

1 **Integrating Neuroplasticity and Evolution**

2

3 **Caleb J. Axelrod¹, Swanne P. Gordon¹, Bruce A. Carlson^{2*}**

4

5 ¹Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA

6 ²Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA

7

8 *Corresponding Author:

9 Bruce A. Carlson

10 Washington University in St. Louis

11 Department of Biology

12 1 Brookings Drive

13 Campus Box 1137

14 St. Louis, MO 63130-4899

15 USA

16 Phone: (314) 935-3487

17 e-mail: carlson.bruce@wustl.edu

18 **Abstract**
19 Neuroplasticity and evolutionary biology have been prominent fields of study for well over a
20 century. However, they have advanced largely independently, without consideration of the
21 benefits of integration. We propose a new framework by which research can begin to examine
22 the evolutionary causes and consequences of neuroplasticity. Neuroplasticity can be defined as
23 changes to the structure, function, or connections of the nervous system in response to individual
24 experience. Evolution can alter levels of neuroplasticity if variation in neuroplasticity traits exists
25 within and between populations. Neuroplasticity may be favored or disfavored by natural
26 selection depending on the variability of the environment and the costs of neuroplasticity itself.
27 Additionally, neuroplasticity may affect rates of genetic evolution in a myriad of ways. For
28 example, it could decrease rates of evolution by buffering against selection. It could also increase
29 rates of evolution via the Baldwin effect, by increasing genetic variation, or by incorporating
30 evolved peripheral changes to the nervous system. These mechanisms can be tested using
31 comparative and experimental approaches and by examining patterns and consequences of
32 variation in neuroplasticity among species, populations, and individuals.

33
34 **Introduction**
35 Neuroplasticity, also called neural plasticity or brain plasticity, has been of interest to scientists
36 since the late 19th century. The history of the concept in neurobiology is not well documented,
37 however the first wide use of the concept is attributed to Santiago Ramón y Cajal in a series of
38 lectures and papers in the early 1890s¹. Despite wide use of the term throughout neurobiology,
39 neuroplasticity does not have a universally accepted definition. Two definitions are common.
40 First, neuroplasticity is sometimes defined very broadly as any “change in the nervous system”
41 within an individuals’ lifetime, as was done by Shaw and McEachern in *Toward a theory of*
42 *neuroplasticity*². Similarly, Costandy³ defines it as “a catch-all term referring to the many
43 different ways in which the nervous system can change”. The second definition narrows
44 neuroplasticity to refer to change in the nervous system that results specifically from experience.
45 This definition is exemplified in Kolb et al.⁴, who define neuroplasticity as “the organization of
46 brain circuitry changing as a function of experience”, and Cramer et al.⁵, who define it as “the
47 ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its
48 structure, function and connections”.

49 One consequence of not having a clear definition of neuroplasticity is a lack of integration of this
50 concept with knowledge and hypotheses from other fields. For example, the integration of
51 evolution with phenotypic plasticity, with phenotypic plasticity defined as a change in phenotype
52 due to individual experience⁶, has been a focus of theoretical and empirical work by evolutionary
53 biologists for decades now. However, neuroplasticity has not been included in this integration.
54 There may be ways that neuroplasticity is distinct from other forms of plasticity in terms of its
55 interaction with evolution, particularly because of its links to learning and memory^{7,8,9} and the
56 important role of behavior in establishing and maintaining reproductive isolation^{10,11}. Thus,
57 integrating neuroplasticity and evolution may yield novel insights.

58

59 In this paper we provide a definition of neuroplasticity that allows for integration across the
60 fields of neurobiology and evolutionary biology. We then develop links for hypotheses and
61 questions that would be best served by the integration of these fields. We propose that
62 neuroplasticity be strictly defined according to the narrow description above, as changes to the
63 structure, function, or connections of the nervous system in response to individual experience.
64 This narrower definition closely aligns with the broader term description of phenotypic plasticity
65 used by evolutionary biologists. “Individual” in this definition refers to an individual organism
66 rather than an individual neuron or component of the nervous system. The focus should be on
67 this level of biological organization because evolution by natural selection occurs at the
68 population level due to variation in individual fitness. “Experience” here refers to environmental
69 features that an organism encounters in its lifetime. Under this definition, changes to the nervous
70 system that arise purely from genetically determined developmental trajectories would not be
71 considered neuroplasticity.

72

73 To understand this distinction, consider the development of visual cortical sensory pathways in
74 mammals. Visual information is first processed in the retina within the eyes. This information is
75 next transmitted through the optic nerve to the thalamus, and then to the visual cortex. The
76 sequence of this particular visual pathway appears to be universal among mammals, regardless of
77 their experience during development, and so the neural connections formed during development
78 that produce this anatomical pathway would not be considered neuroplasticity. However, the
79 strength and distribution of the connections within this pathway can be strongly influenced by

80 experience. Consider the development of ocular dominance columns. Both sides of the visual
81 cortex receive inputs from both eyes, and neurons that receive input from one particular eye tend
82 to be grouped together in the visual cortex, forming columns of cells that all receive input from
83 the same eye, so-called ocular dominance columns¹². Visual experience during ontogeny can
84 alter the development of these columns^{13,14}. For example, blocking visual input from one eye in
85 ferrets during development leads to an underrepresentation of ocular dominance columns for that
86 eye and an overrepresentation of ocular dominance columns for the other eye¹⁵. Thus, while the
87 overall connectivity of this visual pathway in the brain is genetically determined, the wiring and
88 synaptic connectivity of cells within this pathway is affected by neuroplasticity.

89

90 One limitation to the integration of neuroplasticity with evolution is how these fields
91 conceptualize plasticity. In evolutionary biology, plasticity is typically represented as a reaction
92 norm (Figure 1), which visualizes the potential phenotypic manifestations of traits caused by
93 exposure to different environments. For example, water fleas (*Daphnia pulex*) develop a predator
94 resistant morphology only if they are reared in water with predator cues¹⁶. By contrast, in
95 neurobiology, plasticity is typically viewed as change over time in response to environmental
96 exposures. For example, Irvine et al.¹⁷ found that rats put in enriched environments showed
97 increased neuronal activity over time, indicative of long term potentiation in the dentate gyrus.
98 These approaches differ in their uses, as the former approach examines the outcomes of
99 phenotypic change, and the latter studies the processes of that change. The latter approach is
100 useful for understanding the mechanisms that generate plastic variation, while we propose the
101 former is more useful for evaluating the evolutionary causes and consequences of that plasticity.
102 The reaction norm approach is useful for the integration of neuroplasticity and evolution because
103 it allows for comparison of the direction and level of plasticity between genotypes. This will
104 facilitate comparisons to prior work on phenotypic plasticity, easing the integration between
105 phenotypic plasticity and neuroplasticity.

106

107 There are two major questions in integrating neuroplasticity and evolution (Figure 2). First, how
108 does evolution affect neuroplasticity? More specifically, is neuroplasticity itself an evolvable
109 characteristic on which natural selection can act and that can affect fitness? Second, is there a
110 reciprocal causal relationship, namely can neuroplasticity in return affect genetic evolution?

111

112 **How can evolution change neuroplasticity?**

113 An important first question in the study of the evolution of neuroplasticity is: what specific
114 characteristics of the nervous system do we consider to be the trait that is evolving? Nervous
115 systems are hugely complex, including up to billions of neurons and orders of magnitude more
116 synaptic connections between those neurons. The scope of what specific aspect of neuroplasticity
117 could be under selection ranges from the nature of the whole integrated neural system to the
118 strength of an individual synapse. Examples of commonly studied neuroplasticity traits include
119 short-term changes such as facilitation/depression at synapses that are repetitively active,
120 intermediate-term changes such as spike-timing dependent plasticity and long-term potentiation
121 or depression, as well as broader longer-term developmental changes such as improved auditory
122 processing in blind humans¹⁸. This is by no means a comprehensive list. For a trait to evolve
123 under selection, it needs to meet three criteria. It needs to have variation, that variation needs to
124 covary with fitness, and the trait needs to be heritable across generations. The key to
125 understanding what aspects of neuroplasticity are important targets of selection requires testing
126 traits for these criteria.

127

128 Though research explicitly addressing the interaction between neuroplasticity and evolution is
129 currently lacking, inter-individual differences in levels of neuroplasticity, a requirement for
130 natural selection, have been noted. For example, Mes et al.¹⁹ found that wild and hatchery-reared
131 Atlantic Salmon differ in their levels of BDNF (brain derived neurotrophic factor), suggesting
132 different levels of neuroplasticity. Similarly, Stewart and Cramer²⁰ note genetic polymorphisms
133 for BDNF, dopamine, and apolipoprotein in humans, all of which can impact levels of
134 neuroplasticity. Chen et al.²¹ found inter-individual differences between humans in levels of
135 neural adaptation after performing an inhibitory control task. These examples demonstrate that
136 levels of neuroplasticity are not always homogenous across individuals, indicating the possibility
137 for natural selection.

138

139 Neuroplasticity is widespread and may be ubiquitous across animals with complex nervous
140 systems, suggesting that either it is critical for survival or that it is an inherent part of nervous
141 systems (or both). Neuroplasticity could affect fitness by allowing individuals to respond to

142 changing external conditions. Greater levels of morphological plasticity have been hypothesized
143 to increase fitness when environmental conditions vary within the lifetime of an individual or
144 between generations. This variation selects for individuals who are flexible in their phenotype,
145 allowing them to perform well regardless of shifts in environmental conditions⁶. For example,
146 Fallis et al.²² showed that fruit flies (*Drosophila melanogaster*) from areas with more variable
147 climates showed higher levels of physiological plasticity in response to temperature variation.
148 Neuroplasticity can similarly be hypothesized to influence fitness under changing environmental
149 conditions, when the ability to adjust the nervous system in response to such change increases
150 individual survival or reproductive success (Figure 1). The timeframe of environmental change
151 that selects for neuroplasticity might be shorter than for morphological plasticity because of how
152 rapidly neuroplasticity can change phenotypes. Evidence for this effect of neuroplasticity is
153 lacking, however one form of environmental influence on fitness that may be affected by
154 neuroplasticity is disease. Increased neuroplasticity has been shown to reduce the likelihood of
155 developing cardiovascular disease in humans and mice²³, suggesting a possible benefit of
156 neuroplasticity when disease is common.

157
158 Neuroplasticity can also be linked to fitness through behavioral plasticity and learning because
159 these processes likely occur as a result of some form of neuroplasticity. This link was most
160 famously established in *Aplysia californica* (a species of sea slug) by Nobel-prize winning
161 neuroscientist Eric Kandel and his research team, who showed that learning and memory are
162 reflected in changes in the molecular and cellular machinery of the brain^{24,7}. Research since then
163 has only further supported this link⁸. Perhaps the best evidence for a causal link between
164 neuroplasticity and memory formation are studies that demonstrated false memories can be
165 artificially created in mice by stimulating plasticity in the brain²⁵. Memories can even be
166 inactivated and reactivated by artificially manipulating synaptic plasticity²⁶. A more recent
167 simulation study using virtual organisms suggests that neuroplasticity underlies aspects of the
168 evolution of learning and behavior²⁷. Adaptation to highly variable environments has also been
169 linked to greater levels of learning and behavioral plasticity in several animal groups²⁸, including
170 mammals²⁹, amphibians³⁰, and insects³¹. In each of these cases selection for increased levels of
171 neuroplasticity may occur as it affords greater potential for behavioral plasticity and learning.
172

173 High levels of neuroplasticity may reduce fitness under certain circumstances. This could be due
174 to the metabolic costs of maintaining the neural machinery needed for plasticity or if plasticity is
175 functionally maladaptive. If plasticity is costly, and provides little functional benefit, then
176 selection is expected to reduce plasticity³². Empirical support for this potential pattern was found
177 in wood frogs, *Rana sylvatica*, where increased plasticity was shown to reduce fitness in
178 response to predation³³. However, other examples and theory have shown that the costs of
179 plasticity can be minimal or absent³⁴, and so may not be strong drivers of the evolution of
180 plasticity. Neuroplasticity may be selected against if it is maladaptive, such as when
181 environmental conditions are very stable, resulting in phenotypic changes that reduce
182 performance and fitness³² (Figure 1). For example, neuroplasticity has been observed to
183 sometimes be harmful in the context of neurological responses to injury³⁵. At this point more
184 research and empirical examples are needed regarding the metabolic costs of neuroplasticity and
185 the importance of maladaptive neuroplasticity.

186

187 Moving forward, the method by which the evolution of neuroplasticity can be tested is by
188 quantifying variation in neuroplasticity between individuals or populations of organisms and
189 comparing that variation to environmental variation and fitness. Ideally, quantifying levels of
190 neuroplasticity can be done using the reaction norm approach described above, where a
191 particular feature of the nervous system is measured under different experimentally controlled
192 environments. This can be done sequentially on a single individual if the trait can continuously
193 change, or it can be done on different individuals of the same genotype (clones, same family,
194 same population). Variation in neuroplasticity can also be estimated by comparing proxies for
195 levels of neuroplasticity, such as levels of neural growth hormones, neurotransmitter or receptor
196 levels, neuron numbers, dendritic spine densities, or indicators of neurogenesis. Differences in
197 levels of neuroplasticity between populations would indicate evolution between those
198 populations, as this suggests that the ecological factors in the populations have selected for
199 different optimum levels of neuroplasticity. Variation in neuroplasticity can also be more directly
200 linked to fitness by comparing neuroplasticity levels to measures of fitness such as survival or
201 reproduction. This could be done with common garden or transplant experiments between
202 populations with different levels of neuroplasticity. We would expect individuals from high
203 neuroplasticity populations to show better survival and reproduction in their habitat than

204 individuals from low neuroplasticity populations. Finally, comparing levels of neuroplasticity
205 between parents and offspring, particularly in a controlled breeding common garden design, can
206 be used to estimate heritability of neuroplasticity, a requirement for evolution by natural
207 selection. Thus far, explicit tests of the heritability of neuroplasticity are lacking.

208

209 **How can neuroplasticity affect rates of genetic evolution?**

210 The ability for individuals to shift their neural circuitry in response to experience, and resultantly
211 shift aspects of their perception, behavior, or cognition, may increase or decrease rates of genetic
212 evolution depending on the specific nature of the neuroplasticity and the patterns of selection in
213 the system in question. Phenotypic plasticity has been hypothesized to reduce rates of genetic
214 evolution when plasticity increases performance of individuals and thus buffers populations
215 against selection. Much theoretical work has supported this hypothesis³⁶⁻³⁹. For example,
216 Lalejini et al.³⁹ used digital organisms to measure the strength of selection on traits that vary in
217 their level of adaptive phenotypic plasticity. They found that higher levels of plasticity reduce
218 rates of evolution because plasticity buffers populations against selective sweeps from variable
219 environments. Empirical work demonstrating this phenomenon is, however, lacking.
220 Neuroplasticity may also reduce rates of genetic evolution because it allows nervous systems to
221 remain fully functional in response to a shifting selective landscape without the need for evolved
222 changes.

223

224 On the other hand, there are at least three theoretical ways that high rates of neuroplasticity could
225 increase rates of genetic evolution. First, the Baldwin effect^{40,41} proposes that phenotypic
226 plasticity can lead to genetic evolution by allowing individuals to survive in new or changing
227 environments. Under this theory, more plastic individuals in a population are more likely to
228 survive when environments, and therefore conditions of natural selection, change. Only the
229 individuals that survive can subsequently undergo selection to the new conditions. An empirical
230 example of this mechanism is shown in Yeh and Price⁴², where they examined plasticity and
231 colonization in dark-eyed juncos. They demonstrated that individuals with more flexible
232 breeding season length were more successful and had higher fitness in a novel coastal
233 environment when compared to their ancestral mountain territory. Survival in the novel coastal
234 environment then allowed for selection on other traits. This theory could apply to neuroplasticity

235 as well, particularly given the behavioral context of this example. If individuals with a greater
236 ability to reorganize their nervous system are more likely to thrive under new conditions, they
237 will then be able to evolve, both in their nervous system and other traits.

238

239 A second way neuroplasticity may increase the rate of genetic evolution is by increasing
240 available trait variation or strength of selection. The greater the available trait variation, the
241 greater potential there is for natural selection and evolution to shift trait values. Plasticity can
242 increase this available variation and generate adaptive variation in new or changing
243 environments that was not present in previous generations (Figure 3). This can then result in
244 plasticity leading to rapid evolution of the new trait variation. Increased variation also occurs if
245 the population includes individuals that express non-adaptive plasticity. When plasticity operates
246 in the opposite direction to optimum trait values, rates of evolution are expected to increase⁴³⁻⁴⁵
247 due to increased selection and increased trait variation. This process could operate with
248 neuroplasticity as well. Although neuroplasticity is generally expected to be adaptive, shifting
249 the nervous system towards the optimum state, this may not always be the case, particularly
250 under novel conditions. An example of this form of plasticity affecting evolution can be seen in
251 Ghalambor et al.⁴⁵. They examined how plasticity and rapid evolution interact by transplanting
252 Trinidadian guppies (*Poecilia reticulata*) from high to low predator environments. They
253 measured sequence evolution of genes in the brain and the plasticity of those same genes by
254 looking at gene expression patterns. Adaptive plasticity was inferred when gene expression
255 changes occurred in the same direction as evolutionary change. On the other hand, maladaptive
256 plasticity was inferred when gene expression changed in the opposite direction as evolutionary
257 change. They found that genes that showed maladaptive plasticity also tended to show rapid
258 evolution in response to the transplant. Demonstrations of maladaptive neuroplasticity are rare in
259 the literature. One area it has been noted is in response to spinal cord injuries, where
260 neuroplasticity can lead to organ and muscle dysfunction⁴⁶. Future research examining the fitness
261 consequences of variation in neuroplasticity are needed to understand the prevalence and
262 evolutionary consequences of maladaptive neuroplasticity.

263

264 A third way neuroplasticity may increase the potential for genetic evolution, and one that may be
265 particular to neuroplasticity in comparison to other forms of plasticity, is by accommodating

266 evolved changes to nervous system traits. This mechanism, like the Baldwin effect, involves the
267 evolution of traits other than the focal neuroplasticity trait. This theory has been described
268 primarily with respect to peripheral sensory or behavioral control aspects of nervous systems⁴⁷.
269 Nervous systems are highly complex and integrated. In order for aspects of sensory perception to
270 evolve, not only do the sensory organ and peripheral nerves need to change, but the circuit of
271 neurons within the central nervous system that processes the incoming sensory signals needs to
272 change as well. Neuroplasticity in those central pathways may allow for evolutionary change in
273 sensory systems due solely to changes in the sensory periphery, without the need for additional
274 evolution of the central components of an integrated system. Evidence for this hypothesized
275 effect of neuroplasticity has been shown in color vision of transgenic mice that were modified to
276 express extra photopigments in the retina, with no genetic modifications to central visual
277 pathways in the brain. Despite these photopigments being completely novel to mice, they
278 showed segregation of opsin genes among photoreceptors⁴⁸, leading to novel perceptual color
279 discrimination abilities⁴⁹. A similar effect occurred when introducing a novel photopigment into
280 the retina of squirrel monkeys⁵⁰. The underlying neuroplasticity that allowed for this novel color
281 vision has been proposed as a mechanism for the evolution of trichromatic (or greater) color
282 vision⁴⁷.

283
284 To further illustrate how this mechanism could lead to evolution, imagine two populations of
285 animals, one with high levels of neuroplasticity in the visual processing system, and one with
286 low levels of neuroplasticity. If a mutation leading to an extra color sensory input occurred in
287 both these populations, it would likely have no effect or be strongly selected against in the low
288 plasticity population because no added sensory information could be processed, and thus no
289 evolution of that population would occur. The high plasticity population on the other hand could
290 gain additional sensory information because neuroplasticity in the visual system would allow for
291 processing of the added sensory input. This added input could be selected for, leading to
292 evolution. Much remains to be studied about the potential, or even necessity, for neuroplasticity
293 to facilitate evolutionary change.

294

295 **Conclusion**

296 Throughout the history of science, the integration of separate fields has often served as a catalyst
297 for major advancement. Perhaps the most famous of these was when Charles Darwin combined
298 information from the fields of geology and economics to develop his theory of evolution by
299 natural selection⁵¹. Recently, integrative studies in the field of neuroscience have highlighted the
300 enormous potential and benefit in considering ecology and evolution^{52,53}. These have provided
301 insight into the mechanisms that lead to the massive diversity of nervous systems among
302 animals, as well as the role of nervous systems in mediating adaptive evolutionary change. Thus
303 far, this approach has not been extended to include the integration of the centuries-old fields of
304 evolution and neuroplasticity. We argue that this integration is necessary to advance our
305 understanding of the causes and consequences of neuroplasticity in nature. Theodosius
306 Dobzhansky famously wrote that “nothing in biology makes sense except in the light of
307 evolution”, and it is time we bring neuroplasticity into that light.

308

309

310 **Acknowledgments**

311 B.A.C acknowledges support from the National Science Foundation (IOS-1755071 and IOS-
312 2203122). S.P.G and C.J.A acknowledge internal support from Cornell University.

313 **References**

314 1. Mateos-Aparicio, P., and Rodríguez-Moreno, A. (2019). The Impact of Studying Brain
315 Plasticity. *Frontiers in Cellular Neuroscience* *13*, 66. 10.3389/fncel.2019.00066.

316 2. Shaw, C., and McEachern, J. *Toward a Theory of Neuroplasticity* (Psychology Press).

317 3. Costandi, M. (2016). *Neuroplasticity* (MIT Press).

318 4. Kolb, B., Gibb, R., and Robinson, T.E. (2003). Brain Plasticity and Behavior. *Current*
319 *Directions in Psychological Science* *12*, 1–5.

320 5. Cramer, S.C., Sur, M., Dobkin, B.H., O'Brien, C., Sanger, T.D., Trojanowski, J.Q.,
321 Rumsey, J.M., Hicks, R., Cameron, J., Chen, D., et al. (2011). Harnessing neuroplasticity for
322 clinical applications. *Brain* *134*, 1591–1609. 10.1093/brain/awr039.

323 6. Schlichting, C.D., and Pigliucci, M. (1998). Phenotypic evolution: a reaction norm
324 perspective. (Sunderland, MA. Sinauer).

325 7. Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes
326 and synapses. *Science* (New York, N.Y.) *294*. 10.1126/science.1067020.

327 8. Kandel, E.R., Dudai, Y., and Mayford, M.R. (2014). The Molecular and Systems Biology
328 of Memory. *Cell* *157*, 163–186. 10.1016/j.cell.2014.03.001.

329 9. Silva, A.J. (2003). Molecular and cellular cognitive studies of the role of synaptic
330 plasticity in memory. *Journal of Neurobiology* *54*, 224–237. 10.1002/neu.10169.

331 10. Coyne, J.A., and Orr, H.A. (1989). Patterns of Speciation in *Drosophila*. *Evolution* *43*,
332 362–381. 10.2307/2409213.

333 11. Nanda, P., and Singh, B.N. (2012). Behavioural reproductive isolation and speciation in
334 *Drosophila*. *J Biosci* *37*, 359–374. 10.1007/s12038-012-9193-7.

335 12. Katz, L.C., and Crowley, J.C. (2002). Development of cortical circuits: Lessons from
336 ocular dominance columns. *Nat Rev Neurosci* *3*, 34–42. 10.1038/nrn703.

337 13. Stryker, M.P., and Harris, W.A. (1986). Binocular impulse blockade prevents the
338 formation of ocular dominance columns in cat visual cortex. *J Neurosci* *6*, 2117–2133.
339 10.1523/JNEUROSCI.06-08-02117.1986.

340 14. Lowel, S. (1994). Ocular dominance column development: strabismus changes the
341 spacing of adjacent columns in cat visual cortex. *J. Neurosci.* *14*, 7451–7468.
342 10.1523/JNEUROSCI.14-12-07451.1994.

343 15. Issa, N.P., Trachtenberg, J.T., Chapman, B., Zahs, K.R., and Stryker, M.P. (1999). The
344 Critical Period for Ocular Dominance Plasticity in the Ferret's Visual Cortex. *J Neurosci* *19*,
345 6965–6978. 10.1523/JNEUROSCI.19-16-06965.1999.

346 16. Krueger, D.A., and Dodson, S.I. (1981). Embryological induction and predation ecology
347 in *Daphnia pulex*. *Limnology and Oceanography* *26*, 219–223. 10.4319/lo.1981.26.2.0219.

348 17. Irvine, G.I., Logan, B., Eckert, M., and Abraham, W.C. (2006). Enriched environment
349 exposure regulates excitability, synaptic transmission, and LTP in the dentate gyrus of freely
350 moving rats. *Hippocampus* *16*, 149–160. 10.1002/hipo.20142.

351 18. Röder, B., Teder-Sälejärvi, W., Sterr, A., Rösler, F., Hillyard, S.A., and Neville, H.J.
352 (1999). Improved auditory spatial tuning in blind humans. *Nature* *400*, 162–166.
353 10.1038/22106.

354 19. Mes, D., von Krogh, K., Gorissen, M., Mayer, I., and Vindas, M.A. (2018). Neurobiology
355 of Wild and Hatchery-Reared Atlantic Salmon: How Nurture Drives Neuroplasticity.
356 *Frontiers in Behavioral Neuroscience* *12*.

357 20. Stewart, J.C., and Cramer, S.C. (2017). Genetic Variation and Neuroplasticity: Role in
358 Rehabilitation After Stroke. *Journal of Neurologic Physical Therapy* *41*, S17.
359 10.1097/NPT.0000000000000180.

360 21. Chen, M., Wu, Y.J., Wu, J., Fu, Y., Li, S., Liu, H., Lu, C., and Guo, T. (2019). Individual
361 differences in inhibitory control abilities modulate the functional neuroplasticity of inhibitory
362 control. *Brain Struct Funct* *224*, 2357–2371. 10.1007/s00429-019-01911-y.

363 22. Fallis, L.C., Fanara, J.J., and Morgan, T.J. (2014). Developmental thermal plasticity
364 among *Drosophila melanogaster* populations. *Journal of Evolutionary Biology* *27*, 557–564.
365 10.1111/jeb.12321.

366 23. Zheng, Z., Zeng, Y., and Wu, J. (2013). Increased neuroplasticity may protect against
367 cardiovascular disease. *International Journal of Neuroscience* *123*, 599–608.
368 10.3109/00207454.2013.785949.

369 24. Hawkins, R.D., Castellucci, V.F., and Kandel, E.R. (1981). Interneurons involved in
370 mediation and modulation of gill-withdrawal reflex in *Aplysia*. II. Identified neurons produce
371 heterosynaptic facilitation contributing to behavioral sensitization. *Journal of
372 Neurophysiology* *45*, 315–328. 10.1152/jn.1981.45.2.315.

373 25. Ramirez, S., Liu, X., Lin, P.-A., Suh, J., Pignatelli, M., Redondo, R.L., Ryan, T.J., and
374 Tonegawa, S. (2013). Creating a False Memory in the Hippocampus. *Science* *341*, 387–391.
375 10.1126/science.1239073.

376 26. Nabavi, S., Fox, R., Proulx, C.D., Lin, J.Y., Tsien, R.Y., and Malinow, R. (2014).
377 Engineering a memory with LTD and LTP. *Nature* *511*, 348–352. 10.1038/nature13294.

378 27. Wang, L., and Orchard, J. (2019). Investigating the Evolution of a Neuroplasticity
379 Network for Learning. *IEEE Transactions on Systems, Man, and Cybernetics: Systems* *49*,
380 2131–2143. 10.1109/TSMC.2017.2755066.

381 28. Nolfi, S., and Floreano, D. (1999). Learning and Evolution. *Autonomous Robots* 7, 89–
382 113. 10.1023/A:1008973931182.

383 29. Sassi, P.L., Taraborelli, P., Albanese, S., and Gutierrez, A. (2015). Effect of Temperature
384 on Activity Patterns in a Small Andean Rodent: Behavioral Plasticity and Intraspecific
385 Variation. *Ethology* 121, 840–849. 10.1111/eth.12398.

386 30. Van Buskirk, J. (2002). A Comparative Test of the Adaptive Plasticity Hypothesis:
387 Relationships between Habitat and Phenotype in Anuran Larvae. *The American Naturalist*
388 160, 87–102. 10.1086/340599.

389 31. Carroll, S.P., and Corneli, P.S. (1995). Divergence in male mating tactics between two
390 populations of the soapberry bug: II. Genetic change and the evolution of a plastic reaction
391 norm in a variable social environment. *Behavioral Ecology* 6, 46–56. 10.1093/beheco/6.1.46.

392 32. Via, S., and Lande, R. (1985). Genotype-Environment Interaction and the Evolution of
393 Phenotypic Plasticity. *Evolution* 39, 505–522. 10.2307/2408649.

394 33. Relyea, R.A. (2002). Costs of Phenotypic Plasticity. *The American Naturalist* 159, 272–
395 282. 10.1086/338540.

396 34. Murren, C.J., Auld, J.R., Callahan, H., Ghalambor, C.K., Handelsman, C.A., Heskel,
397 M.A., Kingsolver, J.G., Maclean, H.J., Masel, J., Maughan, H., et al. (2015). Constraints on
398 the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. *Heredity*
399 115, 293–301. 10.1038/hdy.2015.8.

400 35. Nudo, R.J. (2006). Plasticity. *NeuroRx* 3, 420–427. 10.1016/j.nurx.2006.07.006.

401 36. Gupta, A.P., and Lewontin, R.C. (1982). A study of reaction norms in natural populations
402 of *drosophila pseudoobscura*. *Evolution* 36, 934–948. 10.1111/j.1558-5646.1982.tb05464.x.

403 37. Huey, R.B., Hertz, P.E., and Sinervo, B. (2003). Behavioral drive versus behavioral
404 inertia in evolution: a null model approach. *Am Nat* 161, 357–366. 10.1086/346135.

405 38. Price, T.D., Qvarnström, A., and Irwin, D.E. (2003). The role of phenotypic plasticity in
406 driving genetic evolution. *Proc Biol Sci* 270, 1433–1440. 10.1098/rspb.2003.2372.

407 39. Lalejini, A., Ferguson, A.J., Grant, N.A., and Ofria, C. (2021). Adaptive Phenotypic
408 Plasticity Stabilizes Evolution in Fluctuating Environments. *Frontiers in Ecology and
409 Evolution* 9.

410 40. Baldwin, J.M. (1896). A New Factor in Evolution. *The American Naturalist* 30, 441–451.

411 41. Simpson, G.G. (1953). The Baldwin Effect. *Evolution* 7, 110–117. 10.2307/2405746.

412 42. Yeh, P.J., Price, T.D., and Huey, A.E.R.B. (2004). Adaptive Phenotypic Plasticity and the
413 Successful Colonization of a Novel Environment. *The American Naturalist* 164, 531–542.
414 10.1086/423825.

415 43. West-Eberhard, M.J. (2003). *Developmental Plasticity and Evolution* (Oxford University
416 Press).

417 44. Ghalambor, C.K., McKay, J.K., Carroll, S.P., and Reznick, D.N. (2007). Adaptive versus
418 non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new
419 environments. *Functional Ecology* 21, 394–407. 10.1111/j.1365-2435.2007.01283.x.

420 45. Ghalambor, C.K., Hoke, K.L., Ruell, E.W., Fischer, E.K., Reznick, D.N., and Hughes,
421 K.A. (2015). Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression
422 in nature. *Nature* 525, 372–375. 10.1038/nature15256.

423 46. Brown, A., and Weaver, L.C. (2012). The dark side of neuroplasticity. *Exp Neurol* 235,
424 133–141. 10.1016/j.expneurol.2011.11.004.

425 47. Katz, P.S. (2011). Neural mechanisms underlying the evolvability of behaviour. *Philos
426 Trans R Soc Lond B Biol Sci* 366, 2086–2099. 10.1098/rstb.2010.0336.

427 48. Wang, Y., Smallwood, P.M., Cowan, M., Blesh, D., Lawler, A., and Nathans, J. (1999).
428 Mutually exclusive expression of human red and green visual pigment-reporter transgenes
429 occurs at high frequency in murine cone photoreceptors. *Proc Natl Acad Sci U S A* 96, 5251–
430 5256. 10.1073/pnas.96.9.5251.

431 49. Jacobs, G.H., Williams, G.A., Cahill, H., and Nathans, J. (2007). Emergence of Novel
432 Color Vision in Mice Engineered to Express a Human Cone Photopigment. *Science* 315,
433 1723–1725. 10.1126/science.1138838.

434 50. Mancuso, K., Hauswirth, W.W., Li, Q., Connor, T.B., Kuchenbecker, J.A., Mauck, M.C.,
435 Neitz, J., and Neitz, M. (2009). Gene therapy for red-green colour blindness in adult primates.
436 *Nature* 461, 784–787. 10.1038/nature08401.

437 51. Darwin, C. (1859). *On the origin of species by means of natural selection, or the
438 preservation of favoured races in the struggle for life* 150th Anniversary ed. edition. (London:
439 John Murray).

440 52. Sherry, D.F. (2006). Neuroecology. *Annual Review of Psychology* 57, 167–197.
441 10.1146/annurev.psych.56.091103.070324.

442 53. Carlson, B.A. (2012). Diversity Matters: The Importance of Comparative Studies and the
443 Potential for Synergy Between Neuroscience and Evolutionary Biology. *Arch Neurol* 69.
444 10.1001/archneurol.2012.77.

445
446
447
448
449

450 **Figure Legends**

451

452 **Figure 1. Example of theoretic reaction norms and how selection could influence**
453 **population level neuroplasticity.**

454 The Y-axis represents any aspect of nervous systems that could undergo plasticity. The X-axis
455 demonstrates two different environments that could lead to different phenotypes. Lines represent
456 different genotypes within a population. Each line shows what trait value would be manifested
457 by a particular genotype when exposed to each individual environment. Flat lines indicate rigid
458 genotypes that do not express neuroplasticity. Steeper lines indicate greater amounts of
459 neuroplasticity. The figure on top represents a population before any selection. The bottom
460 figures represent populations after selection, when only favored genotypes survive. Arrows
461 represent alternative patterns of natural selection. The left arrow represents selection in a variable
462 environment where more plastic individuals are favored because low trait values are favored in
463 environment 1 and high trait values are favored in environment 2, selecting for more plastic
464 genotypes. The right arrow represents selection in a stable environment when the same trait
465 values are favored in both environments. In this case, less plastic genotypes are favored,
466 particularly if plasticity is costly.

467

468 **Figure 2. An integrative framework for studying the evolutionary causes and consequences**
469 **of neuroplasticity.**

470 The top arrow indicates mechanisms by which evolution can change levels of neuroplasticity.
471 The bottom arrow indicates mechanisms for how neuroplasticity can affect rates of genetic
472 evolution. Plus and minus signs indicate the direction each mechanism is expected to influence
473 either levels of neuroplasticity (top) or rates of genetic evolution (bottom).

474

475 **Figure 3. An integrative framework for studying the evolutionary causes and consequences**
476 **of neuroplasticity.**

477 Example of theoretical reaction norms for two populations (left: low neuroplasticity, right: high
478 neuroplasticity) demonstrating how higher levels of neuroplasticity can increase trait variation in
479 novel environments. The Y-axis represents any aspect of the nervous system that could undergo
480 plasticity. The X-axis represents two environments: 1) a prior environment where selection has

481 shaped trait variation; and 2) a novel environment where selection has not yet shaped trait
482 variation. Lines represent different genotypes within each population. The population with
483 higher neuroplasticity generates greater trait variation in the novel environment, resulting in
484 increased strength of selection.