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Eelgrass creates critical coastal habitats worldwide and fulfills essential
ecosystem functions as a foundation seagrass. Climate warming and disease
threaten eelgrass, causing mass mortalities and cascading ecological
impacts. Subtidal meadows are deeper than intertidal and may also provide
refuge from the temperature-sensitive seagrass wasting disease. From cross-
boundary surveys of 5761 eelgrass leaves from Alaska to Washington and
assisted with a machine-language algorithm, we measured outbreak con-
ditions. Across summers 2017 and 2018, disease prevalence was 16%
lower for subtidal than intertidal leaves; in both tidal zones, disease risk
was lower for plants in cooler conditions. Even in subtidal meadows,
which are more environmentally stable and sheltered from temperature
and other stressors common for intertidal eelgrass, we observed high disease
levels, with half of the sites exceeding 50% prevalence. Models predicted
reduced disease prevalence and severity under cooler conditions, confirming
a strong interaction between disease and temperature. At both tidal zones,
prevalence was lower in more dense eelgrass meadows, suggesting disease
is suppressed in healthy, higher density meadows. These results underscore
the value of subtidal eelgrass and meadows in cooler locations as refugia,
indicate that cooling can suppress disease, and have implications for eelgrass
conservation and management under future climate change scenarios.

This article is part of the theme issue ‘Infectious disease ecology and
evolution in a changing world’.

1. Introduction
The increasing incidence and severity of disease outbreaks [1–3]—fuelled by acute
andprolongedwarmingocean temperatures [1,4–9]—makesmarinedisease ecology
a priority in the portfolio of climate change research. Temperature-sensitive patho-
gens that target marine foundation species like corals and eelgrass (Zostera marina),
a temperate seagrass species, can be especially devastating, given their pivotal
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roles indrivingmarine ecosystemstructure and function [7,9–11].
Eelgrass has the largest global distribution of anymarine angios-
perm, and grows in shallow, coastal areas throughout the
Northern Hemisphere, spanning from Baja, Mexico to Alaska
[12]. Seagrass wasting disease, caused by the protist Labyrinthula
zosterae, is one of the current threats to the health and sustainabil-
ity of global seagrass meadows [13,14]. The pathogen consumes
plant chloroplasts [15], impairsphotosynthesis [16],producesdis-
tinctive black lesions [17–19] and reduces eelgrass growth and
belowground sugar stores in natural meadows [20]. Historical
disease outbreaks in the 1930s reduced some eelgrass meadows
along the Atlantic coasts by 90% and dramatically altered their
structure and function [21,22], reducing waterfowl and invert-
ebrate populations [21,23–25], and altering the water quality in
coastal regions [26]. Eelgrassdiseaseoutbreaks continue topersist
in temperate seasworldwide [9,27–32], and can result not only in
local extinctions, but also in the loss of thevaluable ecosystemser-
vices eelgrass provides: carbon sequestration, sediment
stabilization, water filtration, nutrient cycling and habitat for-
mation [33–35].

Warming ocean temperatures and wasting disease can
independently and synergistically interact and harm eelgrass.
Rising temperature, including increased frequency and inten-
sity of marine heatwaves [36], is among the most prominent
global change factors impacting seagrass ecosystems [37,38],
which are declining globally [39]. Warmer temperatures are
associated with dramatic reductions in eelgrass growth
[40,41], net primary production [42], density [8,43] and bio-
mass [44]. Dramatic examples include widespread mortality
of eelgrass in the Chesapeake Bay, Virginia, USA [42] and
other seagrass in Western Australia [45] from marine heat-
waves. Following recent marine heatwaves, shallower,
warmer estuaries also had reduced eelgrass biomass compared
to deeper, cooler estuaries [46]. Further, warmer temperatures
under climate change projections are expected to substantially
shift eelgrass ranges northwards and increase eelgrass suscep-
tibility to anthropogenic and natural stressors like disease [47].

Along with rising temperatures, seagrass wasting disease
is among one of many multiple stressors threatening global sea-
grass meadows [14,48]. Climate change is predicted to increase
disease impacts on eelgrass health and meadow resistance [14].
Certain abiotic conditions—including warm temperatures—
were implicated in historic wasting disease outbreaks [26,49,50].
More recently, elevated temperatures were associated with
higher disease levels in natural meadows [9,27,32]. Field surveys
also suggest interactions between wasting disease and ocean
temperatures facilitated seagrass declines in Sicily, Italy [27] and
Washington State, USA [9,51]. Laboratory experiments demon-
strate the causative agent, L. zosterae, grows faster at warmer
temperatures up to 25°C [52,53], though the exact mechanisms
underlying this relationship remain unknown [54]. Certain eel-
grass biometrics are also associated with greater wasting
disease. Field surveys detected significant, positive correlations
between disease metrics and eelgrass leaf area and negative cor-
relations between disease and shoot density [9,29,30]. Many
other environmental parameters influence eelgrass health and
survival (e.g. exposure to waves and desiccation stress, salinity,
sediment), though temperature, light and nutrients are the most
important for eelgrass health and productivity [40,55,56]. Despite
the growing understanding of the role of climate and other
environmental drivers on wasting disease, little is known about
factors that lead to better outcomes for natural meadows, such
as cooler, higher latitudes or deeper water.
To capture a broad range of environmental conditions,
better understand the synergistic effects of climate and disease
on this foundation species, and determine the potential for cold,
deep refugia, disease surveys spanning a wide latitude and
depths in the northern range of eelgrass distribution are essen-
tial. Previous studies reported that disease was lower in deeper
eelgrass meadows in the San Juan Islands, Washington (−4 m
mean lower low water) and Sweden (−2 to −5 m) [29,31].
This suggests the hypothesis that deeper, subtidal eelgrassmea-
dows may provide plants with more favourable climatic
conditions—and less favourable conditions for the patho-
gen—that allow them to persist [57,58]. Similar patterns were
found among three species of algae, which had more severe
infections in shallower regions compared to those at depth
[59]. Refugia from climate change and disease pressure could
potentially mitigate local extinctions owing to disturbances
[58]. Already, deeper habitats serve as refugia frommarine heat-
waves for seaweeds [60], corals [61], temperate reefs [62] and
eelgrass [46]. These examples highlight how deeper marine
environments could reduce the impacts of climate change
and pathogenic stressors, and exemplify the need to further
understand host–pathogen interactions in these environments.

We aimed to test the following hypotheses: (i) disease
prevalence and severity are reduced in meadows at higher lati-
tudeswith cooler temperatures. Prevalence is the proportion of
surveyed leaves that are infected and severity is the proportion
of leaf area that is visibly infected; (ii) disease levels are lower in
deeper, subtidal eelgrass compared to the more environ-
mentally stressful conditions of shallower, intertidal eelgrass;
and (iii) disease is higher in high-density eelgrass meadows,
since the disease transmits via direct contact with infected
leaves [15]. To address these, we surveyed seagrass wasting
disease in eelgrass meadows throughout their northern range
from Puget Sound, Washington to southeast Alaska in the
northeast Pacific to explore how disease varied across eight
degrees latitude, tidal zones (intertidal or subtidal), environ-
ments, and time. Altogether, we surveyed 5761 eelgrass
leaves from paired, adjacent intertidal and subtidal eelgrass
meadows for leaf-specific measurements (leaf area, disease
prevalence and severity) and site-specific biometrics (density
and canopy height). Intertidal eelgrass meadows are exposed
to more stressful, extremely variable environmental conditions
at low tide, including higher temperatures, desiccation, ultra-
violet (UV) stress, and at high latitudes, scouring by sea ice
[63,64]. By contrast, deeper, subtidal meadows are constantly
submerged and have more stable environmental conditions.
Just as environmental conditions can vary dramatically with
elevational gradients and influence disease dynamics on land
[65]—so too can the environment and disease vary with
depth in our oceans. Because intertidal eelgrass is exposed at
low tide to greater environmental stressors, it could be more
vulnerable to infection in a changing climate. Intertidal
environments could also be more conducive to pathogen
growth. Given that relatively little is known about disease at
depth [31], we made investigation of subtidal disease a key
research priority in this project.
2. Methods
(a) Field surveys
We surveyed 19 intertidal and subtidal eelgrass meadows across
four geographical regions: southeast Alaska; British Columbia,
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Figure 1. (a) Locations for seagrass wasting disease surveys in Alaska, British Columbia, San Juan Islands and Puget Sound in summers 2017 and 2018. Surveys
included paired subtidal and intertidal eelgrass meadows. Map made in ArcGIS. (b) Site-level disease severity reflect lower disease in subtidal meadows and gen-
erally higher disease in 2018; n = 5761 blades (mean ± s.e.). Sites are arranged north to south, top to bottom within and by regions. Sites with missing bars did
not have eelgrass and do not represent that there was not any disease present (intertidal: Triquet N, Choked; subtidal: Hakai).
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Canada; San Juan Islands, Washington; and Puget Sound,
Washington (figure 1a; electronic supplementary material, figure
S1, table S1). Regions spanned sea surface temperature gradients
and ranged from urban environments with high human impacts
to remote environments with minimal to no development. For
example, British Columbia sites were in the Hakai Lúxvbálís Con-
servancy, the largest marine protected area along coastal British
Columbia (BC Parks), while Puget Sound sites in Washington
were heavily urbanized, with some adjacent to a wastewater treat-
ment plant and railroads. Surveys occurred in the summers of
2017 and 2018, when disease levels peak in temperate eelgrass
[9,28,66,67]. Owing to logistical constraints, we had to stagger
our sampling periods as such: we surveyed British Columbia in
late June, Puget Sound in early July, San Juan Islands in mid-
late July and Alaska in early August. Within a given region, we
surveyed all sites on the same low-tide series.

In each region, we surveyed 3–5 paired intertidal and subtidal
eelgrass meadows, except in British Columbia where three sites
were strictly intertidal or subtidal. The San Juan Islands have a
history of wasting disease monitoring [9,29,30] and recent, signifi-
cant meadow declines [9,51,68]. For each field survey, we ran
three, 20 m transects parallel to the shore in the middle of both
intertidal and subtidal meadows.We sampled intertidal meadows
at low tide and subtidal meadows using SCUBA or snorkeling
(electronic supplementary material, Video 1). During 2017, we
recorded the GPS coordinates at the ends of all intertidal transects
for subsequent monitoring in 2018, so that we could compare the
same parts of the meadows between years. We tracked subtidal
transect locations using GPS coordinates from boats, dive compass
headings, and in some cases, anchored subtidal transect markers.
At each site, we haphazardly collected 120 intertidal and 60
subtidal leaves (n = 40 leaves per transect, n = 20 subtidal
leaves per transect). Given the constraints of working underwater,
the significantly larger size of subtidal eelgrass leaves compared to
intertidal leaves, and the greater processing time required to pro-
cess larger leaves, we collected fewer subtidal leaves. Intertidal
meadows were at approximately +1 m and subtidal meadows
were at depths ranging from approximately −1.8 to −6 m mean
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lower lowwater. Because disease susceptibility and levels can vary
with the age of eelgrass leaves [29], we standardized our collec-
tions to the third-rank (third youngest) leaf from each shoot,
following other published approaches [9]. We measured densities
and canopy height in three of the four surveyed regions: British
Columbia, San Juan Islands, and Puget Sound; we took measure-
ments from quadrats at three points along each transect (0, 10,
20m). Owing to logistical constraints, we did not measure den-
sities in any Alaska sites in either year nor subtidal Puget Sound
meadows in 2018. We stored all leaves in bags with seawater on
ice or in a refrigerator until processing for image analyses.

(b) Disease quantification
In the laboratory, we gently scraped epiphytes from eelgrass
leaves using soft, flexible rulers. We scanned eelgrass leaves
between two transparency sheets with a Canon CanoScan
LiDE 220 scanner at 600 dpi resolution within 24 h of collection.
This created digital images of eelgrass leaves for subsequent leaf
area and disease measurements. Given that some subtidal leaves
were nearly 3 m long, we scanned only diseased or potentially
diseased portions of subtidal leaves for more efficient processing.
Consequently, we measured the lengths and widths of each sub-
tidal leaf by hand prior to scanning, and used these to calculate
subtidal leaf areas. We scanned entire intertidal leaves, which
were smaller than subtidal leaves, and used leaf areas measured
by a machine-learning algorithm.

To preciselymeasure leaf-level disease prevalence and severity,
we used the Eelgrass Lesion Image Segmentation Analyzer
(EeLISA), a robust algorithm that identified andmeasured healthy
and diseased tissue on all images of scanned eelgrass leaves
[9,66,69]. The algorithm calculated disease prevalence (presence/
absence of disease) and lesion area for each leaf, along with leaf
area estimates for intertidal leaves. Using leaf-level prevalence,
which was binary (presence/absence of disease), we calculated
transect- and site-level mean prevalence (proportion of surveyed
leaves that were infected); we calculated severity (proportion of
infected leaf area) using lesion and leaf area measurements at
leaf-, transect- and site-levels. Only leaf-level disease prevalence
and severity were modelled as response metrics (models
detailed below), though transect- and site-level means were
useful in understanding and visualizing broad patterns in disease
dynamics. For these reasons, we reported leaf-, transect- and
site-level disease prevalence and severity. Importantly, this
award-winning algorithm was instrumental in enabling us to effi-
ciently and consistently survey disease across a broad, latitudinal
scale, as previous methods of measuring disease lesions by hand
would have severely limited the scope of our surveys; measuring
diseased lesions by hand can take more than 30 min for one eel-
grass leaf and can be a significant bottleneck for disease analyses
[69]. Furthermore, while desiccation stress presents differently
from seagrass wasting disease, which creates characteristic, black
lesions [70], discrepancies in human measurements could also
lead to lesions being misclassified; EeLISA also helped reduce
judgement error.

(c) Pathogen confirmation
We confirmed that the black-edged, necrotic lesions we identified
as wasting disease were caused by the pathogen L. zosterae and
asymptomatic, healthy eelgrass did not contain L. zosterae using
quantitative polymerase chain reaction (qPCR) (n = 98 eelgrass
leaves tested), following established protocols [9,28,66,71]. qPCR
is a valuable tool for identifying the presence or absence of L. zos-
terae in eelgrass, though it requires precise selection of tissue.
Faded, brown lesions from eelgrass in late stages of infection—
rather than prominent, dark lesions from new infections—often
test negative, as L. zosterae has already passed through those
plant cells, leaving behind necrotic tissue (M. Eisenlord 2018,
personal communication). We used a subset of leaves from British
Columbia and Puget Sound surveys for qPCR, specifically target-
ing intertidal leaves because it was challenging to find large,
prominent lesions in subtidal eelgrass. Subsequent
qPCR analyses of diseased eelgrass from the San Juan Island,
Washington sites also confirmed the presence of L. zosterae [66].

(d) Temperature data
To determine the relationship between disease and sea surface
temperatures,we assessed remote-sensed sea surface temperatures
for all sites from January to June 2017 and 2018, following pre-
viously published methods [9,66]. Briefly, we extracted group for
high resolution sea surface temperatures (GHRSST) Level 4,
multi-scale ultra-high resolution (MUR) daily temperatures for
each site from the NASA Jet Propulsion Laboratory OPeNDAP
portal, which provides a coherent, consistent daily map of sea sur-
face temperatures at 1 km spatial resolution for each site [72]. The
temperature product masked out land using proven algorithms
and inputs, and focused on sea surface temperature by combining
multi-source satellite data and in situ observation records. The
specific locations for these 1 km gridded temperatures were
based on the GPS coordinates from each site taken during disease
surveys. In this way, temperatures were specific to each site, were
not measured over the open ocean, and did not differentiate
between subtidal and intertidal meadows, as our surveys did not
extend beyond a 1 × 1 km area at each site.

To evaluate sea surface temperatures relative to each site, we
calculated five different temperature anomaly metrics for each
month (from January to June 2017 and 2018, respectively), consist-
ent with previous work exploring impacts of temperature
anomalies on marine environments [5,6,66]; we did not use absol-
ute temperatures. All temperature metrics were calculated based
on the daily, satellite-derived sea surface temperature for each site
and the long-term, 17-year mean (2002–2018) monthly temperature
for the site. The five temperature anomaly metrics included: cumu-
lative difference between daily temperature and long-term
mean (CDiffMean), cumulative positive difference between daily
temperature and long-term mean (CDiffMeanHeat), cumulative
negative difference between daily temperature and long-term
mean (CDiffMeanCold), cumulative positive difference between
daily temperature and long-term 90th percentile monthly tempera-
ture (CDiffT90Heat), and cumulative negative difference between
daily temperature and long-term 90th percentile monthly tempera-
ture (CDiffT90Cold). These temperature anomalies were
cumulative temperature differences summed over a one-month
period. We restricted temperatures from January to June of 2017
and 2018 since we began our disease surveys in late June of each
year, and we did not want to include site temperatures after we
had already collected eelgrass. We specifically did not include
temperature anomalies for regions sampled after June (Alaska,
San Juan Islands, Puget Sound) becausewewanted to run tempera-
ture anomaly models that compared disease across all regions and
sites simultaneously, rather than separate, region-specific models.
All temperature metrics from January to June 2017 and Janu-
ary to June 2018 were centred and scaled, then subset by month
for subsequent models, described below.

(e) Statistical analyses
We performed all statistical analyses in R v. 4.1.2 [73] and visual-
ized data using the packages ggplot, ggpubr and RcolorBrewer
[74–76]. Data exploration and subsequent model fitting and vali-
dation were carried out following published protocols [77].
We incorporated remote-sensed sea surface temperatures into
models to determine the effects of temperature anomalies and
eelgrass biometrics (leaf area, density) on leaf-level disease preva-
lence and severity. We used the glmmTMB function in the
glmmTMB package to fit binomial generalized linear mixed
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models for prevalence [78], and the lmer function and lme4 pack-
age to fit linear mixed effects regression models for severity [79].
Fixed effects in all models included tidal zone (subtidal
versus intertidal), year, temperature anomaly and leaf area, and
interactions (detailed below); subsequent models also included
eelgrass density. We centred and scaled all numeric fixed
effects—leaf area, density and temperature anomaly—in order
for the models to converge. To account for the hierarchical
sampling design, we included the random nested effects of region,
site, tidal zone and transect in all models. Our nested design
allowed for disease comparisons across broad environmental
and spatio-temporal gradients.

Given that some parameters were only measured at a subset
of sites for both years, we ran several different models on our
data. The most comprehensive prevalence and severity models
include data from all sites (n = 5761 and n = 3457 leaves, respect-
ively; electronic supplementary material, table S2). Subsequent
prevalence and severity models used a subset of the dataset,
which included density (n = 4090 and n = 2549 leaves; electronic
supplementary material, table S3). All data and R scripts used
to generate the analyses presented here are publicly available
via the Cornell University eCommons Repository (https://doi.
org/10.7298/6ybh-w566).

(i) Developing leaf area, temperature and disease models
To determine the best binomial generalized linear mixed model
structure for leaf-level prevalence (electronic supplementary
material, table S2), we ran models that included fixed effects of
leaf area, tidal zone, year, temperature anomaly and interactions
between some of these terms (electronic supplementary material,
table S2). We only tested interactions that were biologically mean-
ingful, such as leaf area and tidal zone interactions or leaf area and
year interactions, but not tidal zone and year interactions. Such
interactions were considered potentially biologically meaningful,
since subtidal eelgrass leaves are considerably longer and wider
compared to those in intertidal zones [80]. Likewise, leaf area
could interact with year, if one year was warmer or cooler than
another, since temperature strongly influences eelgrass growth
[40,41]. We used three temperature anomaly metrics discussed
above (CDiffMean, CDiffMeanHeat, CDiffMeanCold) for March
in this stage of model development, as March included a range
of temperatures above and below the long-term, historical mean.
We performed corrected Akaike information criterion (AICc)
model selection on these initial candidate models using the
model.sel function in the R package MuMIn [81] focusing only on
March temperature anomalies, to reduce the number of candidate
models (electronic supplementary material, table S2). The best-fit,
leaf-level prevalence model structure had the lowest AICc and
included the following fixed effects and interactions: tidal zone,
year, leaf area, temperature anomaly, leaf area*tidal zone, leaf
area*year. We then tested this model structurewith other tempera-
ture anomaly metrics for each month, testing the five different
temperature anomaly metrics described above (CDiffMean,
CDiffMeanHeat, CDiffMeanCold, CDiffT90Heat, CDiffT90Cold),
calculated on a monthly basis from January to June. This allowed
us to determine which month’s temperature metrics were the best
fit for the prevalence model. We again used the MuMIn package
to select the best-fit, leaf-level prevalence model (prev mod 1)
based on the lowest AICc; this model included a March cold
temperature anomaly (CDiffMeanCold, n = 5761 leaves; electronic
supplementary material, table S2). We validated the model by
assessing diagnostic plots (quantile-quantile plots of expected
and observed values, model prediction and residual plots) created
with the simulateResiduals function in the DHARMa package [82].

We followed a similar process to develop the linear mixed
effects regression model for leaf-level severity (electronic sup-
plementary material, table S3). Because we used a hurdle model
approach for analysing disease severity, we only included data
for leaves with disease and excluded healthy individuals; we
also logit-transformed severity since the datawere bound between
0 and 1, following established protocols [83]. As before, we used
the MuMIn package to select the best-fit, leaf-level severity
model (sev mod 1) with the lowest AICc [81]; this model included
the following fixed effects and interactions: tidal zone, year, leaf
area, temperature anomaly and leaf area*temperature anomaly.
This severity model included a March cold temperature
anomaly (CDiffT90Cold, n = 3457 leaves; electronic supplemen-
tary material, table S3). To evaluate the model for normality and
homogeneity of residuals, we visually checked diagnostic plots
created with the plot_model function in the sjPlot package [84].

(ii) Developing leaf area, temperature, density and disease
models

We developed additional leaf-level prevalence and severity
models based on the subset of sites for which we had eelgrass den-
sity—British Columbia, San Juan Islands, Puget Sound—following
the model development and selection process described above
(electronic supplementary material, table S4, tableS5). The best-
fit, binomial generalized linear mixed model for leaf-level preva-
lence (prev mod 2) included the following fixed effects and
interactions: tidal zone, year, leaf area, cold temperature anomaly
(CDiffMeanCold) for March, density, leaf area*CDiffMeanCold,
CDiffMeanCold*mean density, tidal zone*mean density (n = 4090
leaves; electronic supplementary material, table S4). The best-fit,
linear mixed effects regression hurdle model for leaf-level severity
(sev mod 2) included the following fixed effects and interactions:
tidal zone, year, leaf area, temperature anomaly (CDiffMean) for
March, density, year*CDiffMean (n = 2549 leaves; electronic sup-
plementary material, table S5). For this model, we also used a
‘bobyqa’ optimizer to support model convergence. As before, we
used the DHARMa package (simulateResiduals function) and the
sjPlot package ( plot_model function) to evaluate diagnostic plots
for the prevalence and severity models, respectively [82,84]. For
transparency on our model development and selection process,
we list all of the prevalence and severity candidate models and
their corresponding AICc values in the electronic supplementary
materials, tables S2–S5).
3. Results
(a) Broad disease patterns
Disease prevalence and severity were significantly higher
in 2018 compared to 2017 when considering data across all
sites (prevalence: glmm, p < 0.001; electronic supplementary
material, table S6; severity: lmer, p < 0.001; electronic sup-
plementary material, table S8). Among the four regions,
disease prevalence (proportion of infected individual plants)
and severity (proportion of tissue infected) increased in all
regions in 2018 except for Puget Sound,which had reduced dis-
ease (figure 1b; electronic supplementary material, figure
S2 and table S7). Themost dramatic, interannual changes in dis-
ease were in the intertidal, particularly in Alaska, where
intertidal prevalence increased from 22.05 ± 2.61% to 61.11 ±
3.08% the subsequent year (mean ± s.e.; figure 1b; electronic
supplementary material, figure S2 and table S7). Intertidal
and subtidal meadows in British Columbia and the San Juan
Islands also experienced dramatic increases in disease preva-
lence in 2018, while Puget Sound was anomalous with
reduced intertidal and subtidal prevalence in 2018 (electronic
supplementarymaterial, table S7).We observed similar, notable
increases in severity in 2018 for all regions except Puget Sound
(figure 1b). Spatially, leaf-level disease prevalence and severity
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were reduced at higher latitudes compared to lower latitude
regions, though disease varied considerably between sites
(figure 1b; electronic supplementary material, figure S2). This
latitudinal gradient wasmore apparent in the higher-resolution
severity data, with Alaska and British Columbia reporting
lower disease severity across both years and tidal zones
compared to regions further south (figure 1b).

Prevalence and severity were significantly lower in subti-
dal meadows compared to the intertidal (glmm and lmer,
p < 0.001; electronic supplementary material, table S8).
When averaged across both years, the mean prevalence for
intertidal eelgrass was 66.0 ± 0.79%, compared to 50.4 ±
1.06% among subtidal plants (mean ± s.e.). At the site-level,
disease prevalence ranged from 7.93 ± 3.43% to 100%
among intertidal eelgrass and from 8.45 ± 3.32% to 95.23 ±
2.7% among subtidal eelgrass (mean ± s.e.; electronic sup-
plementary material, figure S2). Out of 70 total intertidal
and subtidal sampling events across the two years, 41 had
a mean prevalence greater than 50%, indicating widespread
infection (electronic supplementary material, figure S2).
Differences in severity between tidal zones were even more
striking (figure 1b; electronic supplementary material, table
S6). When averaged across both years, severity for intertidal
plants was 10.05 ± 0.27%, compared to 3.12 ± 0.17% among
subtidal plants (mean ± s.e.). Site-level disease severity
ranged from 0.14 ± 0.096% to 33 ± 1.85% among intertidal eel-
grass, compared to 0.054 ± 0.029% to 16.3 ± 2.78% among
subtidal eelgrass (mean ± s.e.; figure 1b).
(b) Leaf area, temperature and disease models
We tested five temperature metrics calculated for each month
(January–June) when developing leaf-level prevalence and
severity models. Of these, March temperature anomalies
were in the best-fit models, based on the lowest AICc
(electronic supplementary material, table S6). Sea surface
temperatures in March 2017 and 2018 varied regionally, with
generally colder absolute temperatures in higher-latitude
regions (electronic supplementary material, figure S3). All
regions experienced warmer temperatures in March 2018
than March 2017 except for Puget Sound, which was cooler
that year (electronic supplementary material, figure S4).
This coincided with reduced disease prevalence and severity
in Puget Sound relative to 2017 (figure 1b; electronic
supplementary material, figure S2).

Leaf-level, prevalence significantly decreased with cooler
March temperatures, as predicted (glmm, p < 0.001; electronic
supplementary material, table S6). Predicted prevalence
decreased with cooler March temperature anomalies (CDiff-
MeanCold) for both intertidal and subtidal eelgrass (electronic
supplementarymaterial, figure S4). Other significant predictors
for leaf-level prevalence included: tidal zone, year, leaf area,
leaf area*tidal zone and leaf area*year (glmm, p < 0.001; elec-
tronic supplementary material, table S6). Across both
tidal zones, transect-level disease prevalence was positively
associated with cumulative March cold temperature anomalies
(CDiffMeanCold) and leaf areas (figure 2a; electronic
supplementary material, figure S6).

Similarly, leaf-level severity significantly decreased with
cooler March temperatures (lmer, p < 0.001; electronic sup-
plementary material, table S6). Among diseased leaves,
predicted severity decreased with cumulative, 90th percentile
cold March temperature anomalies in subtidal and intertidal
eelgrass (electronic supplementary material, figure S5). Com-
pared to absolute cold temperature anomalies measured on a
daily basis, this cold temperature anomaly (CDiffT90Cold) is
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the accumulation of negative differences between each site’s
daily temperatures and the long-term 90th percentile mean
temperatures for March 2017 and 2018. Other significant pre-
dictors of leaf-level severity include tidal zone, year and leaf
area*CDiffT90Cold (lmer, p < 0.001; electronic supplementary
material, table S6). For intertidal leaves, disease severity was
positively associated with cumulative, 90th percentile March
cold temperature anomalies and leaf areas, though these
associations were not as apparent among subtidal leaves
(electronic supplementary material, figures S6 and S7).

(c) Leaf area, temperature, density and disease models
Mean eelgrass densities varied among sites and tidal zones and
between years for several sites (electronic supplementary
material, figure S8). Shoot densities were significantly higher
in intertidal meadows compared to subtidal in the San Juan
Islands (t-test: t178 = 4.01, p < 0.001) and Puget Sound (t103 =
2.60, p = 0.01), but not in British Columbia (electronic sup-
plementary material, figure S8; t124 =−1.82, p = 0.07). At the
transect level, low-density intertidal and subtidal eelgrass
had higher disease prevalence and severity compared to eel-
grass at higher densities (figure 3). Changes in mean density
in 2018 were not strongly associated with the prior year
mean severity (data not shown), suggesting that other factors
probably interact with disease to influence eelgrass persistence.

Leaf-level prevalence was significantly, inversely associ-
ated with mean shoot density (glmm, p < 0.001; electronic
supplementary material, table S8). High disease levels were
associated with reduced eelgrass densities in both subtidal
and intertidal meadows (figure 3). The best-fit prevalence
and density model included the following predictors, all of
which were significant: tidal zone, leaf area, year, March
cold temperature anomaly (CDiffMeanCold), density, leaf
area*CDiffMeanCold, CDiffMeanCold*density, tidal zone*-
density (electronic supplementary material, table S8).
Interactions between temperature and density had the most
pronounced effect on predicted prevalence at low densities.
At low densities, lower predicted disease prevalence was
associated with cooler temperatures, while higher predicted
prevalence was associated with warmer temperatures (elec-
tronic supplementary material, figure S9). This association
was consistent at mean densities, but did not persist at high
eelgrass densities.

Leaf-level severity was not significantly associated with
mean shoot density (lmer, p > 0.05; electronic supplementary
material, table S8). The best-fit, hurdle severity model
included the following: tidal zone, leaf area, year, March
temperature anomaly (CDiffMean), density, year*CDiffMean.
There was not a consistent association between March temp-
erature anomaly, eelgrass densities, and predicted severity in
2017 and 2018 (data not shown).
(d) Eelgrass biometrics
Consistent with previous work [80], eelgrass leaves were smal-
ler at shallower depths (electronic supplementary material,
figure S8). Mean canopy height was 599.02 mm± 9.99% in
intertidal eelgrass and 1068.71 mm± 14.58% in subtidal eel-
grass when averaged across years (mean ± s.e.; electronic
supplementary material, figure S8). Mean leaf area was also
smaller among intertidal eelgrass compared to subtidal eel-
grass. Across both years, mean leaf area was 1935.14 mm2 ±
24.31% in intertidal eelgrass and 5267.93 mm2 ± 72.76% in sub-
tidal eelgrass (mean ± s.e.; electronic supplementary material,
figure S8). Leaf area was significantly, positively associated
with leaf-level disease prevalence (glmm, p < 0.001; electronic
supplementary material, table S6). Although subtidal eelgrass
leaves were on average nearly three times larger than intertidal
eelgrass, disease prevalence and severity were significantly
lower in subtidal plants.
(e) Quantitative polymerase chain reaction
We successfully confirmed the presence of L. zosterae in 19 out
of 49 symptomatic, lesioned eelgrass from British Columbia
and Puget Sound using qPCR. It is possible that we may
have tested both new and old infections, leading to this
38.7% positive rate. These results are comparable to other
studies that confirmed L. zosterae in diseased eelgrass in the
San Juan Islands and Alaska [9,29,30,53,66,85]. All asympto-
matic eelgrass tested from these regions were qPCR negative
for the pathogen (n = 49). We isolated L. zosterae from dis-
eased eelgrass in the San Juan Islands to confirm pathogen
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presence (data not shown). Overall, these findings support
that our visual identification of lesions were caused by
L. zosterae.
 lsocietypublishing.org/journal/rstb
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378:20220016
4. Discussion
The two study years, 2017 and 2018, captured outbreak con-
ditions of relatively high disease levels across a wide latitude
in the northern range of eelgrass, from Puget Sound to
Alaska, including some relatively undisturbed, remote
locations. Our observed disease prevalence and severity levels
are comparable to those documented in other intertidal and
subtidal eelgrass meadows in the northeast Pacific [66], includ-
ing the San Juan Islands [9,51,66], though severity levels are
considerably higher than those observed in Sweden [31]. Pre-
vious work indicates that in natural meadows, growth rates
and belowground sugar reserves are reduced in diseased eel-
grass and lesions can rapidly outpace leaf growth [20]. Thus,
eelgrass growth appears compromised—and potentially survi-
val—in meadows with high disease. Against this backdrop of
high disease levels, disease risk varied highly across both lati-
tude and tidal zone. Cooler sites, the cooler year and higher
latitudes had reduced disease prevalence and severity. This
suggests seagrass wasting disease is among the growing
number of temperature-sensitive marine diseases [5,10,66].

Of the temperature metrics tested in prevalence and sever-
ity models, March cold temperature anomalies were the best
predictors for summertime disease levels. Regions with
cooler temperatures that may either kill or slow the growth of
L. zosterae could have lower summer disease levels. In pure cul-
ture, L. zosterae has a lower thermal limit of 0°C [52]. While
most regions experienced cooler temperatures and reduced
disease in 2017, the exception was a cooler Puget Sound in
2018, which stood out as reflecting a temperature-disease
association. Disease prevalence and severity were markedly
lower in Puget Sound that year, coinciding with cooler La
Niña conditions—including increased upwelling—that pro-
vided more cool, saline water to the area in spring 2018 [86].
This local anomaly in cooler temperatures and lower disease
further supports the notion that cooler temperatures suppress
disease. By contrast, warmer spring temperatures could
allow the pathogen to proliferate, causing disease outbreaks
by the summer. Similar associations between June positive
temperature anomalies and elevated disease were recently
observed in intertidal eelgrass in the northeast Pacific [66].
Based on these findings, spring temperatures could serve as
an early indicator for summertime disease outbreaks. How-
ever, because cold temperatures help control wasting disease,
future warming conditions could provide more favourable
environments for L. zosterae, threatening the sustainability of
infected eelgrass meadows.

Other factors probably influence wasting disease
dynamics, such as light and salinity (reviewed in [14]).
Light is a key driver of eelgrass growth and survival, limiting
their lower depth limits [87]. Simulation experiments pre-
dicted that poorly illuminated growing conditions in the
1930s would have killed eelgrass meadows in the Dutch
Wadden Sea, regardless of the raging wasting disease out-
breaks at that time [88]. In our study, northern latitude sites
with longer day length may have had better growing con-
ditions for eelgrass, enabling plants to suppress infection.
This could, in part, account for the overall reduced disease
prevalence and severity observed at higher latitudes. Labora-
tory experiments also reflect an inverse association between
light and wasting disease, as mean severity was 35% higher
in eelgrass grown under reduced light compared to eelgrass
under ambient light [89]. Light can interact with other stres-
sors like temperature, which can alter the photosynthesis
capabilities of eelgrass leaves [90], further compromising
eelgrass health.

Associations between salinity and seagrass wasting disease
were detected in previous studies. Wasting disease was not
detected in Swedish low salinity meadows (13–25 practical sal-
inity units (PSU)), but it was present at all high salinity
meadows (25–29 PSU) [31]. In laboratory studies, eelgrass
exposed to lower salinities developed smaller lesions [70,91];
L. zosterae also had reduced reproductive rates under low sal-
inity conditions [17,50,70,92]. While all of our survey sites
were marine, they probably spanned a range of salinities,
given the proximity of some sites to freshwater sources (e.g.
Fraser River in British Columbia). Though we did not include
salinity in these analyses, future studies would benefit from
including in situ or modelled salinity measurements [93].
This association between reduced salinity and wasting disease
is especially compelling, as low salinity meadows could serve
as refuge from disease. Given that many stressors indepen-
dently and synergistically favour L. zosterae, future studies
should explore howmultiple stressors influence seagrass wast-
ing disease dynamics in laboratory conditions and natural
meadows [89]. This project adds an important line of evidence
on the role of ocean temperatures.

Sites spanned environmental and latitudinal gradients,
allowing us to measure disease across a broad spatial scale.
Our results indicate widespread disease prevalence across all
sites, and suggest that sites with severe infections could be
at risk for future declines. Further, they indicate that even
remote meadows with minimal human impacts, like Alaska
and British Columbia, are at risk for disease outbreaks. Since
high-latitude meadows had lower disease compared to those
at lower latitudes—and given that eelgrass ranges are expected
to expand northwards under climate change scenarios [47]—
these northern meadows should be carefully monitored as
potential refugia against disease and warm temperatures. A
number of factors were confounded with geographical
region, including timing of sampling, latitude, salinity, and
human impacts (e.g. coastal development, water quality).
While our study design could not partition the variation associ-
ated with these factors, they may be important in influencing
wasting disease dynamics. For example, coastal urbanization
could compromise eelgrass health, since nutrient enrichment
from runoff triggers algal blooms and suspended sediments
limit light, stressors that caused seagrass loss in an urban Flor-
ida estuary [94]. Future work should target multiple wasting
disease stressors.

Across regions and years, subtidal meadows had signifi-
cantly lower disease prevalence and severity than intertidal
meadows.When averaged across both years, subtidalmeadows
hadnearly three times lower disease severity, suggestingdeeper
habitats buffered the effects of environmental stressors and dis-
ease. Subtidal eelgrass may be more resilient and thus more
resistant to wasting disease compared to intertidal eelgrass,
and these deeper meadows could serve as refugia from future
disease outbreaks and climate change conditions. This is con-
sistent with findings that 20 years after mass eelgrass die-offs
in the Chausey Archipelago, France, recovery was mostly
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limited to subtidal meadows [95]. Similar to terrestrial plants
in environmental extremes [96], intertidal eelgrass that is
exposed to highly variable environmental conditions at low
tide—high and low temperatures, salinity, desiccation, UV
stress [64]—may be more physiologically stressed and at risk
to infection compared to subtidal meadows, which are not
exposed at low tide andmay bemore disease resilient. Similarly,
deep temperate reefs act as refugia against marine heatwaves
for habitat-forming corals, seaweeds, and eelgrass in Virginia
and the northeast Pacific, buffering against the harsh environ-
mental conditions to which organisms at shallower depths are
exposed [46,60–62,97]. At the same time, compromised light
conditions owing to eutrophication and sediment inputs from
coastal development could moderate this subtidal refugia
effect. Subtidal meadows already experience reduced light
levels compared to shallower, intertidal eelgrass [87]; these
differences are exacerbated in areas with poor water quality,
which should be carefully monitored for disease and overall
eelgrass health.

Sites with denser eelgrass meadows and cooler tempera-
tures had lower disease, regardless of tidal zone, but this
association was more pronounced in intertidal meadows.
However, this pattern is contrary to our hypothesis and dis-
ease theory, which would predict higher disease levels in
denser meadows, given that one of the mechanisms of sea-
grass wasting disease transmission is via direct contact
between infected and healthy leaves [15]. Meadows with
low eelgrass densities could have already experienced disease
outbreaks or stressful conditions, leaving a reduced number
of survivors with high disease prevalence and severity.
Given that we observed higher disease levels in patchier mea-
dows and strong interactions between temperature and
density on disease prevalence, patchy meadows are probably
more at risk to synergies between thermal and disease stres-
sors. Recent work corroborates similar findings on the
resiliency of deeper eelgrass habitats, which had positive or
neutral changes in density following a marine heatwave,
compared to significant declines in warmer, shallower mea-
dows [46]. As such, high density eelgrass meadows under
lower climate stress should be prioritized for conservation.

Generally, the mean densities, canopy heights, and leaf
areas we observed were comparable to those in other eelgrass
meadows in the northeast Pacific [9,30,66]. Across all regions,
the greater canopy heights and leaf areas observed in subtidal
eelgrass compared to intertidal eelgrass are consistent with
established differences in eelgrass growth patterns between
tidal zones [80,98]. Intertidal and subtidal densities varied con-
siderably, with orders of magnitude higher densities occurring
at some sites compared to others in the same tidal zone. Den-
sities were more consistent in subtidal meadows year to
year than intertidal meadows. This is consistent with seasonal
comparisons of intertidal and subtidal eelgrassmeadows in Ire-
land, where subtidal meadows had a smaller range of seasonal
shoot densities compared to intertidal eelgrass [80]. Collec-
tively, these results further support our hypothesis that
subtidal meadows are more environmentally stable and resili-
ent against environmental disturbances; this is also reflected in
lower disease in subtidal meadows. Our findings that leaf area
and disease prevalencewere significantly, positively associated
also aligns with previous findings [9,29,30]. Based on leaf area
alone and the usual association between disease and leaf size,
subtidalmeadows should havemore disease, yet subtidalmea-
dows consistently had reduced prevalence and severity. Again,
this suggests greater resilience to disease of deeper, natural
eelgrass meadows.

We specifically designed surveys to determine the associ-
ation between temperature and disease in natural eelgrass
meadows spanning the high biodiversity northeast Pacific.
Temperature is an important driver of historic and current
wasting disease outbreaks worldwide [9,13,14,27,66,99].
Our machine-learning algorithm, EeLISA, enabled us to
prioritize precise, repeatable disease assignments and scale
up our surveys. Field surveys that span broad, spatio-tem-
poral scales are essential to tracking and predicting disease
outbreaks in a rapidly changing ocean, and are needed to
inform conservation and management decisions [100–102].

Connecting across scales from individuals, tidal zones,
sites and geographical regions, this large-scale field survey
furthers our understanding of seagrass wasting disease
dynamics in a changing ocean. Notably, it shows an associ-
ation between reduced eelgrass disease, cooler temperatures,
higher eelgrass densities and deeper habitats. Our findings
underscore a central need in managing marine resources in a
rapidly warming climate: mapping resilient refugia. Surveys
also reveal the conservation value of subtidal meadows,
which are largely out of sight. This new indication of impor-
tant refuge from climate stressors and disease significantly
increases the value of subtidal meadows, many of which are
declining within the Salish Sea [9,51,68] and globally [39].
While previous field surveys compared wasting disease in eel-
grass at different intertidal [9,29] and subtidal zones [31], to
our knowledge, no prior studies have compared disease
between tidal zones. A relatively understudied aspect of wast-
ing disease in eelgrass, these deeper refugia provide important
opportunities for future conservation efforts.

This new information about lower wasting disease risk in
cooler climates, cooler years, and deeper meadows can
improve eelgrass management. First, to best inform conserva-
tion and preservation of these key habitats under mounting
climate stress, continued monitoring of eelgrass meadows is
essential, especially to gauge and track temperature-sensitive
disease outbreaks. Intertidal meadows are most tractable for
disease surveys, since they not only are easier to access from
shore, but also have higher levels of disease, are more at risk,
and may provide earlier warning of declines. Second, more
protections should also be considered for both intertidal and
subtidal meadows to buffer against future climate and dis-
ease-driven declines, especially in areas prone to more
frequent, rapid warming and compromised water quality, as
thesemeadows have higher risk for disease outbreaks. Because
subtidal meadows have the highest potential as safe havens
against environmental and pathogenic stressors, eelgrass con-
servation activities should focus on protecting subtidal
meadows. Given the increasing frequency and intensity of
marine heatwaves [36,103], other mounting environmental
changes, and global seagrass declines [39], understanding the
synergistic effects of climate change and marine diseases on
this foundation species is critical to the sustainability of our
oceans and planet [7].
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