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Let G be a simple graph with maximum degree Δ(G). A 
subgraph H of G is overfull if |E(H)| > Δ(G)�|V (H)|/2�. 
Chetwynd and Hilton in 1986 conjectured that a graph G
on n vertices with Δ(G) > n/3 has chromatic index Δ(G) if 
and only if G contains no overfull subgraph. Glock, Kühn and 
Osthus in 2016 showed that the conjecture is true for dense 
quasirandom graphs with even order, and they conjectured 
that the same should hold for such graphs with odd order. In 
this paper, we show that the conjecture of Glock, Kühn and 
Osthus is affirmative.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, a graph means a simple graph; and a multigraph may contain parallel 
edges but no loops. Let G be a multigraph. Denote by V (G) and E(G) the vertex set 
and edge set of G, respectively. For v ∈ V (G), NG(v) is the set of neighbors of v in G, 
and dG(v), the degree of v in G, is the number of edges of G that are incident with v. 
When G is simple, dG(v) = |NG(v)|. For S ⊆ V (G), the subgraph of G induced on S is 
denoted by G[S], and G − S := G[V (G) \ S]. For notational simplicity, we write G − x

for G − {x}. If F ⊆ E(G), then G − F is obtained from G by deleting all the edges of 
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F . Let V1, V2 ⊆ V (G) be two disjoint vertex sets. Then EG(V1, V2) is the set of edges in 
G with one end in V1 and the other end in V2, and eG(V1, V2) := |EG(V1, V2)|. We write 
EG(v, V2) and eG(v, V2) if V1 = {v} is a singleton. We also write G[V1, V2] to denote the 
bipartite subgraph of G with vertex set V1 ∪ V2 and edge set EG(V1, V2).

For two integers p, q, let [p, q] = {i ∈ Z : p ≤ i ≤ q}. Let k ≥ 0 be an integer. An 
edge k-coloring of G is a mapping ϕ from E(G) to the set of integers [1, k], called colors, 
such that no two adjacent edges receive the same color with respect to ϕ. The chromatic 
index of G, denoted χ′(G), is defined to be the smallest integer k so that G has an 
edge k-coloring. We denote by Ck(G) the set of all edge k-colorings of G. A graph G is 
Δ-critical if χ′(G) = Δ(G) + 1 = Δ + 1 and χ′(H) < Δ + 1 for every proper subgraph 
H of G. In 1960’s, Vizing [22] and, independently, Gupta [8] proved that for all simple 
graphs G, Δ(G) ≤ χ′(G) ≤ Δ(G) + 1. This leads to a natural classification of graphs. 
Following Fiorini and Wilson [5], we say a graph G is of class 1 if χ′(G) = Δ(G) and 
of class 2 if χ′(G) = Δ(G) + 1. Holyer [10] showed that it is NP-complete to determine 
whether an arbitrary graph is of class 1. Nevertheless, if a graph G has too many edges, 
i.e., |E(G)| > Δ(G)�|V (G)|/2�, then we have to color E(G) using exactly (Δ(G) + 1)
colors. Such graphs are overfull. An overfull subgraph H of G with Δ(H) = Δ(G) is 
called a Δ(G)-overfull subgraph of G.

Applying Edmonds’ matching polytope theorem, Seymour [16] showed that whether 
a graph G contains an overfull subgraph of maximum degree Δ(G) can be determined 
in polynomial time. A number of long-standing conjectures listed in Twenty Pretty Edge 
Coloring Conjectures in [18] lie in deciding when a Δ-critical graph is overfull. Chetwynd 
and Hilton [2,3], in 1986, proposed the following conjecture.

Conjecture 1.1 (Overfull conjecture). Let G be a simple graph with Δ(G) > 1
3 |V (G)|. 

Then χ′(G) = Δ(G) if and only if G contains no Δ(G)-overfull subgraph.

The degree condition Δ(G) > 1
3 |V (G)| in the conjecture above is best possible, as seen 

by the graph P ∗, which is obtained from the Petersen graph by deleting one vertex. If the 
overfull conjecture is true, then the NP-complete problem of determining the chromatic 
index becomes polynomial-time solvable for graphs G with Δ(G) > |V (G)|

3 . Despite its 
importance, very little is known about its truth. It was confirmed only for graphs with 
Δ(G) ≥ |V (G)| − 3 by Chetwynd and Hilton [3] in 1989. By restricting the minimum 
degree, Plantholt [15] in 2004 showed that the overfull conjecture is affirmative for graphs 
G with even order n and minimum degree δ ≥

√
7n/3 ≈ 0.8819n. The 1-factorization 

conjecture is a special case of the overfull conjecture, which in 2016 was confirmed for 
large graphs by Csaba, Kühn, Lo, Osthus and Treglown [4]. The overfull conjecture 
is still wide open in general, and it seems extremely difficult even for graphs G with 
Δ(G) ≥ |V (G)| − 4.

Recently in 2016, Glock, Kühn and Osthus [6] showed that the overfull conjecture is 
true for dense quasirandom graphs of even order. Following their definition, for the notion 
of quasirandomness, the following one-sided version of ε-regularity will be considered. 
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Let 0 < ε, p < 1. A graph G on n vertices is called lower-(p, ε)-regular if we have 
eG(S, T ) ≥ (p − ε)|S||T | for all disjoint S, T ⊆ V (G) with |S|, |T | ≥ εn. In particular, 
the following result was proved in [6, Theorem 1.6].

Theorem 1.2. For all 0 < p < 1 there exist ε, η > 0 such that for sufficiently large n, the 
following holds: Suppose G is a lower-(p, ε)-regular graph on n vertices and n is even. 
Moreover, assume that Δ(G) −δ(G) ≤ ηn. Then χ′(G) = Δ(G) if and only if G contains 
no Δ(G)-overfull subgraph. Further, there is a polynomial-time algorithm which finds an 
optimal coloring.

Glock, Kühn and Osthus [6] conjectured that the same result as in Theorem 1.2 should 
hold for such graphs G with odd order. We here confirm the conjecture.

Theorem 1.3. For all 0 < p < 1 there exist ε, η > 0 such that for sufficiently large n, 
the following holds: Suppose G is a lower-(p, ε)-regular graph on n vertices and n is odd. 
Moreover, assume that Δ(G) − δ(G) ≤ ηn. Then χ′(G) = Δ(G) if and only if G is not 
overfull. Further, there is a polynomial-time algorithm which finds an optimal coloring.

For a lower-(p, ε)-regular graph with odd order n, it is easy to see that for any subset 
X ⊆ V (G) with |X| odd and 3 ≤ |X| ≤ n − 2, we have eG(X, V (G) \ X) ≥ Δ(G). Thus 
G[X] is not Δ(G)-overfull. Therefore, the only possible Δ(G)-overfull subgraph in G is 
G itself.

The remainder of this paper is organized as follows. In the next section, we list some 
preliminary results on quasirandom graphs and edge colorings. In Section 3, we study 
the chromatic index of a regular lower-(p, ε)-regular star-multigraph, which is obtained 
from a lower-(p, ε)-regular graph by adding a new vertex and some edges between the 
graph and the new vertex. In the last section, we prove Theorem 1.3.

2. Preliminaries

We will use the following notation: 0 < a � b ≤ 1. Precisely, if we say a claim is 
true provided that 0 < a � b ≤ 1, then this means that there exists a non-decreasing 
function f : (0, 1] → (0, 1] such that the statement holds for all 0 < a, b ≤ 1 satisfying 
a ≤ f(b).

2.1. Properties of lower-(p, ε)-regular graphs

A lower-(p, ε)-regular graph can be slightly modified so it is still lower-(p, ε′)-regular 
for some ε′ ≤ ε, as listed in the following proposition.

Proposition 2.1 ([6], Proposition 3.1). Let 0 < 1/n0 � ε, p < 1, and let G be a 
lower-(p, ε)-regular graph on n ≥ n0 vertices. Then the following hold:
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(1) If G′ is obtained from G by adding a new vertex w and arbitrary edges at w, then 
G′ is lower-(p, 2ε)-regular.

(2) Let H be a graph on V (G) such that Δ(H) ≤ ηn for some 0 < η < 1, and let 
ε′ = max{2ε, 2√

η}. Then G − E(H) is lower-(p, ε′)-regular.
(3) If U ⊆ V (G) has size at least βn for some 0 < β < 1, then G[U ] is lower-(p, ε/β)-

regular.

A multigraph G is a star-multigraph if G has a vertex x that is incident with all 
multiple edges of G. In other words, G − x is a simple graph. The vertex x is called 
the multi-center of G. For 0 < ε, p < 1, a multigraph G is a lower-(p, ε)-regular star-
multigraph if it is a star-multigraph such that its underlying simple graph is lower-(p, ε)-
regular. Since we will deal with a lower-(p, ε)-regular graph of odd order, for convenient 
analyses, we will add a new vertex and some edges between the new vertex and the graph 
to form a star-multigraph of even order.

A path P connecting two vertices u and v is called a (u, v)-path, and we write uPv or 
vPu to specify the two endvertices of P . Let uPv and xQy be two disjoint paths. If vx

is an edge, we write uPvxQy as the concatenation of P and Q through the edge vx.
The following result was proved in [6] for lower-(p, ε)-regular graphs, and we here 

modify it for lower-(p, ε)-regular star-multigraphs.

Lemma 2.2 ([6], Lemma 7.2). Let 0 < 1/n0 � ε � α, p < 1, and G be a 
lower-(p, ε)-regular graph on n ≥ n0 vertices such that δ(G) ≥ αn. Moreover, let 
M = {a1b1, . . . , atbt} be a matching in the complete graph on V (G) of size at most 
αn/5. Then there exist vertex-disjoint path P1, . . . , Pt in G such that 

⋃
V (Pi) = V (G)

and Pi joins ai to bi, and these paths can be found in polynomial time.

Lemma 2.3. Let 0 < 1/n0 � ε ≤ η � α, p < 1, and G be a lower-(p, ε)-regular star-
multigraph on n ≥ n0 vertices such that δ(G) ≥ αn and eG(x, v) ≤ ηn for any v ∈ V (G), 
where x is the multi-center of G. Moreover, let M = {a1b1, . . . , atbt} be a matching in 
the complete graph on V (G) of size at most αn/6. If |NG(x) \ {a1, b1, . . . , at, bt}| ≥ 2, 
then there exist vertex-disjoint paths P1, . . . , Pt in G such that 

⋃
V (Pi) = V (G) and Pi

joins ai to bi, and these paths can be found in polynomial time.

Proof. By relabeling the matching edges if necessary, assume that if x ∈ {a1, b1, . . . ,

at, bt}, then x = at.
If x ∈ {a1, b1, . . . , at, bt} and so x = at, then let a′

t ∈ NG(x) \ {a1, b1, . . . , at, bt}, 
and M ′ = (M \ {atbt}) ∪ {a′

tbt}. If x /∈ {a1, b1, . . . , at, bt}, then let x1, x2 ∈ NG(x) \
{a1, b1, . . . , at, bt} be distinct, and let M ′ = (M \ {atbt}) ∪ {atx1, x2bt}. Note that δ(G −
x) ≥ (α − η)n ≥ (5

6α + 5
n )n and |M ′| ≤ 1

6αn + 1 = (1
6α + 1

n )n, and G − x is lower-(p, 2ε)-
regular by Proposition 2.1(3). Applying Lemma 2.2 to G − x with matching M ′, we find 
vertex-disjoint paths P ′

1, . . . , P ′
t in G − x such that 

⋃
V (P ′

i ) = V (G − x). Furthermore, 
if x = at, P ′

i joins ai to bi for i ∈ [1, t − 1], and P ′
t joins a′

t to bt; if x /∈ {a1, b1, . . . , at, bt}, 
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P ′
i joins ai to bi for i ∈ [1, t − 1], P ′

t joins at to x1, and P ′
t+1 joins x2 to bt. Letting 

Pi = P ′
i for i ∈ [1, t − 1], and Pt = ata

′
tP

′
tbt if x = at and Pt = atP

′
tx1xx2P ′

t+1bt

if x /∈ {a1, b1, . . . , at, bt} gives the desired paths for G and M . By Lemma 2.2 and 
the simple adjustment on M above, it is clear that these paths can be found also in 
polynomial time. �
Lemma 2.4. Let 0 < 1/n0 � ε, γ � α, p < 1, and G be a lower-(p, ε)-regular star-
multigraph on n ≥ n0 vertices with multi-center x such that δ(G) ≥ αn and eG(x, v) ≤ γn

for any v ∈ V (G). Let X, Y ⊆ V (G) be disjoint and |X| = |Y |, and H be a graph with 
V (H) = X∪Y and E(H) obtained from EG(X, Y ) by deleting some edges. If δ(H) > 1

4αn

and each vertex v ∈ V (H) \{x} is incident with at most γn edges from EG(X, Y ) \E(H), 
then H has a perfect matching. Furthermore, a perfect matching of H can be found in 
polynomial time.

Proof. If the multi-center of G is contained in X ∪ Y , we may assume by symmetry that 
the multi-center is contained in X. To have a unified proof, if the multi-center of G is 
contained in X, we let x be the multi-center; otherwise we let x be an arbitrary vertex 
from X.

Since δ(H) > 0, x has in H a neighbor y ∈ Y . Let X1 = X \ {x} and Y1 = Y \ {y}. 
It suffices to show that H1 := H[X1, Y1] satisfies Hall’s condition. For otherwise, there 
exists A ⊆ X1 such that B := NH1(A) satisfying |B| < |A|. Since δ(H1) ≥ δ(H) −
max{eG(x, v) : v ∈ V (H)} ≥ 1

4αn − γn and |B| < |A|, it follows that |A| > 1
4αn − γn. 

On the other hand, since EH1(A, Y1\B) = ∅, Y1\B �= ∅, and δ(H1) ≥ 1
4αn −γn, it follows 

that |X1 \ A| ≥ 1
4αn − γn. Let B1 = Y1 \ B. Thus |A| ≤ |X1| − (1

4αn − γn) and so |B1| =
|Y1| −|B| > |Y1| −|A| ≥ 1

4αn −γn. Now |A| > 1
4αn −γn > εn and |B1| > 1

4αn −γn > εn. 
By the lower-(p, ε)-regularity of G, we have eG(A, B1) ≥ (p −ε)|A||B1|. Since each vertex 
from B1 is incident in G with at most γn edges from EG(X, Y ) \ E(H) and at most γn

edges with the other endvertex as x, we have eG−E(H)(A, B1) ≤ (γn +γn)|B1|. Therefore 
eH1(A, B1) ≥ eG(A, B1) − eG−E(H)(A, B1) ≥ (p − ε)|A||B1| − 2γn|B1|. Since

(p − ε)|A| > (p − ε)(1
4αn − γn) > 2γn,

we get eH1(A, B1) > 0, showing a contradiction.
There are polynomial-time algorithms such as the Hopcroft-Karp algorithm [11] in 

finding a maximum matching in any bipartite graph, thus a perfect matching of H can 
be found in polynomial time. �
2.2. Results on edges colorings

Let G be a multigraph and ϕ ∈ Ck(G) for some integer k ≥ 0. For any v ∈ V (G), 
the set of colors present at v is ϕ(v) = {ϕ(f) : f ∈ E(G) is incident to v}, and the 
set of colors missing at v is ϕ(v) = [1, k] \ ϕ(v). For a vertex set X ⊆ V (G), define 
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ϕ(X) =
⋃

v∈X ϕ(v). The set X is called elementary with respect to ϕ or simply ϕ-
elementary if ϕ(u) ∩ ϕ(v) = ∅ for every two distinct vertices u, v ∈ X. For two distinct 
colors α, β ∈ [1, Δ], the components of the subgraph induced by edges with colors α or 
β are called (α, β)-chains. Clearly, each (α, β)-chain is either a path or an even cycle. 
If we interchange the colors α and β on an (α, β)-chain C of G, we get a new edge 
k-coloring of G, which is denoted by ϕ/C. This operation is called a Kempe change. For 
an (α, β)-chain P , if it is a path with an endvertex x, we also denote it by Px(α, β, ϕ)
to stress the endvertex x. An (α, β)-swap at x is just the Kempe change performed on 
Px(α, β, ϕ).

Let x, y ∈ V (G). If x and y are contained in the same (α, β)-chain of G with respect 
to ϕ, we say x and y are (α, β)-linked with respect to ϕ. Otherwise, x and y are (α, β)-
unlinked with respect to ϕ.

The fan argument was introduced by Vizing [20,21] in his classic results on the upper 
bounds of chromatic indices for simple graphs and multigraphs. Multifans are generalized 
version of Vizing fans given by Stiebitz et al. [18].

Let G be a multigraph with maximum degree Δ. For an edge e = rs1 ∈ E(G) and 
a coloring ϕ ∈ CΔ(G − e), a multifan centered at r w.r.t. e and ϕ is a sequence F =
(r, rs1, s1, rs2, s2, . . . , rsp, sp) with p ≥ 1 consisting of distinct vertices r, s1, s2, . . . , sp

and edges rs1, rs2, . . . , rsp satisfying the following condition:

(F1) For every edge rsi with i ∈ [2, p], there exists j ∈ [1, i −1] such that ϕ(rsi) ∈ ϕ(sj).

The set of vertices r, s1, . . . , sp contained in F is denoted by V (F ). The following result 
regarding a multifan can be found in [18, Theorem 2.1], where an edge e of G is critical 
if χ′(G − e) < χ′(G).

Lemma 2.5. Let G be a multigraph with χ′(G) = k ≥ Δ(G) +1, e = rs1 be a critical edge 
and ϕ ∈ Ck(G − e). If F is a multifan w.r.t. e and ϕ, then V (F ) is ϕ-elementary.

In 1960’s, Vizing [22] and, independently, Gupta [8] proved the following result, which 
can be proved by using the multifan arguments, where the multiplicity μ(G) of a multi-
graph G is max{eG(u, v) : u, v ∈ V (G)}.

Theorem 2.6. For every multigraph G with multiplicity μ, χ′(G) ≤ Δ(G) + μ.

Misra and Gries [14] described a polynomial-time algorithm for coloring the edges of 
any simple graph G with at most Δ(G) + 1 colors.

Proved by König [12] that every bipartite multigraph has chromatic index as its max-
imum degree.

Theorem 2.7. Every bipartite multigraph G satisfies χ′(G) = Δ(G).
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Lemma 2.8. If G is a star-multigraph, then χ′(G) ≤ Δ(G) + 1. Furthermore, an edge 
coloring of G using at most Δ(G) + 1 colors can be found in polynomial time.

Proof. Assume to the contrary that χ′(G) ≥ Δ(G) + 2. By deleting edges and vertices 
from G if necessary, we may assume that every edge e of G is critical, i.e., χ′(G − e) <
χ′(G). Assume first that there exists u ∈ V (G) such that u is not incident with any 
multiple edges of G. Let v ∈ NG(u). Since uv is critical, χ′(G − uv) ≤ χ′(G) − 1. Let 
ϕ ∈ Ck(G −uv) where k = χ′(G) −1 ≥ Δ(G) +1, and let F be a maximum multifan with 
respect to uv and ϕ and centered at u. Since there are k ≥ Δ(G) + 1 colors, for every 
w ∈ V (G), ϕ(w) �= ∅. By Lemma 2.5, if w ∈ V (F ) \ {u}, then every color from ϕ(w)
presents at u. Since v ∈ V (F ) and F is maximum, we conclude that NG(u) ⊆ V (F ). 
Thus, as ϕ is an edge k-coloring of G − uv, and V (F ) is ϕ-elementary by Lemma 2.5, 
we have

|ϕ(V (F ))| = |ϕ(u)| + |ϕ(v)| +
∑

w∈V (F )\{u,v}
|ϕ(w)|

≥ (k − (dG(u) − 1)) + (k − (dG(v) − 1)) + (dG(u) − 1)(k − Δ(G))

≥ 2 + (k − dG(u)) + dG(u)(k − Δ(G))

≥ k + 2,

where we used that facts that |V (F ) \ {u, v}| = dG(u) − 1 and k − Δ(G) ≥ 1. The 
inequality gives a contradiction as |ϕ(V (F ))| ≤ k by V (F ) being ϕ-elementary.

Thus we assume that every vertex of G is incident with some multiple edges. Since 
G is a star-multigraph, it has a vertex x such that V (G) = NG(x) ∪ {x}. Let NG(x) =
{y1, . . . , yt}, and let di = eG(x, yi) for each i ∈ [1, t]. Since G is a star-multigraph, for 
each yi, x is the only vertex such that there are possibly multiple edges between yi and 

x. Thus dG(x) =
t∑

i=1
di = Δ(G) and d(yi) ≤ di + t − 1. Let H be the underlying simple 

graph of G. It is readily check that Δ(H) ≤ t. By Theorem 2.6, χ′(H) ≤ t + 1. By 
assigning a different color to each of the edges in E(G) \ E(H), we see that χ′(G) ≤

χ′(H) +
t∑

i=1
(di − 1) ≤ Δ(G) + 1. This gives a contradiction to the assumption that 

χ′(G) ≥ Δ(G) + 2.
For the complexity of edge coloring G using at most Δ(G) + 1 colors, we analyze 

it below. The colors available will be [1, Δ(G) + 1]. Misra and Gries [14] described a 
polynomial-time algorithm for coloring the edges of any simple graph H with at most 
(Δ(H) +1) colors. Thus we first edge color the underlying simple graph of G[NG(x) ∪{x}]
using at most |NG(x)| + 1 colors. This can be done in time of a polynomial in |NG(x)|. 
Then we color the other edges of G[NG(x) ∪ {x}] greedily, which results in a coloring 
using at most Δ(G) + 1 colors by the same argument as in the previous paragraph. It 
takes O(|NG(x)| + Δ(G)) steps to edge color G[NG(x) ∪ {x}] using at most Δ(G) + 1
colors. If all edges of G are already colored, then we are done. Otherwise, we greedily 
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color the other edges of G until we encounter an edge uv1 such that u and v1 do not have 
a common missing color with respect to the current edge coloring, say ϕ. We may also 
assume that for any color α ∈ ϕ(u) and any color β ∈ ϕ(v1), u and v1 are (α, β)-linked. 
By symmetry, assume u /∈ NG(x). We construct a multifan centered at u with respect to 
uv1 and ϕ. Assume F = (u, uv1, v1, uv2, v2, . . . , uvs, vs) is a maximum multifan centered 
at u. As shown in the first paragraph of this proof, the vertex set of the multifan is not 
ϕ-elementary.

Assume first that there exist vi with i ∈ [2, s] and a color γ such that γ ∈ ϕ(u) ∩ϕ(vi). 
By the construction of F , we may assume v1, . . . , vi is the sequence such that ϕ(uvj) ∈
ϕ(vj−1) for j ∈ [2, i]. We color the edge uv1 using the color on uv2, recolor uvj using the 
color on uvj+1 for each j ∈ [2, i −1], and recolor uvi by the color γ. Thus we assume that 
ϕ(u) ∩ ϕ(vi) = ∅ for every i ∈ [1, s] and that there exist distinct i, j ∈ [1, s] and a color γ
such that γ ∈ ϕ(vi) ∩ ϕ(vj). Let α ∈ ϕ(u). As at least one of vi and vj is (α, γ)-unlinked 
with u, say vj , we do an (α, γ)-swap at vj. (When both of vi and vj are (α, γ)-unlinked 
with u, we assume j < i.) Then F ∗ = (u, uv1, v1, uv2, v2, . . . , uvj , vj) is still a multifan 
with respect to uv1 and the current edge coloring, but u and vj have a common missing 
color. We can then again color uv1 as in the first case. Thus we can color all the remaining 
edges of G in this way using at most Δ(G) + 1 colors. For each uncolored edge such as 
uv1, it takes O(|V (G)|) steps to have it colored. As it takes O(|NG(x)| + Δ(G)) steps to 
edge color G[NG(x) ∪ {x}], it then takes O(|E(G)||V (G)|) steps to edge color G using 
at most Δ(G) + 1 colors. �

Given an edge coloring of G, since all vertices not missing a given color α are saturated 
by the matching that consists of all edges colored by α in G, we have the Parity Lemma 
below, which has appeared in many papers, for example, see [7, Lemma 2.1].

Lemma 2.9 (Parity Lemma). Let G be an n-vertex multigraph and ϕ ∈ Ck(G) for some 
integer k ≥ Δ(G). Then for any color α ∈ [1, k], |{v ∈ V (G) : α ∈ ϕ(v)}| ≡ n (mod 2).

Let G be a multigraph, k ≥ 0 be an integer and ϕ ∈ Ck(G). For a subset X of V (G)
and a color i ∈ [1, k], define ϕ−1

X (i) = {v ∈ X : i ∈ ϕ(v)}, and e(X) = |E(G[X])|. An 
edge k-coloring of a multigraph G is said to be equalized if each color class contains either 
�|E(G)|/k� or �|E(G)|/k� edges. McDiarmid [13] observed the following result.

Theorem 2.10. Let G be a graph with chromatic index χ′(G). Then for all k ≥ χ′(G), 
there is an equalized edge-coloring of G with k colors.

We will need the following weaker version of “equalized” edge k-coloring.

Lemma 2.11. Let G be a star-multigraph on 2n vertices with multi-center x, and let A
and B be a partition of V (G) with |A| = |B|, where we assume x ∈ A. If e(A) = e(B), 
EG(A, B) = EG(x, B), and G has an edge coloring using k colors, then there exists an 
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edge coloring ϕ using k colors such that for each i, j ∈ [1, k], |ϕ−1
A (i)| = |ϕ−1

B (i)| and ∣∣|ϕ−1
A (i)| − |ϕ−1

A (j)|
∣∣ ≤ 2. Furthermore, such a coloring ϕ can be found in O(k2n2)-time.

Proof. We first show that there exists an edge k-coloring ϕ of G such that |ϕ−1
A (i)| =

|ϕ−1
B (i)| for each i ∈ [1, k]. Among all edge k-colorings of G, we choose any ϕ such that

dϕ :=
k∑

i=1

∣∣|ϕ−1
A (i)| − |ϕ−1

B (i)|
∣∣

is minimum. If dϕ = 0, then we are done. Thus dϕ ≥ 1. By the Parity Lemma, for 
each i, |ϕ−1

A (i)| + |ϕ−1
B (i)| ≡ 2n (mod 2). Thus |ϕ−1

A (i)| − |ϕ−1
B (i)| ≡ 2n (mod 2). Since 

dϕ > 0, we assume, by symmetry, that there exists i ∈ [1, k] such that |ϕ−1
A (i)| ≡ |ϕ−1

B (i)|
(mod 2) and |ϕ−1

A (i)| − |ϕ−1
B (i)| ≥ 2. Since e(A) = e(B), it follows that 

∑
v∈A dG(v) =∑

v∈B dG(v). This together with the fact that |A| = |B|, implies

def(A) :=
∑

v∈A

(k − dG(v)) =
∑

v∈B

(k − dG(v)) =: def(B).

On the other hand,

def(A) =
k∑

i=1
|ϕ−1

A (i)| and def(B) =
k∑

i=1
|ϕ−1

B (i)|.

Therefore 
k∑

i=1
|ϕ−1

A (i)| =
k∑

i=1
|ϕ−1

B (i)|. Consequently, by the existence of i ∈ [1, k] such 

that |ϕ−1
A (i)| − |ϕ−1

B (i)| ≥ 2, there exists j ∈ [1, k] with j �= i such that |ϕ−1
B (j)| −

|ϕ−1
A (j)| ≥ 2. Next, we will do some Kempe changes on some (i, j)-chains to obtain 

another edge k-coloring ϕ′ such that dϕ′ < dϕ, which will lead a contradiction to the 
choice of ϕ.

If there exist distinct u, v ∈ ϕ−1
A (i) such that u and v are (i, j)-linked with re-

spect to ϕ, then we let ϕ′ = ϕ/Pu(i, j, ϕ). Clearly, dϕ′ = dϕ − 4, showing a con-
tradiction to the choice of ϕ. Thus for any two distinct u, v ∈ ϕ−1

A (i), u and v are 
(i, j)-unlinked with respect to ϕ. Similarly, for any two distinct u, v ∈ ϕ−1

B (j), u and 
v are (i, j)-unlinked with respect to ϕ. Thus, for every u ∈ ϕ−1

A (i), the other end of 
Pu(i, j, ϕ) is in ϕ−1

A (j) ∪ ϕ−1
B (i) ∪ ϕ−1

B (j). Similarly, for every u ∈ ϕ−1
B (j), the other 

end of Pu(i, j, ϕ) is in ϕ−1
A (i) ∪ ϕ−1

A (j) ∪ ϕ−1
B (i). Since |ϕ−1

A (j)| ≤ |ϕ−1
B (j)| − 2 and 

|ϕ−1
B (i)| ≤ |ϕ−1

A (i)| − 2 by the choices of the colors i and j, we have |ϕ−1
A (j)| +

|ϕ−1
B (i)| ≤ |ϕ−1

B (j)| − 2 + |ϕ−1
A (i)| − 2. Thus there exist u ∈ ϕ−1

A (i) and v ∈ ϕ−1
B (j)

such that u and v are (i, j)-linked with respect to ϕ, see Fig. 1(a). We let ϕ′ =
ϕ/Pu(i, j, ϕ), see Fig. 1(b). Again dϕ′ = dϕ − 4, showing a contradiction to the choice of 
ϕ.

Thus, we assume that G has an edge k-coloring ϕ such that |ϕ−1
A (i)| = |ϕ−1

B (i)|
for every i ∈ [1, k], which is called a valid coloring. We choose a valid edge k-coloring 
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A

B

ϕ−1
A (i)

ϕ−1
B (j)

ϕ−1
A (j)

ϕ−1
B (i)

Pu(i, j, ϕ)

u

v

i

j

(a): the existence of u and v

A

B

ϕ′ −1
A (i)

ϕ′ −1
B (j)

ϕ′ −1
A (j)

ϕ′ −1
B (i)

Pu(i, j, ϕ′)

u

v

j

i

(b): ϕ′ = ϕ/Pu(i, j, ϕ)

Fig. 1. A Kempe change on an (i, j)-chain, where a dashed line indicates a missing color.

ϕ such that gϕ := maxi,j

∣∣|ϕ−1
A (i)| − |ϕ−1

A (j)|
∣∣ is the smallest and subject to this, the 

number hϕ of color pairs (i, j) such that 
∣∣|ϕ−1

A (i)| − |ϕ−1
A (j)|

∣∣ = gϕ is the smallest. If 
gϕ ≤ 2, then we are done. Thus gϕ ≥ 3. We assume, without loss of generality, that 
there exist i, j ∈ [1, k] such that |ϕ−1

A (i)| − |ϕ−1
A (j)| = gϕ ≥ 3. As |ϕ−1

A (i)| = |ϕ−1
B (i)|

and |ϕ−1
A (j)| = |ϕ−1

B (j)|, we know |ϕ−1
B (i)| − |ϕ−1

B (j)| = gϕ ≥ 3. If there exist u ∈ ϕ−1
A (i)

and v ∈ ϕ−1
B (i) such that Pu(i, j, ϕ) = Pv(i, j, ϕ), we let ψ = ϕ/Pu(i, j, ϕ). Clearly ψ is 

still a valid coloring with gψ ≤ gϕ and hψ < hϕ, showing a contradiction to the choice 
of ϕ.

Thus for any u ∈ ϕ−1
A (i) and any v ∈ ϕ−1

B (i), Pu(i, j, ϕ) �= Pv(i, j, ϕ). As EG(A, B) =
EG(x, B) and different (i, j)-chains are disjoint, there is at most one u ∈ ϕ−1

A (i) and 
v ∈ ϕ−1

B (j) such that u and v are (i, j)-linked; similarly, there is at most one u ∈ ϕ−1
B (i)

and v ∈ ϕ−1
A (j) such that u and v are (i, j)-linked. As |ϕ−1

A (i)| − |ϕ−1
A (j)| ≥ 3 and 

|ϕ−1
B (i)| − |ϕ−1

B (j)| ≥ 3, there exist distinct u1, u2 ∈ ϕ−1
A (i) and distinct v1, v2 ∈ ϕ−1

B (i)
such that Pu1(i, j, ϕ) = Pu2(i, j, ϕ) and Pv1(i, j, ϕ) = Pv2(i, j, ϕ). We now let ϕ′ =
ϕ/Pu1(i, j, ϕ). Note that Pv1(i, j, ϕ′) = Pv1(i, j, ϕ). We then let ψ = ϕ′/Pv1(i, j, ϕ′). 
Again ψ is valid with gψ ≤ gϕ and hψ < hϕ, showing a contradiction to the choice 
of ϕ. Thus we have a valid coloring ϕ such that 

∣∣|ϕ−1
A (i)| − |ϕ−1

A (j)|
∣∣ ≤ 2 for all i, j ∈

[1, k].
In the first step, it takes O(kn2) steps to find a valid edge coloring ϕ, as for each 

i ∈ [1, k], it takes O(n)-time to decrease |ϕ−1
A (i)| − |ϕ−1

B (i)| by 4; and it takes at 
most n/2 steps to eventually have |ϕ−1

A (i)| = |ϕ−1
B (i)|. In the second step, there are 

at most 
(

k
2
)

color pairs, each color pair takes O(n)-time to reduce the difference of the 
two corresponding color classes by 2, and O(n) steps to make the two corresponding 
color classes close in size. Thus a desired edge coloring ϕ can be found in O(k2n2)-
time. �
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3. Edge coloring regular lower-(p, ε)-regular star-multigraphs

For a multigraph G, S ⊆ V (G), and v ∈ V (G), we let NS(v) = NG(v) ∩ S, and let 
dS(v) = eG(v, S \ {v}). The proofs in this section follow and extend ideas of Vaughan 
from [19]. We will need the following version of Chernoff bound. (See e.g. [1, Theorem 
A.1.16].)

Lemma 3.1. Let X1, . . . , Xn be mutually independent random variables that satisfy 
E(Xi) = 0 and |Xi| ≤ 1 for each i ∈ [1, n]. Set S = X1 + . . . + Xn. Then for any 
a > 0,

Pr(|S| > a) < 2e−a2/2n.

Lemma 3.2. There exists a positive integer n0 such that for all n ≥ n0 the following 
holds. Let G be a graph on 2n vertices, and N = {x1, y1, . . . , xt, yt} ⊆ V (G), where 
1 ≤ t ≤ n is an integer. Then V (G) can be partitioned into two parts A and B satisfying 
the properties below:

(i) |A| = |B|;
(ii) |A ∩ {xi, yi}| = 1 for each i ∈ [1, t];

(iii) |dA(v) − dB(v)| ≤ n2/3 − 1 for each v ∈ V (G).

Furthermore, one such partition can be constructed in O(2n3 log2(2n3))-time.

Proof. Set A and B be two emptysets or “containers” for now. We first partition V (G)
into n pairs such that each pair (xi, yi) is partitioned into the same pair and the partition 
of V (G) \ N is arbitrary. We then assign one vertex of each pair to A and the other to B
uniformly at random. After the assignment, suppose the pairs are (a1, b1), . . . , (an, bn)
with ai ∈ A and bi ∈ B. Fix a vertex v, and define the random variables X1, . . . , Xn as 
below:

Xi = eG(v, ai) − eG(v, bi).

Clearly, Xi ∈ {−1, 0, 1}. So |Xi| ≤ 1. If ai, bi ∈ N(v) or ai, bi /∈ N(v), then Pr(Xi = 0) =
1. If |{ai, bi} ∩ N(v)| = 1, then Pr(Xi = 1) = Pr(Xi = −1) = 1/2. Thus E(Xi) = 0. Also 
it is easy to verify that for distinct i, j ∈ [1, n], Pr(Xi = x|Xj = y) = Pr(Xi = x) for all 
x, y ∈ {−1, 0, 1}. Thus X1, . . . , Xn are mutually independent. Let S = X1 + . . . + Xn. 
Then dA(v) − dB(v) = S. By Lemma 3.1, for each v ∈ V (G),

Pr(|dA(v) − dB(v)| > n2/3 − 1) = Pr(|S| > n2/3 − 1) ≤ Pr(|S| > 0.9n2/3)

< 2e−0.4n1/3
,
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where for n ≥ 32, we have n2/3 − 1 > 0.9n2/3. There are 2n vertices, so the probability 
p that there is a vertex v for which the inequality in condition (iii) does not hold is less 
than

4ne−0.4n1/3
,

which is less than 0.481 when n ≥ 30000. Thus for n ≥ n0 := 30000, there must be 
some partition of V (G) into two equal parts A and B satisfying condition (ii) such that 
|dA(v) − dB(v)| ≤ n2/3 − 1 for each v ∈ V (G).

By a result of Srivastav and Stangier [17, Theorem 2.12], a partition that satisfies 
condition (iii) with probability ε for some ε > 0 can be constructed deterministically in 
O(2n × n2 log2( 2n×n2

ε ))-time, as desired. �
Theorem 3.3. Let 0 < 1/n0 � ε ≤ η � α ≤ p < 1, and let G be a regular lower-(p, ε)-
regular star-multigraph on 2n ≥ n0 vertices. Suppose x is the multi-center, 2 ≤ |NG(x)| ≤
2n − 2, eG(x, v) ≤ ηn for every v ∈ V (G), and δ(G) ≥ 2αn. Then G is 1-factorizable 
or equivalently χ′(G) = Δ(G). Furthermore, there is a polynomial-time algorithm that 
finds an optimal coloring.

Proof. Let y ∈ V (G) \ NG(x). We take 2� |NG(x)|
2 � vertices from NG(x) and name them 

as x1, y1, . . . , xt, yt, where t := � |NG(x)|
2 �. Applying Lemma 3.2 on the underlying simple 

graph of G and N = {x1, y1, . . . , xt, yt, xt+1, yt+1}, where xt+1 = x and yt+1 = y, we 
obtain a partition {A, B} of V (G) satisfying the following properties:

(i) |A| = |B|;
(ii) |A ∩ {xi, yi}| = 1 for each i ∈ [1, t];
(iii)

∣∣|NA(v)| − |NB(v)|
∣∣ ≤ n2/3 − 1 for each v ∈ V (G).

By switching x and y from their current partition if necessary, we assume that dB(x) ≥
dA(x). As G is a star-multigraph, we have

|dA(v) − dB(v)| ≤ n2/3 + ηn

for all v ∈ V (G) \ {x}.
Let

GA = G[A], GB = G[B], and H = G[A, B].

Define GA,B to be the union of G[A], G[B] together with (dB(x) − dA(x))/2 edges in-
cident with x from E(H). Since G is regular and |A| = |B|, we have 

∑
v∈A dG(v) =∑

v∈B dG(v) = Δ(G)n. Thus 2|E(GA)| = 2|E(GB)| = Δ(G)n − eG(A, B) and so 
|E(GA)| = |E(GB)|.
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To prove the lemma, we will show that it is possible to find an edge coloring of G
using Δ(G) colors, and we provide a procedure for constructing such an edge coloring. 
Below gives an overview of the steps. At the start of the process, E(G) is assumed to be 
uncolored.

Step 1 Find a “near equalized” edge-coloring of GA,B using k colors, where k =
Δ(GA,B) + 1 as guaranteed by Lemma 2.8 and Lemma 2.11. Call ϕ the cur-
rent edge coloring of GA,B. By Lemma 2.11, we can require |ϕ−1

A (i)| = |ϕ−1
B (i)|; 

furthermore, we require |ϕ−1
A (i)|, |ϕ−1

B (i)| ≤ η
1
2 n for each color i ∈ [1, k].

Step 2 Modify the partial edge-coloring of G obtained in Step 1 by exchanging alter-
nating paths. When this step is completed, each of the k color classes will be a 
1-factor of G. During the process of this step, a few edges of H − E(GA,B) will 
be colored and a few edges of GA and GB will be uncolored.

Step 3 Let RA and RB be the subgraph of GA and GB that is induced by the uncolored 
edges, respectively. We can ensure both RA and RB to be simple, i.e., not con-
tain the vertex x. We find equalized edge-colorings of RA and RB using exactly 
� := max{Δ(RA), Δ(RB)} + 1 colors, which is possible by Theorem 2.6 and The-
orem 2.10. At the end of Step 3, all the edges in GA and GB will be colored, and 
so will a few edges of H − E(GA,B). The goal is to ensure that each of the k + �

color classes obtained so far is a 1-factor of G.
Step 4 At the start of Step 4, all of the uncolored edges of G belong to H−E(GA,B). Also, 

each color class is a 1-factor, so the subgraph of G consisting of the uncolored 
edges is regular, of degree Δ(G) − k − �. This subgraph is bipartite, so we can 
color its edges using Δ(G) − k − � colors.

At the conclusion of Step 4, we obtain an edge coloring of G using exactly Δ(G)
colors. We now give the details of each step. Let μ(x) = max{eG(x, v) : v ∈ V (G)}, 
which by the assumption is at most ηn.

Step 1

Let k = Δ(GA,B) + 1. Since G is regular, GA and GB have the same number of edges. 
Also by the construction of GA,B, EG(A,B)(A, B) = EGA,B

(x, B). By Lemma 2.8 and 
Lemma 2.11, GA,B has an edge k-coloring ϕ such that for each i, j ∈ [1, k], |ϕ−1

A (i)| =
|ϕ−1

B (i)| and 
∣∣|ϕ−1

A (i)| − |ϕ−1
A (j)|

∣∣ ≤ 2. The coloring ϕ will be modified throughout the 
process and will still be named as ϕ. Note that k > δ(GA,B) ≥ αn − n2/3 − μ(x) ≥
αn −n2/3 −ηn > 2

3αn and dGA,B
(x) = dA(x) +(dB(x) −dA(x))/2 = (dA(x) +dB(x))/2 =

Δ(G)/2. Since Δ(GA,B) − δ(GA,B) ≤ n2/3 + μ(x) ≤ n2/3 + ηn,

|ϕ(v)| ≤ ηn + n2/3 + 1 < 2ηn for each v ∈ A ∪ B. (1)

So the average number of vertices in A that a color misses is less than
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n(n2/3 + ηn + 1)
k

≤ n(n2/3 + ηn + 1)
2
3αn

<
2ηn
2
3α

< η1/2n − 2.

As any two color classes differ in size by at most two, in this partial edge-coloring of G, 
we have

|ϕ−1
A (i)| = |ϕ−1

B (i)| < η1/2n for each i ∈ [1, k]. (2)

Step 2

By interchanging alternating paths, we will increase the size of the k color classes 
obtained in Step 1 until each color class is a 1-factor of G. During the procedure of Step 
2, we will uncolor some of the edges of GA and GB, and will color some of the edges of 
H − E(GA,B). Denote by RA and RB the subgraphs of GA and GB consisting of the 
uncolored edges, which will initially be empty, but one or two edges will be added to each 
of RA and RB each time we exchange an alternating path. We ensure that the following 
conditions are satisfied after the completion of Step 2:

(i) GA and GB have the same number of uncolored edges, which is less than 2ηn2+2ηn.
(ii) Δ(RA) and Δ(RB) are less than 2η

1
2 n.

(iii) Each vertex of G − x is incident with fewer than 3η
1
2 n colored edges of H.

To ensure that Condition (ii) is satisfied, we say that an edge e = uv is good if 
e /∈ E(RA) ∪ E(RB) and the degree of each u and v in both RA and RB is less than 
2η

1
2 n. Thus a good edge can be added to RA or RB without violating Condition (ii).
We will consider the k colors one by one. For each i ∈ [1, k], since |ϕ−1

A (i)| = |ϕ−1
B (i)|, 

we can pair up vertices in ϕ−1
A (i) with vertices in ϕ−1

B (i), and will exchange exactly one 
alternating path for each such pair. Suppose (a, b) is one of the pairs, where a ∈ A, 
b ∈ B, and i ∈ ϕ(a) ∩ ϕ(b). If x /∈ {a, b}, we will exchange an alternating path P from a
to b, consisting of five edges with the first, third and fifth edges uncolored and with the 
second and fourth edges good and colored i. (See Fig. 2(a).) After P is exchanged, a and 
b will be incident with edges of color i, and one good edge will be added to each of RA

and RB. If x ∈ {a, b}, we will exchange an alternating path P from a to b, consisting 
of nine edges, where the first, third, fifth, seventh, and ninth edges are uncolored and 
the second, fourth, sixth, and eighth edges are good edges colored by i. (See Fig. 2(b).) 
After P is exchanged, a and b will be incident with edges of color i, and two good edges 
will be added to each of RA and RB .

Before demonstrating how such paths can be found, we show that Conditions (i), (ii) 
and (iii) can be ensured at the end of Step 2. After the completion of Step 1, for each 
v ∈ V (G), we have |ϕ(v)| < 2ηn by (1). For each i ∈ ϕ(a) with a ∈ A and a �= x, exactly 
one edge will be added to each of RA and RB; when x = a, exactly two edges will be 
added to each of RA and RB. Thus there will always be fewer than

2ηn2 − 2ηn + 4ηn = 2ηn2 + 2ηn
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a a1 a2

b b1 b2

x a1 a2 a3 a4

b b1 b2 b3 b4

A

B

A

B

(a) (b)

Fig. 2. The alternating path P . Dashed lines indicate uncolored edges, and solid lines indicate edges with 
color i.

edges in each of RA and RB. Therefore Condition (i) will hold at the end of Step 2. As 
we only ever add good edges to RA and RB, Condition (ii) will hold automatically. We 
now show that Condition (iii) will also be satisfied. Let v ∈ V (G) \ {x} be any vertex. 
After Step 1, the only colored edges in H are those incident with x, and so v is incident 
with at most ηn colored edges at the beginning of Step 2. In the process of Step 2, 
the number of newly colored edges of H that are incident with v will be equal to the 
number of alternating paths of length 5 or 9 containing v that have been exchanged. 
The number of such alternating paths of which v is the first vertex will be equal to the 
number of colors that missed v at the end of Step 1, which is less than 2ηn. The number 
of alternating paths in which v is not the first vertex will be equal to the degree of v
in RA, and so will be less than 2η

1
2 n. Hence the number of colored edges of H that are 

incident with v will be less than

ηn + 2ηn + 2η
1
2 n < 3η

1
2 n.

This applies to all vertices in G − x, and so Condition (iii) will be satisfied.
We now show the existence of such alternating paths. For a pair (a, b) with a ∈ A and 

b ∈ B such that i ∈ ϕ(a) ∩ ϕ(b), in order to deal with the two cases regarding whether 
x = a using a unified approach, we deal with colors from ϕ(x) first. This initial operation 
is different from what is outlined in the beginning of Step 2 but the outline applies after 
this initial step. Note that |ϕ(x)| < 2ηn by (1) at the end of Step 1. For each i ∈ ϕ(x), 
we will add at most one edge to each of RA and RB to replace the pair (x, b) by another 
pair that both of its vertices miss the color i. After we deal with colors from ϕ(x), all 
the edges of RA and RB are still good edges.

So we assume a = x and let i ∈ ϕ(x). If there is a vertex y ∈ NB(x) with xy uncolored 
and i ∈ ϕ(y), we may assume y = b by repairing up vertices in ϕ−1

A (i) with vertices in 
ϕ−1

B (i) if necessary. In this case, we simply color xy by the color i. Thus we assume that 
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for every y ∈ NB(x) with xy uncolored, it holds that i /∈ ϕ(y). Let NB be the set of 
vertices in B that are joined with x by an uncolored edge and are incident with a good 
edge colored i. Since only (dB(x) − dA(x))/2 edges between x and B are assigned to 
GA,B , x is incident to at least dB(x) − (dB(x) − dA(x))/2 = dG(x)/2 ≥ αn uncolored 
edges with the other endvertex in B at the end of Step 1. Furthermore, as |ϕ(x)| < 2ηn, 
we know that in H, x is incident to at least αn − 2ηn edges that are uncolored during 
this procedure of dealing with colors from ϕ(x). Since at this stage all the edges in GB

colored i are good edges, NB �= ∅. We choose b1 ∈ NB and b2 ∈ B such that ϕ(b1b2) = i. 
Note that such vertex b2 exists since no edges between A and B are colored by i: during 
this process, when a color is used on an edge between A and B, the color is already 
present at x. Likewise, let NA be the set of vertices in A that are joined with b by an 
uncolored edge and are incident with a good edge colored i. Note that x /∈ NA as the 
color i is missing at x. By the same reasoning as above, NA �= ∅. We choose a1 ∈ NA and 
a2 ∈ A such that ϕ(a1a2) = i. Since the color i was missing at x, a2 �= x. We now color 
xb1 by i and uncolor b1b2, color ba1 by i and uncolor a1a2, and we pair up a2 and b2 as 
a pair that both of its vertices miss the color i to replace the original pair (x, b). We do 
this for every color from ϕ(x). After this step, all the k colors are present at x, and each 
of RA and RB contains at most 2ηn edges, and at most 4ηn edges of H − E(GA,B) are 
colored.

Thus we assume (a, b) is a pair with a �= x. The same as before, let NB be the set of 
vertices in B that are joined with a by an uncolored edge and are incident with a good 
edge colored i, and let NA be the set of vertices in A \ {x} that are joined with b by 
an uncolored edge and are incident with a good edge colored i such that the edge is not 
incident with x. Note that we exclude x from NA to make RA simple. There are fewer 
than 2ηn2 + 2ηn edges in RB , so there are fewer than 2(η 1

2 n + η
1
2 ) vertices of degree at 

least 2η
1
2 n in RB . Each non-good edge with color i is incident with one or two vertices 

of RB , so there are fewer than

4(η 1
2 n + η

1
2 ) (3)

vertices in B that are incident with a non-good edge colored i. In addition, there are 
fewer than η1/2n vertices in B that are missed by the color i by (2). So the number of 
vertices in B that are not incident with a good edge colored i is less than

4(η 1
2 n + η

1
2 ) + η1/2n < 6η

1
2 n. (4)

By symmetry, the number of vertices in A \ {x} that are not incident with a good edge 
colored i or an edge from EG(x, A \ {x}) colored i is less than 4(η 1

2 n + η
1
2 ) + η1/2n + 2 <

6η
1
2 n.
So for any vertex v ∈ V (G) \ {x}, the number of uncolored edges that join v with a 

vertex w in the other part, where w is incident with a good edge colored i and x /∈ {v, w}, 
is more than
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dH(v) − 3η
1
2 n − 6η

1
2 n ≥ αn − n2/3 − ηn − 3η

1
2 n − 6η

1
2 n > αn − 10η

1
2 n >

1
2αn,

by Condition (iii) and (4). Since G −x is simple and x /∈ {a, b}, it follows that |NA| > 1
2αn

and |NB | > 1
2αn. Let MB be the set of vertices in B that are joined with a vertex in 

NB by an edge of color i, and let MA be the set of vertices in A that are joined with a 
vertex in NA by an edge of color i. Note that x /∈ MA by the choice of NA. Note also 
that |MB | = |NB | as each vertex of NB is incident with an edge colored i, even though 
some vertices may be in both. Similarly |MA| = |NA|.

Since |MA| ≥ 1
2αn > 2εn and |MB | ≥ 1

2αn > 2εn and G is lower (p, ε)-regular, 
it follows that eG(MA, MB) ≥ (p − ε)|MB ||MA|. By Condition (iii) of this step, the 
number of colored edges in H that are incident with a vertex other than x is at most 
3η

1
2 n, we know that the number of colored edges between MA and MB is at most 

3η
1
2 n|MA| < (p −ε)|MB ||MA|. Therefore, there is an uncolored edge a2b2 ∈ EG(MA, MB)

with a2 ∈ A and b2 ∈ B. We now let a1 ∈ NA and b1 ∈ NB such that a1a2 and b1b2 are 
colored by i. Then P = ab1b2a2a1b is a desired alternating path of five edges, where the 
first, third and fifth edges are uncolored and the second and fourth edges are good edges 
colored by i. We color ab1, b2a2 and a1b by the color i and uncolor b1b2 and a1a2. After 
the exchange, the color i appears on edges incident with a and b. By finding such paths 
for all pairs of vertices (a, b) that miss i, we can increase the number of edges of color i
until the color class is a 1-factor of G. By doing this for all colors, we make each of the 
k color classes a 1-factor of G.

Step 3

Each of the color classes for the colors from [1, k] is now a 1-factor of G. We now 
consider the graphs RA and RB that consist of the uncolored edges of GA and GB . 
Since the vertex x was excluded from NA and MA in Step 2, x /∈ V (RA). Thus both 
RA and RB are simple graphs. By Conditions (i) and (ii) of Step 2, RA and RB each 
has fewer than 2ηn2 + 2ηn edges, and Δ(RA), Δ(RB) < 2η

1
2 n. By Theorem 2.6 and 

Theorem 2.10, RA and RB each has an equalized edge-coloring with exactly � := �2η
1
2 n�

colors k + 1, . . . , k + �. Since RA and RB have the same number of edges, by renaming 
some color classes of RA if necessary, we can assume that in the edge colorings of RA

and RB, each color appears on the same number of edges in RA as it does in RB . There 
are fewer than 2ηn2 + 2ηn edges in each of RA and RB , and � ≥ 2η

1
2 n, so each of the 

color i ∈ [k + 1, k + �] appears on fewer than η
1
2 n + η

1
2 + 1 < η

1
2 n + 2 edges in each of RA

and RB. We will now color some of the edges of H with the � colors [k + 1, k + �] so that 
each of these color classes becomes a 1-factor of G. We perform the following procedure 
for each of the � colors in turn.

Given a color i with i ∈ [k + 1, k + �], we let Ai and Bi be the sets of vertices in A
and B respectively that are incident with edges colored i. Note that

|Ai| = |Bi| < 2(η 1
2 n + 2)



446 S. Shan / Journal of Combinatorial Theory, Series B 157 (2022) 429–450
as RA and RB each contains fewer than η
1
2 n +2 edges colored i. Also x /∈ Ai as the vertex 

x was excluded in RA in Step 2. Let Hi be the subgraph of H obtained by deleting the 
vertex sets Ai and Bi and removing all colored edges. Each vertex in G − x is incident 
with fewer than

3η
1
2 n + 2η

1
2 n + 1 < 6η

1
2 n

edges of H that are colored, since fewer than 3η
1
2 n were colored in Step 2 and at most 

2η
1
2 n + 1 have been colored already in Step 3. Each vertex in G − x has fewer than 

2(η 1
2 n + 2) edges that join it with a vertex in Ai or Bi. So for v ∈ V (Hi) \ {x}, dHi

(v)
is more than

αn − n2/3 − ηn − 6η
1
2 n − 2(η 1

2 n + 2) > αn − 9η
1
2 n >

1
2αn.

For the vertex x, recall that the missing colors at x after Step 1 were dealt with at the 
beginning of Step 2, and x was not involved in the rest of Step 2. Thus dHi

(x) is at least

dB(x) − (dB(x) − dA(x))/2 − 2ηn − 2(η 1
2 n + 2)

≥ (dB(x) + dA(x))/2 − 2ηn − 2(η 1
2 n + 2)

> αn − 3η
1
2 n >

1
2αn.

Therefore δ(Hi) ≥ 1
2αn. Furthermore, by the analysis above, each vertex of Hi − x

is incident with at most 9η
1
2 n edges from E(H) \ E(Hi). So Hi has a 1-factor F by 

Lemma 2.4 (taking γ = 9η
1
2 ). If we color the edges of F with the color i, then every 

vertex in G is incident with an edge of color i, and so the color class is now a 1-factor 
of G. We repeat this procedure for each of the colors from [k + 1, k + �]. After this has 
been done, each of these � color classes is a 1-factor of G. So at the conclusion of Step 
3, all of the edges in GA and GB are colored, some of the edges of H are colored, and 
each of the k + � color classes is a 1-factor of G.

Step 4

Let R be the subgraph of G consisting of the remaining uncolored edges. These edges 
all belong to H, so R is a subgraph of H and hence is bipartite. As each of the k + �

color classes is a 1-factor of G, R is regular of degree Δ(R) = Δ(G) − k − �. Note that 
since k ≤ αn + n2/3 + ηn and � ≤ 2η

1
2 n + 1, Δ(R) ≥ 2αn − k − � > (α − 3η

1
2 )n. By 

Theorem 2.7 we can color the edges of R with Δ(R) colors from [k +� +1, Δ(G)]. Clearly 
each of these color classes is a 1-factor of G. This completes our edge coloring of G with 
Δ(G) colors. Each of the color classes is a 1-factor, so G is 1-factorizable.

We check that there is a polynomial-time algorithm to obtain a 1-factorization of 
G. By Lemma 3.2, we can obtain a desired partition {A, B} of V (G) in polynomial 
time. Also, GA,B can be edge colored with the required properties in polynomial time 
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by Lemma 2.8. In Step 2, the construction of the alternating paths and swaps of the 
colors on the paths can be done in O(n3)-time, as the total number of colors missing at 
vertices is O(n2) and it takes O(n)-time to find an alternating path for a pair of vertices 
(a, b) with a common missing color. In Step 3, there is polynomial-time algorithm (see 
e.g. [14]) to edge color RA and RB using at most � colors; then by doing Kempe changes 
as in the proof of Lemma 2.8, one can obtain an equalized edge-coloring in polynomial 
time. The remaining procedures are only about finding perfect matchings in bipartite 
graphs, which can be done in polynomial time too such as applying the Hopcroft-Karp 
algorithm [11]. Thus, there is a polynomial-time algorithm that gives a 1-factorization 
of G. �
4. Proof of Theorem 1.3

We need the following classical result of Hakimi [9] on multigraphic degree sequence.

Theorem 4.1. Let 0 ≤ dn ≤ . . . ≤ d1 be integers. Then there exists a multigraph G on 
vertices x1, . . . , xn such that dG(xi) = di for all i if and only if 

∑n
i=1 di is even and ∑

i>1 di ≥ d1.

Though it is not explicitly stated in [9], the inductive proof yields a polynomial-time 
algorithm which finds a desired multigraph if it exists.

Let G be a graph and v ∈ V (G). Define defG(v) = Δ(G) − dG(v) to be the deficiency
of v in G. It is clear that G is overfull if and only if |V (G)| is odd and 

∑
v∈V (G) defG(v) ≤

Δ(G) − 2. The proof below follows the ideas of Glock, Kühn, and Osthus in the proof of 
Theorem 1.2 from [6].

Theorem 1.3. For all 0 < p < 1 there exist ε, η > 0 such that for sufficiently large n, 
the following holds: Suppose G is a lower-(p, ε)-regular graph on n vertices and n is odd. 
Moreover, assume that Δ(G) − δ(G) ≤ ηn. Then χ′(G) = Δ(G) if and only if G is not 
overfull. Further, there is a polynomial-time algorithm which finds an optimal coloring.

Proof. Choose constants ε, η and positive integer n0 such that 0 < 1/n0 � ε ≤ η � p. 
Let G be a lower (p, ε)-regular graph on n ≥ n0 vertices such that Δ(G) − δ(G) ≤ ηn, 
where n is odd. For any X ⊆ V (G) with |X| = �εn�, we have EG(X, V (G) \ X) ≥ (p −
ε)(n −εn −1)|X|. Thus the average degree of a vertex from X is at least (p −ε)(n −εn −1), 
and therefore δ(G) ≥ (p − ε)(n − εn − 1) − ηn > p

2 n. We let α = p/2 and use αn as a 
lower bound on δ(G) in the following.

If G is overfull, then χ′(G) = Δ(G) + 1. Thus assume G is not overfull. We will now 
add a new vertex to G to form a multigraph with even order. Let x be a new vertex 
and let G′ be obtained from G by adding x to G and adding some edges between x and 
vertices y ∈ V (G) with dG(y) < Δ(G) with the following constraints:

(1) dG′(x) = δ(G′) = δ(G) and Δ(G′) = Δ(G);



448 S. Shan / Journal of Combinatorial Theory, Series B 157 (2022) 429–450
(2) subject to (1), at most one neighbor of x in G′ is not a maximum degree vertex of 
G′.

Since G is not overfull and n is odd, we have 2e(G) =
∑

y∈V (G) dG(y) ≤ Δ(G)(n − 1). 
Consequently, 

∑
y∈V (G) defG(y) ≥ Δ(G). Let V (G) = {x1, . . . , xn} and assume that 

dG(x1) ≤ . . . ≤ dG(xn). Note that dG(xn) = Δ(G). Assume s ∈ [1, n − 1] is the smallest 
integer such that 

s∑
i=1

defG(xi) ≥ δ(G). For each i ∈ [1, s − 1], we add exactly defG(xi)

edges between x and xi, and we add δ(G) −
s−1∑
i=1

defG(xi) edges between x and xs, and 

call the resulting multigraph G′. It is clear that G′ satisfies both of the constraints (i) 
and (ii). Since Δ(G) − δ(G) ≤ ηn, we know that

|NG′(x)| ≥ α

η
≥ 1

α3 ≥ 3.

We claim that G′ contains no Δ(G)-overfull subgraph. (Note that G′ maybe a multi-
graph with parallel edges but we still define a Δ(G)-overfull subgraph H of G′ the same 
way as for simple graphs.) Let X ⊆ V (G) with |X| odd. We show that G[X] is not 
Δ(G)-overfull. Assume first that 3 ≤ |X| ≤ n − 2. If |X| < εn + 1 or |X| > n − εn − 1, 
then eG(X, V (G) \ X) ≥ 2(δ(G) − εn) > Δ(G). If 1 + εn ≤ |X| ≤ n − εn − 1, by the 
lower-(p, ε)-regularity of G, we have eG(X, V (G) \X) ≥ eG(X \{x}, V (G) \ (X ∪{x)}) ≥
(p −ε)(|X| −1)(n −|X| −1) > Δ(G). Therefore 2e(X) < Δ(G)|X| −Δ(G) and so G[X] is 
not Δ(G)-overfull. Thus, the only possible Δ(G)-overfull subgraph of G′ is obtained from 
G′ by deleting a single vertex y ∈ V (G). Note that if G′ − y is Δ(G)-overfull for some 
y ∈ V (G′), then so is G′ −x as x has minimum degree in G′. However, G′ −x = G, which 
is not overfull by our assumption. Thus G′ − y is not Δ(G)-overfull for any y ∈ V (G′).

Now V (G′) = {x, x1, . . . , xn}. Since x has the smallest degree in G′ and G = G′ − x

is not overfull, 
∑

i≥1 defG′(xi) ≥ defG′(x). Since |V (G′)| = n + 1 is even, defG′(x) +∑
i≥1 defG′(xi) is even. Then by Theorem 4.1, there exists a multigraph H on V (G′)

such that dH(x) = defG′(x) and dH(xi) = defG′(xi) for each i ∈ [1, n]. This multigraph 
H will aid us to find a spanning regular subgraph of G′.

Note that Δ(H) = defG′(x) = Δ(G) − δ(G) ≤ ηn and H contains isolated vertices. 
Thus χ′(H) ≤ Δ(H) + μ(H) ≤ 2Δ(H) ≤ 2ηn < 7ηn/α. Hence we can greedily partition 
E(H) into k ≤ 7ηn/α matchings M1, . . . , Mk each of size at most αn/7. Now we take out 
linear forests (forests with each component being a path) from G′ by applying Lemma 2.3
with M1, . . . , Mk. As at most one neighbor of x is not a maximum degree vertex of G′, it 
follows that x is adjacent in G′ to at most one vertex of those vertices from Mi for each 
i ∈ [1, k]. More precisely, define spanning subgraphs G0, . . . , Gk of G′ and edge-disjoint 
linear forests F1, . . . , Fk such that

(1) G0 := G′ and Gi = Gi−1 − E(Fi) for i ∈ [1, k],
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(2) Fi is a spanning linear forest (each vertex of Gi−1 has degree 1 or 2 in Fi) in Gi−1
whose leaves are precisely the vertices in Mi.

Let G0 = G′ and suppose that for some i ∈ [1, k], we already defined G0, . . . , Gi−1
and F1, . . . , Fi−1. As Δ(F1 ∪ . . . ∪ Fi−1) ≤ 2(i − 1) ≤ 14ηn/α, it follows that δ(Gi−1) ≥
(α − 14η/α)n ≥ 6αn/7. Moreover, let ε′ = 2

√
14η/α. Since G′ is lower-(p, 2ε)-regular by 

Proposition 2.1(1) and ε′ > 4ε, Gi−1 is lower-(p, ε′)-regular by Proposition 2.1(2). Note 
that eGi−1(x, v) ≤ eG′(x, v) ≤ ηn for every v ∈ V (G′) and |NGi−1(x)| ≥ 6α/7

η � 3. Thus 
x has in Gi−1 at least two neighbors outside the vertices of Mi. Hence, since Mi has size 
at most αn/7, we can apply Lemma 2.3 to Gi−1 and Mi and obtain a spanning linear 
forest Fi in Gi−1 whose leaves are precisely the vertices in Mi. Set Gi := Gi−1 − E(Fi).

We claim that Gk is regular. Consider any vertex u ∈ V (Gk). For every i ∈ [1, k], 
dFi

(u) = 1 if u is an endvertex of some edge of Mi and dFi
(u) = 2 otherwise. Since 

M1, . . . , Mk partition E(H), we know that 
k∑

i=1
dFi

(u) = 2k − dH(u) = 2k − defG′(u). 

Thus

dGk
(u) = dG′(u) −

k∑

i=1
dFi

(u) = dG′(u) − (2k − defG′(u)) = Δ(G′) − 2k.

Let d = Δ(G′) −2k and α′ = 6α/7. We have shown that Gk is a d-regular, lower-(p, ε′)-
regular star-multigraph with d ≥ α′n. Furthermore, eGk

(x, v) ≤ ηn for every v ∈ V (Gk), 
|NGk

(x)| ≥ 6α/7
η � 3, and |NGk

(x)| ≤ n − 1 as eG′(x, xn) = 0. By Theorem 3.3, 
χ′(Gk) = d. Now we color the edges of Fi using 2 distinct colors from [d + 1, d + 2k]
for each i ∈ [1, k]. It is clear that any edge d-coloring of Gk together with this coloring 
of 

⋃k
i=1 Fi gives an edge coloring of G′ using d + 2k = Δ(G′) colors. As G is a proper 

subgraph of G′ with Δ(G) = Δ(G′), it follows that χ′(G) = Δ(G).
We lastly check that the procedure above yields a polynomial-time algorithm. Given 

G, we first check 
∑

v∈V (G) defG(v). If it is at most Δ(G) − 2, then we conclude that 
χ′(G) = Δ(G) + 1, and G can be edge colored using Δ(G) + 1 colors in polynomial 
time [14]. If 

∑
v∈V (G) defG(v) > Δ(G) − 2, then we add a new vertex x to G and form 

G′ as described in the beginning of this proof. Then we can construct an edge Δ(G′)-
coloring of G′ through the process. Since Theorem 4.1, Lemma 2.3 and Theorem 3.3 give 
appropriate running time statements, this can be achieved in time polynomial in n. �
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