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A B S T R A C T   

Upconverting-materials are capable of converting near infra-red (NIR) excitation into lower wavelengths. These 
materials could have a myriad of promising potential applications. However, in some areas, its use has been 
hindered by its low upconversion luminescence (UCL) efficiency and processing/handling disadvantages from 
luminescent materials in powder form. This work presents a step towards overcoming this limitation, by 
developing polymer-based fiber membranes without adding external luminescent powders. Herein, we report on 
the synthesis of Yb3+ and Er3+ codoped polyvinylidene difluoride (PVDF) and its development into fiber 
membranes using the Forcespinning® technique. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) 
spectroscopy were performed to confirm the phase formation, crystallinity and the presence of vibrational bands 
of the corresponding PVDF matrix. Scanning Electron microscopy (SEM) and thermogravimetric analysis were 
conducted to investigate the morphological and thermal properties of the codoped nanofibers while the X-ray 
photoelectron spectroscopy (XPS) showed efficient doping of the lanthanides in the PVDF fiber. Under exposure 
to 980 nm NIR illumination, the PVDF:Yb3+,Er3+ fibrous mats exhibited efficient UCL emission in the visible 
wavelength region (523, 540 and 656 nm). The observed results show a NIR to visible UCL process where the 
Yb3+ ions act as the sensitizer for the generation of visible upconversion emission from Er3+ ions through an 
excited state absorption (ESA) and two photon energy transfer (ET) mechanisms. The developed material further 
opens potential lighting and imaging related applications given the ease of preparation, handling, and flexibility 
of the developed membranes.   

1. Introduction 

Upconvertible phosphor materials (UCPMs) have gained rising 
attention due to their unique photoluminescent properties of upcon
verting near-infrared light to a shorter wavelength of visible or ultra
violet (UV) radiation. UCPMs are showing strong potential applications 
in the areas of anti-counterfeiting, solar energy, bioimaging, security, 
optical communication, night vision, optoelectronics, etc. [1–4]. Near 
infrared (NIR) in particular, offers an advantage pertaining to in vivo 
and in vitro bioimaging applications, as compared to potentially harmful 
UV radiation, which is common in surgery. NIR has shown less tissue 

damage and has the ability to penetrate deeper into the tissue, also offers 
low autofluorescence [5]. Over the years extensive research in UCPMs 
has focused mainly on designing powder-based systems, such as, 
fluoride-based nano powder materials or nanoflourides, which are ex
pected to offer a high upconversion yield, owing to low phonon energy 
and thus decrease of non-radiative channels. This makes powdered 
systems a popular topic for current literature pertaining to UCPMs. 
However, several disadvantages, including commercial viability, have 
been experienced when using powder based systems, such as: poor 
adhesion quality, low biocompatibility, poor thermal stability, low 
photostability, a tendency to aggregate, low mechanical strength, 
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restricted tuning capability, inability to get processed into other mate
rial forms, etc. [6–9]. Moreover, Direct doping of inorganic phosphors 
nanopowder leads to severe defects in the materials as a part of charge 
compensation, lattice strain owing to ionic radius mismatch and pow
der/crystals suffers from poor adhesion, lower flexibility, poor 
biocompatibility arising from solid powder curtailing its applicability to 
full potential [10–12]. Though, these issues have mostly been over
looked by academic publications, most of the published work is based on 
powder-based systems. The most significant drawbacks of nanofluorides 
are related to safety related issues when processing and inefficient 
performance under low laser power [1]. Moreover, nanofluorides have 
large surface defects which will adversely affect the performance of 
UCPMs due to the additional channels for non-radiative relaxations. 
Therefore, by replacing powder nanofluorides with a 
solution-processable fluorine-containing polymer, used as the UCL host, 
and in situ doped with rare-earth ions offers a significant advantage over 
powder systems alleviating current drawbacks of powder based systems. 
Additional benefits by using a fluorine host polymer includes ease of 
handling, improved flexibility, higher photostability, enhanced me
chanical strength, diverse tunability, etc. [6,7,13]. The presence of 
fluorine atoms within the polymeric fibers also offer an advantage of low 
phonon energy and counterbalances the vibrations of lighter carbon and 
hydrogen atoms. 

Our recent work has shown the capability of polymeric fibers in the 
area of optoelectronics, smart textiles, pressure sensors, etc. [6–8,14,15] 
Fibrous based membranes have shown improved luminescence quantum 
efficiency compared to powder-based systems, owing to better disper
sion of phosphor particles in the former [6,14,15]. Al-Hossainy et al. 
have reported the effect of copper oxide nanoparticles on the opto
electronic properties of poly(o-anthranilic acid)-poly(o-amino phe
nol)/copper oxide nanocomposites based on their band gap and 
dispersion parameters [16]. Szczeszak et al. [17] have explored 
upconversion luminescence (UCL) in cellulose composites by encapsu
lating SrF2: RE (rare-earth) nanopowder in the organic polymer. Simi
larly, Hou et al. [18] designed composite fibers for dual drug delivery 
system where upconversion core/shell silica nanoparticles were encap
sulated within poly(ε-caprolactone)-gelatin based polymer matrix using 
the electrospinning technique. Liu and his group [19] developed elec
trospun NaYF4:Ln3+ nanoparticle/polystyrene hybrid fibrous mem
branes for UCL analysis. Ge et al. [20] have also used the electrospinning 
method and explored one-dimensional Yb2Ti2O7:Er nanofibers for UCL. 
Li and his colleagues [21] have synthesized microfibers consisting of 
upconversion nanoparticles (UCNPs) and polymethyl methacrylate 
(PMMA). None of these studies could achieve UCL without luminescent 
powders as nanofillers. 

Here, we directly dope upconvertible rare-earth ions into the poly
meric host without adding any external luminescent powder system. The 
selection of polymeric host is crucial for ultimate desired properties. It 
must be thermally/chemically stable, should prevent capturing visible 
photons, should possess wide optical transparency, optimum refractive 

index, etc. Some studies have presented work on the density functional 
theory calculations and optical dielectric constant analysis of polymeric 
systems and have highlighted its potential for optoelectronic applica
tions [22–26]. Based on above mentioned work, polyvinylidene 
difluoride (PVDF, C2H2F2) was selected as the semi-crystalline polymer 
host coupled with other advantages such as mechanical strength, ther
mal and chemical stability [7,8,13] as well as ease of processing into 
fiber form. Here we used the Forcespinning® (FS) method to prepare the 
fibers. This method presents several advantages over extensively 
explored electrospinning. Such as, no voltage is needed and the output is 
significantly higher with proven industrial production [13]. Its pro
duction rate is about 60 g/h for a lab-scale system while as for the in
dustrial scale, the technology produces hundreds of meters per minute, 
with a controllable grams per square meter. The novel strategy of 
directly doping upconversion lanthanide couple Er3+-Yb3+directly into 
PVDF polymer and further ensemble them into fiber via FS technology 
opens a new research pathway in the area of UCPMs. The developed 
codoped PVDF based fiber membranes were thoroughly characterized 
using x-ray diffraction (XRD), thermogravimetric analysis (TGA), x-ray 
photoelectron spectroscopy (XPS), Fourier transformed infrared spec
troscopy (FTIR) and field emission scanning electron microscopy 
(FESEM) as well as UCL and laser powder dependent UCL analysis. 

2. Experimental 

2.1. Materials 

Polyvinylidene difluoride (PVDF), with an average molecular weight 
of 534000 gmol-1 was procured from Arkema-Kynar. Erbium (III) nitrate 
pentahydrate (Er(NO3)3⋅5H2O), ytterbium (III) nitrate pentahydrate (Yb 
(NO3)3⋅5H2O), N, N-dimethylacetamide (≥99%, DMA) and acetone 
(≥99.5%) were purchased from Sigma-Aldrich and were used as 
received. 

2.2. Synthesis 

2.2.1. Synthesis of pure PVDF fibrous mats 
The polymer solution was prepared by mixing 1.08 g of PVDF, 2 mL 

of DMA and 3 mL of acetone. Afterwards, the mixture was homogenized 
by a magnetic stirrer on a hot plate at 60 ◦C for 2 h. PVDF fibers were 
then produced using FS technology. A cylindrical spinneret coupled with 
30 G needles was used within a Cyclone instrument (Fiberio Technolo
gies, Inc). A 3 mL syringe was used to inject 2 mL of the solution into the 
spinneret and fibers were then extruded through two 30 G needles at 
7000–8000 rpm for 8 min at an ambient temperature of 24 ◦C and 
relative humidity of 35–40%. Lastly, the fibers were gathered using a 10 
cm × 10 cm aluminum frame collector from in between posts (Scheme 
1). 

Scheme 1. Schematic representation for the synthesis of upconvertible PVDF fibrous mat.  
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2.2.2. Synthesis of Er3+/Yb3+ co-doped PVDF fibrous mats 
Erbium and Ytterbium co-doped PVDF fibrous mats were synthesized 

using Er(NO3)3⋅5H2O and Yb(NO3)3⋅5H2O salts (1:1.4) which were 
mixed with the polymer solution following the same procedure of fiber 
production described in the previous section. Other concentration ratios 
of activator (Er) and sensitizer (Yb) ions doped in the particular host 
were investigated (Er and Yb dopants (1:1; 1:1.4; 1:2.5; 1:3)), Er:Yb = 1 : 
1.4 ratio shows the highest upconversion emission intensity. Beyond this 
concentration (Er:Yb = 1:1.4), a decrease in UCL emission takes place 
which might be attributed to an increased non-radiation emission within 
the system. All studies were performed using this optimum concentra
tion. The doped sample containing only erbium was also synthesized. 

2.3. Instrumentation 

A scanning electron microscope (SEM) (Sigma VP; Carl Zeiss, Jena, 
Germany) was used to analyze the size and morphology of the generated 
fibers. The fibrous mats were gold sputtered before capturing the SEM 
images using a Denton Vacuum sputtering instrument. Developed fibers 
were also analyzed by a Thermo Scientific K-Alpha XPS with a 180◦

double focusing hemispherical analyzer and 128 channel detectors. The 
accuracy of the binding energy (BE) was 0.1 eV as calibrated by Cu 3P3/2 
(75.1 eV) and Cu 2P3/2 (932.7 eV) reference peaks. Survey scan spectra 
of the fibrous mats were taken with 10 scans at a surface scan spot of 300 
μm. Thermogravimetric analysis was conducted using a Netszch TG 209 
at a rate of 10 ◦C/min under N2. Aluminum hermetic pans were used as 
sample holders, to contain 10 mg of the fiber mat. Fourier Transform 
Infrared (FTIR) spectra for the nanofibers were collected using a 
benchtop FTIR Nicolet iS 5 FTIR spectrometer by Thermo Scientific (by 
running the samples from 1500 to 600 cm−1) and powder X-ray 
diffraction patterns of the nanofibers were recorded using a Bruker D8 
Advance X-ray diffractometer (XRD) with Cu Kα1 radiation (λ =

0.15406 nm). XRD analysis was performed using a scanning mode of 2θ 
with a scanning step size of 0.04◦ and a scanning rate of 2.0◦ min−1 to 
quantify the phases of the PVDF fibers. Upconversion luminescence 
measurements were performed using an Edinburgh Instrument, a FLS 
980 which was equipped with an MDL–III–980-2W Class IV laser. 

3. Results and discussion 

3.1. Scanning electron microscopic (SEM) analysis 

Fig. 1 shows the representative SEM images of the as-produced Er–Yb 
co-doped (Fig. 1a) and Er doped (Fig. 1c) PVDF fibrous mats. The size 
distribution plot of PVDF:Yb,Er and PVDF:Er are shown respectively in 
Fig. 1b and d. The fibers are uniform in nature with lengths of up to 
several microns and the diameters mostly between 250 and 350 nm. 
Moreover, developed fibers show smooth surfaces without beads or fiber 
breakage, most of the fibers are observed to be long, continuous, and 
homogeneous. 

3.2. Powder X-Ray diffraction (PXRD) analysis 

XRD analysis was primarily carried out to focus on the crystalline α, 
β, and γ phases. Fig. 2 (a) shows the XRD pattern of pristine PVDF along 
with singly Er doped and Yb,Er co-doped PVDF fibers. For all developed 
systems, the most prominent peak is located around 20.6◦ which cor
relates with typical reflections of β phase in PVDF, corresponding to 
110/200 reflection of the orthorhombic β phase [27,28]. Two weaker 
XRD peaks, at around 17.5◦ and 38.8◦ correspond to 020 and 211 re
flections of monoclinic γ-phase PVDF. Additionally, there is a small 
component of monoclinic α phase corresponding to 35.5◦ which repre
sents its 200 reflections. Doping with Er and Er/Yb did not cause a shift 
in the observed peaks. However, the intensity of β phase was higher for 

Fig. 1. SEM images and corresponding histograms for fiber diameters of the (a, b) Er/Yb-PVDF, (c, d) Er-PVDF.  
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the rare-earth co-doped PVDF fibers. 

3.3. Fourier transform infrared (FTIR) spectroscopic analysis 

Fig. 2 (b) shows the FTIR spectra (1500−600 cm−1) of the pure 
PVDF, Er-doped PVDF, and Er/Yb-co-doped PVDF fibers. The charac
teristic infrared (IR) absorption bands of the β-phase are observed at 
840, 1274, and 1430 cm−1 for all the three samples. Moreover, the 
absorbance peaks located at 876 and 978 cm−1 are characteristic fea
tures for the non-polar α-phase [7,29,30]. The peaks corresponding to 
the α, β, and γ phases were also identified in the IR spectra. From the 
spectra it is clear that the predominant phase is the β phase, with only 
traces of α, and γ for all three samples. This is concurrent with the XRD 

results. It is clearly seen that on doping Er or co-doping of Er–Yb pair, the 
fractions of α, β and γ increase consistently. The intensities of the peaks 
are higher in the case of rare-earth doped PVDF nanofibers, than that of 
pure PVDF nanofibers, indicating that rare-earth ions contribute to the 
formation of the polar phase. 

3.4. Thermogravimetric analysis (TGA) 

Fig. 2c shows the TGA plot of pristine, Er3+-doped, and Er3+/Yb3+

co-doped PVDF fibers. The thermogram for undoped PVDF fiber mats 
shows ~62% loss at 422 ◦C, which indicates degradation of the PVDF 
polymer [31]. For the doped systems (Er3+ and Er3+/Yb3+), the spectra 
clearly show a two-step degradation process. The first step happens 

Fig. 2. (a) XRD, (b) FTIR and (c) TGA of pure PVDF, Er-PVDF, and Er/Yb-PVDF fibrous mats.  

Fig. 3. XPS spectra of pure Er/Yb-PVDF fibrous mats.  
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around 215–225 ◦C and the second at 455–500 ◦C. The first one is 
attributed to the loss of crystal water molecules, which indicates that the 
crystal water present in the precursor rare-earth salts are introduced 
within the PVDF polymer matrix. The second loss is due to polymer 
degradation [31]. Doping the PVDF with Er–Yb results in a slight in
crease in thermal stability, possibly due to the interaction among PVDF 
polymeric chains and rare-earth ions. 

3.5. X-ray photoelectron spectroscopy (XPS) 

XPS results shown in Fig. 3 show the presence of carbon (1s), oxygen 
(1s), and fluorine (1s) atoms of the PVDF backbone with binding en
ergies of 285.2, 533.3, and 687.0 eV respectively [7]. In Fig. 3a, it is 
observed that the O 1s peak is located at 533.3 eV, which corresponds to 
the lattice oxygen in the prepared sample. From Fig. 3b, XPS peaks of 
Er3+ 3d, Yb3+ 3d5/2 and 3d3/2 from the co-doped fibers appear at 170.8, 
187.7 and 199.4 eV respectively confirming the doping of these ions in 
+3 oxidation states within the system [32,33]. 

3.6. UC photoluminescence 

The Er3+-Yb3+ pair has been used to improve the 980 nm photon 
absorption of Er3+ ions, which is attributed to the efficient sensitization 
by Yb3+ ions. As a result, promotion of Er3+ ions to upper energy levels 
takes place through a process known as energy transfer upconversion 
(ETU) [34]. Yb3+ ions are triggered by the certainty of having a single 
excited energy state (2F5/2) and thus exhibit a very strong and broad 
absorption band at 980 nm [35]. 

Fig. 4a shows the UCL spectra for both Er3+ doped and Er3+/Yb3+co- 
doped PVDF fibers in the spectral region between 450 and 750 nm. 
Though both samples show UCL with 980 nm excitation, the relative UC 

intensity from PVDF:Er is extremely feeble compared to PVDF:Er,Yb. 
This could be attributed to the poor absorption coefficient of Er3+ solely 
towards the 980 nm photons, owing to forbidden f-f transitions which 
highlight the importance of Yb3+ion as a sensitizer to induce an efficient 
UCL. In the case of PVDF:Yb,Er fiber mats, high UCL intensity is 
observed because of the efficient absorption of 980 nm photons by Yb3+

ion. This causes an excitation of Yb3+ ions from a ground to excited state, 
which then transfers energy to a metastable state, as well as to Er3+

ground state and thereby exciting it to higher excited state. The UCL 
spectrum of PVDF:Yb,Er revealed a very strong emission band at 540 nm 
(1st green) and two comparatively weaker emission peaks located at 
523 nm (2nd green) and 656 nm (red). The Upconversion photo
luminescence at 523 nm, 540 nm and 656 nm were assigned respectively 
to the 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions [32, 
36]. An interesting work composed of Er–Yb codoped SrWO4 system 
shows two slightly visible blue upconversion emission peaks along with 
the strong green and red peaks [37]. However, the purpose of this pre
sent work focuses on upconverting 980 nm photons to green and red 
light and normally difficult to obtain blue emission and the same was 
true in this case as well. Hence, measurements were performed from 
500 nm onwards. 

To understand the UCL process and appearance of both green and red 
bands from the PVDF:Yb,Er fibrous mats and to further understand the 
number of the photons responsible for subsequent visible emission, the 
UCL spectra was monitored at different laser powers. Fig. 4b shows the 
UCL emission spectra of PVDF:Yb,Er under 980 nm NIR photon irradi
ation with different laser powers. No changes were observed in the UCL 
spectral profile with varying laser power. However, there is a substantial 
change in the emission intensity with monotonic increase, which is 
observed as the laser power increases. To determine the number of NIR 
photons involved in the Yb3+→ Er3+ energy transfer process, UCL 

Fig. 4. (a) Upconversion photoluminescence of Er3+ doped and Er3+/Yb3+ co-doped PVDF fibrous mat using 980 nm laser excitation source; (b) Upconversion 
photoluminescence intensity of co-doped sample (Er3+: Yb3+ = 1:1.4) with different powers of the 980 nm laser excitation source; (c) The pump power dependence of 
upconversion visible photoluminescence intensity at 540 nm; (d) The pump power dependence of upconversion visible photoluminescence intensity at 656 nm. 
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intensities were recorded at different laser powers. From this experiment 
the number of NIR photons can be obtained using following equation 
[38]: 

IαPn (1)  

Where “I” is the UCL intensity, “P” is the laser power used, and “n” is the 
number of photons involved in the upconversion process. Fig. 4c and 
d demonstrate the double log graph of UCL intensity and laser power for 
green and red bands respectively. In both graphs there are linear trends 
with a slope of 1.75 for green and 2.00 for red, suggesting that UCL in 
the green and red regions for PVDF:Yb,Er fibrous mats are endowed by 
absorption of two NIR pump photons. 

UCL is predominantly governed by two different photophysical 
processes, the ETU, and the excited state absorption (ESA). Other less 
known mechanisms viz. avalanche process or inter ion cross-relaxation 
are also reported [39]. ESA is normally the most sought out phenome
non for UCL, even in cases where only Erbium ions are used at low 
concentrations. Alternatively, ETU predominates for Yb–Er couples 
present in higher concentrations, as it proceeds through energy transfer 
between activator and sensitizer. Therefore, high concentrations of 
dopant ions could be avoided to minimize non-radiative relaxation 
channels via concentration quenching [40]. 

The energy level diagram of Er3+ and Yb3+ ions with the proposed 
UC processes of the PVDF:Yb,Er fibrous mat is shown in Fig. 5. The 
process is initiated by an efficient capture of 980 nm photons by Yb3+

ions, which then triggers its transition from ground to 2F5/2 excited state. 
Afterwards, and depending on the lifetime of 2F5/2 state; Yb3+ ion re
verts to 4I11/2 level of Er3+ ions, dissipating excess energy through ETU 
owing a close energy match for these two states. The second photon is 
captured sequentially, inducing an electronic transition from 4I11/2 en
ergy states to 4F7/2 of Er3+. Thereafter, excited electrons lying in the 4F7/ 

2 level undergo relaxation to lower levels, releasing 523 and 540 nm 
green photons respectively from the 2H11/2 and 4S3/2 states and red 
photons from the 4F9/2 states. 

Red photon emission from the 4F9/2 state involved two distinct 
phenomena, (1) a nonradiative relaxation (NRR) via 4S3/2 → 4F9/2 
transition and (2) population of 4I13/2 energy states through NRR of 4I11/ 

2 → 4I13/2 transition. This was followed by a promotion of excited state 
to 4F9/2 level, either via energy transfer involving 2F5/2(Yb3+) + 4I13/2 
(Er3+) → 2F7/2 (Yb3+) + 4F9/2 (Er3+) or excited state absorption process 
as photon + 4I13/2 (Er3+)→4I15/2(Er3+) + 4F9/2(Er3+) [41]. The crux of 
this work, direct doping, fiber development, and efficient NIR to visible 
UC is well represented and summarized in Scheme 2. 

4. Conclusion 

In this work to overcome the limitations observed when using UCL 
phosphors in powder form and to increase the commercial viability of 
NIR to visible light emission systems, we have designed a novel rare 
earth doped polymeric based fiber membrane. A unique design strategy 
has been adopted wherein Yb3+ and Er3+are directly doped inside the 
PVDF polymer host without adding luminescent nanocrystals, as con
ducted in previously reported studies. Furthermore, the system was 
produced using the FS technology which offers immediate access to 
industrial level finer fiber production. Designed PVDF:Yb,Er fibrous 
mats were thoroughly characterized using XRD, FTIR, XPS, TGA and 
FESEM. XRD and FTIR studies confirm the presence of higher beta 
fraction, compared to the monoclinic alpha and gamma phases, this is 
observed in both pristine and Yb–Er co-doped PVDF, with the latter 
revealing a higher yield of beta phase. Efficient doping and high purity 
of the fiber is confirmed using XPS. A fine and smooth texture of the 
fibrous mats, without beads; defect or blister formation was clearly 
demonstrated by FESEM morphostructural analysis. Moreover, doping 
of rare earth ions did not affect the thermal stability of the PVDF based 
fibrous mats. Efficient NIR to visible photon upconversion was seen in 

Fig. 5. UCL mechanism in PVDF:Yb,Er.  

Scheme 2. Schematic showing direct doping, fiber development and effective upconversion luminescence of novel PVDF:Yb,Er fibrous mats.  
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PVDF:Yb,Er fibrous mats, this mechanism was well explained through 
ETU and ESA. Pump power dependent UCL measurements revealed 2- 
photon absorption for both green and red emissions. This work clearly 
demonstrated the potential of 1D PVDF polymeric fibers produced by 
the centrifugal spinning process as prospective host candidate with 
appropriate phonon energy to accommodate Er3+/Yb3+ pair and to 
directly show successful UC photoluminescence. These results can be 
useful for future generation security lighting, solar energy, night vision 
and bioimaging applications. 
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