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ABSTRACT

Using quantum computing, this paper addresses two scientifically-

pressing and day to day-relevant problems, namely, chemical ret-

rosynthesis which is an important step in drug/material discovery

and security of semiconductor supply chain.We show that Quantum

Long Short-Term Memory (QLSTM) is a viable tool for retrosyn-

thesis. We achieve 65% training accuracy with QLSTM whereas

classical LSTM can achieve 100%. However, in testing we achieve

80% accuracy with the QLSTM while classical LSTM peaks at only

70% accuracy! We also demonstrate an application of Quantum

Neural Network (QNN) in the hardware security domain, specifi-

cally in Hardware Trojan (HT) detection using a set of power and

area Trojan features. The QNN model achieves detection accuracy

as high as 97.27%.

CCS CONCEPTS

·Computingmethodologies→Neural networks; ·Computer

systems organization→ Quantum computing.

KEYWORDS

Quantum computing, quantum machine learning, chemical ret-

rosynthesis, drug discovery, machine learning, Trojan, hardware

Trojan, hardware security, LSTM, QLSTM, QNN, quantum neural

network

1 INTRODUCTION

Problem 1, chemical retrosynthesis: Chemical retrosynthesis

attempts to provide reactants that can be combined, using a chemi-

cal reaction, to synthesize a desired molecule. This process defines

fields such as agriculture, medical treatment, material discovery,

and countless others. Fig. 1a exemplifies the retrosynthesis pro-

cess, where the chemical on the left can be formed by the chemical

on the right in combination of a chemical reaction. Performing

retrosynthesis in the lab using trial-and-error takes years, and pos-

sibly cost billions of dollars, to resolve just for a single chemical.

This leads to an immense amount of interest in machine learning

(ML)-based solutions. Previous work have been able to generate

promising results, but suffer from limitations. For example, expert

defined rules for retrosynthesis [25] relies on human’s incomplete

knowledge of retrosynthesis and doesn’t scale well as more rules

∗Both authors contributed equally to this research.

are being defined. To overcome limitations of domain knowledge,

models have been created that do not require prior knowledge

[17, 29]. These solutions ignore the certainty of domain knowledge,

require excessive training time, and still poses scalability issues,

making it hard to solve retrosynthesis of large molecules [7]. An-

other common issue is a dependence on a predefined library of

solutions rather than coming up with unique chemical results [10].

The efforts to resolve these issues run into the difficulty of find-

ing chemically viable solutions, long training times, etc. [11, 21].

Chemical retrosynthesis could benefit from more capability than

what modern machines offer, prompting us to search for solutions

in new hardware domains.

The promise of exponential growth in computational space has

led to the idea of Quantum Neural Networks (QNN) [13] and more

recently the Quantum Long Short-Term Memory (QLSTM) [4]. Un-

fortunately, Quantum Machine Learning (QML) efforts have fallen

short of their desired exponential gain in speed [5]. However, they

still offer the ability to represent an exponentially growing amount

of information with only a linear growth in hardware size.

We evaluate the performance of QLSTM (a quantum-classical

hybrid approach) and compare it to the performance of LSTM in

its ability to make retrosynthetic predictions using the USPTO-50k

dataset [18]. We also introduce two unique approaches to simplify

the retrosynthesis process by identifying a specific substring within

the reactants that are used to produce the given reaction.

Problem 2, security of semiconductor supply chain: In re-

cent years, the hardware supply chain has been flooded with low-

quality counterfeit Integrated Circuits (IC). The ICs suffer from a
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Figure 1: (a) Retrosynthesis example. Starting with a final

molecule, the goal is the identify its starting molecule; (b)

chemical retrosynthesis architecture used for training; em-

bedding step turns information into the proper dimension

for the QLSTM; the QLSTM learns and processes the data;

the prediction step performs a softmax to convert the dimen-

sional data to a singular value.
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variety of threats/vulnerabilities such as, manufacturing defects,

malicious circuitry, reverse engineering, etc. Hardware Trojans

(HTs) tamper the circuitry posing a threat to IC trustworthiness

since it could severely disrupt system functionality/security. Prior

work has exploited classical ML to automate and provide a more

reliable solution to the HT detection problem. In [12], 51 Trojan fea-

tures are proposed to describe Trojan nets from gate-level netlists,

use a random forest classifier to extract the best 11 Trojan features,

and train a classifier to perform the classification task. The work in

[31] utilizes a graph data structure for hardware representation and

generates Data Flow Graphs (DFG) from RTL codes. Then Graph

Neural Network (GNN) is used to extract features from the DFG

and detect the presence of HT. A possible application of QML in

classifying PCB defects (which can severely hinder system perfor-

mance if undetected) from images is proposed in [15]. However,

detection of HT has not been addressed yet.

To solve the above challenge, we evaluate the performance of

a QNN model in detecting HTs from a small number of features.

We also compare the results of our QNN with a few traditional ML

classifiers and neural networks. Specifically, we use a Trojan feature

dataset consisting of 50 features (of area and power), reduce feature

size to 2 features using a dimensionality reduction algorithm, T-

distributed Stochastic Neighbor Embedding (t-SNE), and then train

a 2-qubit QNN using those features to evaluate the performance of

the quantum model.

The rest of the paper is structured as follows: we cover basics

on quantum computing, QLSTM, QNN etc. in Section 2, discuss the

methodology used for chemical synthesis and Trojan detection in

Section 3, present the results of both problems in Section 4, and

end with closing remarks in Section 5.

2 BACKGROUND

2.1 Material Discovery

Material discovery extensively employs USPTO-50K dataset [18]

which consists of 40,000 training, 5,000 validation, and 5,000 testing

SMILES formatted chemical examples. SMILES is originally created

as a way to use characters to represent chemical chains [30]. The

letters represent various elements within the chain where the first

letter of an element can be uppercase, denoting that the element is

non-aromatic, or lowercase, denoting that the element is aromatic.

If an element requires a second letter it will be lowercase, regardless

of the casing of the first letter. Numbers are used within the chain

to represent the opening and closing of a ring. Finally, parenthesis

are used to denote branches from a chain, whereas periods are used

to denote the start of a new chemical.

<𝑅𝑋_1>𝑐1𝑐𝑐𝑐 (𝐶𝑛2𝑐𝑐𝑐3𝑐𝑐𝑐𝑐𝑐32)𝑐𝑐1 (1)

The input from USPTO-50K consists of two parts, the first part

is the reaction type that causes the reaction whereas the second

part of the string is the reaction. The reaction type consists of

10 different possible values, ranging from 1-10. The output con-

sists of possible input reactants that can be used in combination

with the reaction type to create the final reaction. Exemplifying

the SMILES format in Eq. 1, the initial six characters, (<𝑅𝑋_1>),

Table 1: Small summary of SOTA chemical retrosynthesis

results.

Model Type Resulting Top 1 Accuracy

G2Gs [23] 48.9%

GLN [7] 52.5%

RetroPrime [29] 51.4%

Augmented Transformer [26] 53.5%

represent the reaction type that causes the targetmolecule given cer-

tain reactant(s). Following the reaction type, we have the chemical

𝑐1𝑐𝑐𝑐 (𝐶𝑛2𝑐𝑐𝑐3𝑐𝑐𝑐𝑐𝑐32)𝑐𝑐1, which breaks down into three unique

pieces. 𝑐1𝑐𝑐𝑐 makes the initial chain, while (𝐶𝑛2𝑐𝑐𝑐3𝑐𝑐𝑐𝑐𝑐32) forms

a separate chain, which is denoted by the parentheses. Finally, we

end with a third smaller chain, 𝑐𝑐1. Next is the use of𝐶 and 𝑐 , in the

uppercase we note there is only a single non-aromatic carbon used,

while the rest of the carbon in the chain is aromatic. Finally, we

consider the use of numbers. Within the separate chain marked by

the parentheses, we note the smallest ring formed, 3𝑐𝑐𝑐𝑐𝑐3, this is

the third ring in the set, which is why it is marked by two different

3s. Since the creation of the USPTO-50K, it has frequently been

used as an experimental testing ground for chemical retrosynthesis

[7, 23, 29]. We note that due to the nature of this difficult problem

and unlike familiar benchmarks in other domains, the accuracy of

much of this work rarely reaches higher than 50% while predicting

the proper reactant for a given input. Although 50% is typically

associated with random guessing, in this domain the accuracy relies

on the exact match of reactant(s) to the given reaction. Given each

reaction can have one or two reactants, and the majority of these

reactants are unique to their reaction, it is easy to see 50% accuracy

is far higher than random guess. We summarize the results from

previous work in Table 1.

2.2 Qubits

The qubit is the basis for all quantum computing, similar to its

classical counterpart, the bit. But, there is a significant advantage of

the qubit. Unlike the classical bit a qubit stores a mix of two states

together, which is called superposition. For a single qubit, the states

|0⟩ =

[

1

0

]

and |1⟩ =

[

0

1

]

are called our basis states. It is from these

basis states that almost all quantum computation stems from.

2.3 Quantum Gates

Quantum gates are operations that are performed on qubits, similar

to classical gates. These quantum gates are used to change the state

of the qubits on which the operation is being performed. They

typically are represented in the form of unitary matrices which

operate on some initial qubit state. The most common quantum

gates are the Hadamard (H), Bit flip (X) and Rotation gate (RX,

RY, RZ) which are all single qubit gates. While the Controlled Not

(CNOT) is a two-qubit gate. These gates allow us to perform almost

all of our basic encodings of data in the quantum state, allowing

for meaningful computation of quantum information.

2.4 LSTM

LSTM is an adaptation of the original Recurrent Neural Network

(RNN) structure which is designed to keep temporal storage of

information. This allows the neural network to maintain previous
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Figure 2: QLSTM architecture used for training; (𝐶𝑡−1,𝐶𝑡 )

represent the cell state, (𝑋𝑡 ) represents the input, (ℎ𝑡−1, ℎ𝑡 )

represent the output state. The𝑉𝑄𝐶1 wire represents the for-

get gate, deciding if the input should be added to memory.

The (𝑉𝑄𝐶2,𝑉𝑄𝐶3) wires represent the update gate, updating

the cell memory if there is need. The 𝑉𝑄𝐶4 wire represents

the output gate, outputting the result of the QLSTM to the

rest of the model.

states of information. However, there is no guarantee as to what

information is held and for how long it will remain, causing satu-

ration issues. To get around these issues the LSTM allows for the

neural network to decide when to add/remove pieces of information,

helping mitigate context saturation issues.

2.5 QLSTM

There have been many attempts in the quantum computing domain

to create trainable networks [6, 13] to solve classification problems.

However, selective memory has not been available. QLSTM ad-

dresses this challenge and offers the same advantage as classical

LSTMs, i.e., the ability to intentionally form a contextual under-

standing of previous input. This approach is near identical to the

classical LSTM. The divergence of the two occurs when the network,

instead of taking the information directly from the hidden layer

and the input, takes the information and pass it to a Variational

Quantum Circuit (VQC) where we can perform a data entanglement

of the values. We then perform a measurement on the entangled in-

formation and proceed to process it in the same prediction structure

as the classical LSTM. Fig. 1b displays the basic overall architecture

of the network: embedding, QLSTM and prediction. Embedding is

preferred to a bag of words model as it reduces potentially large

sparse vectors to smaller dense vectors that require less memory.

Fig. 2 shows the structure of the QLSTM. Starting with our repre-

sentation choices, we use the round edge boxes to represent the

external values fed into the QLSTM, each varying in size. For 𝑋𝑡

the size is dependant on the embedding layer whereas for ℎ𝑡 and

𝐶𝑡 the size is defined by the hidden dimension size. We use the

sharp-cornered boxes to represent layers of a network, and circles

to represent pointwise functions. For the wires, as displayed in the

key, we use the wire merging to represent concatenation and wire

splitting to represent a copy of the wire. We also use 𝜎 to represent

the sigmoid activation function, defined by Eq. 2, and tanh is the

arctan activation function, defined by Eq. 3.

3

RX(𝑓ଵ)

RX(𝑓ଶ)

RX(𝑓ଷ)

RX(𝑓ସ)

Encoding Entangling

(a) (b)

M1

M2

M3

M4

(c)

MeasurementsFC Squeeze FC Bloat

Figure 3: Modified basic entangler circuit; fully connected

(FC) squeeze layer reduces the input size to be of the same

qubit count. (a) Angle encoding converts classical features

(𝑓1, 𝑓4, 𝑓3, 𝑓4) to quantum states, (b) parametric quantum cir-

cuit entangles quantum states, (c) qubits measured, and

bloated to original higher-dimension space. [3].

𝜎 (𝑥) =
1

1 + 𝑒−𝑥
(2)

𝑡𝑎𝑛ℎ(𝑥) =
2

1 + 𝑒−2𝑥
− 1 (3)

Working through the QLSTM starting with the bottom left, we

have 𝑋𝑡 which represents the input to the QLSTM structure. The

input is concatenated with the previous hidden layer information,

which is represented as ℎ𝑡−1. This combination is fed into four

different VQCs; each of them are defined by a modified version of

the basic entangler circuit from Fig. 3.

The modified basic entangler includes a trainable fully connected

layer that squeezes the dimensional space of the information down

to the circuit size of the VQC. After each VQC a quantum mea-

surement of the expectation for each wire is fed to the trainable

fully connected bloating layer. The bloating layer, increases the size

from the quantum circuit back to the required dimensional space of

the classical network. This is then processed using classical LSTM

approaches. Hence, this is a quantum-classical hybrid approach.

The first sigmoid activation is known as the forget gate which is

used to decide whether to update the context 𝐶𝑡 to include the

new input. After the sigmoid, the result is multiplied onto 𝐶𝑡−1.

The second sigmoid, and the 𝑡𝑎𝑛ℎ activations are known as the

input gate which is used to write the new input into the context.

The result of the sigmoid and tanh activations are multiplied to

either be added to𝐶𝑡−1, or to ensure the input is not added to𝐶𝑡−1.

The last sigmoid activation is known as the output gate where the

actual prediction is performed. This output is also used to update

the hidden layer ℎ𝑡 .

2.6 QNN

QNN is a promising QML model that has received a lot of attention

in recent years. A traditional QNN is made up of a data encoding

circuit, a Parametric Quantum Circuit (PQC), and measurement op-

erations. The data encoder transforms classical data into a quantum

state. The PQC transforms the quantum state using a chosen ansatz.

Measurements determine the output state. The PQC parameters

are tuned during the training phase to produce the desired mea-

surement results. We can train QNN models to perform traditional

ML tasks such as classification, regression, distribution generation,

etc. by selecting appropriate cost functions.
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Figure 4: QNNarchitecture used for training; (a) angle encod-

ing to convert classical feature (𝑓1, 𝑓2) to their corresponding

quantum state; (b) parametric quantum circuit used to per-

form desired transformations; and (c) measurement opera-

tion which collapses the qubit state to 0 or 1.

Fig. 4 shows the architecture of the 2-qubit QNN we used for

training. It consists of the (a) Encoding, (b) PQC and (c) Measure-

ment blocks. Several encoding techniques have been explored, e.g.,

amplitude encoding, basis encoding, NEQR [32]. We employ an-

gle encoding where we pass classical features (𝑓1, 𝑓2) as angles of

quantum rotations gates (𝑅𝑍 ) to transform them to quantum state.

Similar to angle encoding, there are a number of PQC ansatz [24]

to choose from but almost all of the PQCs consists of two main gate

types: single qubit gates which are used to perform design space

exploration, and two qubit gates which are used to entangle the

qubits. The latter forms a correlation between the qubits based on

the input feature values.

In the QNN, we use the 2-qubit Controlled-RZ (𝐶𝑅𝑍 ) gate to

entangle the qubits and rotation gates along X and Z axes (𝑅𝑋, 𝑅𝑍 )

for transformation/exploration. The PQC/QNN is analogous to

a classical neural network where we adjust the weights (𝑤𝑖 ) to

reduce the loss value while we adjust the tunable parameters (𝜃𝑖 )

to generate the desired output in QNN. Finally, to measure the

qubit state the most widely used measurement technique is Pauli’s

measurement along any of the X, Y, or Z axes. In our QNN model

we used Pauli-Z measurement (𝜎𝑧 =

[

1 0

0 −1

]

). A measurement in

the Pauli Z basis means projecting the state onto one of the states

|0⟩ or |1⟩ (the eigenstates of Pauli Z matrix).

3 PROPOSED METHODOLOGY

3.1 Chemical Retrosynthesis

Previous works on retrosynthesis have addressed the problem from

many different ways such as, using graph, transformer or some

other approach. Prior to transformers, LSTMs were the preferred

approach to neural networks that required a memory [28]. However,

LSTMs don’t work as well as transformers. Therefore, we propose

two unique approaches to simplify the problem of retrosynthesis

namely, (a) we restrict the reactions by selecting just a single re-

action type, <𝑅𝑋_1>, in an attempt to simplify the retrosynthesis

process. This subset is reduced from 12,000 to just 9 samples to

reduce training time, and emulate the proof of concept proposed by

Di Sipio [8] (b) We revert back to including all reaction types and

change our output from a prediction of the reactants to a prediction

of a chemical chain within the reactant. For this we select acetic acid

and acetone as the common chemical chains and reduce the input

reactions to only options that produce the selected chemical chains.

This subset is reduced from 2,100 samples down to 200, which is

then splitted 90:10 between training-validation set so there are 180

training samples and 20 validation samples. We then introduce

these approaches to the QLSTM to show the potential of quantum

computing in chemical retrosynthesis. In order to implement the

encoding and the required layers for both LSTM and QLSTM, as

well as the sigmoid activation and arctan activation function for

the QLSTM, we use Pytorch [19]. The quantum circuits are trained

using pennylane [3].

3.2 Hardware Trojan Detection

Here we consider a 50-feature dataset [16], which was originally

created from Trojan free (TF) and Trojan infected (TI) circuits/

benchmarks available in Trust-Hub [22], a public benchmark library.

This original feature set containing area and power characteristics

of the TI/TF circuits has been created using an industrial circuit

design tool (DC compiler Synopsys). However, the feature set had a

total of ∼900 samples among which very few samples of TF circuits

were present compared to TI ones with a TF:TI ratio of 1:40. Thus, a

reproduction technique (e.g., by repeating the TF circuit features to

match the number of TI ones for each circuit/benchmark category)

has been used to balance out the ratio between TF and TI samples.

The resultant feature set that we use for our evaluation purposes

contains 3026 samples and 50 features. We tested our models on

both the original and reproduced/augmented dataset.

Since it is not ideal to directly train aQNNusing a dataset contain-

ing such larger number of features, we compress the information

down to a handful of meaningful features. In the noisy quantum

computing era, with access to a hardware with low qubits, it is criti-

cal to reduce dataset dimension to train QNNs efficiently. Although

we can run quantum simulations in classical computers, they incur

a very high computational cost. As a result, we use a non-linear

dimensionality reduction technique, specifically T-distributed Sto-

chastic Neighbor Embedding (t-SNE) [27], to reduce the feature

size from 50 to 2 features for training our QNN. Although t-SNE is

widely used as a visualization technique as it helps clearly visualize

multiple class high dimensional data in 2D/3D space, it can also

be used as a dimension reduction technique. This is true since it

generates low number of high variance features which can help

train networks/classifiers effectively. Lastly, we normalize the fea-

tures of this reduced dimension dataset before training our QNN

(as shown in Fig. 4). More specifically, we use the "max" normaliza-

tion technique provided by the sklearn library [20], which divides

each feature value with the max feature value of that specific row

(𝑥𝑛𝑜𝑟𝑚 = 𝑥/𝑚𝑎𝑥 (𝑥)). The need to normalize the features before

training comes from the fact that, during the encoding step, as

we are passing the features as rotation angle values of quantum

gates, it is possible that feature values of different classes differ by

a multiple of 2𝜋 and thus end up being treated as features of the

same class by our QNN (as 𝑅𝑍 (𝑓1) = 𝑅𝑍 (𝑓1 + 2𝜋𝑛)).

4 RESULTS

4.1 Experimental Setups

Since we adopt unique approaches to perform chemical retrosynthe-

sis our results cannot be directly compared to other state-of-the-art

work. For a fair comparison we create a classical LSTM in the same

form as the QLSTM. The QLSTM depends on a 4 qubit VQC struc-

ture, while relatively small, the 4 qubit structure allows for a more

manageable run time. Both the QLSTM and the LSTM use a small
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Figure 5: Results of chemical retrosynthesis using a quantum and classical LSTM model; (a) training of 9 chemical sample

limited data set of a single reaction type (reaction type 1) where quantum is able to reach reasonable accuracy. (b) training

of 180 chemical sample limited data set of two common sub-string chemicals (acetic acid, acetone) where quantum nearly

matches classical for the first 35 epochs.

embedding dimension size of 8, and a small hidden dimension size

of 6. The small embedding dimension is used for two reasons: first,

it allows for enough memory for the second approach where we

are predicting a reactant sub-string, and still uses a smaller vector

than a bag of words would use for the proof of concept. The sec-

ond reason is that when the concatenation of 𝑋𝑡 and ℎ𝑡 occurs, it

doesn’t require a large fully connected layer squeeze/bloat to match

the size of the VQC structure. The hidden dimension size is heuris-

tically selected, using values less than the embedding dimension,

in expectation to keep the fully connected layer size requirement

low. For the concatenation it is performed such that 𝑋𝑡 appends to

ℎ𝑡 . Table 2 contains a summation of parameters. All performance

results are reported from execution on an Intel Xeon W-2125 CPU

running at 4 GHz, with 16 GB of RAM.

Table 2: Chemical retrosynthesis prediction defined param-

eters for both QLSTM and LSTM models

Parameter 𝑋𝑡 ℎ𝑡 𝐶𝑡 VQC size

Value 8x1 dim 6x1 dim 6x1 dim 4 qubits

For the second problem, the train-test split of 90:10 is used. We

further used 10% of the training data for validating the model There-

fore, training, testing and validation employs 2452, 302 and 272

samples, respectively. We trained the QNN for 10 epochs with the

following parameters; Loss function: Sparse Categorical Cross En-

tropy [1], Optimizer: Adagrad [9] , Learning rate: 0.4, and Batch

size: 32. All simulations were performed using Pennylane’s [2] de-

fault.qubit device on a computer equipped with a 12th Gen Intel(R)

Core(TM) i7-12700H and 16GB RAM.

4.2 Single Reaction Type Retrosynthesis

Before beginning the single reaction type retrosynthesis some pre-

processing of the original data is required. For clarity, an example

string is provided for each step. To begin we take the initial input

strings, as seen below.

<𝑅𝑋_1>𝐹 𝑐 1 𝑐 𝑐 2 𝑐 ( 𝑁 𝐶 3 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 3 )

𝑛 𝑐 𝑛 𝑐 2 𝑐 𝑛 1

We note here that the use of multiple lines are meaningless,

they are just inserted for readability purposes. For simplicity and

legibility, we use superscript numbers to represent a repeating series

of a character. This format will be followed for the continuation of

the work:

<𝑅𝑋_1>𝐹 𝑐 1 𝑐2 2 𝑐 ( 𝑁 𝐶 3 𝐶 6
3 ) 𝑛 𝑐 𝑛 𝑐 2 𝑐 𝑛 1

As part of our method, we then compress by removing all of the

individual spacing, as this space does not carry any special meaning

in the context of SMILES format:

<𝑅𝑋_1>𝐹𝑐1𝑐22𝑐 (𝑁𝐶3𝐶6
3)𝑛𝑐𝑛𝑐2𝑐𝑛1

We then ensure the reaction type is the first reaction type, match-

ing the <𝑅𝑋_1>. After this we strip off the reaction type as it is no

longer helpful:

𝐹𝑐1𝑐22𝑐 (𝑁𝐶3𝐶6
3)𝑛𝑐𝑛𝑐2𝑐𝑛1

After finishing the input string, we take the output string for

processing. Here we match the input string to the output string to

find the corresponding output:

𝐹 𝑐 1 𝑐2 2 𝑐 ( 𝐶 𝑙 ) 𝑛 𝑐 𝑛 𝑐 2 𝑐 𝑛 1 . 𝑁 𝐶 1 𝐶6
1

After we find the matching output string, we simply compress

the string by removing the spaces:

𝐹𝑐1𝑐22𝑐 (𝐶𝑙)𝑛𝑐𝑛𝑐2𝑐𝑛1.𝑁𝐶1𝐶6
1

Once the trimming of the input and output is done, we perform a

word encoding for both the input and the output to have a numerical

representation of the SMILES strings for use in LSTM. The word

encoding requires two unique lists, one for reactions and another

for reactants. Each list consists of unique chemicals, where each

chemical is assigned it’s numerical value based on it’s index within



the list it belongs to. After completing the preprocessing we train

the LSTM and QLSTM models. The promising results in Fig. 5a

show that the quantum approach, while unable to match the results

of classical approach, is able converge to an accuracy of 65% and a

loss of 0.1.

4.3 Chemical Chain Prediction

We perform similar preprocessing of the original data as explained

with an example string below. We take the initial output strings

from the input file:

𝐶2 ( 𝐶 ) ( 𝐶 ) 𝑂 𝐶 ( = 𝑂 ) 𝑁 𝐶2 ( = 𝑂 ) 𝐶3 ( = 𝑂 )

𝑂 𝐶4 ( = 𝑂 ) 𝑂 𝐶 𝑐 1 𝑐5 1

We then remove all of the individual spacing:

𝐶2 (𝐶) (𝐶)𝑂𝐶 (= 𝑂)𝑁𝐶2 (= 𝑂)𝐶3 (= 𝑂)𝑂𝐶4 (= 𝑂)

𝑂𝐶𝑐1𝑐51

We then ensure the reaction contains the acetic acid chain,𝐶𝐶 (=

𝑂)𝑂 or acetone𝐶𝐶 (= 𝑂)𝐶 . After this we dispose of the reactant and

simply use the label of the chain the string contains, for example:

acetic.

After we finish the output string, we take the input string and

match it to the output string to find the corresponding input:

<𝑅𝑋_6>𝐶2 ( 𝐶 ) ( 𝐶 ) 𝑂 𝐶 ( = 𝑂 ) 𝑁 𝐶2 ( = 𝑂 )

𝐶3 ( = 𝑂 ) 𝑂 𝐶4 ( = 𝑂 ) 𝑂

After we find the matching input string, we remove the spaces,

and the reaction type:

𝐶2 (𝐶) (𝐶)𝑂𝐶 (= 𝑂)𝑁𝐶2 (= 𝑂)𝐶3 (= 𝑂)𝑂𝐶4 (= 𝑂)𝑂

Once the trimming of the input and output is done, we perform

our encoding and we train the LSTM and QLSTM models. The

results in Fig. 5b show that the classical loss never reaches a point

of convergence, where the quantum loss also doesn’t reach con-

vergence nor does it reach the same level as the classical. These

results hold true for accuracy, where the classical domain reaches

65% and the quantum domain reaches 55%. While there is a small

gap in performance, we see that given the task of identifying a
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Figure 6: Results of 20 chemical sample limited data set test-

ing of two common sub-string chemicals (acetic acid, ace-

tone) where quantum outperforms classical.
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Figure 7: Results of Trojan detection using a quantum and

classical neural network trained on augmented dataset of

features 𝑓 = 2.

common substring within the predicted reactants, quantum is able

to nearly match classical performance during training. Validation is

ran once every 5 epochs during training and here, there is a flip of

performance. The results in Fig. 6 show that the classical loss starts

to increase after just 25 training epochs, whereas the quantum loss

is steadily decreasing for the entirety of the training. As for the

accuracy, the classical accuracy reaches a high of 70% and steadily

decreases to 40%. For the quantum domain the accuracy starts at

50%, while steadily increasing all the way to 80%, outperforming

the classical model by 40% at the end of the model training.

4.4 Trojan Detection

Coming to the second problem we study, Fig. 7 shows the accuracy

and loss comparison of our QNN with a simple classical neural

network on the augmented dataset with the following neuron con-

figuration; 2-64-256-64-2 per the five layers from input to output.

We trained our classical NN for 10 epochs [Optimizer: Adam [14],

Loss_Fn: Sparse Categorical Cross Entropy [1] and Learning rate:

0.01]. The maximum training accuracy achieved by our QNN and

classical NN was 91.06% and 98.03% respectively.

We also trained some of the linear/non-linear ML classifiers with

the augmented dataset of features 𝑓 = 2 and compared the results

of the same with our QNN model. From Table 3 we can see that

QNN performs better than few of the linear/non-linear models

(Perceptron/GaussianNB) but falls behind SVM and classical neural

network. The results clearly show that the classes are not linearly

separable because linear classifiers like Perceptron and Logistic

Regression perform poorly, as shown in Table 3.

Without employing the reproducing technique, we also trained

our QNN and traditional NN model with the original feature set

Table 3: Trojan detection accuracy of different mod-

els/classifiers on the augmented dataset of features 𝑓 = 2.

Model Training Acc. Testing Acc.

Perceptron 73.72% 72.61%

GaussianNB 74.92% 76.73%

LogisticRegression 75.04% 73.76%

QuantumNN 91.06% 90.04%

SVM 96.49% 96.04%

ClassicalNN 98.03% 98.35%



(≈ 900 samples). We only modified one parameter before training

the models; the learning rate, which we lowered to 0.01 and 0.001

for QNN and classicalNN, respectively. In this case, the QNN model

is found to be more effective at detecting HTs, with a classification

accuracy of up to 97.27%. The QNN model performed identical to

classicalNN, which produced an accuracy of 97.09%. As a result, we

can conclude that QNN models can potentially perform similar to

classical neural networks in some cases.

It should be noted that the goal of this work is not to demonstrate

superior classification accuracy over classical counterparts, but

rather to show a proof-of-concept application of QML in hardware

security domain. We posit that further optimization of the feature

count, qubits, layers, epochs and/or lower the learning rate could

achieve higher detection accuracy.

5 CONCLUSION AND FUTUREWORK

We have shown that QLSTM is a viable solution to solve chemi-

cal retrosynthesis problem, even with just 4 qubits. While QLSTM

didn’t train as well as its classical counterpart, it is able to reach a

reasonable accuracy and loss metrics for the proof of concept. For

example, quantum achieves 65% accuracy and classical achieves

100%. It again is able to reach a reasonable accuracy e.g., 55% for

quantum and 65% for classical while attempting to predict sub-

strings. However these gaps are misleading since quantum is able

to reach an accuracy or 80% whereas classical peaks at an accuracy

of 70% during testing of the substring prediction! We also demon-

strated a QNN application in hardware security domain, specifically

Trojan detection from a set of area and power features. A very sim-

ple 2-qubit QNN with demonstrated (≈ 91%) accuracy is able to

outperform some linear/non-linear classifiers which show ≈ 75%

in terms of detection accuracy. In the future, the performance of the

model can be improved by using a Quantum RAM (QRAM) to load

the data and/or using a Quantum Graph Neural Network (QGNN)

instead of QNN.
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