

1 **Title Page**

2 **Title:**

3 Spike-timing-dependent plasticity alters electrosensory neuron synaptic strength *in vitro*, but does not
4 consistently predict changes in sensory tuning *in vivo*

5 **Author names:**

6 Adalee J. Lube¹, Xiaofeng Ma¹, Bruce A. Carlson¹.

7 Author contributions: A.J.L., X.M., and B.A.C. designed research; X.M. performed research *in vitro*; A.J.L.
8 performed research *in vivo*. X.M. and A.J.L. analyzed data; A.J.L and B.A.C. wrote the paper.

9 **Author affiliations**

10 ¹Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899

11 **Running Head:**

12 STDP alters connectivity *in vitro*, not consistently *in vivo*

13 **Address for Correspondence:**

14 Correspondence should be addressed to Bruce A. Carlson at carlson.bruce@wustl.edu.

15 Bruce A. Carlson (ORCID ID: 0000-0002-2151-0443)

16 Washington University in St. Louis

17 One Brookings Drive

18 Department of Biology

19 Campus Box 1137

20 Saint Louis, MO 63130-4899

21 Emails: adaleelube@wustl.edu, xiaofengma@wustl.edu

22 **Abstract**

23 How do sensory systems optimize detection of behaviorally relevant stimuli when the sensory environment
24 is constantly changing? We addressed the role of spike-timing-dependent plasticity (STDP) in driving
25 changes in synaptic strength in a sensory pathway, and whether those changes in synaptic strength could
26 alter sensory tuning. It is challenging to precisely control temporal patterns of synaptic activity *in vivo* and
27 replicate those patterns *in vitro* in behaviorally relevant ways. This makes it difficult to make connections
28 between STDP-induced changes in synaptic physiology and plasticity in sensory systems. Using the
29 mormyrid species *Brevimyrus niger* and *Brienomyrus brachystius*, which produce electric organ discharges
30 for electrolocation and communication, we can precisely control the timing of synaptic input *in vivo* and
31 replicate these same temporal patterns of synaptic input *in vitro*. In central electrosensory neurons in the
32 electric communication pathway, using whole-cell intracellular recordings *in vitro*, we paired presynaptic
33 input with postsynaptic spiking at different delays. Using whole-cell intracellular recordings in awake,
34 behaving fish, we paired sensory stimulation with postsynaptic spiking using the same delays. We found
35 that Hebbian STDP predictably alters sensory tuning *in vitro* and is mediated by NMDA receptors. However,
36 the change in synaptic responses induced by sensory stimulation *in vivo* did not adhere to the direction
37 predicted by the STDP observed *in vitro*. Further analysis suggests that this difference is influenced by
38 polysynaptic activity, including inhibitory interneurons. Our findings suggest that STDP rules operating at
39 identified synapses may not drive predictable changes in sensory responses at the circuit level.

40 **Keywords:** weakly electric fish, sensory processing, temporal coding, synaptic plasticity, Hebbian plasticity

41 **New and Noteworthy**

42 We replicated behaviorally relevant temporal patterns of synaptic activity *in vitro* and used the same
43 patterns during sensory stimulation *in vivo*. There was a Hebbian spike-timing-dependent plasticity (STDP)
44 pattern *in vitro*, but sensory responses *in vivo* did not shift according to STDP predictions. Analysis suggests
45 that this disparity is influenced by differences in polysynaptic activity, including inhibitory interneurons.
46 These results suggest STDP rules at synapses *in vitro* do not necessarily apply to circuits *in vivo*.

47 **Introduction**

48 How does a sensory system optimize detection of behaviorally relevant stimuli amidst constant changes in
49 those stimuli and to the sensory environment? To efficiently process sensory information, sensory systems
50 are tuned to specific stimulus attributes. Rather than being tuned to every possible stimulus variant, a more
51 efficient approach is for the neuronal tuning of a sensory system to adapt to changing stimulus statistics.
52 Sensory systems are known to adapt to a variety of complex stimulus statistics, such as the probability of
53 occurrence in the environment, stimulus rate, stimulus distribution, local stimulus mean, variation in stimulus
54 statistics, intensity, and more (1, 2). For example, retinal ganglion cells adjust their firing rate 2-5 fold in
55 response to changes in image contrast, providing a mechanism for contrast adaptation (3). In guinea pig
56 auditory midbrain, the neuronal population as a whole shifts their responses to best encode commonly
57 occurring sounds, though the mechanism for this shift remains unknown (4). Electrosensory pyramidal
58 neurons in gymnotiform weakly electric fish respond maximally to low frequencies under local spatial
59 stimulation, while they respond maximally to high frequencies under more global stimulation (5). This may
60 be due to different amounts of inhibitory input in these different stimulus contexts. A variety of examples
61 exist showing shifts in neuronal tuning depending on behavioral context (2, 6–8), but are there common
62 mechanisms that could allow for tuning adaptation in a quickly changing sensory environment?

63 The adjustment of synaptic connectivity via STDP, wherein synaptic strength is altered based on the relative
64 timing of repetitive pre- and postsynaptic activity, is known to alter neuronal responses in sensory circuits
65 across diverse invertebrate and vertebrate organisms (9–13). For example, STDP is involved in the
66 development of receptive fields (14, 15) and establishment of direction selectivity within the visual system
67 (16), and in the adult function of many circuits, including in humans (17–19). However, it remains unclear
68 whether STDP is a mechanism for altering sensory tuning in adult organisms in real-time.

69 Mormyrid weakly electric fish produce and receive electric organ discharges (EODs) that they use to
70 electrolocate and communicate. EODs have two salient features: waveform, which signals sender identity,
71 and inter-pulse interval (IPI), which signals contextual information (20). Mormyrids have a sensory pathway
72 dedicated to processing electric communication signals (Fig. 1)(21, 22). The waveform of each EOD is
73 encoded into spike timing differences among peripheral electroreceptors called knollenorgans (KOs), while
74 interspike intervals within KOs encode IPIs (21). The KO afferent fibers project to the nucleus of the

75 electrosensory lateral line lobe in the hindbrain, where corollary discharge inhibition blocks responses to
76 the fish's own EOD but not to external EODs generated by other fish (23). This timing information is relayed
77 to the midbrain anterior exterothalamic nucleus (ELa), where EOD waveform tuning originates (24, 25). ELa
78 provides topographic, excitatory input to the posterior exterothalamic nucleus (ELp)(24), where single-neuron
79 IPI tuning is established (26). Because ELa output precisely follows the timing of electric stimulus pulses
80 (25), we can stimulate ELp *in vitro* and *in vivo* with the exact same temporal patterns. This allows us to
81 have precise control of the timing of presynaptic input using behaviorally relevant stimuli *in vivo* and to
82 replicate those temporal patterns *in vitro*.

83 Indeed, ELp multipolar cells show the same IPI tuning in response to direct ELa stimulation *in vivo* as they
84 do to sensory stimulation (26). Within the ELp, excitatory and inhibitory multipolar neurons shape tuning to
85 EOD waveform and IPI (21). Excitatory multipolar cells form extensive inter-connections with each other
86 (27). They are more likely to share an excitatory connection with cells having similar IPI tuning, and
87 connections between cells with similar IPI tuning are stronger than connections between cells with dissimilar
88 tuning (27). In addition, local excitatory connections between ELp multipolar cells are more common at
89 short distances (27). The dense interconnections among these timing-sensitive cells and the temporal
90 precision of afferent input to ELp motivated experiments to test whether STDP affects the topology of this
91 network.

92 In addition, we have access to two species, *Brevimyrus niger* and *Brienomyrus brachyistius*, which are
93 distantly related members of clade A (28). Previous comparative work has shown that the cellular anatomy
94 and physiology of ELp is similar across clade A species (28, 29). Studying these two distantly related
95 species allows us to ask whether STDP is a common mechanism operating in ELp neurons across clade
96 A species.

97 In the present study, we show that STDP can alter the synaptic responses of ELp neurons *in vitro*, but these
98 changes did not reliably predict changes in sensory tuning *in vivo*. Analysis of variation in synaptic
99 responses suggests that differences in local connectivity *in vivo* relative to *in vitro* affect the direction of
100 synaptic changes induced by STDP.

101 **Materials and Methods**

102 **Animals**

103 In this study, we used a total of 95 *Brevimyrus niger* of both sexes, ranging from 4.5–9.4 cm in standard
104 length and 0.8–13.5 g in mass and 40 *Brienomyrus brachystius* of both sexes, ranging from 6.6–10 cm in
105 standard length and 4.2–20.1 g in mass. We acquired the fish through the aquarium trade and housed them
106 in same-species groups with a 12:12 h light/dark cycle, water conductivity of 200–400 μ S/cm, and a
107 temperature of 25–29°C. We fed the fish live black worms four times per week. All procedures were in
108 accordance with the guidelines established by the National Institutes of Health and were approved by the
109 Institutional Animal Care and Use Committee at Washington University in St. Louis. *Brienomyrus*
110 *brachystius* were used for the *Brienomyrus brachystius* specific experiment *in vitro* and for the EOD tuning
111 experiments *in vivo*, otherwise *Brevimyrus niger* were used.

112 ***In vitro* whole brain preparation**

113 We used an *in vitro* whole-brain preparation and recording method used in previous studies (27, 30). We
114 anesthetized fish in 300 mg/l MS-222 and then submerged fish in ice-cold, oxygenated artificial
115 cerebrospinal fluid (ACSF; composition in mM: 124 NaCl, 2.0 KCl, 1.25 KH₂PO₄, 24 NaHCO₃, 2.6 CaCl₂,
116 1.6 MgSO₄·7H₂O, and 20 glucose, pH 7.2–7.4; osmolarity 300–305 mosM) before performing a craniotomy
117 to fully expose the brain. While the brain remained submerged, all cranial nerves were cut, the connection
118 to the spinal cord was severed, and the valvula cerebellum was removed by suction, leaving the remaining
119 hindbrain, midbrain, and forebrain intact. The brain was then removed and placed in an incubating chamber
120 containing oxygenated ACSF at 29°C for 1 h. The brain was then transferred to a recording chamber
121 (Warner Instruments RC-26GLP) that was continuously perfused with oxygenated ACSF at room
122 temperature (flow rate = 1 ml/min), where it was placed on an elevated slice hold-down with a 1.0-mm mesh
123 size (Warner Instruments SHD-26GH/10). A second slice hold-down with a 1.5-mm mesh size (Warner
124 Instruments SHD-26GH/15) was placed on top of the brain, and it was held securely in place with cured
125 silicone placed at the top of the chamber. Some of the threads of the upper hold-down were cut to improve

126 access to the ELa and ELp. This configuration helped keep the preparation stable while also maximizing
127 tissue survival by allowing a constant flow of oxygenated ACSF both beneath and above the preparation.

128 ***In vitro* whole cell recording**

129 We visualized ELp neurons with transmitted light in an upright fixed-stage microscope (BX51WI; Olympus)
130 and a Newvicon tube camera (Dage-MTI). We obtained whole cell intracellular recordings with filamented
131 borosilicate patch pipettes (1.00-mm outer diameter; 0.58-mm inner diameter) with tip resistances of 6.2–
132 10.2 M Ω as described previously (31). The electrode internal solution contained the following (in mM): 130
133 K gluconate, 5 EGTA, 10 HEPES, 3 KCl, 2 MgCl₂, 4 Na₂ATP, 5 Na₂ phosphocreatine, and 0.4 Na₂GTP, pH
134 7.3–7.4 (osmolarity: 285–290 mosM). Electrodes were mounted in a headstage (Molecular Devices CV-
135 7B), which was connected to a multichannel amplifier (Molecular Devices MultiClamp 700B) for current-
136 clamp recording. Data were digitized at a sampling rate of 50 kHz (Molecular Devices Digidata 1440A) and
137 saved to disk (Molecular Devices Clampex v10.2). The position of the electrode was controlled by a
138 manipulator (Sutter Instruments MP-285) connected to a controller (Sutter Instruments MPC-200 and ROE-
139 200). Healthy ELp neurons were identified on the basis of location and a relatively low-contrast, round
140 somatic boundary. We targeted somas of all possible sizes and locations throughout ELp within ~20–50
141 μ m of the surface, depending on tissue thickness. Seal resistance varied from 1.3 to 4.8 G Ω , and input
142 resistance varied from 230 to 290 M Ω . We only used data from neurons that had stable access and input
143 resistances and a stable resting potential of at least –50 mV.

144 ***In vitro* data collection**

145 For focal presynaptic stimulation, we placed a glass stimulus electrode in ELa, just anterior to the ELp
146 border, and another in the solution just above the brain as a reference electrode. We delivered biphasic,
147 square current pulses with a total duration of 100 μ s and amplitudes ranging from 50 to 200 μ A through
148 pulse generators (A-M Systems model 2100), triggered by a single digital output (Molecular Devices
149 Digidata 1440A). Stimulus amplitude was adjusted to yield reliable, subthreshold postsynaptic potentials
150 from the recorded neuron. Five synaptic potentials evoked by ELa stimulation were averaged to measure

151 the amplitude of excitatory post-synaptic potentials (EPSPs). We defined the resting potential as the
152 average membrane potential within a 50-ms window during the prestimulus period.

153 Experiments were also done using an array of stimulus electrodes for presynaptic stimulation rather than a
154 single glass stimulus electrode. The array consisted of four channels of bipolar stimulation (8 electrodes
155 total), in the form of either a “cluster” electrode (FHC model CE) or a “matrix” electrode (FHC model MX).
156 We placed this array in ELa, just anterior to the ELP border. The rest of the stimulus protocol described
157 above for the focal glass stimulus electrode was the same for the array stimulus electrodes.

158 For STDP induction, each EPSP induced by ELa stimulation was paired with a spike evoked by a 2 ms
159 depolarizing 600 μ A pulse injected via the patch pipette, which was sufficient to induce an action potential
160 in the postsynaptic neuron. In *Brevimyrus niger*, we paired EPSPs and spikes at -80,-50,-40,-30,-20,-10, -
161 5, 0, +5, +10, +20, +30, +40, +50, and +80 ms delays pre-post. We randomly chose the pairing delay that
162 each neuron was subjected to. There were three controls: ELa stimulation only, intracellular stimulation
163 only, or no stimulation. All pairings, ELa stimulation only and intracellular stimulation only control conditions
164 were repeated at 1 Hz for 6 minutes. The no stimulation control lasted 6 minutes. In *Brienomyrus*
165 *brachystius*, we only paired EPSPs and spikes at -20 and +10 ms delays pre-post, with no controls. After
166 EPSP-spike pairing, the EPSP evoked by ELa stimulation was recorded again (repeated 5 times and
167 averaged) to compare with the baseline, pre-pairing EPSP. To measure the max of the PSP, we found the
168 maximum point in a window from the end of the stimulus to 200 ms. In this same window, to measure the
169 PSP area over time, we summed the post-stimulus synaptic potential trace and multiplied by one over the
170 sampling frequency (1/sampling frequency = sampling period).

171 To test the role of STDP in shaping IPI tuning, we paired IPI trains of ELa stimulation with intracellular
172 spiking. We delivered two trains of ELa stimulation, the first train consisted of 10 pulses at 10 ms IPI and
173 the second train consisted of 10 pulses at 100 ms IPI. Both IPI trains were repeated 30 times to get an
174 averaged post-synaptic potential baseline response. During pairing, we delivered the 10 ms IPI train,
175 followed by 450 ms of silence, then the 100 ms IPI train. While this ELa stimulation was delivered, either
176 the 10 ms IPI train or the 100 ms IPI train was paired with 10 pulses of 10 ms IPI or 100 ms IPI postsynaptic
177 spikes evoked by 600 μ A current injection via the patch pipette with a -20 ms pre-post delay. This pairing

178 was repeated 300 times. Both IPI trains were then repeated 30 times to get an averaged post-synaptic
179 potential response after pairing. We measured the maximum depolarization in response to each stimulus
180 pulse relative to rest and then averaged the maximum depolarizations in response to the 2nd through 10th
181 pulses to quantify the response to each IPI. To measure the PSP area over time, in a window from the end
182 of the first stimulus in the IPI train to the start of the second stimulus in the IPI train, we summed the post-
183 stimulus synaptic potential trace and multiplied by one over the sampling frequency (1/sampling frequency
184 = sampling period).

185 ***In vitro pharmacology***

186 To assess the role of NMDA versus non-NMDA receptors in mediating STDP, we bath applied the NMDA
187 receptor antagonist dl-2-amino-5-phosphonopentanoic acid (APV; Tocris 0105) or the non-NMDA receptor
188 antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX; Tocris 2312). Both drugs were delivered at a
189 concentration of 50 μ M in ACSF. Full washout typically took 15–20 min. During bath application, EPSPs
190 evoked by ELa stimulation were paired with a spike evoked by a 2 ms depolarizing 600 μ A pulse injected
191 via the patch pipette. We paired EPSPs and spikes for 6 mins at 1 Hz with delays at -20 ms and +10 ms
192 (pre-post). We randomized the sequence in which the delays were paired. After EPSP-spike pairing,
193 EPSPs evoked by ELa stimulation were recorded again (repeated 5 times and averaged) to compare with
194 the baseline EPSP.

195 ***In vivo whole-cell recordings***

196 We prepared fish for *in vivo* recordings from ELp as described previously(26, 32). Fish were anesthetized
197 in 300 mg/L tricaine methanesulfonate (MS-222) and paralyzed with an intramuscular injection of 100 μ l of
198 0.1 mg/ml gallamine triethiodide (Flaxedil). The fish was then moved to a recording chamber, where it was
199 submerged in freshwater, except for a small region of the surface of the head. We maintained general
200 anesthesia for surgery by respirating the fish with an aerated solution of 100 mg/ml MS-222 through a
201 pipette tip in the mouth. The surgery site was anesthetized with 0.4% lidocaine on the skin. We then
202 removed the skin of the surgery site, affixed a post to the skull, and removed a rectangular piece of skull
203 covering ELp. We placed the ground electrode on the nearby cerebellum. After surgery, we brought the fish

204 out of anesthesia by switching to aerated freshwater respiration and monitored the fish's electric organ
205 discharge command (EODC) output with a pair of electrodes placed next to the fish's tail(20, 26, 32, 33).
206 The EOD output is silenced by flaxedil (the muscle paralytic), but we recorded the EODC as a fictive EOD.
207 MS-222 anesthesia silences the EODC output, so the return of EODC output indicates that the fish has
208 recovered from anesthesia (32). At the end of the recording session, the respiration of the fish was switched
209 back to 100 mg/L MS-222 until no EODC output could be recorded, and then the fish was sacrificed by
210 freezing.

211 We obtained intracellular, whole-cell patch recordings in current-clamp using previously published methods
212 (26, 34, 35). We used glass patch micropipettes with resistances of 20–40 M Ω . The pipette tip was filled
213 with a solution (in mM) of 100 CH₃CO₂K, 2 KCl, 1 MgCl₂, 5 EGTA, 10 HEPES, 20 KOH, and 43 biocytin,
214 and the pipette shank was filled with the same solution, except that biocytin was replaced with D-mannitol
215 (26, 34). Initial seal resistances were >1 G Ω . Recordings were amplified 10x and low-pass filtered (cutoff
216 frequency, 10 kHz) using an Axopatch 200B amplifier (Molecular Devices), digitized at a rate of 97.7 kHz
217 (Model RX8 Digitizer, Tucker Davis Technologies), and saved using custom software written in Matlab. We
218 delivered electrosensory stimulation using electrodes positioned around the perimeter of the recording
219 chamber (32).

220 ***In vivo* data collection**

221 After patching a cell, we stimulated with bipolar square pulses, adjusting the duration (0.1–1.5 ms), intensity
222 (3–71 mV/cm), polarity (normal or reversed), and stimulus orientation (transverse or longitudinal to the fish)
223 to elicit maximal sub-threshold, postsynaptic potential (PSP) amplitudes from each neuron. Next, we
224 injected intracellular, depolarizing current, adjusting the duration (1 to 8 ms) and amplitude (0.1 to 0.9 nA)
225 until a reliable spike was produced in each neuron. All subsequent sensory and intracellular stimuli
226 delivered during a trial then used these parameters. We did not include in the repetition count any responses
227 to stimulus repetitions in which stimuli occurred within 2–5 ms after an EODC response, since corollary
228 discharge inhibition in the hindbrain blocks sensory responses within this window (23). We only used
229 recordings in which the resting potential varied by 5.5 mV or less across all trials and was at least –40 mV
230 throughout the experiment.

231 The sensory stimulus was repeated 30 times to get an averaged post-synaptic potential baseline response.
232 The sensory stimulation was then paired with intracellular current injection at the delay of maximum
233 potentiation observed *in vitro*, -20 ms pre-post delay, or the delay of maximum depression, +10 ms pre-
234 post delay. Three ms were added to each delay time to account for the latency from knollenorgan
235 stimulation to ELa evoked potential for final delays of -23 ms pre-post and +7 ms pre-post. There were
236 three controls: sensory stimulation only, intracellular stimulation only, or no stimulation. All pairings, sensory
237 stimulation only and intracellular stimulation only control conditions were repeated at 1 Hz for 6 minutes.
238 The no stimulation control lasted 6 minutes. The order in which they were repeated was decided pseudo-
239 randomly, to maintain an equal number of times that each of the 2 pairings and 3 controls were collected
240 first. After every pairing or control, sensory stimulation was repeated 30 times to obtain an averaged post-
241 synaptic potential to compare to baseline. To measure the max of the PSP, we found the maximum point
242 in a window from the end of the stimulus to 200 ms. In this same window, to measure the PSP area over
243 time, we summed the post-stimulus synaptic potential trace and multiplied by one over the sampling
244 frequency (1/sampling frequency = sampling period).

245 To explore the effect of STDP on EOD tuning, we paired post-synaptic spiking at a potentiating delay of -
246 23 ms pre-post either with a randomly selected conspecific EOD or a 90-degree phase shifted version of
247 that same EOD as a sensory stimulus. These EODs were randomly selected from a library of 10 EODs.
248 We adjusted the intensity (3–71 mV/cm) and stimulus orientation (transverse or longitudinal to the fish) to
249 elicit maximal sub-threshold, PSP amplitudes from each neuron. Both EOD sensory stimuli were repeated
250 20 times to get an averaged post-synaptic potential baseline response. Which EOD was paired and the
251 order in which they were repeated was decided pseudo-randomly, to maintain an equal number of times
252 that either a natural or phase-shifted EOD sensory stimulus was collected and to maintain an equal number
253 of natural EOD and phase-shifted EOD pairings. One of the two EOD stimuli, pseudo-randomly selected,
254 was paired with intracellular current injection with a -23 ms pre-post delay for 6 mins at 1 Hz. Both EOD
255 sensory stimuli were then repeated 20 times to obtain an averaged post-synaptic potential response to
256 compare to baseline. To measure the max of the PSP, we found the maximum point in a window from the
257 end of the stimulus to 200 ms. In this same window, to measure the PSP area over time, we summed the

258 post-stimulus synaptic potential trace and multiplied by one over the sampling frequency (1/sampling
259 frequency = sampling period).

260 To explore the effect of STDP on IPI tuning, we paired IPI trains of sensory stimulation with intracellular
261 spiking. We delivered two trains of sensory stimulation, the first train consisted of 10 pulses at 10 ms IPI
262 and the second train consisted of 10 pulses at 100 ms IPI. Both IPI trains were repeated 5 times to get an
263 averaged post-synaptic potential baseline response. During pairing, we delivered the 10 ms IPI train,
264 followed by 450 ms of silence, then the 100 ms IPI train. While this sensory stimulation was delivered, either
265 the 10 ms IPI train or the 100 ms IPI train was paired with 10 pulses of 10 ms IPI or 100 ms IPI postsynaptic
266 spikes with a -23 ms pre-post delay. This pairing was repeated 300 times. The order of the pairings was
267 decided pseudo-randomly, to maintain an equal number of times that each condition (pairing with 10 ms
268 IPI or 100 ms IPI) was collected first. After each pairing, IPI sensory stimulation was repeated 5 times to
269 obtain an averaged post-synaptic potential to compare to baseline. To measure the max of the PSP, we
270 found the maximum point in a window from the end of the first stimulus in the IPI train to the start of the
271 second stimulus in the IPI train. In this same window, to measure the PSP area over time, we summed the
272 post-stimulus synaptic potential trace and multiplied by one over the sampling frequency (1/sampling
273 frequency = sampling period).

274 **Synaptic potential landmarks**

275 In our *in vivo* experiments, we often observed multiple phases of depolarizations and hyperpolarizations
276 during a post-synaptic potential. We wanted to quantify the physiological characteristics of these synaptic
277 responses to see whether differences in those characteristics correlated with differences in the observed
278 STDP. Synaptic potential landmarks were calculated on the pre-pairing (i.e. baseline) postsynaptic potential
279 trace for the initial STDP experiments and the EOD tuning experiments, and the first baseline postsynaptic
280 potential in the 100 ms IPI train for the IPI tuning experiments. The raw trace was filtered with a 2 ms median
281 filter, and the 1st and 2nd derivative were both filtered with a 5 ms zero-phase digital filter. Resting potential
282 was calculated by averaging the 50 ms prestimulus period. The baseline postsynaptic potential traces were
283 zeroed by subtracting the resting potential value from the whole trace. The threshold for a depolarization or
284 a hyperpolarization was +/- 3 standard deviations from the baseline mean, respectively. We measured 32

285 different landmarks from each PSP based on 16 different types of measurements. An example of a PSP
286 illustrating these landmarks can be found in Supplemental Figure S1 ([10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)).
287 The landmarks are numbered, and the same numbers are used in Supplemental Figure S1 and
288 Supplemental Tables S1-S4 ([10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)). These measurements behind these
289 landmarks were defined and measured as follows:

290 **1. Total # of depolarizations:** # of points that crossed threshold with a positive slope (i.e. point (i-1) <
291 threshold < point (i))

292 **2. Total # of hyperpolarizations:** # of points that crossed threshold with a negative slope (i.e. point (i-1) >
293 threshold > point (i))

294 **3. Total # of peaks:** # of local maxima above threshold within a given depolarization, can be >1. The
295 timing of each peak was also recorded. We also set a selection criterion to determine what constitutes
296 a local maximum. We took the first derivative of the trace and recorded all the locations of sign changes
297 in the first derivative trace. To be considered a local maximum, the peak magnitude had to be greater
298 than the maximum value of the post-stimulus trace minus the minimum value of the post-stimulus trace,
299 divided by 20, from above the first point of a sign change in the first derivative on either side of the peak
300 in question (36).

301 **4. Total # of troughs:** # of local minima below threshold within a given hyperpolarization, can be >1. The
302 timing of each trough was also recorded. We also set a selection criterion to determine what constitutes
303 a local minimum. We took the first derivative of the trace and recorded all the locations of sign changes
304 in the first derivative trace. To be considered a local minimum, the trough magnitude had to be less
305 than the maximum value of the post-stimulus trace minus the minimum value of the post-stimulus trace,
306 divided by 20, from below the first point of a sign change in the first derivative on either side of the
307 trough in question (36).

308 **5. Median and range of values of peaks:** We measured the median and range (largest peak minus
309 smallest peak) of all the peak amplitudes.

310 **6. Median and range of values of troughs:** We measured the median and range (largest trough minus
311 smallest trough) of all the trough amplitudes.

312 **7. Median and range of latencies to all depolarizations and hyperpolarizations:** The beginning of a
313 depolarization was defined as the timing of the maximum in the second derivative between the end of
314 the previous depolarization or hyperpolarization and the first peak in the depolarization. If there was no
315 preceding hyperpolarization or depolarization, then the timing of stimulus offset was used instead. The
316 depolarization latency was defined as the beginning of a depolarization minus the time of stimulus
317 offset. The beginning of a hyperpolarization was defined as the timing of the minimum in the second
318 derivative between the end of the previous depolarization or hyperpolarization and the first trough in
319 the hyperpolarization. If there was no preceding hyperpolarization or depolarization, then the time of
320 stimulus offset was used instead. The hyperpolarization latency was defined as the beginning of a
321 hyperpolarization minus the time of stimulus offset. The median and range were calculated for all the
322 depolarization and hyperpolarization latencies combined.

323 **8. Median and range of latencies to all peaks and troughs:** The peak latency was defined as the timing
324 of the peak minus the timing of stimulus offset. The trough latency was defined as the timing of the
325 trough minus the timing of stimulus offset. The median and range were calculated for all the peak and
326 trough latencies combined.

327 **9. Median and range of total duration of each depolarization:** Peaks in the second derivative were
328 defined the same as peaks in the PSP (see above), but on the 2nd derivative trace (36). The end of a
329 depolarization was defined as the timing of the first peak in the second derivative after the offset
330 threshold crossing used to define the depolarization. End latency was defined as the end of a
331 depolarization minus the timing of stimulus offset. The total duration of the depolarization was defined
332 as the depolarization end latency minus the depolarization latency. The median and range were
333 calculated for all the depolarization durations.

334 **10. Median and range of total duration of each hyperpolarization:** Troughs in the second derivative
335 were defined the same as troughs in the PSP (see above), but on the 2nd derivative trace (36). The end
336 of a hyperpolarization was the time of the first trough in the second derivative after the offset threshold
337 crossing used to define the hyperpolarization. End latency was defined as the end of a hyperpolarization
338 minus the timing of stimulus offset. The total duration of the hyperpolarization was defined as the

339 hyperpolarization end latency minus the hyperpolarization latency. The median and range were
340 calculated for all the hyperpolarization durations.

341 **11. Total PSP duration:** Total PSP duration was defined as the end latency of the last
342 depolarization/hyperpolarization minus the first depolarization/hyperpolarization latency.

343 **12. Median and range of duration at half max value of each depolarization:** First, we found the value
344 at half of the max, which is the largest peak of a depolarization plus the magnitude at the depolarization
345 latency, divided by two. Then, we found the timings of half max before and after the largest peak. The
346 duration at half max equaled the timing of half max after peak minus the timing of half max before peak.

347 **13. Median and range of duration at half min value of each hyperpolarization:** First, we found the
348 value at half of the min, which is the largest trough of a hyperpolarization plus the magnitude at the
349 hyperpolarization latency, divided by two. Then, we found the timings of half min before and after the
350 largest trough. The duration at half min equaled the timing of half min after trough minus the timing of
351 half min before trough.

352 **14. Median and range of onset and offset average slope of depolarizations and hyperpolarizations:**
353 The depolarization onset slope was calculated by taking the largest peak magnitude of a depolarization
354 minus the depolarization start magnitude, divided by the difference of time between those two points.
355 The hyperpolarization onset slope was calculated by taking the largest trough magnitude of a
356 hyperpolarization minus the hyperpolarization start magnitude, divided by the difference in time
357 between those two points. The depolarization offset slope was calculated by taking the largest peak
358 magnitude of a depolarization minus the depolarization end magnitude, divided by the difference in time
359 between those two points. The hyperpolarization offset slope was calculated by taking the largest
360 trough magnitude of a hyperpolarization minus the hyperpolarization end magnitude, divided by the
361 difference in time between those two points.

362 **15. Summed area of depolarizations and hyperpolarizations:** The depolarizations area was calculated
363 by summing all values above threshold then multiplying by one over the sampling frequency
364 (1/sampling frequency = sampling period). The hyperpolarizations area was calculated by summing all
365 values below threshold and then multiplying by one over the sampling frequency (1/sampling frequency
366 = sampling period)

367 **16. PSP total area:** The total area was calculated by summing the total depolarizations area (described
368 above) and the hyperpolarizations area (described above).

369 **Experimental design and statistical analyses**

370 The goal of this study was to explore the role of STDP in shaping sensory tuning. To do this we performed
371 experiments in mormyrid weakly electric fish to take advantage of a sensory system in which we could
372 precisely stimulate a sensory system both *in vitro* and *in vivo* in a behaviorally relevant way in an intact
373 circuit. The details of the stimulations are stated above for each particular experiment. Unless otherwise
374 stated, values are represented as median and 75%/25% quartiles. The max and area were measured as
375 described above for both baseline PSPs and the PSPs measured following pairing. The Area, Max, and
376 Slope calculations were normalized by subtracting the before pairing value from the after pairing value,
377 then dividing by the maximum of the absolute values of the after pairing and before pairing values. We used
378 this normalization method because the complex nature of PSPs recorded *in vivo* made percent change an
379 unreliable measure for two reasons. First, the before pairing values were sometimes negative, so that an
380 increase would be reflected in a negative percentage change and a decrease would be reflected in a
381 positive percentage change due to a negative denominator. In addition, the before pairing values were
382 sometimes very small, so that any change, however small, would be reflected in a very large percentage
383 change. Using the maximum of the before and after pairing absolute values ensured that the numerator
384 and denominator were of a similar order of magnitude. For the *in vitro* and *in vivo* non-tuning STDP
385 experiments and pharmacology, a t-test was used if there were 2 groups or 1-way ANOVA if there were
386 more than 2 groups. For the IPI tuning experiments and EOD tuning experiments, a two-way ANOVA was
387 used to compare the stimulus*pairing interactions. A Bonferroni correction for multiple comparisons was
388 used unless otherwise stated. Details of the synaptic landmark measurements are found in the section
389 above entitled Synaptic potential landmarks. A principal components analysis was performed on the
390 landmarks measured in the *in vitro* and *in vivo* experiments. The first four principal components were
391 retained for each. Statistical analysis was done in SPSS and Matlab.

392 **Results**

393 **STDP alters synaptic strength in midbrain electrosensory neurons *in vitro***

394 To test whether we could induce changes in synaptic connectivity via STDP *in vitro*, we used a whole brain
395 excised preparation from *Brevimyrus niger* to pair focal ELa presynaptic stimulation with postsynaptic
396 intracellular ELp current injection (Fig. 2A) for 6 mins at 1 Hz. Because ELa provides topographic, excitatory
397 input to ELp (24) and excitatory ELp-to-ELp connections are more common at shorter distances (27), we
398 expected focal ELa stimulation to drive primarily excitatory inputs to the recorded ELp neuron. Presynaptic
399 stimulation was paired with postsynaptic spiking at a range of delays from -80 to +80 ms pre-post. Raw
400 trace examples of synaptic depression evoked by paired stimulation at a 10 ms post-leads-pre delay and
401 synaptic potentiation evoked by a 20 ms pre-leads-post delay are shown in Fig. 2B. The PSPs resulting
402 from focal stimulation *in vitro* consisted primarily of single EPSPs, but examples that deviated from this
403 pattern are shown in Supplemental Figure S2 ([10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)). We normalized the
404 changes in EPSP amplitude by subtracting the before pairing values from the after pairing values, and then
405 dividing by the maximum of the absolute values of the after pairing and before pairing values. We then
406 plotted the normalized change in EPSP amplitude following paired stimulation against the relative timing of
407 EPSP peaks and postsynaptic action potential peaks during pairing (Fig. 2C). There was a clear change in
408 the postsynaptic potential amplitude for delays in the range of -25 to +25 ms between the relative timing of
409 EPSP peaks and postsynaptic action potential peaks (Fig. 2C). Using separate exponential curve fits for
410 the pre-leads-post delays data and the post-leads-pre delays data, we found that there was an increase in
411 the synaptic strength as the pre-leads-post delay approached zero and a decrease in the synaptic strength
412 as the post-leads-pre delay approached zero. Correlation coefficients for pre-leads-post delays and post-
413 leads-pre delays were 0.436 and 0.377, respectively.

414 After averaging all the changes at each pre-post stimulus delay, we found that the stimulus delays of -20
415 ms pre-post and +10 ms pre-post evoked the largest potentiation and depression, respectively. We also
416 included three different controls, in addition to these two pairings: presynaptic ELa stimulation only,
417 postsynaptic ELp spiking only, and no stimulus. ELa stimulation only and postsynaptic ELp spiking only
418 controls were also performed for 6 mins at 1 Hz and the no stimulus control period lasted for 6 mins. Since
419 STDP depends on the correlation between pre- and postsynaptic spiking, we chose these controls to

420 elucidate any plasticity or changes in excitability that may be due to factors other than STDP. We found a
421 significant difference in EPSP amplitude changes after paired stimulation among the -20 ms pre-post
422 pairing, +10 ms pre-post pairing, and controls (Fig. 2D, $F(4,54) = 21.893$, $p < 0.0005$, one-way ANOVA).
423 Specifically, we found that the -20 ms pre-post synaptic pairing was significantly different from the +10 ms
424 pre-post synaptic pairing ($p < 0.0005$, Tukey's HSD). The -20 ms pre-post synaptic pairing was also
425 significantly different from the ELa stimulation only control ($p = 0.002$, Tukey's HSD) and the intracellular
426 spiking only control ($p < 0.014$, Tukey's HSD) but there was no significant difference between the -20 ms
427 pre-post synaptic pairing and the no stimulus control ($p = 0.401$, Tukey's HSD). The +10 ms pre-post pairing
428 was significantly different from the ELa stimulation only control ($p < 0.0005$, Tukey's HSD), the intracellular
429 spiking only control ($p < 0.0005$, Tukey's HSD), and the no stimulus control ($p < 0.0005$, Tukey's HSD). The
430 ELa only control was not significantly different from the intracellular only control ($p = 0.981$, Tukey's HSD)
431 nor the no stimulus control ($p = 0.483$, Tukey's HSD), nor was the intracellular only control significantly
432 different from the no stimulus control ($p = 0.797$, Tukey's HSD) (Fig. 2D).

433 We normalized the changes in EPSP area by subtracting the before pairing values from the after pairing
434 values, and then dividing by the maximum of the absolute values of the after pairing and before pairing
435 values. We found no significant difference in the normalized change in EPSP area after paired stimulation
436 between the -20 ms pre-post and +10 ms pre-post pairings and controls (Fig. 2E, $F(4,54) = 0.724$, $p =$
437 0.579, one-way ANOVA).

438 To determine whether STDP is broadly consistent across species, we paired pre- and postsynaptic
439 stimulation in *Brienomyrus brachystius* at both -20 ms pre-post and +10 ms pre-post delays. When
440 comparing normalized change in max, the former resulted in potentiation whereas the latter resulted in
441 depression ($t_{(27)} = 3.291$, $p = 0.0027$, paired t-test, Supplemental Fig. S3A,
442 [10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)). We found no significant difference in the normalized change in area ($t_{(27)} = 1.645$, $p = 0.1112$, paired t-test, Supplemental Fig. S3B, [10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)), though visually
443 there is a trending difference. The results suggest that synaptic connectivity in ELp can be altered by STDP
444 in both species studied. To induce STDP in all experiments that follow, we used -20 ms pre-post stimulus
445 delays to induce potentiation and + 10 ms pre-post stimulus delays to induce depression.

447 **Induction of STDP requires NMDA receptors**

448 ELp neurons are known to have both NMDA and AMPA receptors (27), and NMDA receptors are a known
449 mediator of LTP (11). Therefore, we tested the role of NMDA and AMPA receptors in STDP by bath
450 perfusion of either APV, an antagonist of NMDA receptors, or DNQX, an antagonist of AMPA receptors, in
451 *Brevimyrus niger*. There were significant differences in the baseline EPSP amplitudes between control,
452 DNQX application and APV application (Fig 3A; $F(2, 57) = 10.631, p < 0.0005$, one-way ANOVA). DNQX
453 application resulted in a significant decrease in EPSP amplitude compared to control ($p < 0.0005$, Tukey's
454 HSD), whereas APV application did not cause a significant decrease in EPSP amplitude compared to
455 control ($p = 0.475$, Tukey's HSD) (Fig. 3A). As a result, EPSP amplitudes in the presence of DNQX were
456 significantly smaller than EPSP amplitudes in the presence of APV ($p = 0.014$, Tukey's HSD).

457 Both APV and DNQX application resulted in a significant decrease in potentiation elicited by the -20 ms
458 pre-post delay (Fig. 3B; $t(17) = 3.98, p = 0.00095$, unpaired t-test; -20 ms pre-post delay v. DNQX -20 ms
459 pre-post, $t(19) = 5.31, p = 0.00004$, unpaired t-test). APV, but not DNQX application resulted in a significant
460 decrease in depression elicited by a +10 ms pre-post delay (Fig. 3B; $t(22) = -3.67, p = 0.0013$, unpaired t-
461 test; 10 ms pre-post delay v. DNQX 10 ms pre-post, $t(23) = -1.98, p = 0.059$, unpaired t-test). Since blocking
462 NMDA receptors did not have a significant effect on EPSP amplitudes, these results suggest that NMDA
463 receptors are necessary for the synaptic strength changes elicited by STDP. The effect of DNQX on STDP
464 likely reflects the significant reduction in EPSP amplitudes caused by blocking AMPA receptors, as a
465 reduction in EPSP amplitude is expected to reduce the magnitude of synaptic plasticity.

466 **Diffuse presynaptic stimulation induces variable STDP**

467 A given EOD stimulates a distinct subpopulation of cells in the ELa (21, 25) and the ELa provides
468 topographic, excitatory input to the ELp (24). An array of stimulus electrodes stimulates both focal ELa
469 inputs that provide direct excitatory input to the recorded neuron and adjacent ELp neurons, as well as
470 excitatory input to more distant ELp neurons (22). Because excitatory ELp-to-ELp connections tend to occur
471 over short distances (27), array stimulation *in vitro* is expected to stimulate more inhibitory inputs to
472 recorded neurons compared to pathways excited by focal ELa stimulation. In *Brevimyrus niger*, when

473 postsynaptic ELp spikes were paired with presynaptic stimulation using a large electrode array in ELa (Fig.
474 4A), the resulting changes in EPSP amplitude were more variable (Fig. 4B). No large changes in EPSP
475 amplitude were observed for relatively long pre- leads postsynaptic delays or long post- leads presynaptic
476 delays. However, at relatively short pre-leads-post delays, both potentiation and depression were observed,
477 and a similar pattern was observed at relatively short post-leads-pre delays (Fig. 4B). Using separate
478 exponential curve fits for the pre-leads-post delays data and the post-leads-pre delays data, we found that
479 the fit for both delays did not match the pattern observed with focal *in vitro* stimulation. Correlation
480 coefficients for pre-leads-post delays and post-leads-pre delays were 0.011 and -0.110, respectively (Fig.
481 4B). These results show that stimulating a larger, more diffuse population of ELa neurons can result in a
482 more variable pattern of STDP at both positive and negative pre-post delays close to zero, as compared to
483 focal ELa stimulation. Comparing the normalized change in max measurement, we found that the -20 ms
484 pre-post synaptic pairing was not significantly different from the +10 ms pre-post synaptic pairing (Fig. 4C;
485 $t(25) = -1.36$, $p = 0.187$, unpaired t-test). Comparing the normalized change in area measurement, we
486 similarly found that the -20 ms pre-post synaptic pairing was not significantly different from the +10 ms pre-
487 post synaptic pairing (Fig. 4D; $t(25) = -2.05$, $p = 0.051$, unpaired t-test).

488 **STDP can alter synaptic connectivity *in vivo***

489 Next, we sought to determine whether STDP could be induced *in vivo* in response to pairing sensory stimuli
490 with postsynaptic spiking. In these experiments in *Brevimyrus niger*, we provided presynaptic input using
491 sensory stimulation rather than direct stimulation of ELa while recording intracellularly from ELp neurons
492 (Fig. 5A). We paired sensory stimulation with intracellular stimulation using delays that generally resulted
493 in strong potentiation (-20 ms pre-post) vs. depression *in vitro* (+10 ms pre-post) (see Fig. 2D). However,
494 for both pairings, we added a 3 ms delay to account for the latency between sensory stimulation and ELa
495 responses (37). Thus, we delivered paired stimulation with sensory stimulation leading postsynaptic
496 stimulation by 23 ms, and sensory stimulation following postsynaptic stimulation by 7 ms, as well as three
497 controls: sensory stimulation only, intracellular stimulation only, and no stimulation.

498 While many of the changes in synaptic responses fit the predicted patterns of potentiation in response to
499 the sensory-leads-post pairing and depression in response to the post-leads-sensory pairing, many others

500 did not (Fig. 5B). Unlike the focal *in vitro* data, no significant differences were found among the 5 treatments
501 for normalized change in PSP maximum values (Fig. 5C; $p = 0.089$, one-way ANOVA). However, there
502 were significant differences among the treatments for normalized change in area (Fig. 5D; $p = 0.002$, one-
503 way ANOVA). In particular, the sensory-leads-post pairing was significantly larger than the post-leads-
504 sensory pairing (Fig. 5D; $p = 0.009$, Tukey's HSD). Results of the other pairwise comparisons are as follows:
505 sensory-leads-post v. sensory stimulus only, $p = 0.466$; sensory-leads-post v. intracellular only, $p = 0.002$;
506 sensory-leads-post v. no stimulus, $p = 0.088$; post-leads-sensory v. sensory stimulus only, $p = 0.404$; post-
507 leads-sensory v. intracellular only, $p = 0.998$; post-leads-sensory v. no stimulus, $p = 0.934$; sensory only v.
508 intracellular only, $p = 0.222$; sensory only v. no stimulus, $p = 0.880$; intracellular only v. no stimulus, $p =$
509 0.807 (all pairwise comparisons using Tukey's HSD).

510 To analyze the time course of these changes in synaptic responses, we subtracted the mean voltage trace
511 before pairing from the mean voltage trace after pairing, and then averaged across neurons to obtain a
512 mean difference potential that represents the overall time course of changes in synaptic response. The
513 maximum change in synaptic response occurred at 14.5 ms following stimulus onset for sensory-leads-post
514 and 13.4 ms for post-leads-sensory (Fig 6A). Although there is a positive peak in the post-leads-sensory
515 trace, the positive peak in the sensory-leads-post trace is larger, which shows there is a relative increase
516 in synaptic strength in the sensory-leads-post delay relative to the post-leads-sensory delay. In addition,
517 due to the later shape of the post-leads-sensory delay PSP, which reveals a decrease in synaptic strength,
518 the overall change in area is closer to zero for the post-leads-sensory trace. We also analyzed the
519 normalized change in onset slope, for the focal *in vitro* data, array *in vitro* data, and the *in vivo* data and
520 found no significant differences (Fig. 6B; $t(26) = 1.79$, $p = 0.084$, unpaired t-test; Fig. 6C; $t(25) = 1.58$, $p =$
521 0.126, unpaired t-test; Fig. 6D; $t(61) = 1.36$, $p = 0.178$, unpaired t-test).

522 **The induction of STDP varies with the physiological characteristics of synaptic responses**

523 While the postsynaptic potentials recorded *in vitro* typically consisted almost exclusively of excitatory
524 postsynaptic potentials with a single peak, the postsynaptic potentials recorded *in vivo* often contained both
525 positive and negative components consisting of multiple peaks and troughs (Fig. 7A). To determine whether
526 there are physiological attributes of neurons that might relate to the widespread variation we observed in

527 STDP during *in vitro* array stimulation and *in vivo* sensory stimulation (see Figs. 4B and 5B-D), we
528 measured 16 landmarks from the postsynaptic potentials of each neuron before pairing (see the Materials
529 and Methods and Supplemental Data ([10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)) for details). We performed a
530 Principal Components Analysis (PCA) on these landmarks and then ran a two-way ANOVA on the resulting
531 PC scores in which the independent variables included pairing (pre-leads-post vs. post-leads-pre), and
532 whether or not the observed change in postsynaptic potential after pairing fit our STDP predictions based
533 on the normalized change in max data (i.e. a positive change in normalized max for a pre-leads-post delay
534 and a negative change in normalized max for a post-leads-pre delay would fit our hypothesis). The specific
535 eigenvalue loadings and the landmarks they represent can be found in the supplemental data
536 ([10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)).

537 For the *in vitro* focal stimulation data, when reviewing the normalized change in max amplitude, there were
538 no values that did not fit the expected STDP direction. For the *in vitro* array stimulation data (Fig. 7B), there
539 were $N = 12$ pre-leads-post pairings that fit the hypothesis and $N = 6$ that did not fit. There were $N = 4$ post-
540 leads-pre pairings that fit the hypothesis and $N = 5$ that did not fit. The first four PC scores captured 76.67%
541 of the variance. We found significant differences for PC 3. For PC3, the 'fit' variable was significantly
542 different ($F(1,18) = 7.05, p = 0.016$, two-way ANOVA) and the 'pairing' variable was significantly different
543 ($F(1,18) = 8.81, p = 0.008$, two-way ANOVA). In the eigenvalue loadings found in Supplemental Table S1
544 ([10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)), for PC3, negative loadings are dominated by landmarks relating to
545 hyperpolarizations, while positive loadings are dominated by landmarks relating to depolarizations. This
546 suggests that the relative balance of excitatory and inhibitory pathways leading to the recorded neuron is
547 affecting whether the array *in vitro* data fit the STDP direction predicted by the focal *in vitro* data. For the *in*
548 *vivo* data (Fig. 7C), there were $N = 24$ sensory-leads-post pairings that fit the hypothesis and $N = 9$ that did
549 not fit. There were $N = 13$ post-leads-sensory pairings that fit the hypothesis and $N = 17$ that did not fit. The
550 first four PC scores captured 76.31% of the variance. We found significant differences in PCs 2 and 3. For
551 PC2 data the 'pairing' variable was significant ($F(1,59) = 4.598, p = 0.036$, two-way ANOVA). For PC3, the
552 'fit' variable was significantly different ($F(1,59) = 4.162, p = 0.046$, two-way ANOVA). Although the loadings
553 did not separate into easily discernable categories (Supplemental Table S2

554 [10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)), there were still significant differences in the PCs, which suggests that
555 differences in the excitatory and inhibitory based synaptic landmarks relate to whether the *in vivo* data did
556 or did not fit the expected STDP direction based on the focal *in vitro* data. Together, these results suggest
557 that physiological characteristics of postsynaptic potential responses relate to whether the induction of
558 STDP results in synaptic connectivity changes in the direction predicted by the *in vitro* focal stimulation
559 results.

560 **STDP does not cause changes to different EOD stimuli as predicted by *in vitro* focal stimulation**
561 **data**

562 We next sought to determine whether STDP could elicit selective changes in the synaptic responses to
563 particular EOD stimuli. In this experiment in *Brienomyrus brachystius*, we presented a randomly chosen
564 conspecific EOD and a 90-degree phase-shifted version of that EOD as sensory stimuli. The latter
565 manipulation maximally distorts the EOD waveform in the temporal domain while keeping the frequency
566 spectrum constant (28, 38). After recording responses to both stimuli, we randomly selected one of the two
567 stimuli to pair with intracellular stimulation at a -23 ms sensory-leads-post delay. We then recorded
568 responses to both stimuli after pairing to determine whether there was a selective increase in synaptic
569 response to the paired stimulus. We found no significant differences for either the normalized change in
570 area or the normalized change in max data (Fig. 8A and B). However, some experiments did result in
571 selective increases in response to the paired stimulus, as seen by the grey lines connecting data points
572 from the same neurons.

573 **STDP can cause selective changes in the responses to different IPI stimuli**

574 Within this sensory pathway, ELa neurons respond faithfully to a given EOD stimulus regardless of IPI, and
575 IPI tuning first arises within ELp (26). Thus, we were able to test whether STDP could elicit selective
576 changes in the responses to different IPI stimuli both *in vitro* and *in vivo*. In both cases, in *Brevimyrus niger*,
577 we repeatedly delivered trains of 10 ms and 100 ms IPIs while pairing postsynaptic stimulation with just one
578 of the IPIs at a pre-leads-post delay of -20 ms (or sensory-leads-post delay of -23 ms) (Fig. 9A). We then
579 measured the change in response to both 10 ms and 100 ms IPIs after pairing. *In vitro*, we found clear

580 evidence for a differential shift in responses to 10 vs. 100 ms IPIs depending on which IPI postsynaptic
581 spikes were paired with, resulting in a significant 'stimulus' * 'pairing' interaction effect for the normalized
582 change in max value (Fig. 9B; $F(1,26) = 7.42, p = 0.011$, two-way repeated measures ANOVA). Pairing
583 with 10 ms IPIs led to a relative increase in synaptic responses to 10 ms IPIs compared to 100 ms IPIs,
584 whereas pairing with 100 ms IPIs led to a relative increase in synaptic responses to 100 ms IPIs compared
585 to 10 ms IPIs (Fig. 9B). There was no significant interaction effect in the normalized change in area
586 measurement, though there was a qualitative increase in the 100 ms IPI stimulus relative to the 10 ms IPI
587 stimulus after pairing with a 100 ms IPI (Fig. 9C). *In vivo*, however, there were no significant differences for
588 changes in either the normalized max or area for the 10 ms or 100 ms IPI pairings (Fig. 9D, E).

589 ***In vivo* EOD and IPI tuning varies with the physiological characteristics of synaptic responses**

590 Some EOD and IPI sensory tuning experiments did result in selective increases in response to the paired
591 stimulus, as seen by the grey lines connecting data points from the same neurons (Figs. 8 and 9). Therefore,
592 we performed a landmark calculation and PCA analysis on these data to determine whether physiological
593 characteristics of synaptic responses could predict the shift in responses to paired and unpaired EOD and
594 IPI stimuli. For the *in vivo* EOD tuning experiments, there were $N = 38$ natural EOD pairings that fit the
595 hypothesis and $N = 32$ that did not fit. There were $N = 36$ shifted EOD pairings that fit the hypothesis and
596 $N = 34$ that did not fit. The first four PC scores captured 58.9% of the variance. PC1 and PC4 had significant
597 'fit'**'pairing' interactions (Fig. 10B; $F(1,136) = 7.03, p = 0.009$, two-way ANOVA and $F(1,136) = 6.59, p =$
598 0.011, two-way ANOVA). In the eigenvalue loadings found in Supplemental Table S3
599 ([10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)), for PC1, negative loadings are dominated by landmarks relating to
600 depolarizations, while positive loadings are dominated by landmarks relating to hyperpolarizations. This
601 suggests that the relative balance of excitatory and inhibitory pathways leading to the recorded neuron is
602 affecting whether the EOD tuning data fit the STDP direction predicted by the focal *in vitro* data. For PC4,
603 although the loadings did not separate into easily discernable categories, there were still significant
604 differences in the PC, which suggests that differences in the excitatory and inhibitory based synaptic
605 landmarks relate to whether the EOD tuning data did or did not fit the expected STDP direction based on
606 the focal *in vitro* data. For the *in vivo* IPI tuning experiments, there were $N = 7$ 10 ms pairings that fit the

607 hypothesis and $N = 11$ that did not fit. There were $N = 7$ 100 ms pairings that fit the hypothesis and $N = 10$
608 that did not fit. The first four PC scores captured 71% of the variance. There were no significant differences
609 in the PCs based on IPI, though there are qualitative differences in the graphs (Fig. 10C, Supplemental
610 Table S4 [10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)). These results suggest that physiological characteristics of
611 postsynaptic potential responses relate to whether EOD and IPI tuning results in synaptic connectivity
612 changes in the direction predicted by the *in vitro* focal stimulation results.

613 **Discussion**

614 *In vitro* studies across many brain regions and organisms have shown that repeated pre- leads postsynaptic
615 spiking induces synaptic potentiation, whereas the reverse timing induces synaptic depression (12, 13, 39).
616 This Hebbian form of STDP has been implemented in a variety of computational models that explore many
617 circuits (40, 40–42). Additionally, it is known that STDP can alter neuronal responses to sensory input *in*
618 *vivo* (11), and we describe a few examples below in more detail. However, these studies in adult organisms
619 are specific to the role of STDP in processing self-generated sensory representations or reinforcing stable
620 sensory representations, rather than how STDP alters sensory tuning to stimuli in a changing sensory
621 environment. The role of STDP in altering tuning to external stimuli in intact adult circuits in real time remains
622 unclear. We leveraged studying sensory processing in mormyrid weakly electric fish, a system where we
623 have precise control over the timing of presynaptic input using behaviorally relevant stimuli both *in vitro* and
624 *in vivo*. We show for the first time in ELp neurons that there is clear synaptic potentiation at pre- leads
625 postsynaptic delays and clear synaptic depression at post- leads presynaptic delays *in vitro* with focal
626 stimulation (Fig. 2), indicative of Hebbian STDP.

627 Once we established that Hebbian STDP can be induced in ELp neurons, we explored the role of STDP in
628 altering sensory tuning. *In vitro*, pairing with 10 ms IPIs led to a relative increase in synaptic responses to
629 10 ms IPIs compared to 100 ms IPIs, whereas pairing with 100 ms IPIs led to a relative increase in synaptic
630 responses to 100 ms IPIs compared to 10 ms IPIs (Fig. 9B). It has been shown previously that IPI tuning
631 first arises in the ELp, and that ELa cells are tuned to EOD waveform, but not IPI (21, 26). Since Hebbian
632 STDP can alter the IPI tuning of ELp neurons, these results suggest that Hebbian STDP is acting on ELp-
633 to-ELp synapses, rather than on ELa-to-ELp synapses. In addition, we show that the peak of synaptic

634 potential change for both sensory-leads-postsynaptic delays and postsynaptic-leads-sensory delays
635 occurs more than 10 ms after stimulus onset (Fig. 6A). Previous work has shown that ELa response
636 latencies to sensory stimuli are 2.5 - 3 ms (37), and ELp response latencies to sensory stimuli are 7 to 20
637 ms (43). Thus, the changes in synaptic potential *in vivo* occur in a timeframe consistent with changes at
638 ELp-to-ELp synapses. We also measured the onset slope of PSPs (Fig. 6B-D). Previous work has shown
639 that the onset slope of a PSP represents the immediate upstream pre-synaptic glutamate synapse (44),
640 which in this case would be direct synapses from the ELa. We found no significant changes in onset slope
641 following STDP, consistent with STDP acting at ELp-to-ELp synapses rather than ELa-to-ELp synapses.
642 STDP acting at these synapses may also explain why ELp neurons with similar IPI tuning are more likely
643 to share an excitatory synaptic connection, and why these excitatory synapses are stronger, compared to
644 neurons with dissimilar IPI tuning (27) .

645 Previous work has shown that STDP has a role in refining and altering responses to sensory input *in vivo*.
646 In the passive and active electrosensory pathways of mormyrid fish, anti-Hebbian plasticity creates an
647 efference copy, or ‘negative image,’ of predictable electrosensory input to cancel reafferent responses to
648 self-generated input (12, 45). This anti-Hebbian plasticity occurs at the synapses between granule cells and
649 medium ganglion cells, and individual granule cells have temporally diverse responses to self-generated
650 input, allowing for a temporally specific efference copy (46). This cancellation generalizes across EOD rates
651 through EOD command rate-dependent responses of granule cells and granule cell afferents (47). In the
652 functionally similar cerebellum-like dorsal cochlear nucleus (DCN) of mice, synapses from parallel fibers
653 onto fusiform and cartwheel cells exhibit Hebbian and anti-Hebbian STDP, respectively (48, 49). More
654 recently, cancellation of self-generated reafferent auditory input in cartwheel cells has been shown to arise
655 through a similar plastic efference copy that is generated through anti-Hebbian STDP (50). Both of these
656 results are clear evidence that points to an important role for STDP in sensory processing. However, these
657 findings show a role for STDP in the adaptive filtering of self-generated reafferent sensory input. Here, we
658 wanted to address whether STDP could play a role in altering the sensory processing of externally
659 generated, behaviorally relevant stimuli.

660 In the *Xenopus* tadpole visual system, Hebbian STDP evoked by moving bars occurs at retinotectal
661 synapses *in vivo*, leading to the development of motion direction tuning (14, 51, 52). While this is clear
662 evidence for Hebbian STDP altering sensory processing of external stimuli, these landmark studies
663 occurred in developing juveniles, and we were interested in sensory processing in established adult circuits.
664 In the locust olfactory system, small assemblies of Kenyon cells encode odor. Kenyon cells synapse onto
665 β -lobe neurons, whose synchronous activity is required for fine odor discrimination (53). Hebbian STDP
666 due to odor-evoked activity in Kenyon cells and β -lobe neuron synapses helps maintain the spiking
667 synchrony required for feed-forward information flow (54). In hippocampal place cells, STDP is likely
668 involved in several processes related to spatial learning and may explain the anticipatory shifting of place
669 fields due to experience (55). These studies have explored a role for STDP in sensory processing of adult
670 circuits, but they have shown that STDP functions to maintain or reinforce an existing sensory
671 representation, rather than using STDP to modify responses to an actively changing sensory environment.

672 Multipolar cells exhibit the same IPI tuning to sensory stimulation as they do to direct electrical stimulation
673 of ELa (26). This allows us to stimulate ELp *in vivo* and *in vitro* with the exact same temporal patterns (26,
674 27, 30, 31, 34). It follows that tuning in the ELp could be shifted via STDP in a similar way *in vitro* and *in*
675 *vivo*. Despite this, while induction of STDP with presynaptic ELa focal stimulation *in vitro* (Fig. 2) resulted
676 in clear synaptic plasticity and shifts in IPI tuning consistent with Hebbian STDP (Fig. 9B), we did not find
677 such clear results when using array ELa stimulation *in vitro* or sensory stimulation *in vivo* (Fig 5). Rather,
678 we found that using presynaptic array stimulation or sensory stimulation paired with postsynaptic spiking
679 could result in either potentiation or depression for pre-post delays close to zero, rather than either/or as
680 predicted by Hebbian STDP.

681 Recently, Chindemi et al.(56) showed that modeling LTP/LTD in pyramidal cells in the neocortex based on
682 *in vitro* stimulation protocols created stereotypical potentiation and depression as expected, but when the
683 model was adjusted for physiological levels of calcium, LTP/LTD magnitudes were greatly reduced and
684 required higher frequency stimulation to achieve. Further experiments manipulating the calcium
685 concentration or stimulation frequency *in vivo* could be done to further elucidate what could be contributing
686 to the discrepancy between our *in vivo* results and *in vitro* focal stimulation results. Alternative types of

687 plasticity could also be involved. For example, the presence of synaptic clustering through cooperative
688 plasticity allows for local plasticity in a group of functionally similar neurons (57–59). A well-studied
689 mechanism in the field of memory formation (60), the consequence of this cooperative plasticity would be
690 an anatomically restrained plasticity, where only synapses close enough together on the postsynaptic
691 dendrite would be potentiated by repeated activation (57). Considering the dense interconnections and
692 distinct tuning properties of ELp multipolar cells (27), it is possible that distinct clusters of synapses with
693 different tuning properties and a differing presence of inhibition would all be affected by repeated stimulation
694 variably.

695 In our system, previous work in the ELa has shown that a given EOD stimulates a unique population of ELa
696 neurons (21, 25), and that ELa provides topographic, excitatory input to ELp (24). In addition, local
697 excitatory connections between ELp multipolar cells are more common at short distances (27). Thus, focal
698 ELa stimulation *in vitro* would drive activity in primarily local excitatory synapses between ELp neurons, in
699 the topographic location corresponding to the ELa stimulation. In addition to excitatory input from ELa
700 projection neurons and other ELp multipolar cells, multipolar cells also receive GABAergic inhibition from
701 local interneurons (31). Array stimulation *in vitro* and sensory stimulation *in vivo*, however, would stimulate
702 a more diffuse population of ELa projection neurons, driving postsynaptic activity in multipolar cells across
703 the ELp, including more inhibitory pathways leading to the recorded neuron than expected from focal ELa
704 stimulation. A stereotypically potentiating delay of pre-leads postsynaptic activity could lead to visible
705 depression in the postsynaptic response if the balance between excitatory and inhibitory pathways to the
706 neuron was shifted relatively towards inhibitory pathways. If these inhibitory pathways were more numerous
707 or more affected by STDP, this would result in STDP in the opposite of the predicted direction.

708 To begin to address this hypothesis, we performed a landmark calculation and PCA analysis on the *in vitro*
709 array and *in vivo* data to determine whether physiological characteristics of synaptic responses correlated
710 with variation in the direction of synaptic potential change induced by STDP. We found that there were
711 significant differences in the PC scores depending on the ‘fit’ of the data, i.e. whether or not the data
712 followed the predicted direction of STDP (Figs. 7 and 10). Importantly, the PC scores reflected measures
713 suggestive of differences in the balance of excitation and inhibition, amongst other things, in an individual

714 PSP. These results suggest that more inhibition and polysynaptic activity could lead to a more diverse
715 STDP response with array stimulation *in vitro* and sensory stimulation *in vivo* as compared to focal
716 stimulation *in vitro*, as both excitatory and inhibitory synapses could be under the influence of STDP.
717 While induction of STDP with presynaptic ELa focal stimulation *in vitro* generates shifts in IPI tuning
718 consistent with Hebbian STDP (Fig. 9B), we did not find such clear results when pairing postsynaptic spiking
719 with specific IPIs *in vivo*. Though we did successfully induce statistically significant synaptic change *in vivo*
720 in the direction predicted by Hebbian STDP (Fig. 5D), we found no significant shifts in EOD or IPI tuning
721 (Figs. 8 and 9). Despite previous work showing the relevance of STDP in sensory processing, this disparity
722 between *in vitro* and *in vivo* results highlights the large increase in variables that are contributing to plasticity
723 and altering synaptic responses *in vivo* relative to *in vitro*. In conclusion, STDP is likely a relevant
724 mechanism for shaping sensory processing, but its effects on responses to behaviorally relevant stimuli in
725 intact organisms can be more complex than predicted by plasticity at specific synapses.

726 **SUPPLEMENTAL MATERIAL:**

727 Supplemental Figs. S1-S3: DOI. [10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)

728 Supplemental Tables S1-S4: DOI. [10.6084/m9.figshare.c.6339569](https://doi.org/10.6084/m9.figshare.c.6339569)

729 **Authors:** Adalee J. Lube¹, Xiaofeng Ma¹, Bruce A. Carlson¹.

730 **Author contributions:** A.J.L., X.M., and B.A.C. designed research; X.M. performed research *in vitro*; A.J.L.
731 performed research *in vivo*. X.M. and A.J.L. analyzed data; A.J.L and B.A.C. wrote the paper.

732 **Author affiliations:** ¹Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-
733 4899

734 **Acknowledgments:** We thank Matasaburo Fukutomi, Erika Schumacher, Martin Jarzyna, and Ellen
735 Urquhart for general feedback and help with statistical analysis.

736 **Grants:** This work was supported by National Science Foundation to Bruce Carlson, Grant IOS-1755071.

737 **Disclosures/Conflict of interest statement:** The authors declare no competing financial interests.

738 **References**

739 1. **Sharpee TO, Calhoun AJ, Chalasani SH.** Information theory of adaptation in neurons, behavior, and
740 mood. *Current Opinion in Neurobiology* 25: 47–53, 2014. doi: 10.1016/j.conb.2013.11.007.

741 2. **Wark B, Lundstrom BN, Fairhall A.** Sensory adaptation. *Current Opinion in Neurobiology* 17: 423–
742 429, 2007. doi: 10.1016/j.conb.2007.07.001.

743 3. **Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M.** Adaptation of retinal processing to
744 image contrast and spatial scale. *Nature* 386: 69–73, 1997. doi: 10.1038/386069a0.

745 4. **Dean I, Harper NS, McAlpine D.** Neural population coding of sound level adapts to stimulus
746 statistics. *Nat Neurosci* 8: 1684–1689, 2005. doi: 10.1038/nn1541.

747 5. **Chacron MJ, Doiron B, Maler L, Longtin A, Bastian J.** Non-classical receptive field mediates switch
748 in a sensory neuron's frequency tuning. *Nature* 423: 77–81, 2003. doi: 10.1038/nature01590.

749 6. **Simoncelli EP, Olshausen BA.** Natural Image Statistics and Neural Representation. *Annu Rev
750 Neurosci* 24: 1193–1216, 2001. doi: 10.1146/annurev.neuro.24.1.1193.

751 7. **Solomon SG, Kohn A.** Moving Sensory Adaptation beyond Suppressive Effects in Single Neurons.
752 *Current Biology* 24: R1012–R1022, 2014. doi: 10.1016/j.cub.2014.09.001.

753 8. **Whitmire CJ, Stanley GB.** Rapid Sensory Adaptation Redux: A Circuit Perspective. *Neuron* 92: 298–
754 315, 2016. doi: 10.1016/j.neuron.2016.09.046.

755 9. **Dan Y, Poo M.** Spike Timing-Dependent Plasticity of Neural Circuits. *Neuron* 44: 23–30, 2004. doi:
756 10.1016/j.neuron.2004.09.007.

757 10. **Markram H, Lübke J, Frotscher M, Sakmann B.** Regulation of Synaptic Efficacy by Coincidence of
758 Postsynaptic APs and EPSPs. *Science* 275: 213–215, 1997. doi: 10.1126/science.275.5297.213.

759 11. **Feldman DE.** The Spike-Timing Dependence of Plasticity. *Neuron* 75: 556–571, 2012. doi:
760 10.1016/j.neuron.2012.08.001.

761 12. **Bell CC, Han VZ, Sugawara Y, Grant K.** Synaptic plasticity in a cerebellum-like structure depends on
762 temporal order. *Nature* 387: 278–281, 1997. doi: 10.1038/387278a0.

763 13. **Bi G, Poo M.** Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike
764 Timing, Synaptic Strength, and Postsynaptic Cell Type. *J Neurosci* 18: 10464–10472, 1998. doi:
765 10.1523/JNEUROSCI.18-24-10464.1998.

766 14. **Mu Y, Poo M.** Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity
767 in a Developing Retinotectal System. *Neuron* 50: 115–125, 2006. doi:
768 10.1016/j.neuron.2006.03.009.

769 15. **Richards BA.** In vivo spike-timing-dependent plasticity in the optic tectum of *Xenopus laevis* . .

770 16. **Masquelier T, Thorpe SJ.** Unsupervised Learning of Visual Features through Spike Timing
771 Dependent Plasticity. *PLoS Comput Biol* 3: e31, 2007. doi: 10.1371/journal.pcbi.0030031.

772 17. **Arai N, Muller-Dahlhaus F, Murakami T, Bliem B, Lu M-K, Ugawa Y, Ziemann U.** State-Dependent
773 and Timing-Dependent Bidirectional Associative Plasticity in the Human SMA-M1 Network. *Journal
774 of Neuroscience* 31: 15376–15383, 2011. doi: 10.1523/JNEUROSCI.2271-11.2011.

775 18. **Casula EP, Pellicciari MC, Picazio S, Caltagirone C, Koch G.** Spike-timing-dependent plasticity in the
776 human dorso-lateral prefrontal cortex. *NeuroImage* 143: 204–213, 2016. doi:
777 10.1016/j.neuroimage.2016.08.060.

778 19. **Testa-Silva G.** Human synapses show a wide temporal window for spike-timing-dependent
779 plasticity. .

780 20. **Carlson BA.** Electric signaling behavior and the mechanisms of electric organ discharge production
781 in mormyrid fish. *Journal of Physiology-Paris* 96: 405–419, 2002. doi: 10.1016/S0928-
782 4257(03)00019-6.

783 21. **Baker CA, Kohashi T, Lyons-Warren AM, Ma X, Carlson BA.** Multiplexed temporal coding of
784 electric communication signals in mormyrid fishes. *Journal of Experimental Biology* 216: 2365–
785 2379, 2013. doi: 10.1242/jeb.082289.

786 22. **Xu-Friedman MA, Hopkins CD.** Central mechanisms of temporal analysis in the knollenorgan
787 pathway of mormyrid electric fish. *Journal of Experimental Biology* 202: 1311–1318, 1999. doi:
788 10.1242/jeb.202.10.1311.

789 23. **Bell C, Grant K.** Corollary discharge inhibition and preservation of temporal information in a
790 sensory nucleus of mormyrid electric fish. *J Neurosci* 9: 1029–1044, 1989. doi:
791 10.1523/JNEUROSCI.09-03-01029.1989.

792 24. **Friedman MA, Hopkins CD.** Neural Substrates for Species Recognition in the Time-Coding
793 Electrosensory Pathway of Mormyrid Electric Fish. *J Neurosci* 18: 1171–1185, 1998. doi:
794 10.1523/JNEUROSCI.18-03-01171.1998.

795 25. **Lyons-Warren AM, Kohashi T, Mennerick S, Carlson BA.** Detection of submillisecond spike timing
796 differences based on delay-line anticoincidence detection. *Journal of Neurophysiology* 110: 2295–
797 2311, 2013. doi: 10.1152/jn.00444.2013.

798 26. **Carlson BA.** Temporal-Pattern Recognition by Single Neurons in a Sensory Pathway Devoted to
799 Social Communication Behavior. *Journal of Neuroscience* 29: 9417–9428, 2009. doi:
800 10.1523/JNEUROSCI.1980-09.2009.

801 27. **Ma X, Kohashi T, Carlson BA.** Extensive excitatory network interactions shape temporal processing
802 of communication signals in a model sensory system. *Journal of Neurophysiology* 110: 456–469,
803 2013. doi: 10.1152/jn.00145.2013.

804 28. **Carlson BA, Hasan SM, Hollmann M, Miller DB, Harmon LJ, Arnegard ME.** Brain Evolution Triggers
805 Increased Diversification of Electric Fishes. *Science* 332: 583–586, 2011. doi:
806 10.1126/science.1201524.

807 29. **Vélez A, Kohashi T, Lu A, Carlson BA.** The cellular and circuit basis for evolutionary change in
808 sensory perception in mormyrid fishes. *Sci Rep* 7: 3783, 2017. doi: 10.1038/s41598-017-03951-y.

809 30. **Kohashi T, Carlson BA.** A fast BK-type KCa current acts as a postsynaptic modulator of temporal
810 selectivity for communication signals. *Front Cell Neurosci* 8, 2014. doi: 10.3389/fncel.2014.00286.

811 31. **George AA, Lyons-Warren AM, Ma X, Carlson BA.** A Diversity of Synaptic Filters Are Created by
812 Temporal Summation of Excitation and Inhibition. *Journal of Neuroscience* 31: 14721–14734, 2011.
813 doi: 10.1523/JNEUROSCI.1424-11.2011.

814 32. **Lyons-Warren AM, Kohashi T, Mennerick S, Carlson BA.** Retrograde Fluorescent Labeling Allows
815 for Targeted Extracellular Single-unit Recording from Identified Neurons In vivo. *JoVE* : 3921, 2013.
816 doi: 10.3791/3921.

817 33. **Baker CA, Ma L, Casareale CR, Carlson BA.** Behavioral and Single-Neuron Sensitivity to Millisecond
818 Variations in Temporally Patterned Communication Signals. *J Neurosci* 36: 8985–9000, 2016. doi:
819 10.1523/JNEUROSCI.0648-16.2016.

820 34. **Baker CA, Carlson BA.** Short-Term Depression, Temporal Summation, and Onset Inhibition Shape
821 Interval Tuning in Midbrain Neurons. *Journal of Neuroscience* 34: 14272–14287, 2014. doi:
822 10.1523/JNEUROSCI.2299-14.2014.

823 35. **Rose G, Fortune E.** New techniques for making whole-cell recordings from CNS neurons in vivo.
824 *Neuroscience Research* 26: 89–94, 1996. doi: 10.1016/S0168-0102(96)01074-7.

825 36. **Yoder N.** peakfinder(x0, sel, thresh, extrema, includeEndpoints, interpolate) [Online]. [date
826 unknown]. (<https://www.mathworks.com/matlabcentral/fileexchange/25500-peakfinder-x0-sel-thresh-extrema-includeendpoints-interpolate>), [17 Nov. 2021].

827

828 37. **Amagai S, Friedman MA, Hopkins CD.** Time coding in the midbrain of mormyrid electric fish. I.
829 Physiology and anatomy of cells in the nucleus exteroventralis pars anterior. *Journal of
830 Comparative Physiology A: Sensory, Neural, and Behavioral Physiology* 182: 115–130, 1998. doi:
831 10.1007/s003590050163.

832 38. **Hopkins CD, Bass AH.** Temporal Coding of Species Recognition Signals in An Electric Fish. *Science*
833 212: 85–87, 1981. doi: 10.1126/science.7209524.

834 39. **Markram H, Lübke J, Frotscher M, Roth A, Sakmann B.** Physiology and anatomy of synaptic
835 connections between thick tufted pyramidal neurones in the developing rat neocortex. *The Journal
836 of Physiology* 500: 409–440, 1997. doi: 10.1113/jphysiol.1997.sp022031.

837 40. **Song S, Miller KD, Abbott LF.** Competitive Hebbian learning through spike-timing-dependent
838 synaptic plasticity. *Nat Neurosci* 3: 919–926, 2000. doi: 10.1038/78829.

839 41. **Morrison A, Diesmann M, Gerstner W.** Phenomenological models of synaptic plasticity based on
840 spike timing. *Biol Cybern* 98: 459–478, 2008. doi: 10.1007/s00422-008-0233-1.

841 42. **Huang Q-S, Wei H.** A Computational Model of Working Memory Based on Spike-Timing-Dependent
842 Plasticity. *Front Comput Neurosci* 15: 630999, 2021. doi: 10.3389/fncom.2021.630999.

843 43. **Amagai S.** Time coding in the midbrain of mormyrid electric fish. II. Stimulus selectivity in the
844 nucleus exterolateralis pars posterior. *Journal of Comparative Physiology A: Sensory, Neural, and*
845 *Behavioral Physiology* 182: 131–143, 1998. doi: 10.1007/s003590050164.

846 44. **Taube J, Schwartzkroin P.** Mechanisms of long-term potentiation: EPSP/spike dissociation,
847 intradendritic recordings, and glutamate sensitivity. *J Neurosci* 8: 1632–1644, 1988. doi:
848 10.1523/JNEUROSCI.08-05-01632.1988.

849 45. **Warren R, Sawtell NB.** A comparative approach to cerebellar function: insights from
850 electrosensory systems. *Current Opinion in Neurobiology* 41: 31–37, 2016. doi:
851 10.1016/j.conb.2016.07.012.

852 46. **Kennedy A, Wayne G, Kaifosh P, Alviña K, Abbott LF, Sawtell NB.** A temporal basis for predicting
853 the sensory consequences of motor commands in an electric fish. *Nat Neurosci* 17: 416–422, 2014.
854 doi: 10.1038/nn.3650.

855 47. **Dempsey C, Abbott L, Sawtell NB.** Generalization of learned responses in the mormyrid
856 electrosensory lobe. *eLife* 8: e44032, 2019. doi: 10.7554/eLife.44032.

857 48. **Fujino K, Oertel D.** Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal
858 cochlear nucleus. *Proc Natl Acad Sci USA* 100: 265–270, 2003. doi: 10.1073/pnas.0135345100.

859 49. **Tzounopoulos T, Kim Y, Oertel D, Trussell LO.** Cell-specific, spike timing–dependent plasticities in
860 the dorsal cochlear nucleus. *Nat Neurosci* 7: 719–725, 2004. doi: 10.1038/nn1272.

861 50. **Singla S, Dempsey C, Warren R, Enikolopov AG, Sawtell NB.** A cerebellum-like circuit in the
862 auditory system cancels responses to self-generated sounds. *Nat Neurosci* 20: 943–950, 2017. doi:
863 10.1038/nn.4567.

864 51. **Zhang LI, Tao HW, Holt CE, Harris WA, Poo M.** A critical window for cooperation and competition
865 among developing retinotectal synapses. *Nature* 395: 37–44, 1998. doi: 10.1038/25665.

866 52. **Engert F, Tao HW, Zhang LI, Poo M.** Moving visual stimuli rapidly induce direction sensitivity of
867 developing tectal neurons. *Nature* 419: 470–475, 2002. doi: 10.1038/nature00988.

868 53. **MacLeod K, Bäcker A, Laurent G.** Who reads temporal information contained across synchronized
869 and oscillatory spike trains? *Nature* 395: 693–698, 1998. doi: 10.1038/27201.

870 54. **Cassenaer S, Laurent G.** Hebbian STDP in mushroom bodies facilitates the synchronous flow of
871 olfactory information in locusts. *Nature* 448: 709–713, 2007. doi: 10.1038/nature05973.

872 55. **Mehta MR.** From synaptic plasticity to spatial maps and sequence learning: Place Field Plasticity.
873 *Hippocampus* 25: 756–762, 2015. doi: 10.1002/hipo.22472.

874 56. **Chindemi G, Abdellah M, Amsalem O, Benavides-Piccione R, Delattre V, Doron M, Ecker A,
875 Jaquier AT, King J, Kumbhar P, Monney C, Perin R, Rössert C, Tuncel AM, Van Geit W, DeFelipe J,
876 Graupner M, Segev I, Markram H, Muller EB.** A calcium-based plasticity model for predicting long-
877 term potentiation and depression in the neocortex. *Nat Commun* 13: 3038, 2022. doi:
878 10.1038/s41467-022-30214-w.

879 57. **Mehta MR.** Cooperative LTP can map memory sequences on dendritic branches. *Trends in*
880 *Neurosciences* 27: 69–72, 2004. doi: 10.1016/j.tins.2003.12.004.

881 58. **Harvey CD, Svoboda K.** Locally dynamic synaptic learning rules in pyramidal neuron dendrites.
882 *Nature* 450: 1195–1200, 2007. doi: 10.1038/nature06416.

883 59. **Larkum ME, Nevin T.** Synaptic clustering by dendritic signalling mechanisms. *Current Opinion in*
884 *Neurobiology* 18: 321–331, 2008. doi: 10.1016/j.conb.2008.08.013.

885 60. **Kastellakis G, Poirazi P.** Synaptic Clustering and Memory Formation. *Front Mol Neurosci* 12: 300,
886 2019. doi: 10.3389/fnmol.2019.00300.

887 **Figure Captions**

888 **Figure 1.** The mormyrid knollenorgan sensory pathway mediates electric communication behavior. EOD
889 stimuli are detected by knollenorgan electroreceptors. Each knollenorgan responds to each EOD with a
890 single spike. The timing of these spikes varies across the population with variation in EOD waveform. Thus,
891 EOD waveforms are represented by spike timing differences and IPIs are represented by interspike interval
892 sequences. This information is relayed to the nucleus of the electrosensory lateral line lobe (nELL).
893 Inhibition from this pathway blocks responses to the fish's own EOD. From the nELL, information is sent to
894 the ELa, which is tuned to EOD waveform. The ELa projects to the ELp. The integration of synaptic inputs
895 from ELa and local excitatory and inhibitory interactions among ELp neurons establishes single neuron
896 tuning for both EOD waveform and IPI.

897 **Figure 2.** STDP alters synaptic connectivity *in vitro*. **A**, Schematic of the *in vitro* set up showing focal
898 microstimulation of ELa along with intracellular recording and current injection in ELp. **B**, Example raw data
899 traces collected in *B. niger* before and after pairing of a -20 ms pre-post delay in red and a +10 ms pre-post
900 delay in blue. **C**, Scatter plot of normalized change in excitatory postsynaptic potential (EPSP) amplitude in
901 ELp after pairing ELa stimulation with intracellular current-induced spiking in ELp neurons in *B. niger*. X-
902 axis is the relative timing of EPSP peaks and postsynaptic action potential peaks. Exponential curve fits
903 with equations and correlation coefficients are provided. **D**, Normalized change in EPSP amplitude with
904 median (black dotted line) & quartiles (boxes) for -20 ms pre-post delay in red ($n = 12$), +10 ms pre-post
905 delay in blue ($n=16$), and all three controls in grey (ELa only $n = 13$, Intracellular only $n = 11$, No stimulus n
906 = 7). Letters represent statistically significant differences between groups ($p < 0.05$, one-way ANOVA
907 followed by Tukey's HSD post-hoc test). EPSP amplitudes were normalized by subtracting the before

908 pairing values from the after pairing values, and then dividing by the maximum of the absolute values of the
909 after pairing and before pairing values. **E**, Normalized change in EPSP area with median (black dotted line)
910 & quartiles (boxes) for -20 ms pre-post delay in red ($n = 12$), +10 ms pre-post delay in blue ($n=16$), and all
911 three controls in grey (ELa only $n = 13$, Intracellular only $n = 11$, No stimulus $n = 7$). EPSP areas were
912 normalized by subtracting the before pairing values from the after pairing values, and then dividing by the
913 maximum of the absolute values of the after pairing and before pairing values.

914 **Figure 3.** STDP is NMDA receptor-dependent. **A**, Percent change in EPSP amplitude of baseline
915 responses before pairing for control data (purple, $n = 27$), during APV application (orange, $n=15$), and during
916 DNQX application (yellow, $n=18$), all collected in *B. niger*. Median values are shown with black dotted lines
917 and quartiles are represented by boxes. Asterisks represent statistically significant differences between
918 groups ($p<0.05$, unpaired t-test). **B**, Normalized change in EPSP amplitude after pairing ELa stimulation
919 with intracellular current-induced spiking in ELp neurons at a -20 ms pre-post delay (left) and a +10 ms pre-
920 post delay (right), showing the median (black dotted line) & quartiles (boxes) under control conditions (red,
921 $n = 12$; blue, $n = 16$), during APV application (orange, $n = 7$ and $n = 8$), and during DNQX application
922 (yellow, $n = 9$ and $n = 9$), all collected in *B. niger*. Asterisks represent statistically significant differences
923 between groups ($p<0.05$, unpaired t-test). EPSP amplitudes were normalized by subtracting the before
924 pairing values from the after pairing values, and then dividing by the maximum of the absolute values of the
925 after pairing and before pairing values.

926 **Figure 4.** Stimulating ELa using an array electrode reveals more variation in STDP compared to focal
927 stimulation *in vitro* **A**, A schematic of the *in vitro* array set up showing 4-channel stimulation of ELa along
928 with intracellular current injection in ELp. **B**, Scatter plot of normalized change in EPSP amplitude in ELp
929 after ELa array stimulation, data collected in *B. niger*. X-axis is the relative timing of EPSP peaks and
930 postsynaptic action potential peaks. ($n = 128$). EPSP amplitudes were normalized by subtracting the before
931 pairing values from the after pairing values, and then dividing by the maximum of the absolute values of the
932 after pairing and before pairing values. Exponential curve fits with equations and correlation coefficients
933 are provided. **C**, Normalized change in EPSP max after pairing ELa array stimulation with intracellular
934 current-induced spiking in ELp neurons at a -20 ms pre-post delay (left) and a +10 ms pre-post delay (right),

935 showing the median (black dotted line) & quartiles (boxes) under control conditions (red, $n = 18$; blue, $n =$
936 9). EPSP amplitudes were normalized by subtracting the before pairing values from the after pairing values,
937 and then dividing by the maximum of the absolute values of the after pairing and before pairing values. **D**,
938 Normalized change in EPSP area after pairing ELa array stimulation with intracellular current-induced
939 spiking in ELp neurons at a -20 ms pre-post delay (left) and a +10 ms pre-post delay (right), showing the
940 median (black dotted line) & quartiles (boxes) under control conditions (red, $n = 18$; blue, $n = 9$). EPSP
941 areas were normalized by subtracting the before pairing values from the after pairing values, and then
942 dividing by the maximum of the absolute values of the after pairing and before pairing values. **Figure 5**.
943 STDP alters synaptic connectivity *in vivo*. **A**, A model of the *in vivo* set up showing sensory stimulation
944 along with intracellular current injection in ELp. **B**, Example raw data traces collected in *B. niger*, before
945 and after pairing of a -23 ms sensory-post delay in red and a +7 ms sensory-post delay in blue. One example
946 each of changes that fit the STDP pattern observed *in vitro* and that do not fit the STDP pattern observed
947 *in vitro* are shown. **C**, Normalized change in max (after-before) values with median (black dotted line) &
948 quartiles (boxes) for -20 ms sensory-post delay in red ($n = 33$), 10 ms sensory-post delay in blue($n=30$),
949 and all three controls in grey (Sensory only $n = 34$, Intracellular only $n = 34$, No stimulus $n = 30$). Letters
950 represent statistically significant differences between groups ($p < 0.05$, one-way ANOVA followed by Tukey's
951 HSD post-hoc test). EPSP amplitudes were normalized by subtracting the before pairing values from the
952 after pairing values, and then dividing by the maximum of the absolute values of the after pairing and before
953 pairing values. **D**, Same as in **C** but showing normalized change in area values rather than normalized
954 change in max values. Letters represent statistically significant differences between groups ($p < 0.05$, one-
955 way ANOVA followed by Tukey's HSD post-hoc test). EPSP areas were normalized by subtracting the
956 before pairing values from the after pairing values, and then dividing by the absolute value of the maximum
957 of the after pairing and before pairing values.

958 **Figure 6**. STDP affects synaptic activity later than 7 ms after stimulus onset. **A**, Average After pairing –
959 Before pairing traces collected in *B. niger* for – 23 ms sensory-post delay (red) and +7 ms sensory-post
960 delay (blue). Time = 0 at stimulus onset. Grey line is zero mV. Lighter colored area surrounding the traces
961 represent SEM. Inset is a zoomed in view of the area surrounding the peaks of the traces. **B-D**, Normalized
962 change in onset slope for focal *in vitro* data (-20 ms pre-post delay in red ($n = 12$), 10 ms pre-post delay in

963 blue(n=16)), array *in vitro* data (-20 ms pre-post delay in red ($n = 18$), 10 ms pre-post delay in blue(n=9))
964 and *in vivo* data (-23 ms sensory-post delay in red ($n = 33$), 7 ms sensory-post delay in blue(n=30)). EPSP
965 slopes were normalized by subtracting the before pairing values from the after pairing values, and then
966 dividing by the maximum of the absolute values of the after pairing and before pairing values.

967 **Figure 7.** Variation in the effect of STDP is correlated with variation in synaptic responses. **A**, Raw trace
968 examples of postsynaptic potentials recorded *in vivo* in *B. niger*. **B**, Principal components (PC) 1-4 for the
969 *in vitro* array data that ‘fits’ or ‘does not fit’ the STDP hypothesis based on the *in vitro* data for both -20 ms
970 pre-post delay (red) and +10 ms pre-post delay (blue). Asterisks represent a significantly different variable
971 or interaction stated in the text. **C**, Principal components (PC) 1-4 for the *in vivo* data that ‘fits’ or ‘does not
972 fit’ the STDP hypothesis based on the *in vitro* data for both -23 ms sensory-post delay (red) and +7 ms
973 sensory-post delay (blue). Asterisks represent a significantly different variable or interaction stated in the
974 text.

975 **Figure 8.** STDP does not cause changes to different EOD stimuli as predicted by *in vitro* focal stimulation
976 data. **A**, Normalized change in max values with median (black dotted line) & quartiles (boxes) for natural
977 EODs (green, $n = 35$) and phase-shifted EODs (yellow, $n = 25$). Grey lines connect data points collected
978 during the same trial from the same neuron. Data collected in *B. brachystius*. EPSP amplitudes were
979 normalized by subtracting the before pairing values from the after pairing values, and then dividing by the
980 maximum of the absolute values of the after pairing and before pairing values. **B**, Same as in A but with
981 normalized change in area values rather than normalized change in max values. EPSP areas were
982 normalized by subtracting the before pairing values from the after pairing values, and then dividing by the
983 maximum of the absolute values of the after pairing and before pairing values.

984 **Figure 9.** STDP alters IPI tuning *in vitro* but does not cause similar changes to different IPI stimuli *in vivo*
985 as predicted by *in vitro* focal stimulation. **A**, Model of the stimulation protocol, showing an alternating train
986 of 10 ms and 100 ms IPIs in black with intracellular current injection in the ELp only paired with either the
987 10 ms IPI (blue, $n = 14$) or 100 ms IPI (yellow, $n = 14$). **B**, *In vitro* normalized change in max amplitude
988 values with median (black dotted line) & quartiles (boxes) for the paired IPI as compared to the unpaired
989 IPI (N = 14 for all pairings. Data collected in *B. niger*. Asterisks represent statistically significant interaction

990 effect between 'stimulus' * 'pairing' variables ($p < 0.05$, two-way ANOVA). EPSP amplitudes were normalized
991 by subtracting the before pairing values from the after pairing values, and then dividing by the maximum of
992 the absolute values of the after pairing and before pairing values. **C**, Same as **B** but with normalized change
993 in area values instead of normalized change in max values. EPSP areas were normalized by subtracting
994 the before pairing values from the after pairing values, and then dividing by the maximum of the absolute
995 values of the after pairing and before pairing values. **D**, Normalized change in max values with median
996 (black dotted line) & quartiles (boxes) comparing the paired IPI (paired 10 ms $n = 18$; paired 100 ms $n =$
997 17) to the unpaired IPI. Data collected in *B. niger*. Grey lines are connecting data points collected during
998 the same trial in the same neuron. EPSP amplitudes were normalized by subtracting the before pairing
999 values from the after pairing values, and then dividing by the maximum of the absolute values of the after
1000 pairing and before pairing values. **E**, Same as **D** but with normalized change in area values instead of
1001 normalized change in max values. EPSP areas were normalized by subtracting the before pairing values
1002 from the after pairing values, and then dividing by the maximum of the absolute values of the after pairing
1003 and before pairing values.

1004 **Figure 10.** Variation in the effect of STDP on tuning is correlated with variation in synaptic responses. **A**,
1005 Principal components (PC) 1-4 for the *in vitro* IPI data that 'fits' or 'does not fit' the STDP hypothesis based
1006 both 10 ms pairing (crosshatching) and 100 ms pairing (light grey). **B**, Principal components (PC) 1-4 for
1007 the *in vivo* EOD tuning data that 'fits' or 'does not fit' the STDP hypothesis for natural EOD pairing(diagonal
1008 lines) and shifted EOD pairing (dark grey). Asterisks represent a significantly different variable or interaction
1009 stated in the text. **C**, Principal components (PC) 1-4 for the *in vivo* IPI data that 'fits' or 'does not fit' the
1010 STDP hypothesis for both 10 ms pairing (crosshatching) and 100 ms pairing (light grey).