ( ) − ( ) but preserve δ G( ) in deleting a perfect matching M of G V− δ. If n1 is odd

but G has a middle degree vertex v, we can decrease G δ GΔ( ) − ( ) but preserve δ G( ) in
deleting a perfect matching M of G v V− − δ. Denote by G1 the reduced graph from G by
deleting M in either of these two cases. If ≥ V 2δ , then as ⊆V V G( )δ δ 1 , we know that G1

still contains no GΔ( )1 ‐overfull subgraph by Lemma 2.9. Thus  V = 1δ . Let V u= { }δ . Note
that ∈u V G( )δ 1 . Then ⧹G u d u G d v V G u vdef( − ) = ( ) + (Δ( ) − ( )) + def ( ( ) { , }) =G G G1 1 11

⧹ ∈d u G d v V G u v G( ) + (Δ( ) − 1 − ( )) + def ( ( ) { , }) = (Δ( )G G G w V G u( − ) d w− ( )) − 1G u− .
Since G contains no GΔ( )‐overfull subgraph, we have ∈ G(Δ( ) −w V G u( − )

≥d w G( )) Δ( )G u− . Thus ≥G u G Gdef( − ) Δ( ) − 1 = Δ( )1 1 and so G1 contains no
GΔ( )1 ‐overfull subgraph by Lemma 2.8. Furthermore, χ G G′( ) = Δ( )1 1 implies that

χ G G′( ) = Δ( ). Thus in these two cases, we can consider G1 in place of G and show that
G1 is a class 1 graph.

Thus we assume that n1 is odd and G has no middle degree vertex. This in
particular, implies that δ G( ) and GΔ( ) have the same parity. As G has no GΔ( )‐
overfull subgraph, ≥ V 3δ . Let ∈x y V, δ be distinct. We find a perfect matching M11 in

⧹G V x− ( { })δ and a perfect matching M12 in ⧹G V y− ( { })δ . The matchings exist by
Theorem 2.6. Let G G M M= − −1 11 12. We repeat this same process and find a
perfect matching M21 in ⧹G V x− ( { })δ1 and a perfect matching M22 in ⧹G V y− ( { })δ1 .
For ∈ ∕i G δ G[2, (Δ( ) − ( )) 2], we let G G M M= − −i i i i−1 1 2. We have
d x d y δ G i( ) = ( ) = ( ) −G Gi i

. As ≤G δ G n ε n ε nΔ( ) − ( ) 2 − (1 + ) = (1 − ) , we see that
≥ ∕ ∕d x d y δ G i ε n ε n ε n( ) = ( ) = ( ) − (1 + ) − (1 − ) = (1 2 + 3 2)G G

1

2i i
. For any vertex

∈ ⧹ ≥ ≥z V G x y d z δ G ε n( ) { , }, ( ) ( ) (1 + )i Gi
. Let x* be a neighbor of x in ⧹G V x− ( { })i δ

and y* be a neighbor of y in ⧹G V y− ( { })i δ . Then ⧹G V x x x− ( { }) − { , *}i δ has a perfect
matching M*i( +1)1, and ⧹G V y y y− ( { }) − { , *}i δ has a perfect matching M*i( +1)2. Let

∪M M xx= * { *}i i( +1)1 ( +1)1 and ∪M M yy= * { *}i i( +1)2 ( +1)2 . Thus for each
∈ ∕i G δ G[2, (Δ( ) − ( )) 2], we find matchings Mi1 and Mi2, respectively from

⧹G V x− ( { })i δ−1 and ⧹G V y− ( { })i δ−1 .
We claim ≔ ∕G G* G δ G(Δ( )− ( )) 2 satisfies Condition (b) of Theorem 1.4. By the analysis

above, we have ≥ ∕ ∕ ≥d x d y ε n d z G δ G ε n( ) = ( ) (1 2 + 3 2) , ( ) = Δ( *) = ( ) (1 + )G G G* * * for
all ∈ ⧹z V G x y( *) { , }. Also ∕G δ G δ G δ G G δ GΔ( *) − ( *) = ( ) − ( ( ) − (Δ( ) − ( )) 2) =

≤ ∕ ∕G δ G n ε n ε n(Δ( ) − ( )) (2 − (1 + ) ) = (1 2 − 2)
1

2

1

2
. By Theorem 1.4, χ G′( *) =

G δ GΔ( *) = ( ). Taking an edge δ G( )‐coloring of G*, coloring edges in Mi1 with color
δ G i( ) + 2 − 1 and coloring edges in Mi2 with color δ G i( ) + 2 for each
∈ ∕i G δ G[1, (Δ( ) − ( )) 2], we obtain an edge GΔ( )‐coloring of G.

Case 2. ∕G δ G nΔ( ) − ( ) < 6 7.
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Let V G x x( ) = { , …, }n1 2 and we assume ≥ ⋯≥x xdef ( ) def ( ) = 0G G n1 2 . Since x1 has the
smallest degree in G and G x− 1 is not GΔ( )‐overfull by our assumption,

≥≥ x xdef ( ) def ( )i G i G2 1 . Since  V G n( ) = 2 is even, ≥ xdef ( )i G i1 is even. Then by
Theorem 2.5, there exists a multigraph H on V G( ) such that d x x( ) = def ( )H G i for each
∈i n[1, 2 ]. This multigraph H will aid us to find a spanning regular subgraph of G.
Note that ∕H x G δ G nΔ( ) = def ( ) = Δ( ) − ( ) <G 1

6 7 and H contains isolated vertices.
Thus ≤ ≤ ≤ ∕χ H H μ H H n′( ) Δ( ) + ( ) 2Δ( ) 2 6 7. Hence we can greedily partition E H( )

into ≤ ∕∕k n ε10 6 7 matchings M M, …, k1 each of size at most ∕εn 5. Now we take out linear
forests from G by applying Lemma 2.12 with M M, …, k1 . More precisely, define spanning
subgraphs G G, …, k0 of G and edge‐disjoint linear forests F F, …, k1 such that

(1) ≔G G0 and G G E F= − ( )i i i−1 for ∈i k[1, ],
(2) Fi is a spanning linear forest (each vertex ofGi−1 has degree 1 or 2 in Fi) inGi−1 whose

leaves are precisely the vertices in Mi.

Let G G=0 and suppose that for some ∈i k[1, ], we already defined
G G, …, i0 −1 and F F, …, i1 −1. As ∪ ⋯ ∪ ≤ ≤ ∕∕F F i n εΔ( ) 2( − 1) 20i1 −1

6 7 , it follows that
≥ ∕ ≥ ∕∕δ G ε n n ε ε n( ) (1 + ) − 20 (1 + 4 5)i−1

6 7 . Since Mi has size at most ∕εn 5, we can
apply Lemma 2.12 to Gi−1 and Mi and obtain a spanning linear forest Fi in Gi−1 whose
leaves are precisely the vertices in Mi. Set ≔G G E F− ( )i i i−1 .

We claim that Gk is regular. Consider any vertex ∈u V G( )k .
For every ∈i k d u[1, ], ( ) = 1Fi if u is an endvertex of some edge of Mi and
d u( ) = 2Fi otherwise. Since M M, …, k1 partition E H( ), we know that  d u( ) =i

k
F=1 i

k d u k u2 − ( ) = 2 − def ( )H G . Thus

d u d u d u d u k u G k( ) = ( ) − ( ) = ( ) − (2 − def ( )) = Δ( ) − 2 .G G

i

k

F G G

=1
k i

Note that ≥ ∕ ≥ ∕∕G ε n n ε ε nΔ( ) (1 + ) − 20 (1 + 4 5)6 7 . Now χ G G′( ) = Δ( )k k by
Theorem 1.4. We color the edges of Fi using two distinct colors from

G k G[Δ( ) − 2 + 1, Δ( )] for each ∈i k[1, ]. It is clear that any edge GΔ( )k ‐coloring of Gk

together with this coloring of  Fi
k

i=1 gives an edge coloring of G using
G k GΔ( ) + 2 = Δ( )k colors.
We lastly check that the procedure above yields a polynomial time algorithm. Given

G, taking a vertex u of minimum degree in G, we first check if G u− is GΔ( )‐overfull. If
yes, then χ G G′( ) = Δ( ) + 1 and G can be edge colored using GΔ( ) + 1 colors in
polynomial time [17]. Thus G contains no GΔ( )‐overfull subgraph. If G contains a GΔ( )‐
full subgraph, then an edge GΔ( )‐coloring of G can be found in polynomial time by
Lemma 2.10. Thus G contains no GΔ( )‐full subgraph. If there exist nonadjacent

∈ ⧹u v V G V, ( ) Δ, we add the edge uv in G. If we reach a point where the resulting graph
contains a GΔ( )‐full subgraph, we then find an edge GΔ( )‐coloring of the graph in
polynomial time by Lemma 2.10, which also gives an edge GΔ( )‐coloring of G. Thus we
assume that every two vertices from ⧹V G V( ) Δ are adjacent inG. IfG is in Condition (c) of
Theorem 1.4, then we find an edge GΔ( )‐coloring of G in polynomial time by
Theorem 1.4. Thus we have Case 1 or Case 2 as described in this proof. IfG is in Case 1, it
is polynomial time to find the desired matchings (basically find hamiltonian cycles of
even length in graphs with large minimum degree by the comments immediately after
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Theorem 2.6) to reduce G into a graph satisfying one of the conditions in Theorem 1.4.
Then we find an edge GΔ( )‐coloring of G in polynomial time by Theorem 1.4. If G is in
Case 2, then can construct an edge GΔ( )‐coloring of G through the process as described
in Case 2. Since Theorem 2.5, Lemma 2.12 and Theorem 1.4 give appropriate running
time statements, this can be achieved in time polynomial in n. □

4 | PROOF OF THEOREM 1.4

We will need the following result, which was proved using Chernoff bound.

Lemma 4.1 (Shan [23], lemma 3.2). There exists a positive integer n0 such that for all
≥n n0 the following holds. Let G be a graph on n2 vertices, and

⊆N x y x y V G= { , , …, , } ( )t t1 1 , where ∈t n[1, ]. Then V G( ) can be partitioned into two
parts A and B satisfying the properties below:

(i)    A B= ;
(ii) ∩ A x y{ , } = 1i i for each ∈i t[1, ];
(iii) ≤ ∕ d v d v n( ) − ( ) − 1A B

2 3 for each ∈v V G( ), where ∩ d v N v S( ) = ( )S G for any
⊆S V G( ).

Furthermore, one such partition can be constructed in O n n(2 log (2 ))3
2

3 ‐time.

Theorem 1.4. For all ε0 < < 1, there exists n0 such that the following statement holds. If
G is a graph on ≥n n2 0 vertices satisfying one of the following three conditions:

(a) G is regular with ≥ ∕δ G ε n( ) (1 + 4 5) ,
(b) G has two distinct vertices x y, such that ≥ ∕ ∕d x d y ε n( ) = ( ) (1 2 + 3 2) , for all

∈ ⧹ ≥z V G x y d z G ε n( ) { , }, ( ) = Δ( ) (1 + ) , and ≤ ∕ ∕G δ G ε nΔ( ) − ( ) (1 2 − 2) ,
(c) ≥ ≥∕ ∕ G δ G n V nΔ( ) − ( ) , δ

6 7 6 7 and ≥ V n + 1Δ , and ≥δ G ε n( ) (1 + ) ,

then χ G G′( ) = Δ( ). Furthermore, there is a polynomial time algorithm that finds an
optimal coloring.

Proof. Choose positive integer n0 such that ∕ ≪n ε0 < 1 0 .
If G is in Condition (a), we let ∅N = . If G is in Condition (b), we let N x y= { , }1 1 ,

where x x=1 and y y=1 . If G is in Condition (c), we take ∕   n V2 (2 − ) 2Δ vertices from
⧹V G V( ) Δ and name them as x y x y, , …, ,t t1 1 , where ≔ ∕   t n V(2 − ) 2Δ and we assume

that the first ∕  V 2δ pairs of vertices x y,i i are all from Vδ. Let N x y x y= { , , …, , }t t1 1 .
Applying Lemma 4.1 on G and N , we obtain a partition A B{ , } of V G( ) satisfying the
following properties:

P.1    A B= ;
P.2 ∩ A x y{ , } = 1i i for each ∈i t[1, ];
P.3 ≤ ∕ d v d v n( ) − ( ) − 1A B

2 3 for each ∈v V G( ).

Thus whenG is in Condition (b), we may assume ∈x A and ∈y B. WhenG is in Condition
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(c), we know that ∩ ≥ ∩ ≥ ∩ ≥ ∕         A V V B V V A V n( − 1), ( − 1), 2δ δ δ δ
1

2

1

2 Δ and

∩ ≥ ∕ B V n 2Δ . By P.3, for any ∈v V G( ), we have

≤ ≤∕ ∕d v n d v d v d v n
1

2
( ( ) − ) ( ), ( )

1

2
( ( ) + ).G A B G

2 3 2 3

Let

G G A G G B H G A B= [ ], = [ ], and = [ , ].A B

To prove the theorem, we will construct an edge coloring of G using GΔ( ) colors. We
provide below an overview of the steps. At the start of the process, E G( ) is assumed to be
uncolored, and throughout the process, the partial edge coloring of G is always denoted
by φ, which is updating step by step.

Step 1 Define ∈ ≥ ∕S v V G G d v n= { ( ) : Δ( ) − ( ) 7 }G
2 3 . Let k G G= max{Δ( ), Δ( )} + 1A B .

By Theorem 2.1, we find an edge k‐coloring φ of ∪G GA B. If there exist distinct
∈ ∩u v S A, or distinct ∈ ∩u v S B, such that ∩ ≠ ∅φ u φ v( ) ( ) , we add an edge

joining u and v and color the new edge by a color in ∩φ u φ v( ) ( ). The edge
coloring φ is updated and we still call it φ. We iterate this process of adding and
coloring edges and call the multigraphs resulting fromGA andGB, respectively,G*A
and G*B , and call G* the union of G G*, *A B and H . We will modify the current edge
coloring, which is still named φ, such that the following properties are satisfied:

S1.1 When G is in Conditions (a) or (b),

∈φ i φ i i k( ) = ( ) for every [1, ].A B
−1 −1

WhenG is in Condition (c), assume by symmetry that ≤e G e G( *) ( *)A B , then

≥ ∈φ i φ i i k( ) ( ) for every [1, ].A B
−1 −1

S1.2

≤ ≤

≤ ≤

≤ ≤ ∈

∈

∕ ∕ ∕

∈

∕ ∕ ∕

∕ ∕




 

 

φ u
n

n
n

n k n n

φ u
n

n
n

n k n n

φ i n φ i n i k

( )
2

( + 1) +
2

(6 ) + 4 − 2 ,

( )
2

( + 1) +
2

(6 ) + 4 − 2 ,

( ) 4 and ( ) 4 for every [1, ].

(S1.I)

u A

u B

A B

2 3 2 3 5 3

2 3 2 3 5 3

−1 2 3 −1 2 3

Step 2 Modify the partial edge‐coloring of G* obtained in Step 1 by exchanging
alternating paths. When this step is finished, each of the k color class will be a
1‐factor of G*. During the process of this step, a few edges of H will be colored

PLANTHOLT AND SHAN | 11



and a few edges of G*A and G*B will be uncolored. Denote by RA and RB,
respectively, the submultigraphs of G*A and G*B consisting of the uncolored edges.
The two multigraphs RA and RB will initially be empty, but one, two or three
edges will be added to at least one of them when each time we exchange an
alternating path. The conditions below will be satisfied at the completion of this
step:

S2.1 The number of uncolored edges in each of G*A and G*B is less than ∕n12 5 3.
When G is in Conditions (a) or (b), G*A and G*B have the same number of
uncolored edges; and when G is in Condition (c), the number of uncolored
edges in G*B is greater than or equal to the number of uncolored edges inG*A
(this follows from our assumption that ≤e G e G( *) ( *)A B ).

S2.2 RΔ( )A and RΔ( )B are less than ∕n + 15 6 .
S2.3 Define

∈ ∩ ≤

∈ ∩ ≤

∕

∕

{ }
{ }

S u S A d u k n

S u S B d u k n

= : ( ) − 2 ,

= : ( ) − 2 .

A G

B G

*
2 3

*
2 3

A

B

We require
S2.3.1 Every vertex in ⧹ ∪V G S S( *) ( )A B is incident inG* with fewer than

∕n2 5 6 colored edges of H .
S2.3.2 When G is in Condition (b), each of the vertex from ∪S SA B is

incident in G* with fewer than ( )ε n−
1

4

1

5
colored edges of H .

S2.3.3 When G is in Condition (c), each of the vertex from ∪S SA B is

incident in G* with fewer than ( )ε n−
1

2

1

3
colored edges of H .

Step 3 We will edge color RA and RB and a few uncolored edges of H using another
ℓ colors, where ∕ nℓ = 2 5 6 . The goal is to ensure that each of these ℓ new color
classes obtained at the completion of Step 3 presents at all vertices from

⧹V G V( *) δ while preserving the k 1‐factors already obtained through Steps 1
and 2.

Step 4 At the start of Step 4, all of the uncolored edges of G* belong to H . Denote by R
the subgraph of G* consisting of the uncolored edges. It will be shown that
R G kΔ( ) = Δ( *) − − ℓ. This subgraph is bipartite, so we can color its edges using
G kΔ( *) − − ℓ colors by Theorem 2.2.

When Step 4 is completed, we obtain an edge coloring of G* using exactly GΔ( *)

colors. We now give the details of each step, and for concepts that were already defined in
the outline above, we will use them directly.

Step 1: Coloring GA and GB

Recall ∈ ≥ ∕S v V G G d v n= { ( ) : Δ( ) − ( ) 7 }G
2 3 . Note that when G is in Condition

(a), ∅S = ; when G is in Condition (b), then ⊆S x y{ , }; and when G is in Condition (c),
then ⊆V Sδ . Following the operations described in the outline of Step 1, for the current
edge coloring φ of ∪G G* *A B , the following statement holds: ∩ ∅φ u φ v( ) ( ) = for any two
distinct ∈ ∩u v S A, or any two distinct ∈ ∩u v S B, . Therefore,
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≤ ≤
∈ ∩ ∈ ∩ ∈ ∩ ∈ ∩

   ( ) ( )φ u k d u k φ u k d u k¯ ( ) = − ( ) , ¯ ( ) = − ( ) . (S1.II)
u A S u A S

G
u B S u B S

G* *
A B

We will in the rest of the proof show that χ G G′( *) = Δ( *), this is because G is a
subgraph of G* and G GΔ( *) = Δ( ). The latter is seen as follows: for any ∈ ∩u S A, we
have

≤ ≤

≤

∕ ∕ ∕d u k e u B G n G n n

G

( ) + ( , )
1

2
(Δ( ) + ) + 1 +

1

2
(Δ( ) − 7 + )

Δ( ).

G G*
2 3 2 3 2 3

Similarly, we have ≤d u G( ) Δ( )G* for any ∈ ∩u S B. In particular, if ∈u Vδ, as
≥ ∕G δ G nΔ( ) − ( ) 6 7, we have

≤ ≤∕ ∕ ∕ ∕d u G n G n n G n( )
1

2
(Δ( ) + ) + 1 +

1

2
(Δ( ) − + ) Δ( ) −

1

3
. (S1.III)G*

2 3 6 7 2 3 6 7

Let φA and φB be the restrictions of φ on G*A and G*B , respectively. By Lemma 2.3 and
the comments immediately below the lemma, we modify φA and φB into equitable edge k‐
colorings of G*A and G*B , respectively, and still call φ the edge k‐coloring of ∪G G* *A B

consisting of the modifications of φA and φB. Note that under the new colorings, it is
possible that ∩ ≠ ∅φ u φ v( ) ( ) for some distinct ∈ ∩u v S A, or distinct ∈ ∩u v S B, .
However the inequalities in (S1.II) still hold.

WhenG is in Conditions (a) or (b), we have ≤ S 2 and e G e G( ) = ( )A B by the partition
A B{ , } of V G( ). Since ∩ ∩ ≤   S A S B= 1, it follows that G G* =A A and G G* =B B. Thus
e G e G( *) = ( *)A B . Since φA and φB are equitable edge k‐colorings ofG*A andG*B , by renaming

some color names in G*A if necessary, we assume

∈φ i φ i i k( ) = ( ) for every [1, ].A B
−1 −1

When G is in Condition (c), by symmetry, we assume ≤e G e G( *) ( *)A B . For the same

reasoning as above, we assume

≥ ∈φ i φ i i k( ) ( ) for every [1, ].A B
−1 −1

By the Parity Lemma,    φ i φ i( ) − ( )A B
−1 −1 is even for every ∈i k[1, ]. Therefore, we have

the statement S1.1 as stated in the outline of Step 1.
Next, we verify that every color ∈i k[1, ] is missing at a small number of vertices.

Property P.2 of the partition A B{ , } implies ∩ ≥ ∕ A V n 2Δ and ∩ ≥ ∕ B V n 2Δ , and each
vertex ∈u VΔ satisfies ≤ ∕ φ u n( ) + 12 3 , call this Fact 1. By the definition of S, for every
∈ ⧹ ∕u V G S d u d u G n( *) , ( ) = ( ) > Δ( *) − 7G G*

2 3, and Property P.3 of the partition A B{ , }

implies ≥ ∕d u d u n( ) ( ) −G G*
1

2
2 3

A
for every ∈ ⧹u A S and ≥ ∕d u d u n( ) ( ) −G G*

1

2
2 3

B
for every
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∈ ⧹u B S. Thus ≤ ∕ ∕ φ u k d u n n( ) − ( ( ) − ) < 6G
1

2
2 3 2 3 for every ∈ ⧹u V G S( *) , call this

Fact 2. These two facts together with the fact in (S1.II), give

≤ ≤
∈

∕ ∕ ∕  φ u
n

n
n

n k n n( )
2

( + 1) +
2

(6 ) + 4 − 2 .
u A

2 3 2 3 5 3

Similarly,

≤ ≤
∈

∕ ∕ ∕  φ u
n

n
n

n k n n( )
2

( + 1) +
2

(6 ) + 4 − 2 .
u B

2 3 2 3 5 3

Since φA and φB are equitable edge k‐colorings of G*A and G*B , we get

≤ ≤∕ ∕φ i n φ i n( ) 4 and ( ) 4 .A B
−1 2 3 −1 2 3

Therefore, we have the statement S1.2 as stated in the outline of Step 1.

Step 2: Extending existing color classes into 1‐factors
Each of the k color classes obtained in Step 1 will be extended into k 1‐factors of G*

through exchanging of alternating paths, which consist of colored edges and uncolored
edges. The colored edges and uncolored edges of these alternating paths are from
∪G G* *A B and H , respectively. Thus during the procedure of Step 2, we will uncolor some

of the edges ofG*A andG*B , and will color some of the edges of H . Recall that RA and RB are
the submultigraphs of G*A and G*B consisting of the uncolored edges, which are empty
initially.

To ensure Condition S2.2 is satisfied, we say that an edge ∈ ∪e uv E G G= ( * *)A B is

good if ∉ ∪e E R R( )A B and the degree of u and v in both RA and RB is less than ∕n5 6

(actually, note that when ∈uv E G( *)A , then the degree of u and v is zero in RB and vice

versa). Thus a good edge can be added to RA or RB without violating S2.2.
By S1.1, for each color ∈i k[1, ], we pair up each vertex from φ i( )B

−1 with a vertex
from φ i( )A

−1 , and then pair up the remaining unpaired vertices from φ i( )A
−1 as

   φ i φ i( ) − ( )A B
−1 −1 is even and we assumed ≥   φ i φ i( ) ( )A B

−1 −1 . Each of those pairs is
called a missing‐common‐color pair or MCC‐pair in short with respect to the color i. In
particular, whenG is in Conditions (a) or (b), every vertex from φ i( )A

−1 is paired up with a
vertex from φ i( )B

−1 .
For every MCC‐pair a b( , ) with respect to some color ∈i k[1, ], we will exchange an

alternating path P from a to b with at most 11 edges, where, if exist, the first, third, fifth,
seventh, ninth, and eleventh edges are uncolored and the second, fourth, sixth, eighth,
and tenth edges are good edges colored by i. After P is exchanged, a and b will be incident
with edges colored by i, and at most three good edges will be added to each of RA and RB.
With this information at hand, before demonstrating the existence of such paths, we
show that Conditions S2.1, S2.2, and S2.3 can be guaranteed at the end of Step 2. After
the completion of Step 1, by (S1.I), the total number of missing colors from vertices in A

or from vertices in B is at most ∕n n4 − 25 3 . Thus there are at most ∕n n4 − 25 3 MCC‐pairs.
For each MCC‐pair a b( , ) with ∈a b V G, ( *), at most three edges will be added to each of
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RA and RB when we exchange an alternating path from a to b. Thus there will always be
fewer than

∕ ∕n n n3(4 − 2 ) < 125 3 5 3

edges in each of RA and RB. Each of the k color classes is a 1‐factor ofG* at the end of Step
2. Thus the number of colored edges inG*A is the same as that inG*B . Since e G e G( *) = ( *)A B

when G is in Conditions (a) or (b), and ≥e G e G( *) ( *)B A when G is in Condition (c), we

have e R e R( ) = ( )A B when G is in Conditions (a) or (b), and ≥e R e R( ) ( )B A when G is in
Condition (c). Thus Condition S2.1 will be satisfied at the end of Step 2. And as we only
ever add good edges to RA and RB, Condition S2.2 will hold automatically. We now show
that Condition S2.3 will also be satisfied. Recall

∈ ∩ ≤ ∈ ∩

≤

∕

∕

{ } {
}

S u S A d u k n S u S B

d u k n

= : ( ) − 2 and = :

( ) − 2 .

A G B

G

*
2 3

*
2 3

A

B

Since ≤ ≤∈ ∩ ∈ ∩
∕ k d u k d u k G n n( − ( )), ( − ( )) (Δ( ) + ) + 1 < 2u A S G u B S G* *

1

2
2 3

A B
, it fol-

lows that

∕ ∕   S n S n< and < .A B
1 3 1 3

Thus for every vertex ∈ ⧹ ∪ ∕ u S S S φ u n( ), ( ) < 2A B
2 3. For every vertex ∈ ⧹u V G S( *) , as

∕d u d u G n( ) = ( ) > Δ( ) − 7G G
2 3

* , it follows that ∕ ∕ ∕ φ u k G n n n( ) < − ( (Δ( ) − 7 ) − ) < 6
1

2
2 3 2 3 2 3.

Thus for any ∈ ⧹ ∪u V G S S( *) ( )A B , we have ∕ φ u n( ) < 6 2 3. In the process of Step 2, the
number of newly colored edges of H that are incident with a vertex ∈ ⧹ ∪u V G S S( *) ( )A B

will equal the number of alternating paths containing u that have been exchanged. The
number of such alternating paths of which u is the first vertex will equal the number of
colors that missed at u at the end of Step 1, which is less than ∕n6 2 3. The number of
alternating paths in which u is not the first vertex will equal the degree of u in ∪R RA B,
and so will be less than ∕n + 15 6 . Hence the number of colored edges of H that are
incident with u will be less than

∕ ∕ ∕n n n6 + + 1 < 2 .2 3 5 6 5 6

This applies to all vertices in ⧹ ∪V G S S( *) ( )A B , and so Condition S2.3.1 will be satisfied.
When G is in Condition (b), for any vertex ∈ ∪u S S x y= { , }A B , since

≤G δ G ε nΔ( ) − ( ) (1 − )
1

2
, we have

≤ ≤

≤

∕ ∕

∕

  

 


φ u k d u n k G ε n n

ε n n

( ) −
1

2
( ( ) − ) −

1

2
Δ( ) −

1

2
(1 − ) −

1

4
(1 − ) + + 1.

G
2 3 2 3

2 3

Hence the number of colored edges of H that are incident with u will be less than
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∕ ∕ 

 


ε n n n ε n

1

4
(1 − ) + + 1 + + 1 <

1

4
−

1

5
.2 3 5 6

Therefore, Condition S2.3.2 will be satisfied.
When G is in Condition (c), for any vertex ∈ ∪u S SA B, since

≤G δ G ε nΔ( ) − ( ) (1 − ) , we have

≤ ≤

≤

∕ ∕

∕

 φ u k d u n k G ε n n

ε n n

( ) −
1

2
( ( ) − ) −

1

2
(Δ( ) − (1 − ) − )

1

2
(1 − ) + + 1.

G
2 3 2 3

2 3

Hence the number of colored edges of H that are incident with u will be less than

∕ ∕ 

 


ε n n n ε n

1

2
(1 − ) + + 1 + + 1 <

1

2
−

1

3
.2 3 5 6

Therefore, Condition S2.3.3 will be satisfied.
We now show below the existence of alternating paths for MCC‐pairs. For a given

color ∈i k[1, ], and vertices ∈a A and ∈b B, let N a( )B be the set of vertices in B that are
joined with a by an uncolored edge and are incident with a good edge colored i such that
the good edge is not incident with any vertex of SB, and let N b( )A be the set of vertices in
A that are joined with b by an uncolored edge and are incident with a good edge colored i
such that the good edge is not incident with any vertex of SA. To estimate the sizes of
N b( )A and N a( )B , we show that A and B contain only a few vertices that either miss the
color i or are incident with a non‐good edge colored i. By S2.1, there are at most ∕n12 5 3

edges in RB, so there are fewer than ∕n24 5 6 vertices of degree at least ∕n5 6 in RB. Each non‐
good edge is incident with one or two vertices of RB through the color i, so there are fewer
than ∕n48 5 6 vertices in B that are incident with a non‐good edge colored i. Furthermore,
there are at most ≤ ∕ S n2 2B

1 3 vertices in B that are either contained in SB or adjacent to a
vertex from SB through an edge with color i. Finally, there are fewer than ∕n4 2 3 vertices in
B that are missed by the color i. So the number of vertices in B that are not incident with
a good edge colored i such that the good edge is not incident with any vertex from SB is
less than

∕ ∕ ∕ ∕n n n n48 + 2 + 4 < 49 .5 6 1 3 2 3 5 6

By symmetry, the number of vertices in A that are not incident with a good edge colored i
such that the good edge is not incident with any vertex from SA is less than ∕n49 5 6. By
S2.3.1, when ∩ ∪ ∅a b S S{ , } ( ) =A B ,

≥ ∕ ∕ ∕ ∕    

 


N b N a ε n n n n ε n( ) , ( )

1

2
((1 + 4 5) − ) − 2 − 49 >

1

2
+

1

3
. (S2.I)A B

2 3 5 6 5 6

When G is in Condition (b) and ∩ ≠ ∅a b x y{ , } { , } , by S2.3.2, we have
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≥ ∕ ∕ ∕ ∕    

 


N b N a ε n n ε n n εn( ) , ( )

1

2
((1 2 + 3 2) − ) −

1

4
−

1

5
− 49 >

3

4
.

(S2.II)

A B
2 3 5 6

When G is in Condition (c) and ∩ ∪ ≠ ∅a b S S{ , } ( )A B , by S2.3.3, we have

≥ ∕ ∕    

 


N b N a ε n n ε n n εn( ) , ( )

1

2
((1 + ) − ) −

1

2
−

1

3
− 49 >

1

2
. (S2.III)A B

2 3 5 6

Let M a( )B be the set of vertices in B that are joined with a vertex in N a( )B by an edge
of color i, and let M b( )A be the set of vertices in A that are joined with a vertex in N b( )A

by an edge of color i. Note that ∪ ∩ ∪ ∅S S M b M a( ) ( ( ) ( )) =A B A B by the choice of N b( )A

and N a( )B . Note also that    M a N a( ) = ( )B B but some vertices may be in both. Similarly
   M b N b( ) = ( )A A .

For a MCC‐pair a b( , ), to have a unified discussion as in the case that
∩ ∪ ∅a b S S{ , } ( ) =A B , if necessary, by exchanging an alternating path of length 2

from a to another vertex a*, and exchanging an alternating path from b to another vertex
b*, we will replace the pair a b( , ) by a b( *, *) such that ∩ ∪ ∅a b S S{ *, *} ( ) =A B . Precisely,
we will implement the following operations to vertices in ∪S SA B. For any vertex ∈a SA,
and for each color ∈i φ a( ), we take an edge b b1 2 with ∈b N a( )B1 and ∈b M a( )B2 such
that b b1 2 is colored by i, where the edge b b1 2 exists by (S2.II)–(S2.III) and the fact that
   M a N a( ) = ( )B B . Then we exchange the path ab b1 2 by coloring ab1 with i and
uncoloring the edge b b1 2 (See Figure 1A). After this, the edge ab1 of H is now colored by i,
and the uncolored edge b b1 2 is added to RB. We then update the original MCC‐pair that
contains a with respect to the color i by replacing the vertex a with b2. We do this at the
vertex a for every color ∈i φ a( ) and then repeat the same process for every vertex in SA.
Similarly, for any vertex ∈b SB, and for each color ∈i φ b( ), we take an edge a a1 2 with
∈a N b( )A1 and ∈a M b( )A2 such that a a1 2 is colored by i, where the edge a a1 2 exists by

(S2.II)–(S2.III) and the fact that    M b N b( ) = ( )B B . Then we exchange the path ba a1 2 by
coloring ba1 with i and uncoloring the edge a a1 2. The same, we update the original MCC‐
pair that contains b with respect to the color i by replacing the vertex b with a2.

After the procedure above, we have now three types MCC‐pair u v( , ):
∈ ∈u v A u v B, , , , and A contains exactly one of u and v and B contains the other.

However, in either case, ∩ ∪ ∅u v S S{ , } ( ) =A B . We will exchange alternating path for
each of such pairs.

We deal with each of the colors from k[1, ] in turn. Let ∈i k[1, ] be a color. We
consider first an MCC‐pair a a( , *) with respect to i such that ∈a a A, * . By (S2.I), we have

  ( )M a ε n( *) > +B
1

2

1

3
. We take an edge b b* *1 2 colored by i with ∈b N a* ( *)B1 and

∈b M a* ( *)B2 . Then again, by (S2.I), we have     ( )M a M b ε n( ) , ( *) > +B A 2
1

2

1

3
. Therefore,

as each vertex ∈c M b( *)A 2 satisfies   ( )N c ε n( ) > +B
1

2

1

3
, we have ∩ ≥ N c M a εn( ) ( )B B

2

3
.

We take a a *2 2 colored by i with ∈a N b* ( *)A2 2 and ∈a M b( *)A2 2 . Then we let

∈ ∩b N a M a( ) ( )B B2 2 , and let b1 be the vertex in N a( )B such that b b1 2 is colored by i.
Now we get the alternating path P ab b a a b b a= * * * *1 2 2 2 2 1 (See Figure 1C). We exchange P
by coloring ab b a a b, , * *1 2 2 2 2 and b a* *1 with color i and uncoloring the edges b b b b, * *1 2 1 2 and
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a a *2 2 . After the exchange, the color i appears on edges incident with a and a*, the edges
b b1 2 and b b* *1 2 are added to RB and the edge a a *2 2 is added to RA. We added at most one
edge to each of RA and RB when we updated the original MCC‐pair corresponding to
a a( , *). Thus we added at most three edges to each of RA and RB when we modify φ
to have the color i present at both of the vertices in the original MCC‐pair corresponding
to a a( , *). By symmetry, we can deal with an MCC‐pair b b( , *) with respect to i such that

∈b b B, * similarly as above.
Thus we consider an MCC‐pair a b( , ) with respect to i such that ∈a A and ∈b B. By

(S2.I), we have     ( )M a M b ε n( ) , ( ) > +B A
1

2

1

3
. We choose a a1 2 with color i such that

∈a N b( )A1 and ∈a M b( )A2 . Now as     ( )M a N a ε n( ) , ( ) > +B B 2
1

2

1

3
by (S2.I), we know

that ∩ ≠ ∅N a M a( ) ( )B B2 . We choose ∈ ∩b N a M a( ) ( )B B2 2 and let ∈b N a( )B1 such that
b b1 2 is colored by i. Then P ab b a a b= 1 2 2 1 is an alternating path from a to b

(See Figure 1B). We exchange P by coloring ab b a,1 2 2 and a b1 with color i and
uncoloring the edges a a1 2 and b b1 2. After the exchange, the color i appears on edges
incident with a and b, the edge a a1 2 is added to RA and the edge b b1 2 is added to RB. We
added at most one edge to each of RA and RB when we updated the original MCC‐pair
corresponding to a b( , ). Thus we added at most three edges to each of RA and RB when we
modify φ to have the color i present at both of the vertices in the original MCC‐pair
corresponding to a b( , ). By finding such paths for all MCC‐pairs with respect to the color
i, we can increase the number of edges colored i until the color class is a 1‐factor ofG*. By
doing this for all colors, we can make each of the k color classes a 1‐factor of G*.

(A) (B)

(C)

FIGURE 1 The alternating path P . Dashed lines indicate uncolored edges, and solid lines indicate edges
with color i. (A) P with 3 edges (B) P with 5 edges (C) P with 7 edges
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Step 3: Coloring RA and RB and extending the new color classes
Each of the color classes for the colors from k[1, ] is now a 1‐factor of G*. We now

consider the multigraphs RA and RB that consist of the uncolored edges of G*A and G*B . By
Condition S2.1, RA and RB each has fewer than ∕n12 5 3 edges, and

∕R R nΔ( ), Δ( ) < + 1A B
5 6 . Note that RA and RB might contain parallel edges with

endvertices in S. By Theorem 2.1 and Theorem 2.3, RA and RB each have an equalized
edge‐coloring with exactly ≔ ∕ nℓ 2 5 6 colors k k+ 1, …, + ℓ.

If G is in Conditions (a) or (b), then we have e R e R( ) = ( )A B . Under these two
conditions, by renaming some color classes of RA if necessary, we can assume that in the
edge colorings of RA and RB, each color appears on the same number of edges in RA as it
does in RB. When G is in Condition (c), by our assumption that G*B has more edges than
G*A does, we have ≤e R e R( ) ( )A B . In this case, we can assume that in the edge colorings of
RA and RB, the number of edges with a color ∈i k k[ + 1, + ℓ] in RB is at least the
number of edges with a color ∈i k k[ + 1, + ℓ] in RA.

There are fewer than ∕n12 5 3 edges in each of RA and RB, and ∕nℓ > 5 6, so each of the
color ∈i k k[ + 1, + ℓ] appears on fewer than ∕n12 + 15 6 edges in each of RA and RB. We
will now color some of the edges of H with the ℓ colors from k k[ + 1, + ℓ] so that each
of these color classes present at vertices from ⧹V G V( *) δ. We perform the following
procedure for each of the ℓ colors in turn.

Given a color i with ∈i k k[ + 1, + ℓ], we let Ai and Bi be the sets of vertices in A and
B respectively that are incident with edges colored i. Note that ≤ ∕   A B n< 2(12 + 1)i i

5 6

as RA and RB each contains fewer than ∕n12 + 15 6 edges colored i. Note that if G is in
Conditions (a) or (b), we have    A B=i i ; and we might have ≥   B Ai i when G is in
Condition (c). When G is in Condition (c) and    B A>i i , we let

⊆ ∩ ⧹A V A A* ( )i δ i

such that      A A B* + =i i i , and just let ∅A * =i otherwise. Note that such A *i exists as
∩ ≥ ∕ V A n − 1δ

1

2
6 7 and ∕   A B n, < 2(12 + 1)i i

5 6 . Let Hi be the subgraph of H obtained
by deleting the vertex sets ∪A A *i i and Bi and removing all colored edges. We will show
next that Hi has a perfect matching and we will color the edges in the matching by the
color i.

Each vertex in ⧹ ∪V G S S( *) ( )A B is incident with fewer than ≤∕ ∕n n2 + ℓ 55 6 5 6 edges
of H that are colored, since fewer than ∕n2 5 6 were colored in Step 2 by S2.3.1 and at most

∕ ∕n n2 + 2 < 35 6 5 6 have been colored in Step 3. Also each vertex in G* has fewer than
∕n2(12 + 1)5 6 edges that join it with a vertex in Ai or Bi. So each vertex from
⧹ ∪V H S S( ) ( )i A B is adjacent in Hi to more than

∕ ∕∕ ∕ ∕ε n n n n ε n
1

2
((1 + 4 5) − ) − 5 − 2(12 + 1) >

1

2
(1 + 2)2 3 5 6 5 6

vertices.
When G is in condition (b), each vertex in ∪S SA B is incident with fewer than

∕( )ε n n− + 3
1

4

1

5
5 6 edges of H that are colored, since fewer than ( )ε n−

1

4

1

5
were colored

in Step 2 by S2.3.2 and at most ∕n3 5 6 have been colored in Step 3. Also each vertex in G*
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has fewer than ∕n2(12 + 1)5 6 edges that join it with a vertex in Ai or Bi. So when G is in
Condition (b), each vertex from ∪S SA B is adjacent in Hi to more than

∕ ∕ ∕ ∕ ∕





 


 


ε n n ε n n n εn

1

2
((1 2 + 3 2) − ) −

1

4
−

1

5
+ 3 − 2(12 + 1) >

3

4
2 3 5 6 5 6

vertices.
When G is in condition (c), each vertex in ∪S SA B is incident with fewer than

∕ε n n( − ) + 3
1

2

1

3
5 6 edges of H that are colored, since fewer than ε n( − )

1

2

1

3
were colored

in Step 2 by S2.3.3 and at most ∕n3 5 6 have been colored in Step 3. Also each vertex in G*

has fewer than ∕n2(12 + 1)5 6 edges that join it with a vertex in ∪A A *i i or Bi. So whenG
is in Condition (c), each vertex from ∪S SA B is adjacent in Hi to more than

∕ ∕ ∕





 


 


ε n n ε n n n εn

1

2
((1 + ) − ) −

1

2
−

1

3
+ 3 − 2(12 + 1) >

1

2
2 3 5 6 5 6

vertices.
Thus ≥δ H εn( )i

1

2
in either case and Hi has at most ∪ ≤ ∕ S S n εn2 <A B

1 3 1

2
vertices of

degree less than n
1

2
. So Hi has a 1‐factor F by Lemma 2.11. If we color the edges of F with

the color i, then every vertex in ⧹V G A( *) *i is incident with an edge of color i. We repeat
this procedure for each of the colors from k k[ + 1, + ℓ]. After this has been done, each
of these ℓ colors presents at all vertices from ⧹V G V( *) δ. So at the conclusion of Step 3, all
of the edges in G*A and G*B are colored, some of the edges of H are colored, each of the k
color classes for colors from k[1, ] is a 1‐factor of G*, and each of the ℓ colors from
k k[ + 1, + ℓ] presents at all vertices from ⧹V G V( *) δ.

Step 4: Coloring the graph R

Let R be the subgraph ofG* consisting of the remaining uncolored edges. These edges
all belong to H , so R is a subgraph of H and hence is bipartite. We claim that
R G kΔ( ) = Δ( *) − − ℓ. Note that every vertex from ⧹V G V( *) δ presents every color from
k[1, + ℓ] and so those vertices have degree at most G kΔ( *) − − ℓ in R. For the vertices

fromVδ, they present all the colors from k[1, ]. Thus by (S1.III), those vertices have degree
at most

∕G n k G kΔ( *) −
1

3
− < Δ( *) − − ℓ6 7

in R. By Theorem 2.2 we can color the edges of R with RΔ( ) colors from
k G[ + ℓ + 1, Δ( *)]. Thus ≤χ G k G k G′( *) + ℓ + (Δ( *) − − ℓ) = Δ( *) and so
χ G G′( *) = Δ( *), as desired.

Lastly, we check that there is a polynomial time algorithm to obtain an edge GΔ( )‐
coloring of G. By Lemma 4.1, we can obtain a desired partition A B{ , } of V G( ) in
polynomial time. Also, it is polynomial time to edge color GA and GB by an algorithm
described in [17]. Modifying GA and GB into G*A and G*B and the corresponding edge
colorings into equalized edge‐colorings can be done in polynomial time too. In Step 2, the
construction of the alternating paths and swaps of the colors on the paths can be done in
O n( )3 ‐time, as the total number of colors missing at vertices is O n( )2 and it takes O n( )‐
time to find an alternating path for a MCC‐pair. In Step 3, there is a polynomial time
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algorithm (see e.g. [14]) to edge color RA and RB using at most ℓ colors. Then by doing
Kempe changes as mentioned in the comments immediately after Theorem 2.3, these
edge colorings can be modified into equalized edge‐colorings in polynomial time. The last
step is to edge color the bipartite graph R using RΔ( ) colors, which can be done in
polynomial‐time in n, for example, using an algorithm from [5]. Thus, there is a
polynomial time algorithm that gives an edge coloring of G using GΔ( ) colors. □
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