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Abstract: Spiking neural networks (SNNs) are quickly gaining traction as a viable alternative to deep

neural networks (DNNs). Compared to DNNs, SNNs are computationally more powerful and energy

efficient. The design metrics (synaptic weights, membrane threshold, etc.) chosen for such SNN

architectures are often proprietary and constitute confidential intellectual property (IP). Our study

indicates that SNN architectures implemented using conventional analog neurons are susceptible to

side channel attack (SCA). Unlike the conventional SCAs that are aimed to leak private keys from

cryptographic implementations, SCANN (SCA of spiking neural networks) can reveal the sensitive

IP implemented within the SNN through the power side channel. We demonstrate eight unique

SCANN attacks by taking a common analog neuron (axon hillock neuron) as the test case. We chose

this particular model since it is biologically plausible and is hence a good fit for SNNs. Simulation

results indicate that different synaptic weights, neurons/layer, neuron membrane thresholds, and

neuron capacitor sizes (which are the building blocks of SNN) yield distinct power and spike timing

signatures, making them vulnerable to SCA. We show that an adversary can use templates (using

foundry-calibrated simulations or fabricating known design parameters in test chips) and analysis to

identify the specifications of the implemented SNN.
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1. Introduction

Artificial neural networks (ANNs or NNs), which are inspired by brain functionality,
are composed of layers of neurons interlinked by synapses and can be used to approximate
any computable function. The use of neural networks in safety-critical domains, such as
autonomous driving [1], healthcare [2], internet of things [3] and security [4], necessitates
an examination of their security vulnerabilities and risks. In real-world applications,
attacking a neural network can result in undesirable inferences that can compromise
safety (e.g., reduced accuracy or confidence in road sign identification during autonomous
driving). These attacks can be launched during the training, manufacturing, or final
application stages.

Spiking neural networks (SNNs) [5], the third generation of neural networks, are
emerging as an alternative to deep neural networks (DNNs) since they are biologically
plausible, computationally powerful [6], and energy efficient [7–9]. The majority of past
work in SNN security focuses on evaluating the robustness of SNNs when exposed to
adversarial input noise. The vulnerabilities/attacks of SNNs under a white-box scenario,
e.g., sensitivity to adversarial examples and a robust training mechanism for defense is
proposed in [10]. A white-box fault injection attack is proposed [11] for SNNs by employing
adversarial input noise. In [12], a black-box approach is presented to generate adversarial
input instances to induce misprediction in SNNs. In [13,14], power-based voltage fault
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Power Camouflaging: Another technique to camouflage the SNN power profile with-
out affecting its accuracy or performance is by introducing a few dummy neurons within
each neuron layer (Figure 15b). The input of the dummy neurons is connected to a current
driver that drives randomized spike inputs of 1 V amplitude and 50 ns spike width. These
dummy neurons are not connected to any of the functioning neurons in the SNN and do
not affect SNN accuracy or performance. However, they draw power from the supply in a
randomized manner and generate rogue spike markers in the SNN power profile. Addi-
tionally, they also increase the average power consumption of the SNN and camouflage
the original power features. Figure 15c depicts the difference in average power between
the original SNN and a camouflaged SNN with 10% additional dummy neurons. It is seen
that the amplitude and trendline of the average power are attenuated for the camouflaged
SNN. Note that this defense increases the overall power consumption of the SNN design
by ∼10%.

6. Conclusions

We present a detailed analysis of power and timing side channel leakage in spiking
neural networks using a common analog neuron model and uncover several markers in
the power profile. We also present eight unique reverse engineering techniques to identify
four different critical design parameters, namely (a) synaptic weights, (b) neuron threshold,
(c) neurons per layer, and (d) membrane capacitance. Finally, we proposed defenses against
the proposed SCA attacks.
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