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Let G be a simple graph with maximum degree A(G). A
subgraph H of G is overfull if |E(H)| > A(G)||V(H)|/2].
Chetwynd and Hilton in 1986 conjectured that a graph G
on n vertices with A(G) > n/3 has chromatic index A(G) if
and only if G contains no overfull subgraph. Glock, Kithn and
Osthus in 2016 showed that the conjecture is true for dense
quasirandom graphs with even order, and they conjectured
that the same should hold for such graphs with odd order. In
this paper, we show that the conjecture of Glock, Kithn and
Osthus is affirmative.
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1. Introduction

In this paper, a graph means a simple graph; and a multigraph may contain parallel
edges but no loops. Let G be a multigraph. Denote by V(G) and E(G) the vertex set
and edge set of G, respectively. For v € V(G), Ng(v) is the set of neighbors of v in G,

and dg(v), the degree of v in G, is the number of edges of G that are incident with v.
When G is simple, dg(v) = |[Ng(v)]. For S C V(G), the subgraph of G induced on S is
denoted by G[S], and G — S := G[V(G) \ S]. For notational simplicity, we write G — x
for G — {z}. If F C E(G), then G — F is obtained from G by deleting all the edges of
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F. Let V1, V5 C V(G) be two disjoint vertex sets. Then Eg(V7,V3) is the set of edges in
G with one end in V; and the other end in V3, and eq(V1, V) := |Eg(Vi, V2)|. We write
Ec(v, Vo) and eg(v, Va) if Vi = {v} is a singleton. We also write G[V1, V2] to denote the
bipartite subgraph of G with vertex set Vi U V5 and edge set Eg(Vi, V2).

For two integers p,q, let [p,q] = {i € Z : p < i < q}. Let k > 0 be an integer. An
edge k-coloring of G is a mapping ¢ from E(G) to the set of integers [1, k], called colors,
such that no two adjacent edges receive the same color with respect to ¢. The chromatic
index of G, denoted x'(G), is defined to be the smallest integer k so that G has an
edge k-coloring. We denote by C¥(G) the set of all edge k-colorings of G. A graph G is
A-critical if x'(G) = A(G)+1=A+1and x'(H) < A+ 1 for every proper subgraph
H of G. In 1960’s, Vizing [22] and, independently, Gupta [8] proved that for all simple
graphs G, A(G) < x'(G) < A(G) + 1. This leads to a natural classification of graphs.
Following Fiorini and Wilson [5], we say a graph G is of class 1 if x'(G) = A(G) and
of class 2 if x'(G) = A(G) + 1. Holyer [10] showed that it is NP-complete to determine
whether an arbitrary graph is of class 1. Nevertheless, if a graph G has too many edges,
ie, |[E(GQ)| > A(G)||V(G)|/2], then we have to color E(G) using exactly (A(G) + 1)
colors. Such graphs are overfull. An overfull subgraph H of G with A(H) = A(G) is
called a A(G)-overfull subgraph of G.

Applying Edmonds’ matching polytope theorem, Seymour [16] showed that whether
a graph G contains an overfull subgraph of maximum degree A(G) can be determined
in polynomial time. A number of long-standing conjectures listed in Twenty Pretty FEdge
Coloring Conjectures in [18] lie in deciding when a A-critical graph is overfull. Chetwynd
and Hilton [2,3], in 1986, proposed the following conjecture.

Conjecture 1.1 (Overfull conjecture). Let G be a simple graph with A(G) > $|V(G)].
Then x'(G) = A(G) if and only if G contains no A(G)-overfull subgraph.

The degree condition A(G) > 3|V(G)| in the conjecture above is best possible, as scen
by the graph P*, which is obtained from the Petersen graph by deleting one vertex. If the
overfull conjecture is true, then the NP-complete problem of determining the chromatic
index becomes polynomial-time solvable for graphs G with A(G) > @ Despite its
importance, very little is known about its truth. It was confirmed only for graphs with
A(G) > |[V(G)| — 3 by Chetwynd and Hilton [3] in 1989. By restricting the minimum
degree, Plantholt [15] in 2004 showed that the overfull conjecture is affirmative for graphs
G with even order n and minimum degree § > \/771/ 3 ~ 0.8819n. The 1-factorization
conjecture is a special case of the overfull conjecture, which in 2016 was confirmed for
large graphs by Csaba, Kiithn, Lo, Osthus and Treglown [4]. The overfull conjecture
is still wide open in general, and it seems extremely difficult even for graphs G with
A(G) = [V(G)| — 4.

Recently in 2016, Glock, Kithn and Osthus [6] showed that the overfull conjecture is
true for dense quasirandom graphs of even order. Following their definition, for the notion

of quasirandomness, the following one-sided version of e-regularity will be considered.
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Let 0 < g,p < 1. A graph G on n vertices is called lower-(p,e)-regular if we have
eq(S,T) > (p — ¢)|5||T for all disjoint S,T C V(G) with |S|,|T| > en. In particular,
the following result was proved in [6, Theorem 1.6].

Theorem 1.2. For all 0 < p < 1 there exist €, > 0 such that for sufficiently large n, the
following holds: Suppose G is a lower-(p,e)-reqular graph on n wvertices and n is even.
Moreover, assume that A(G) —(G) < nn. Then x'(G) = A(G) if and only if G contains
no A(G)-overfull subgraph. Further, there is a polynomial-time algorithm which finds an
optimal coloring.

Glock, Kithn and Osthus [6] conjectured that the same result as in Theorem 1.2 should
hold for such graphs G with odd order. We here confirm the conjecture.

Theorem 1.3. For all 0 < p < 1 there exist £, > 0 such that for sufficiently large n,
the following holds: Suppose G is a lower-(p,€)-regular graph on n vertices and n is odd.
Moreover, assume that A(G) — 0(G) < nn. Then x'(G) = A(G) if and only if G is not
overfull. Further, there is a polynomial-time algorithm which finds an optimal coloring.

For a lower-(p, €)-regular graph with odd order n, it is easy to see that for any subset
X CV(G) with | X| odd and 3 < |X| <n — 2, we have eq(X,V(G) \ X) > A(G). Thus
G[X] is not A(G)-overfull. Therefore, the only possible A(G)-overfull subgraph in G is
G itself.

The remainder of this paper is organized as follows. In the next section, we list some
preliminary results on quasirandom graphs and edge colorings. In Section 3, we study
the chromatic index of a regular lower-(p, €)-regular star-multigraph, which is obtained
from a lower-(p, e)-regular graph by adding a new vertex and some edges between the
graph and the new vertex. In the last section, we prove Theorem 1.3.

2. Preliminaries

We will use the following notation: 0 < ¢ < b < 1. Precisely, if we say a claim is
true provided that 0 < a < b < 1, then this means that there exists a non-decreasing
function f : (0,1] — (0, 1] such that the statement holds for all 0 < a,b < 1 satisfying

a< f(b).
2.1. Properties of lower-(p, €)-regular graphs

A lower-(p, €)-regular graph can be slightly modified so it is still lower-(p, £’)-regular
for some ¢’ < g, as listed in the following proposition.

Proposition 2.1 (/6], Proposition 3.1). Let 0 < 1/ng < e,p < 1, and let G be a
lower-(p, €)-regular graph on n > ng vertices. Then the following hold:
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(1) If G’ is obtained from G by adding a new vertex w and arbitrary edges at w, then
G’ is lower-(p, 2¢)-regular.

(2) Let H be a graph on V(G) such that A(H) < nn for some 0 < n < 1, and let
¢’ = max{2¢,2\/n}. Then G — E(H) is lower-(p,€’)-regular.

(8) If U C V(G) has size at least fn for some 0 < B < 1, then G[U] is lower-(p,e/B)-
regular.

A multigraph G is a star-multigraph if G has a vertex z that is incident with all
multiple edges of G. In other words, G — z is a simple graph. The vertex z is called
the multi-center of G. For 0 < e,p < 1, a multigraph G is a lower-(p, €)-regular star-
multigraph if it is a star-multigraph such that its underlying simple graph is lower-(p, £)-
regular. Since we will deal with a lower-(p, £)-regular graph of odd order, for convenient
analyses, we will add a new vertex and some edges between the new vertex and the graph
to form a star-multigraph of even order.

A path P connecting two vertices u and v is called a (u, v)-path, and we write uPv or
vPu to specify the two endvertices of P. Let uPv and xQy be two disjoint paths. If vx
is an edge, we write uPvxQy as the concatenation of P and () through the edge vx.

The following result was proved in [6] for lower-(p, €)-regular graphs, and we here
modify it for lower-(p, €)-regular star-multigraphs.

Lemma 2.2 ([6], Lemma 7.2). Let 0 < 1/ng € ¢ < a,p < 1, and G be a
lower-(p, €)-reqular graph on n > ng vertices such that 6(G) > an. Moreover, let
M = {aiby,...,a:bs} be a matching in the complete graph on V(G) of size at most
an/5. Then there exist vertex-disjoint path Py, ..., P in G such that YV (F;) = V(G)
and P; joins a; to b;, and these paths can be found in polynomial time.

Lemma 2.3. Let 0 < 1/ng < ¢ < n < a,p < 1, and G be a lower-(p,e)-reqular star-
multigraph on n > ng vertices such that 6(G) > an and eg(z,v) < nn for anyv € V(G),
where x is the multi-center of G. Moreover, let M = {a1b1,...,aibi} be a matching in
the complete graph on V(G) of size at most an/6. If |[INg(x) \ {a1,b1,...,a:, bt} > 2,
then there exist vertex-disjoint paths Py, ..., P in G such that |JV(P;) = V(G) and P,
joins a; to b;, and these paths can be found in polynomial time.

Proof. By relabeling the matching edges if necessary, assume that if z € {ay,b1,...,
ag, b}, then z = ay.

If z € {a1,b1,...,a4,bs} and so © = a4, then let a} € Ng(x) \ {a1,b1,...,as, b},
and M’ = (M \ {a:b:}) U {ajbs}. If ¢ {a1,b1,...,as,b:}, then let z1,22 € Ng(x) \
{a1,b1,...,as b} be distinct, and let M’ = (M \ {a:b+}) U{asz1, 220+ }. Note that 6(G —
) > (a—nn > (Za+ 2)nand |[M'| < tan+1 = (fa+ £)n, and G —z is lower-(p, 2¢)-
regular by Proposition 2.1(3). Applying Lemma 2.2 to G — z with matching M’, we find
vertex-disjoint paths Pj,..., P/ in G — x such that |JV(P/) = V(G — z). Furthermore,
if x = ay, P/ joins a; to b; for ¢ € [1,t— 1], and P/ joins a; to by; if © ¢ {a1,b1,...,a¢, b},
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P/ joins a; to b; for i € [1,t — 1], P/ joins a; to x1, and P/, joins x5 to b. Letting
P; = P/ for i € [1,t — 1], and P, = aa;P/b; if x = a;, and P, = a,Pjz1xx2Pl b,
if © ¢ {a1,b1,...,as,b:} gives the desired paths for G and M. By Lemma 2.2 and
the simple adjustment on M above, it is clear that these paths can be found also in
polynomial time. 0O

Lemma 2.4. Let 0 < 1/ng < &,7 € «a,p < 1, and G be a lower-(p,e)-regular star-
multigraph onn > ng vertices with multi-center x such that 6(G) > an and eq(xz,v) < yn
for any v € V(G). Let X, Y C V(QG) be disjoint and | X| = |Y|, and H be a graph with
V(H) = XUY and E(H) obtained from Eq(X,Y) by deleting some edges. If (H) > 1an
and each vertexv € V(H)\{z} is incident with at most yn edges from Eq(X,Y)\ E(H),
then H has a perfect matching. Furthermore, a perfect matching of H can be found in
polynomial time.

Proof. If the multi-center of G is contained in X UY', we may assume by symmetry that
the multi-center is contained in X. To have a unified proof, if the multi-center of G is
contained in X, we let z be the multi-center; otherwise we let x be an arbitrary vertex
from X.

Since §(H) > 0,  has in H a neighbor y € Y. Let X; = X \ {z} and Y1 =Y \ {y}.
It suffices to show that Hy := H[Xy, Y]] satisfies Hall’s condition. For otherwise, there
exists A C X; such that B := Ny, (A) satisfying |B| < |A]. Since §(Hy) > 6(H) —
max{eq(z,v) : v € V(H)} > jan — yn and |B| < |4, it follows that [A] > fan — yn.
On the other hand, since Ex, (4,Y1\B) =0, Y1\B # 0, and 6(H;) > fan—yn, it follows
that | X7\ A| > Jan —yn. Let B; =Y} \ B. Thus |4| < |X;| - (fan —n) and so |B;| =
[Y1|=|B| > [v1|—|A| = Jan—vn. Now |A| > fan—~n > en and |By| > jan—yn > en.
By the lower-(p, e)-regularity of G, we have eq(A, B1) > (p—¢)|A||Bi|. Since each vertex
from B is incident in G with at most yn edges from Eq(X,Y)\ E(H) and at most yn
edges with the other endvertex as x, we have eq_g(m) (A, B1) < (yn+vyn)|B1|. Therefore
e, (A, B1) > eq(A, B1) — eq—g(a) (A, B1) > (p — ¢)|A||B1| — 2yn|B|. Since

(0= )IA] > (o= )(Gan —m) > 2,

we get ep, (A, By) > 0, showing a contradiction.

There are polynomial-time algorithms such as the Hopcroft-Karp algorithm [11] in
finding a maximum matching in any bipartite graph, thus a perfect matching of H can
be found in polynomial time. O

2.2. Results on edges colorings
Let G be a multigraph and ¢ € C*(G) for some integer k > 0. For any v € V(G),

the set of colors present at v is p(v) = {¢(f) : f € E(Q) is incident to v}, and the
set of colors missing at v is B(v) = [1,k] \ ¢(v). For a vertex set X C V(G), define
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?(X) = Upex @(v). The set X is called elementary with respect to ¢ or simply -
elementary if p(u) NB(v) = O for every two distinct vertices u,v € X. For two distinct
colors «, 8 € [1,A], the components of the subgraph induced by edges with colors « or
B are called (a, 3)-chains. Clearly, each («a, )-chain is either a path or an even cycle.
If we interchange the colors o and 8 on an («, 8)-chain C' of G, we get a new edge
k-coloring of G, which is denoted by ¢/C. This operation is called a Kempe change. For
an (a, f)-chain P, if it is a path with an endvertex x, we also denote it by P,(a, 8, )
to stress the endvertex . An (a, §)-swap at z is just the Kempe change performed on
P.(a, B, ).

Let z,y € V(G). If z and y are contained in the same («, §)-chain of G with respect
to ¢, we say x and y are («a, 8)-linked with respect to ¢. Otherwise, 2 and y are («, 8)-
unlinked with respect to ¢.

The fan argument was introduced by Vizing [20,21] in his classic results on the upper
bounds of chromatic indices for simple graphs and multigraphs. Multifans are generalized
version of Vizing fans given by Stiebitz et al. [18].

Let G be a multigraph with maximum degree A. For an edge e = rs; € E(G) and
a coloring ¢ € C2(G — ¢), a multifan centered at r w.r.t. e and ¢ is a sequence F =
(ryrs1,81,782,82,...,TSp, Sp) With p > 1 consisting of distinct vertices 7,1, 82,...,5p
and edges rs1,7sg,...,rs, satisfying the following condition:

(F1) For every edge rs; with i € [2, p], there exists j € [1,7— 1] such that ¢(rs;) € B(s;).

The set of vertices 7, s1,..., s, contained in F is denoted by V(F). The following result
regarding a multifan can be found in [18, Theorem 2.1], where an edge e of G is critical
if X'(G —e) < X'(G).

Lemma 2.5. Let G be a multigraph with x'(G) =k > A(G)+1, e = rs1 be a critical edge
and ¢ € CK(G — e). If F is a multifan w.r.t. e and @, then V(F) is @-elementary.

In 1960’s, Vizing [22] and, independently, Gupta [8] proved the following result, which
can be proved by using the multifan arguments, where the multiplicity u(G) of a multi-
graph G is max{eg(u,v) : u,v € V(G)}.

Theorem 2.6. For every multigraph G with multiplicity p, X' (G) < A(G) + p.

Misra and Gries [14] described a polynomial-time algorithm for coloring the edges of
any simple graph G with at most A(G) + 1 colors.

Proved by Konig [12] that every bipartite multigraph has chromatic index as its max-

imum degree.

Theorem 2.7. Every bipartite multigraph G satisfies X' (G) = A(G).
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Lemma 2.8. If G is a star-multigraph, then x'(G) < A(G) + 1. Furthermore, an edge
coloring of G using at most A(G) + 1 colors can be found in polynomial time.

Proof. Assume to the contrary that x'(G) > A(G) + 2. By deleting edges and vertices
from G if necessary, we may assume that every edge e of G is critical, i.e., x'(G —e) <
X'(G). Assume first that there exists v € V(G) such that u is not incident with any
multiple edges of G. Let v € Ng(u). Since wv is critical, x'(G — wv) < x'(G) — 1. Let
¢ € C*(G—uv) where k = X'(G) —1 > A(G)+1, and let F be a maximum multifan with
respect to uv and ¢ and centered at u. Since there are k > A(G) + 1 colors, for every
w € V(Q), p(w) # 0. By Lemma 2.5, if w € V(F) \ {u}, then every color from @(w)
presents at w. Since v € V(F') and F is maximum, we conclude that Ng(u) C V(F).
Thus, as ¢ is an edge k-coloring of G — uv, and V(F) is p-elementary by Lemma 2.5,
we have

V() =)+ W)+ >,  [Bw)
weV (F)\{u,v}
> (k= (dg(u) = 1)) + (k — (dg(v) — 1)) + (da(u) — 1)(k — A(G))
> 2+ (k—dg(u)) + da(u)(k — A(G))
> k42,

where we used that facts that |V(F) \ {u,v}| = dg(u) — 1 and k — A(G) > 1. The
inequality gives a contradiction as [g(V(F))| < k by V(F) being p-elementary.

Thus we assume that every vertex of GG is incident with some multiple edges. Since
G is a star-multigraph, it has a vertex z such that V(G) = Ng(z) U {z}. Let Ng(z) =
{y1,...,u}, and let d; = eq(z,y;) for each ¢ € [1,¢]. Since G is a star-multigraph, for
each y;, = is the only vertex such that there are possibly multiple edges between y; and

x. Thus dg(z) = Z d; = A(G) and d(y;) < d; +t — 1. Let H be the underlying simple

graph of G. It is readlly check that A(H) < t. By Theorem 2.6, x'(H) < t+ 1. By
assigning a different color to each of the edges in E(G) \ E(H), we see that x'(G) <

X' (H) + Z(d - 1) < A(G) 4 1. This gives a contradiction to the assumption that
V(G) = AG) +

For the complex1ty of edge coloring G using at most A(G) + 1 colors, we analyze
it below. The colors available will be [1, A(G) + 1]. Misra and Gries [14] described a
polynomial-time algorithm for coloring the edges of any simple graph H with at most
(A(H)+1) colors. Thus we first edge color the underlying simple graph of G[Ng(x)U{z}]
using at most |Ng(z)| + 1 colors. This can be done in time of a polynomial in |Ng(z)].
Then we color the other edges of G[Ng(z) U {z}] greedily, which results in a coloring
using at most A(G) + 1 colors by the same argument as in the previous paragraph. It
takes O(|Ng(z)| + A(G)) steps to edge color G[Ng(z) U {x}] using at most A(G) + 1
colors. If all edges of G are already colored, then we are done. Otherwise, we greedily
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color the other edges of G until we encounter an edge uvy such that v and v; do not have
a common missing color with respect to the current edge coloring, say . We may also
assume that for any color a € $(u) and any color 5 € B(v1), v and vy are («, 5)-linked.
By symmetry, assume u ¢ Ng(z). We construct a multifan centered at u with respect to
uvy and @. Assume F' = (u, uvq, v1, uve, Ve, .. ., Uls, Us) is & maximum multifan centered
at u. As shown in the first paragraph of this proof, the vertex set of the multifan is not
p-elementary.

Assume first that there exist v; with ¢ € [2, s] and a color v such that v € @(u) NB(v;).
By the construction of F', we may assume vy, ..., v; is the sequence such that p(uv;) €
B(vj_1) for j € [2,4]. We color the edge uv; using the color on uwvs, recolor uv; using the
color on uw; 41 for each j € [2,i—1], and recolor uv; by the color 7. Thus we assume that
B(u) NP(v;) = 0 for every i € [1, s] and that there exist distinct 4,5 € [1, s] and a color
such that v € B(v;) NP(v;). Let a € B(u). As at least one of v; and v; is (v, y)-unlinked
with u, say v;, we do an («,7)-swap at v;. (When both of v; and v; are (¢, y)-unlinked
with u, we assume j < i.) Then F* = (u,uv1,vi,uvs, va, ..., uvj,v;) is still a multifan
with respect to uv; and the current edge coloring, but u and v; have a common missing
color. We can then again color uv; as in the first case. Thus we can color all the remaining
edges of G in this way using at most A(G) + 1 colors. For each uncolored edge such as
uv, it takes O(|V(G)|) steps to have it colored. As it takes O(|Ng(x)| + A(G)) steps to
edge color G[Ng(z) U {x}], it then takes O(|E(G)||V(G)|) steps to edge color G using
at most A(G) + 1 colors. O

Given an edge coloring of G, since all vertices not missing a given color « are saturated
by the matching that consists of all edges colored by « in G, we have the Parity Lemma
below, which has appeared in many papers, for example, see [7, Lemma 2.1].

Lemma 2.9 (Parity Lemma). Let G be an n-vertex multigraph and ¢ € C*(G) for some
integer k > A(G). Then for any color o € [1,k], {v € V(G) : « € B(v)}| =n (mod 2).

Let G be a multigraph, k > 0 be an integer and ¢ € C*(G). For a subset X of V(Q)
and a color i € [1,k], define 5 (i) = {v € X : i € B(v)}, and e(X) = |E(G[X])|. An
edge k-coloring of a multigraph G is said to be equalized if each color class contains either
LIE(G)|/k] or [|E(G)|/k] edges. McDiarmid [13] observed the following result.

Theorem 2.10. Let G be a graph with chromatic index x'(G). Then for all k > X'(G),
there is an equalized edge-coloring of G with k colors.

We will need the following weaker version of “equalized” edge k-coloring.
Lemma 2.11. Let G be a star-multigraph on 2n vertices with multi-center x, and let A

and B be a partition of V(G) with |A| = |B|, where we assume x € A. If e(A) = e(B),
E¢(A,B) = Eg(z, B), and G has an edge coloring using k colors, then there exists an
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edge coloring ¢ using k colors such that for each i,j € [1,k], [7,*(i)] = [@5 (i)| and
||g0A ) — 7 ( )| < 2. Furthermore, such a coloring ¢ can be found in O(k?n?)-time.

Proof. We first show that there exists an edge k-coloring ¢ of G such that [7,"(i)| =
|85 (4)] for each i € [1,k]. Among all edge k-colorings of G, we choose any ¢ such that

Zl\m )| — 85 ()]

is minimum. If d, = 0, then we are done. Thus d, > 1. By the Parity Lemma, for
each i, |7, (i)| + [@5 (i)| = 2n (mod 2). Thus |7, (/)| — |75 (i)| = 2n (mod 2). Since
d, > 0, we assume, by symmetry, that there exists i € [1, k] such that [3,'(i)| = [g5'(4)]
(mod 2) and |7, (i)| — @5 ()| > 2. Since e(A) = e(B), it follows that 3 _, da(v) =
> wen da(v). This together with the fact that |A| = |BJ, implies

def(A) := Y (k- da(v)) = Y _ (k- dg(v)) =: def(B).

vEA vEB

On the other hand,
k
def(A) =Y [@,' ()] and def(B Z 5" (i)
i=1

Therefore Z [B4t6)| = Z |@5" (i)]. Consequently, by the existence of i € [1,k] such

that |7," ()\ ] > 2 there exists j € [1,k] with j # i such that [B5"(j)| —
|84 (4)] > 2. Next, we will do some Kempe changes on some (i, j)-chains to obtain
another edge k-coloring ¢’ such that d, < d,, which will lead a contradiction to the
choice of .

If there exist distinct u,v € %,'(i) such that u and v are (i,j)-linked with re-
spect to ¢, then we let ¢ = ¢/P,(i,j,¢). Clearly, d,, = d, — 4, showing a con-
tradiction to the choice of ¢. Thus for any two distinct u,v € %, (i), u and v are
(i, j)-unlinked with respect to ¢. Similarly, for any two distinct u,v € @gl(j), u and
v are (i,7)-unlinked with respect to gp Thus, for every u € %,'(i), the other end of
P,(i,5,¢) is in 7, (j) U <pB L) U <pB L(5). Slmllarly, for every u € $5'(j), the other
end of P(i,j, ) is in %3'() U3 () UByt(0). Since [75 ()] < [75 ()] — 2 and
185" (4)] < [@1'(3)] — 2 by the choices of the colors i and j, we have [7,'(j)| +
155 () < 185 ()| — 2 + [@4"(i)| — 2. Thus there exist u € 7, (i) and v € B (j)
such that u and v are (i,j)-linked with respect to ¢, see Fig. 1(a). We let ¢’ =
w0/ Py, (i, 7, ), see Fig. 1(b). Again d,» = d, — 4, showing a contradiction to the choice of
®.

Thus, we assume that G has an edge k-coloring ¢ such that [7,'(i)| = |[@5'(9)|
for every i € [1, k], which is called a wvalid coloring. We choose a valid edge k-coloring
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S ) O
A A L

P (i, 3, ¢) Py (i3, ¢")

(a): the existence of u and v (b): ¢" = @/Pu(i, 4, ¢)

Fig. 1. A Kempe change on an (%, j)-chain, where a dashed line indicates a missing color.

¢ such that g, := max; ; H@;‘l(i)\ - |¢;‘1(j)\| is the smallest and subject to this, the
number h,, of color pairs (i, j) such that ||¢21(i)| - |¢;‘1(j)|| = g, is the smallest. If
go < 2, then we are done. Thus g, > 3. We assume, without loss of generality, that
there exist i,j € [1,k] such that [7,"(i)| — [@4' ()| = g, > 3. As 8, (0)| = [75" (9]
and [731 ()| = [75 (7)), we know (75 ()| — [75 ()] = gp > 3. If there exist u € 74 (1)
and v € B (i) such that P,(i,5,¢) = P,(i,],¢), we let v = ¢/Py(i, j, p). Clearly 1 is
still a valid coloring with g, < g, and hy < h,, showing a contradiction to the choice
of .

Thus for any u € ' (i) and any v € Z5" (i), Pu(i,j,¢) # Pu(i,j, ). As Eg(A,B) =
Eg(x,B) and different (4, j)-chains are disjoint, there is at most one u € %,'(i) and
v € B5"(j) such that u and v are (i, j)-linked; similarly, there is at most one u € Z5" (i)
and v € $,'(j) such that u and v are (i,j)-linked. As [§,"(i)| — |74 (j)| > 3 and
185" ()] — [P35 (4)| > 3, there exist distinct u1,us € 7, (i) and distinct vy, vy € B3 (i)
such that Py, (i,7,¢) = Pu,(i,7,¢) and Py, (3,j,¢) = Py, (i,7,¢). We now let ¢ =
o/ Py, (i, j,¢). Note that Py, (i,4,¢") = Py, (i,4,¢). We then let ¢ = ¢'/P,,(i,4,¢").
Again ¢ is valid with g, < g, and hy < hg, showing a contradiction to the choice
of . Thus we have a valid coloring ¢ such that H@;‘l(zﬂ - |¢;‘1(j)|‘ < 2for alli,j €
[1, k]

In the first step, it takes O(kn?) steps to find a valid edge coloring ¢, as for each
i € [1,k], it takes O(n)-time to decrease [7,'(i)| — [@5' (i)| by 4; and it takes at
most n/2 steps to eventually have [7,'(i)] = [@5' (i)|. In the second step, there are
at most (’2“) color pairs, each color pair takes O(n)-time to reduce the difference of the
two corresponding color classes by 2, and O(n) steps to make the two corresponding
color classes close in size. Thus a desired edge coloring ¢ can be found in O(k?n?)-
time. O
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3. Edge coloring regular lower-(p, €)-regular star-multigraphs

For a multigraph G, S C V(G), and v € V(G), we let Ng(v) = Ng(v) NS, and let
ds(v) = eg(v, S\ {v}). The proofs in this section follow and extend ideas of Vaughan
from [19]. We will need the following version of Chernoff bound. (See e.g. [1, Theorem
A.1.16].)

Lemma 3.1. Let X;,...,X, be mutually independent random wvariables that satisfy
E(X;) =0 and |X;| < 1 for each i € [1,n]. Set S = X1 + ...+ X,,. Then for any
a>0,

Pr(|S| > a) < 2e* /%",

Lemma 3.2. There exists a positive integer ng such that for all n > ng the following
holds. Let G be a graph on 2n vertices, and N = {x1,y1,...,2,y:} C V(G), where
1 <t <nisan integer. Then V(G) can be partitioned into two parts A and B satisfying
the properties below:

(i) |Al = |Bl;
(it) |AN{z;,y:}| =1 for each i € [1,t];
(i) |da(v) — dp(v)| < n?/3 =1 for each v € V(G).

Furthermore, one such partition can be constructed in O(2n3logy(2n?))-time.
Proof. Set A and B be two emptysets or “containers” for now. We first partition V(G)

into n pairs such that each pair (z;,y;) is partitioned into the same pair and the partition
of V(G)\ N is arbitrary. We then assign one vertex of each pair to A and the other to B

uniformly at random. After the assignment, suppose the pairs are (ay,b1),..., (an,by)
with a; € A and b; € B. Fix a vertex v, and define the random variables X1,..., X,, as
below:

Xi=eq(v,a;) —ec(v,b;).

Clearly, X; € {—1,0,1}. So |X;| < 1.Ifa;,b; € N(v) or a;,b; ¢ N(v), then Pr(X; =0) =
1. If [{a;, b, } NN (v)| = 1, then Pr(X; = 1) = Pr(X; = —1) = 1/2. Thus E(X;) = 0. Also
it is easy to verify that for distinct 4,5 € [1,n], Pr(X; = z|X; = y) = Pr(X; = z) for all
xz,y € {-1,0,1}. Thus X;,...,X,, are mutually independent. Let S = X; + ... + X,,.
Then da(v) —dg(v) = S. By Lemma 3.1, for each v € V(G),

Pr(|da(v) — dg(v)| > n?/® — 1) = Pr(|S]| > n*/? — 1) < Pr(|S] > 0.9n*/3)

B 1/3
< 2~ 0An ,
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where for n > 32, we have n?/? — 1 > 0.9n%/3. There are 2n vertices, so the probability
p that there is a vertex v for which the inequality in condition (iii) does not hold is less
than

—0.4nt/3
4dne ,

which is less than 0.481 when n > 30000. Thus for n > ng := 30000, there must be
some partition of V(G) into two equal parts A and B satisfying condition (ii) such that
|da(v) — dp(v)] < n?3 —1 for each v € V(G).

By a result of Srivastav and Stangier [17, Theorem 2.12], a partition that satisfies
condition (iii) with probability € for some £ > 0 can be constructed deterministically in
O(2n x n? logg(%))—time, as desired. O

Theorem 3.3. Let 0 < 1/ng < e <n <K a < p<1, and let G be a regular lower-(p,e)-
reqular star-multigraph on 2n > ng vertices. Suppose x is the multi-center, 2 < |Ng(x)| <
2n — 2, eqg(z,v) < nn for every v € V(G), and 6(G) > 2an. Then G is 1-factorizable
or equivalently X' (G) = A(G). Furthermore, there is a polynomial-time algorithm that
finds an optimal coloring.

Proof. Let y € V(G) \ Ng(z). We take QLWGQ&J vertices from Ng(z) and name them

MJ Applying Lemma 3.2 on the underlying simple

as T1,Y1, ..., Tt, Yt, where t := |
graph of G and N = {x1,y1,...,%¢, Yt, Te41,Yt+1}, where 411 = x and ye11 = y, we

obtain a partition {A, B} of V(G) satisfying the following properties:

(i) |Al =Bl;
(ii) |ANn{x;,y:} =1 for each i € [1,¢];
(ili) |[Na(v)| — [Ng(v)|| < n?? — 1 for each v € V(G).

By switching  and y from their current partition if necessary, we assume that dg(z) >
da(z). As G is a star-multigraph, we have

|da(v) = dp(v)] <n*® + 10

for all v € V(G) \ {z}.
Let

Ga=GJ4], Gp=G[B], and H =G[A, B].

Define G4 g to be the union of G[4], G[B] together with (dg(x) — da(z))/2 edges in-
cident with z from E(H). Since G is regular and |A| = |B|, we have ) _,dg(v) =
Y wepda(v) = A(G)n. Thus 2|E(Ga)| = 2|E(Gg)| = A(G)n — eq(A, B) and so
[E(Ga)|l = |E(GB)|-
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To prove the lemma, we will show that it is possible to find an edge coloring of G
using A(G) colors, and we provide a procedure for constructing such an edge coloring.
Below gives an overview of the steps. At the start of the process, E(G) is assumed to be
uncolored.

Step 1 Find a “near equalized” edge-coloring of G4 p using k colors, where k£ =
A(Ga.p) + 1 as guaranteed by Lemma 2.8 and Lemma 2.11. Call ¢ the cur-
rent edge coloring of G4 p. By Lemma 2.11, we can require [7,"(i)| = [@5" (i)];
furthermore, we require [¢5(i)], [@5'(i)] < n2n for each color i € [1,k].

Step 2 Modify the partial edge-coloring of G obtained in Step 1 by exchanging alter-
nating paths. When this step is completed, each of the k color classes will be a
1-factor of G. During the process of this step, a few edges of H — E(G 4, p) will
be colored and a few edges of G4 and G will be uncolored.

Step 3 Let R4 and Rp be the subgraph of G4 and G that is induced by the uncolored
edges, respectively. We can ensure both R4 and Rp to be simple, i.e., not con-
tain the vertex x. We find equalized edge-colorings of R4 and Rp using exactly
¢ :=max{A(R4),A(Rp)}+1 colors, which is possible by Theorem 2.6 and The-
orem 2.10. At the end of Step 3, all the edges in G4 and Gp will be colored, and
so will a few edges of H — E(G 4, p). The goal is to ensure that each of the k + ¢
color classes obtained so far is a 1-factor of G.

Step 4 At the start of Step 4, all of the uncolored edges of G belong to H—E(G4,g). Also,
each color class is a 1-factor, so the subgraph of G consisting of the uncolored
edges is regular, of degree A(G) — k — £. This subgraph is bipartite, so we can
color its edges using A(G) — k — £ colors.

At the conclusion of Step 4, we obtain an edge coloring of G using exactly A(G)
colors. We now give the details of each step. Let u(x) = max{eg(z,v) : v € V(G)},
which by the assumption is at most nn.

Step 1

Let k = A(Ga,5)+ 1. Since G is regular, G4 and G have the same number of edges.
Also by the construction of Ga g, Ega,p) (A, B) = Eg, 5(z,B). By Lemma 2.8 and
Lemma 2.11, G4 5 has an edge k-coloring ¢ such that for each i,5 € [1,k], |7, (i)| =
[B5" (i)] and [|7," (i) — [@4"(4)]| < 2. The coloring ¢ will be modified throughout the
process and will still be named as ¢. Note that k > §(Ga,g) > an — n?/3 — u(z) >
an—n*?—nn > 2an and dg , ,(2) = da(z)+(dp(x) —da(z))/2 = (da(z) +dp(z))/2 =
A(G)/2. Since A(Gap) —6(Gap) <n?3+ p(x) <n?3 +n,

[5(v)] <mn+n*?+1<2yn  for each v € AUB. (1)

So the average number of vertices in A that a color misses is less than
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2/3
n(n*3 +nn+1) <

n(n?? +qn+1)  2mn
5 <
k san

2
3a

< n1/2n - 2.

As any two color classes differ in size by at most two, in this partial edge-coloring of G,
we have

3 ()] = [75' ()] < n*/?nfor cach i € [1, K. (2)

Step 2

By interchanging alternating paths, we will increase the size of the k color classes
obtained in Step 1 until each color class is a 1-factor of G. During the procedure of Step
2, we will uncolor some of the edges of G4 and G g, and will color some of the edges of
H — E(Ga,p). Denote by R4 and Rp the subgraphs of G4 and Gp consisting of the
uncolored edges, which will initially be empty, but one or two edges will be added to each
of R4 and Rp each time we exchange an alternating path. We ensure that the following
conditions are satisfied after the completion of Step 2:

(i) Ga and G have the same number of uncolored edges, which is less than 2nn?+2nn.
(i) A(R4) and A(Rp) are less than 2n2n.
(iii) Bach vertex of G — z is incident with fewer than 3nzn colored edges of H.

To ensure that Condition (ii) is satisfied, we say that an edge e = wv is good if
e ¢ E(Ra)U E(Rp) and the degree of each v and v in both R4 and Rp is less than
Qn%n. Thus a good edge can be added to R4 or Rp without violating Condition (ii).

We will consider the k colors one by one. For each i € [1,k], since [7,"(i)| = [75" (i)],
we can pair up vertices in %, (i) with vertices in @' (i), and will exchange exactly one
alternating path for each such pair. Suppose (a,b) is one of the pairs, where a € A,
be B,and i € g(a) NB(b). If © ¢ {a,b}, we will exchange an alternating path P from a
to b, consisting of five edges with the first, third and fifth edges uncolored and with the
second and fourth edges good and colored i. (See Fig. 2(a).) After P is exchanged, a and
b will be incident with edges of color i, and one good edge will be added to each of R4
and Rp. If x € {a,b}, we will exchange an alternating path P from a to b, consisting
of nine edges, where the first, third, fifth, seventh, and ninth edges are uncolored and
the second, fourth, sixth, and eighth edges are good edges colored by i. (See Fig. 2(b).)
After P is exchanged, a and b will be incident with edges of color i, and two good edges
will be added to each of R4 and Rp.

Before demonstrating how such paths can be found, we show that Conditions (i), (ii)
and (iii) can be ensured at the end of Step 2. After the completion of Step 1, for each
v € V(G), we have [p(v)| < 2nn by (1). For each i € p(a) with a € A and a # z, exactly
one edge will be added to each of R4 and Rp; when z = a, exactly two edges will be
added to each of R4 and Rp. Thus there will always be fewer than

2nn? — 2nn 4 4nn = 2nn® + 2nn
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Fig. 2. The alternating path P. Dashed lines indicate uncolored edges, and solid lines indicate edges with
color 3.

edges in each of R4 and Rp. Therefore Condition (i) will hold at the end of Step 2. As
we only ever add good edges to R4 and Rp, Condition (ii) will hold automatically. We
now show that Condition (iii) will also be satisfied. Let v € V(G) \ {2} be any vertex.
After Step 1, the only colored edges in H are those incident with x, and so v is incident
with at most nn colored edges at the beginning of Step 2. In the process of Step 2,
the number of newly colored edges of H that are incident with v will be equal to the
number of alternating paths of length 5 or 9 containing v that have been exchanged.
The number of such alternating paths of which v is the first vertex will be equal to the
number of colors that missed v at the end of Step 1, which is less than 2nn. The number
of alternating paths in which v is not the first vertex will be equal to the degree of v
in R4, and so will be less than 217%71. Hence the number of colored edges of H that are
incident with v will be less than

nn + 2nn + Qn%n < 3n%n.

This applies to all vertices in G — z, and so Condition (iii) will be satisfied.

We now show the existence of such alternating paths. For a pair (a,b) with a € A and
b € B such that i € $(a) N H(b), in order to deal with the two cases regarding whether
2 = a using a unified approach, we deal with colors from $(x) first. This initial operation
is different from what is outlined in the beginning of Step 2 but the outline applies after
this initial step. Note that |@(x)| < 2nn by (1) at the end of Step 1. For each i € B(z),
we will add at most one edge to each of R4 and Rp to replace the pair (z,b) by another
pair that both of its vertices miss the color i. After we deal with colors from @(x), all
the edges of R4 and Rp are still good edges.

So we assume a = x and let i € B(x). If there is a vertex y € Np(x) with xy uncolored
and i € B(y), we may assume y = b by repairing up vertices in %" (i) with vertices in
@gl(i) if necessary. In this case, we simply color zy by the color i. Thus we assume that
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for every y € Np(z) with xy uncolored, it holds that ¢ ¢ B(y). Let N be the set of
vertices in B that are joined with x by an uncolored edge and are incident with a good
edge colored i. Since only (dp(z) — da(x))/2 edges between x and B are assigned to
Ga,B, x is incident to at least dg(x) — (dp(z) — da(x))/2 = da(z)/2 > an uncolored
edges with the other endvertex in B at the end of Step 1. Furthermore, as |[@(x)| < 2nn,
we know that in H, x is incident to at least an — 2nn edges that are uncolored during
this procedure of dealing with colors from @(x). Since at this stage all the edges in G
colored i are good edges, Np # (). We choose by € N and by € B such that ¢(b1bs) = i.
Note that such vertex bs exists since no edges between A and B are colored by i: during
this process, when a color is used on an edge between A and B, the color is already
present at z. Likewise, let V4 be the set of vertices in A that are joined with b by an
uncolored edge and are incident with a good edge colored i. Note that x ¢ N4 as the
color 4 is missing at z. By the same reasoning as above, N4 # (). We choose a; € N4 and
as € A such that p(ajas) = . Since the color ¢ was missing at x, as # x. We now color
xby by 7 and uncolor b1y, color ba; by ¢ and uncolor ajas, and we pair up as and by as
a pair that both of its vertices miss the color i to replace the original pair (z,b). We do
this for every color from @(x). After this step, all the k colors are present at z, and each
of R4 and Rp contains at most 2nn edges, and at most 4nn edges of H — E(G 4 p) are
colored.

Thus we assume (a,b) is a pair with a # z. The same as before, let N be the set of
vertices in B that are joined with a by an uncolored edge and are incident with a good
edge colored i, and let N4 be the set of vertices in A \ {z} that are joined with b by
an uncolored edge and are incident with a good edge colored ¢ such that the edge is not
incident with x. Note that we exclude x from N4 to make R simple. There are fewer
than 2nn? 4 2nn edges in Rp, so there are fewer than 2(77%71 + 17%) vertices of degree at
least 277%71 in Rp. Each non-good edge with color ¢ is incident with one or two vertices
of Rp, so there are fewer than

4(n7n +n?) (3)

vertices in B that are incident with a non-good edge colored i. In addition, there are

1/2

fewer than n'/?n vertices in B that are missed by the color 7 by (2). So the number of

vertices in B that are not incident with a good edge colored i is less than
A(nrn+n2)+n"%n < 6nin. (4)

By symmetry, the number of vertices in A \ {z} that are not incident with a good edge
colored i or an edge from Eq(z, A\ {z}) colored i is less than 4(n2n+n2)+n*/?n+2 <
617%71.

So for any vertex v € V(G) \ {z}, the number of uncolored edges that join v with a
vertex w in the other part, where w is incident with a good edge colored i and x ¢ {v, w},
is more than



S. Shan / Journal of Combinatorial Theory, Series B 157 (2022) 429-450 445
1 1 2/3 1 1 1 1
dg(v) —3n2n —6n2n > an—n*> —ngn —3n2n —6n2n > an — 10nzn > §om,

by Condition (iii) and (4). Since G—x is simple and « ¢ {a, b}, it follows that [N4| > $an
and |[Np| > an. Let Mp be the set of vertices in B that are joined with a vertex in
Npg by an edge of color i, and let M4 be the set of vertices in A that are joined with a
vertex in N4 by an edge of color i. Note that ¢ M4 by the choice of N4. Note also
that |Mp| = |Np| as each vertex of Np is incident with an edge colored 4, even though
some vertices may be in both. Similarly |M4| = [Na|.

Since |[M4| > tan > 2en and |[Mp| > fan > 2en and G is lower (p,e)-regular,

it follows that erMA,MB) > (p— s)|MBH2]\4A|. By Condition (iii) of this step, the
number of colored edges in H that are incident with a vertex other than x is at most
377%71, we know that the number of colored edges between M4 and Mp is at most
3n2n|Ma| < (p—e)|Mp||Ma|. Therefore, there is an uncolored edge asby € Eq(Ma, Mp)
with as € A and by € B. We now let a; € Ny and by € Np such that ajas and b1by are
colored by i. Then P = abibsasaqb is a desired alternating path of five edges, where the
first, third and fifth edges are uncolored and the second and fourth edges are good edges
colored by i. We color aby, baas and a1b by the color ¢ and uncolor b1by and ajas. After
the exchange, the color i appears on edges incident with a and b. By finding such paths
for all pairs of vertices (a,b) that miss 7, we can increase the number of edges of color ¢
until the color class is a 1-factor of G. By doing this for all colors, we make each of the
k color classes a 1-factor of G.

Step 3

Each of the color classes for the colors from [1,k] is now a l-factor of G. We now
consider the graphs R4 and Rp that consist of the uncolored edges of G4 and Gp.
Since the vertex = was excluded from N4 and M4 in Step 2, © ¢ V(R4). Thus both
R4 and Rp are simple graphs. By Conditions (i) and (ii) of Step 2, R4 and Rp each
has fewer than 2nn? + 2nn edges, and A(R4), A(Rp) < 2n2n. By Theorem 2.6 and
Theorem 2.10, R4 and Rp each has an equalized edge-coloring with exactly ¢ := f2n%n]
colors k+1,...,k + ¢. Since R4 and Rp have the same number of edges, by renaming
some color classes of R4 if necessary, we can assume that in the edge colorings of R4
and Rp, each color appears on the same number of edges in R4 as it does in Rp. There
are fewer than 2nn? + 2nn edges in each of R4 and Rp, and ¢ > Qn%n, so each of the
color i € [k+1,k+ (] appears on fewer than n%n—l—n% +1< n%n—I—Q edges in each of R4
and Rp. We will now color some of the edges of H with the £ colors [k + 1,k + ¢] so that
each of these color classes becomes a 1-factor of G. We perform the following procedure
for each of the ¢ colors in turn.

Given a color i with i € [k + 1,k + ¢], we let A; and B; be the sets of vertices in A
and B respectively that are incident with edges colored i. Note that

|Ai| = |Bi| < 2(n2n +2)



446 S. Shan / Journal of Combinatorial Theory, Series B 157 (2022) 429-450

as R4 and Rp each contains fewer than n%n+2 edges colored i. Also x ¢ A; as the vertex
x was excluded in R4 in Step 2. Let H; be the subgraph of H obtained by deleting the
vertex sets A; and B; and removing all colored edges. Each vertex in G — z is incident
with fewer than

377%71 + Zn%n +1< 677%71

edges of H that are colored, since fewer than 377%n were colored in Step 2 and at most
Qn%n + 1 have been colored already in Step 3. Each vertex in G — x has fewer than
2(n2n + 2) edges that join it with a vertex in A; or B;. So for v € V(H;) \ {2}, dg, (v)
is more than

2/3 1 1 1 1
an—n —nn—6n2n—2(n2n+2)>0m—9772n>§om.

For the vertex x, recall that the missing colors at x after Step 1 were dealt with at the
beginning of Step 2, and x was not involved in the rest of Step 2. Thus dy, (z) is at least

dp(z) — (dp(x) — da(2))/2 — 2qm — 2(n*n + 2)
> (dp(z) + da(x))/2 — 20n — 2(n7n +2)

1
> an — 377%n > ian.

Therefore §(H;) > %om. Furthermore, by the analysis above, each vertex of H; — x
is incident with at most 9n2n edges from E(H)\ E(H;). So H; has a 1-factor F by
Lemma 2.4 (taking v = 9n2). If we color the edges of F with the color i, then every
vertex in G is incident with an edge of color 7, and so the color class is now a 1-factor
of G. We repeat this procedure for each of the colors from [k + 1,k + ¢]. After this has
been done, each of these ¢ color classes is a 1-factor of GG. So at the conclusion of Step
3, all of the edges in G4 and G g are colored, some of the edges of H are colored, and

each of the k + ¢ color classes is a 1-factor of G.
Step 4

Let R be the subgraph of G consisting of the remaining uncolored edges. These edges
all belong to H, so R is a subgraph of H and hence is bipartite. As each of the k + ¢
color classes is a 1-factor of G, R is regular of degree A(R) = A(G) — k — {. Note that
since k < an 4+ n?/3 +nn and £ < 2n2n +1, A(R) > 2an —k — € > (o — 3n2)n. By
Theorem 2.7 we can color the edges of R with A(R) colors from [k+ ¢+ 1, A(G)]. Clearly
each of these color classes is a 1-factor of GG. This completes our edge coloring of G with
A(G) colors. Each of the color classes is a 1-factor, so G is 1-factorizable.

We check that there is a polynomial-time algorithm to obtain a 1-factorization of
G. By Lemma 3.2, we can obtain a desired partition {A, B} of V(G) in polynomial
time. Also, G4, g can be edge colored with the required properties in polynomial time
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by Lemma 2.8. In Step 2, the construction of the alternating paths and swaps of the
colors on the paths can be done in O(n?)-time, as the total number of colors missing at
vertices is O(n?) and it takes O(n)-time to find an alternating path for a pair of vertices
(a,b) with a common missing color. In Step 3, there is polynomial-time algorithm (see
e.g. [14]) to edge color R4 and Rp using at most £ colors; then by doing Kempe changes
as in the proof of Lemma 2.8, one can obtain an equalized edge-coloring in polynomial
time. The remaining procedures are only about finding perfect matchings in bipartite
graphs, which can be done in polynomial time too such as applying the Hopcroft-Karp
algorithm [11]. Thus, there is a polynomial-time algorithm that gives a 1-factorization
of G. O

4. Proof of Theorem 1.3

We need the following classical result of Hakimi [9] on multigraphic degree sequence.

Theorem 4.1. Let 0 < d,, < ... < dy be integers. Then there exists a multigraph G on
vertices x1,...,xTn such that dg(z;) = d; for all i if and only if >\, d; is even and
Zi>1 dl Z dl-

Though it is not explicitly stated in [9], the inductive proof yields a polynomial-time
algorithm which finds a desired multigraph if it exists.

Let G be a graph and v € V(G). Define defg(v) = A(G) — dg(v) to be the deficiency
of vin G. It is clear that G is overfull if and only if [V(G)| is odd and }_, ¢y defa(v) <
A(G) — 2. The proof below follows the ideas of Glock, Kiithn, and Osthus in the proof of
Theorem 1.2 from [6].

Theorem 1.3. For all 0 < p < 1 there exist e, > 0 such that for sufficiently large n,
the following holds: Suppose G is a lower-(p,€)-regular graph on n vertices and n is odd.
Moreover, assume that A(G) — 6(G) < nn. Then X' (G) = A(G) if and only if G is not
overfull. Further, there is a polynomial-time algorithm which finds an optimal coloring.

Proof. Choose constants e, and positive integer ng such that 0 < 1/ng < & < n < p.
Let G be a lower (p,e)-regular graph on n > ng vertices such that A(G) — §(G) < nn,
where n is odd. For any X C V(G) with |X| = [en], we have Eq(X,V(G)\ X) > (p —
g)(n—en—1)|X|. Thus the average degree of a vertex from X is at least (p—e)(n—en—1),
and therefore §(G) > (p —¢€)(n —en — 1) —nn > En. We let a = p/2 and use an as a
lower bound on 6(G) in the following.

If G is overfull, then x'(G) = A(G) + 1. Thus assume G is not overfull. We will now
add a new vertex to G to form a multigraph with even order. Let = be a new vertex
and let G’ be obtained from G by adding z to G and adding some edges between x and
vertices y € V(G) with dg(y) < A(G) with the following constraints:

(1) de(z) = 6(G") = 8(G) and A(G") = A(G);
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(2) subject to (1), at most one neighbor of z in G’ is not a maximum degree vertex of
G

Since G is not overfull and n is odd, we have 2¢(G) = }_, cy () da(y) < A(G)(n — 1).
Consequently, }°, cy ) defa(y) =2 A(G). Let V(G) = {z1,...,2,} and assume that

dg(xz1) < ... <dg(z,). Note that dg(x,) = A(G). Assume s € [1,n — 1] is the smallest
S

integer such that Y defg(z;) > §(G). For each i € [1,s — 1], we add exactly defg(z;)
i=1

s—1

edges between x and z;, and we add 6(G) — > defg(z;) edges between x and x4, and
i=1

call the resulting multigraph G’. Tt is clear that G’ satisfies both of the constraints (i)

and (ii). Since A(G) — §(G) < nn, we know that

1

Ne(@)] 2 & > = >3,

(67

3|e

We claim that G’ contains no A(G)-overfull subgraph. (Note that G’ maybe a multi-
graph with parallel edges but we still define a A(G)-overfull subgraph H of G’ the same
way as for simple graphs.) Let X C V(G) with |X| odd. We show that G[X] is not
A(G)-overfull. Assume first that 3 < |X| <n—-2.If |X| <en+1lor |X|>n—en—1,
then eq(X,V(G)\ X) > 2(6(G) —en) > A(G). If 1 +en < |X| < n —en —1, by the
lower-(p, €)-regularity of G, we have eq(X, V(G)\ X) > eq(X \{z},V(G)\ (X U{z)}) >
(p—e)(|X|-1)(n—|X]—-1) > A(G). Therefore 2¢(X) < A(G)|X|—A(G) and so G[X] is
not A(G)-overfull. Thus, the only possible A(G)-overfull subgraph of G’ is obtained from
G’ by deleting a single vertex y € V(G). Note that if G’ — y is A(G)-overfull for some
y € V(G), then so is G’ —x as x has minimum degree in G'. However, G’ —x = G, which
is not overfull by our assumption. Thus G’ — y is not A(G)-overfull for any y € V(G’).

Now V(G') = {z,z1,...,2,}. Since x has the smallest degree in G’ and G = G' — x
is not overfull, » .., defe/(x;) > defe(x). Since |V(G')| = n+ 1 is even, defg/ () +
Y o> defar(z;) is even. Then by Theorem 4.1, there exists a multigraph H on V(G)
such that dp(z) = defe () and dp (x;) = defg (z;) for each i € [1,n]. This multigraph
H will aid us to find a spanning regular subgraph of G'.

Note that A(H) = defg(x) = A(G) — 6(G) < nn and H contains isolated vertices.
Thus x'(H) < A(H) + p(H) < 2A(H) < 2nn < Tnn/a. Hence we can greedily partition
E(H) into k < 7nn/a matchings Mj, ..., M}, each of size at most an/7. Now we take out
linear forests (forests with each component being a path) from G’ by applying Lemma 2.3
with M, ..., M. As at most one neighbor of x is not a maximum degree vertex of G, it
follows that z is adjacent in G’ to at most one vertex of those vertices from M; for each
i € [1,k]. More precisely, define spanning subgraphs Gy, ..., Gy of G’ and edge-disjoint
linear forests F1,..., F} such that

(1) Go:=G" and G; = G;_1 — E(F;) for i € [1,k],
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(2) F; is a spanning linear forest (each vertex of G;_; has degree 1 or 2 in F;) in G;_1
whose leaves are precisely the vertices in M;.

Let Gy = G’ and suppose that for some i € [1,k], we already defined Gy,...,G;-1
and Fy,...,F;_1. As A(FiU...UF;_1) <2(i—1) < 14nn/a, it follows that 6(G;_1) >
(o —14n/a)n > 6an/7. Moreover, let &/ = 24/14n/a. Since G’ is lower-(p, 2¢)-regular by
Proposition 2.1(1) and &’ > 4e, G;_; is lower-(p, e’)-regular by Proposition 2.1(2). Note
that eq,_, (x,v) < egs(x,v) < nn for every v € V(G') and |Ng,_, (z)| > GO‘TN > 3. Thus
x has in G;_1 at least two neighbors outside the vertices of M;. Hence, since M; has size
at most an/7, we can apply Lemma 2.3 to G;—; and M; and obtain a spanning linear
forest F; in G;_1 whose leaves are precisely the vertices in M;. Set G; := G;_1 — E(F;).

We claim that Gy is regular. Consider any vertex u € V(Gy). For every ¢ € [1, k],
dp,(u) = 1 if u is an endvertex of some edge of M; and dp,(u) = 2 otherwise. Since

k
My, ..., My, partition E(H), we know that > dp,(u) = 2k — dy(u) = 2k — defg (u).
i=1
Thus

k
dg, (u) = der(u) = Y dp, (u) = der(u) — (2k — defer (u) = A(G') — 2k.

i=1

Let d = A(G')—2k and o/ = 6a/7. We have shown that Gy is a d-regular, lower-(p, £')-
regular star-multigraph with d > o/n. Furthermore, eg, (z,v) < nn for every v € V(Gy),
|Ng, (z)] > GQTN > 3, and |Ng, (z)] < n—1 as eg/(z,z,) = 0. By Theorem 3.3,
X' (Gr) = d. Now we color the edges of F; using 2 distinct colors from [d + 1,d + 2k]
for each i € [1,k]. It is clear that any edge d-coloring of Gy, together with this coloring
of Ule F; gives an edge coloring of G’ using d + 2k = A(G’) colors. As G is a proper
subgraph of G’ with A(G) = A(G"), it follows that x'(G) = A(G).

We lastly check that the procedure above yields a polynomial-time algorithm. Given
G, we first check 3 oy defe(v). If it is at most A(G) — 2, then we conclude that
X' (G) = A(G) 4+ 1, and G can be edge colored using A(G) + 1 colors in polynomial
time [14]. If 3~ oy defa(v) > A(G) — 2, then we add a new vertex x to G and form
G’ as described in the beginning of this proof. Then we can construct an edge A(G’)-
coloring of G’ through the process. Since Theorem 4.1, Lemma 2.3 and Theorem 3.3 give
appropriate running time statements, this can be achieved in time polynomial in n. O
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