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ABSTRACT
We present an ab initio computational study of the Auger electron spectrum of benzene. Auger electron spectroscopy exploits the
Auger–Meitner effect, and although it is established as an analytic technique, the theoretical modeling of molecular Auger spectra from
first principles remains challenging. Here, we use coupled-cluster theory and equation-of-motion coupled-cluster theory combined with two
approaches to describe the decaying nature of core-ionized states: (i) Feshbach–Fano resonance theory and (ii) the method of complex basis
functions. The spectra computed with these two approaches are in excellent agreement with each other and also agree well with experimental
Auger spectra of benzene. The Auger spectrum of benzene features two well-resolved peaks at Auger electron energies above 260 eV, which
correspond to final states with two electrons removed from the 1e1g and 3e2g highest occupied molecular orbitals. At lower Auger electron
energies, the spectrum is less well resolved, and the peaks comprise multiple final states of the benzene dication. In line with theoretical
considerations, singlet decay channels contribute more to the total Auger intensity than the corresponding triplet decay channels.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138674

I. INTRODUCTION

X-ray spectroscopies are widely used for probing the elec-
tronic structure of molecules and materials.1–3 Based on transitions
involving core electrons, they exploit special features of the core
orbitals—their localized nature, the element specificity of their ener-
gies, and the sensitivity to the environment of these energies.1–7

Progress in experimental techniques such as laser technology and,
more specifically, the higher quality of x-ray beams has motivated
recent efforts to advance the theoretical capabilities for modeling
core-level transitions.5,8,9

Irradiation with x-rays creates vacancies in the core orbitals,
producing highly excited or ionized states. Alternatively, core-
hole states can also be created by nuclear transformations such
as electron capture or internal conversion of some radionuclides.
In molecules with light atoms—C, N, and O—which are most
relevant to organic chemistry, core-hole states relax predomi-
nantly via autoionization processes, collectively referred to as the
Auger–Meitner effect.10,11 In non-radiative Auger decay, a valence
electron fills the core vacancy, liberating sufficient energy to eject
another electron, called the Auger electron, into the continuum.
Different types of this process are shown in Fig. 1: core-ionized

states, produced, for example, in x-ray photoionization spectroscopy
(XPS), undergo regular Auger decay, whereas core-excited states,
produced in x-ray absorption spectroscopy (XAS), undergo res-
onant participator or spectator Auger decay. Less common are
double and triple Auger decay in which two or three elec-
trons are simultaneously emitted, resulting in multiply charged
cations.12,13

In Auger electron spectroscopy,15 the intensity of the emitted
Auger electrons is recorded as a function of their kinetic energy.
Auger electron spectroscopy benefits from the element- and
environment-sensitivity of core orbitals and, therefore, can provide
information about the electronic structure not accessible by other
techniques.1 It has been employed to characterize with high
accuracy and high spatial resolution the chemical composition
of surfaces,16–19 materials,20–22 nanostructures,23,24 and gas-phase
molecules.25–28

Auger electrons find uses beyond spectroscopy, e.g., in radio-
therapy and precision medicine.29–32 Because Auger decay produces
multiple electron tracks in the vicinity of the emission site, typi-
cally within 500 nm, it can deposit large amounts of energy into
the surrounding molecules. This ability of Auger emitters to deliver
considerable levels of radiation to a specific target33–35 has motivated
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FIG. 1. Different types of Auger decay: (a) regular Auger decay, (b) resonant par-
ticipator decay, and (c) resonant spectator decay. Reproduced with permission
from W. Skomorowski and A. I. Krylov, “Feshbach–Fano approach for calculation
of Auger decay rates using equation-of-motion coupled-cluster wave functions. I.
Theory and implementation,” J. Chem. Phys. 154, 08124 (2021). Copyright 2021
AIP Publishing LLC.

the therapeutic use of molecules labeled with radionuclides that emit
Auger electrons upon nuclear decay.

Theoretical modeling of Auger processes is difficult owing to
the metastable nature of core-ionized and core-excited states, which
are embedded in the ionization continuum. Conventional quantum
chemistry methods are formulated for discrete bound states with
L2-integrable wavefunctions and thus cannot describe states subject
to electronic decay. One can circumvent this problem by artifi-
cial stabilization of core-hole states by means of the core-valence
separation36 (CVS). This approach, in which decaying states are
approximated as bound states, delivers excellent energies in most
cases. However, energies alone are not sufficient for modeling
Auger spectra because a complete description requires decay widths
as well.

In this contribution, we compute decay widths for the core-
ionized states of benzene and construct its Auger spectrum. As a
prototypical aromatic molecule, benzene is often used as a model
system to test new spectroscopic techniques37–42 and benchmark
theoretical methods.43–50 The high symmetry and multiple core
orbitals make Auger decay in benzene particularly interesting, which
motivated several experimental and theoretical studies.51–57

In the early experiment by Spohr et al., Auger electrons were
generated by electron impact,51 which likely produces highly excited
molecules, giving rise to an Auger spectrum containing regular
and resonant contributions. Later, Rennie and co-authors used
x-ray radiation to produce core-ionized states;52 they reported
an Auger spectrum of benzene obtained with 390 eV radiation,
which they referred to as the sudden limit, as well as an Auger
spectrum obtained using lower excitation energies closer to XAS
transitions. It is expected that the former spectrum should be dom-
inated by non-resonant Auger decay, whereas the latter spectrum
should feature resonant contributions. The most recent experiment
by Carniato et al. employed higher-energy radiation (510 eV)
and measured Auger electrons in coincidence with photoelectrons
in order to eliminate the resonant contributions to the spectrum.53

Figure 2 shows the Auger spectra of benzene from the three
experiments. The spectra have similar shapes but show notice-
able differences both in the peak positions and the intensities. The
position of the lowest peak (labeled L in Fig. 2) differs by 0.58 eV,
and even more troubling is the fact that it is not possible to align
the positions of all major peaks with a constant shift. For exam-
ple, if the spectra are aligned by the lowest peak, then the posi-
tion of the highest peak (labeled H in Fig. 2) varies by 1.44 eV,
and so on. This is illustrated in Figs. S1–S3 in the supplementary
material.

Theoretically, Auger decay in benzene was studied by Tarantelli
et al. using a statistical approach, which assumes that all decay
channels have identical partial widths.55 Specifically, they com-
puted the decay channels, i.e., the dicationic states of benzene, with
second-order algebraic diagrammatic construction [ADC(2)]58,59

and constructed the spectrum using the density of states as a
proxy for the intensities. On the basis of these calculations, Taran-
telli et al. were able to interpret the main features in the Auger
spectrum.55

In view of the challenges faced by quantitative experimen-
tal measurements of Auger spectra and the noticeable discrep-
ancies between the three experimental Auger spectra of benzene,
there is a need for accurate theoretical modeling. By using a high-
level description of the electronic structure and computing the
Auger decay widths explicitly, we hope to clarify the nature of the
main spectral features in the Auger spectrum of benzene and to
provide a benchmark for future experiments and computational
studies.

We use two different theoretical approaches to compute the
decay widths of the core-ionized states: Feshbach–Fano resonance
theory60–62 and the method of complex basis functions (CBF),63

which is based on complex scaling.64,65 The comparison between
these different theoretical approaches and between theory and

FIG. 2. Auger spectra of benzene from (a) Spohr et al.,51 (b) Rennie et al.,52 and
(c) Carniato et al.53
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experiment provides insights into the Auger spectrum of benzene
and Auger decay in general.

Both approaches originate from non-Hermitian quantum
mechanics, which offers a powerful and elegant framework for treat-
ing molecular electronic resonances.66–70 The Schrödinger equation
is reformulated such that the resonances are separated from the con-
tinuum and become isolated states with L2-integrable wavefunctions
and complex energies,

Eres = E − i
Γ
2

, (1)

where the real part E describes the energy of a resonance and the
imaginary part gives its decay width Γ, which is inversely propor-
tional to the lifetime. The Feshbach–Fano approach and the method
of complex basis functions represent two techniques to achieve such
reformulation in practice.67–70

These ideas were recently exploited to model molecular Auger
decay rates in the framework of coupled-cluster (CC) theory71 and
its equation-of-motion (EOM) extensions:72–74 Skomorowski and
Krylov have developed a method based on the Feshbach–Fano
formalism,14,75 whereas Matz and Jagau have developed methods
based on CBFs.76,77 Among related recent developments, Cori-
ani and co-workers have reported an implementation of the
Feshbach–Fano approach combined with a one-center approxima-
tion of free electrons and multi-reference wavefunctions.78

The structure of the paper is as follows: Sec. II outlines the
details of our theoretical modeling, Sec. III presents the numerical
results, and Sec. IV offers concluding remarks.

II. THEORETICAL AND COMPUTATIONAL DETAILS
A. Relevant electronic states of benzene

Figure 3 shows the occupied molecular orbitals (MOs) of
benzene and their irreducible representations. The electronic con-
figuration of the ground state of neutral benzene is

X 1A1g = (core)12(2a1g)2(2e1u)4(2e2g)4(3a1g)2(2b1u)2(1b2u)2

× (3e1u)4(1a2u)2(3e2g)4(1e1g)4, (2)

where the core comprises six doubly occupied orbitals

(core)12 = (1a1g)2(1e1u)4(1e2g)4(1b1u)2. (3)

Following Wentzel,81,82 we treat Auger decay as a two-step
process in which the second step, the filling of the core hole and
ejection of the Auger electron, is independent of the first step, the
creation of the core vacancy. Thus, our theoretical treatment focuses
on the second step. Figure 4 shows a sketch of the electronic states
relevant for our modeling: the neutral ground state, the core-ionized
states, which are the initial states in the Auger process, and the
doubly ionized valence states, which represent the final states. The
core-ionized states are metastable and decay, producing free elec-
trons and doubly ionized valence states. Different doubly ionized
states correspond to different decay channels, giving rise to Auger
electrons with specific energies. The rates of decay into the respective
doubly ionized target states determine the intensities in the Auger

FIG. 3. Occupied molecular orbitals of benzene. Irreducible representations are
given for the D6h point group (in red) using the Mulliken convention79 and for the
largest Abelian subgroup (D2h, in black), using Q-Chem’s symmetry notation.80

spectrum: Faster decay rates correspond to a higher probability of
decay into the respective doubly ionized target state.

Given that the four core-ionization energies (IEs) of benzene
differ by only 0.1 eV, we assume that any of the six core orbitals can
be ionized, i.e., all four core-ionized states (2A1g , 2E1u, 2E2g , 2B1u)
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FIG. 4. Initial and final states in regular Auger decay.

contribute equally to the total Auger spectrum barring the two
degeneracies. A rough estimate of the number of possible Auger
transitions is 6 × 15 × 15 = 1, 350 because the core vacancy can be
filled by an electron taken from any valence shell and the Auger elec-
tron can also originate from any valence shell. In this estimate, we do
not take into account degenerate shells and the spin multiplicity of
the doubly ionized target states. Moreover, we do not include chan-
nels resulting from three-electron processes, i.e., those leading to
3-hole-1-particle (3h1p) target states of the dication, because these
channels are expected to have lower intensity. Furthermore, we do
not consider resonant Auger decay and focus on the non-resonant
Auger process. This is justified by the setup of the most recent mea-
surement, which supposedly excludes contributions from resonant
Auger decay.53

Using a one-electron picture and Koopmans’ theorem, the
energies of the Auger electrons are83

EAuger = �v1 + �v2 − �core, (4)

where �v1 and �v2 are the energies of the valence holes created by the
Auger decay, and �core is the energy of the core orbital with the hole.
In correlated treatments, different 2h configurations can mix, giving
rise to correlated doubly ionized states, which we call DIP (double
ionization potential) states. The positions of the peaks in the Auger
spectrum are then

EAuger = EDIP − EcoreIP. (5)

Furthermore, correlated treatments are able to distinguish sin-
glet and triplet Auger channels. As per Fig. 3, the highest-energy
Auger electrons should correspond to the DIP states with two
holes in the 1e1g highest occupied molecular orbital (HOMO) of
benzene.

Because the IEs of the core orbitals are very close (∼0.1 eV), one
can anticipate that the positions of the peaks in the Auger spectrum
of benzene follow the energies of the DIP states and that the intensity
pattern follows the density of DIP states. Indeed, this approach has
been used in earlier theoretical treatments of the Auger spectrum of
benzene.55 Although the density of correlated DIP states can provide
a zero-order picture of the Auger spectrum, a quantitative treatment
needs to account for the different probabilities associated with differ-
ent decay channels.82–84 These probabilities are proportional to the
partial widths of the metastable core-ionized states for decay into a
particular channel. If all decay channels are considered, these par-
tial widths sum up to Γ from Eq. (1). In the following two sections
(II B and II C) we discuss and compare our two approaches for

computing these partial widths, i.e., Feshbach–Fano resonance the-
ory and the CBF method. We show that accounting for partial widths
leads to significant changes in the Auger intensities as compared to
an estimate based on the density of DIP states.

We note that the contributions of triplet decay channels are
expected to be smaller than the contributions of singlet decay
channels.83,85 The dominance of singlet channels is also confirmed
by experiments on atoms, where the peaks in the Auger spec-
trum can be unambiguously mapped onto the decay channels.86

In the Appendix, we analyze the contributions of singlet and
triplet channels for the two many-body approaches used in this
work.

Specific details of theoretical protocols are given below. All
calculations were carried out using the Q-Chem package.87,88

B. Feshbach–Fano approach
For the Feshbach–Fano calculations, we employ CC and

EOM-CC theories with single and double substitutions (CCSD
and EOM-CCSD, respectively)72–74,89 and their extensions to
core-level states using CVS.43,90–98 The reference state in these
calculations corresponds to neutral benzene and is treated by
CCSD,

�Ψ CC� = eT �Φ0�, (6)

T = T1 + T2 =�
ia

ta
i a†i + 1

4�ijab
tab
ij a†b†ji, (7)

where �Φ0� is the Hartree–Fock reference determinant, which
defines the separation between occupied and virtual orbital spaces.
Following the standard notation, indices i, j, k, . . . denote orbitals
from the occupied space, indices a, b, c, . . . denote orbitals from the
virtual space, and indices p, q, r, . . . denote orbitals that can be either
occupied or virtual.

The core-hole states are described by EOM-IP-CCSD as

�Ψ IP� = RIPeT �Φ0�, (8)

R IP = R IP
1 + R IP

2 =�
i

ri i + 1
2�ija ra

ij a†ji, (9)

and the EOM-IP amplitudes ri and ra
ij are found by diagonalizing

the similarity transformed Hamiltonian, H̄ = e−THeT in the space of
1h and 2h1p determinants. The IEs are directly obtained as eigen-
values of the EOM-IP-CCSD equations. We use the CVS scheme,
where the EOM-IP operators R IP

1 and R IP
2 are restricted to oper-

ators that include at least one core orbital.90–93 This makes the
core-ionized states artificially bound and separates them from the
double-ionization continuum. The doubly ionized target states are
described by the DIP variant of EOM-CCSD,99–101

�Ψ DIP� = R DIPeT �Φ0�, (10)

R DIP = R DIP
1 + R DIP

2 = 1
2�ij rij ij + 1

6�ijka
ra

ijk a†kji, (11)
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and the EOM-DIP amplitudes rij and ra
ijk are determined by

diagonalization of H̄ in the space of 2h and 3h1p determinants.
In the Feshbach–Fano approach, a resonance state is obtained

as the result of the interaction between a bound discrete state and
continuum states.60–62 The Feshbach projection operators Q and
P divide the full Hilbert space into bound and continuum sub-
spaces, respectively,61 and these subspaces are coupled via the matrix
elements of the many-body Hamiltonian between the bound and
continuum configurations. By using the Löwdin partitioning tech-
nique,62 the problem of computing the resonance energy is formu-
lated as an eigenproblem of a non-Hermitian effective Hamiltonian
HQQ defined in the Q-space,

HQQ �Ψ̃� = Ẽ �Ψ̃�, (12)

Ẽ = E − i
Γ
2

, (13)

HQQ = HQQ +HQP G(+)P (E)HPQ, (14)

G(+)P (E) = lim
�→0

1
E + i� −HPP

. (15)

In practice, Eqs. (12)–(15) are solved perturbatively. In zeroth order,
one computes the eigenstates �Ψ� of the bound-space Hamiltonian
HQQ. Then, the complex resonance energy Ẽ is computed using the
first-order correction, i.e., by computing a matrix element between
the bound and continuum states

Ẽ ≈ E + E(1) = E + �Ψ �HQP G(+)P HPQ �Ψ�, (16)

giving rise to

E = Re�Ψ�HQQ�Ψ�
≈ E +�

�
P.V.� ∞

0
dE′ �Ψ�HQP�χ±�,E′��χ±�,E′ �HPQ�Ψ�

E − E� − E′ , (17)

Γ = −2 Im�Ψ�HQQ�Ψ�
≈�

�
2π �Ψ�HQP�χ±�,E−E���χ±�,E−E� �HPQ�Ψ� =�

�
Γ�. (18)

Here, � denotes the decay channels and E� the associated
threshold energies, while χ±�,E refers to scattering states, which are
normalized according to �χ±�,E�χ±�′ ,E′� = δ��′ δ(E − E′).

The Feshbach–Fano approach has recently been applied by
Skomorowski and Krylov to compute Auger decay rates using
EOM-CC wave functions.14 In their approach, CVS was used to
define the projector Q. The bound part of a resonance state, that
is, Ψ from Eqs. (17) and (18), can be computed by CVS-EOM-IP-
CCSD and the continuum states χ±�,E are represented as products of
EOM-DIP-CCSD states and free-electron states.

In this approach, the final expression for the partial width
corresponding to the decay of an initial core-hole state into channel
� is

Γ� = 2πgα � d�k
�
��p

h �
pk γp + 1

2�pqr
�pq�kr� �Γpq

r
�
�

× ���p
h �

kp γp + 1
2�pqr
�kr�pq� �Γr

pq
�
�, (19)

where gα accounts for spin degeneracy and �k for the angle
of the emitted electron with momentum k. hpk and �pq�kr� are
matrix elements of the one-electron and two-electron parts of the
Hamiltonian.

Because of the two-electron nature of Auger decay, the dom-
inant contribution to Eq. (19) comes from the two-body Dyson
orbitals Γpq

r and Γr
pq,84 which connect EOM-IP-CCSD (ΨN−1) and

EOM-DIP-CCSD (ΨN−2) states corresponding to the channel �

Γp
qr = �ΨN−2�p†qr�ΨN−1�, (20)

Γpq
r = �ΨN−1�p†q†r�ΨN−2�. (21)

These are contracted with two-electron integrals in which index k
corresponds to a continuum orbital,

�ΨN−2�akO2�ΨN−1� = 1
2�pqr
�kr�pq�Γr

pq, (22)

�ΨN−1�O2a†
k�ΨN−2� = 1

2�pqr
�pq�kr�Γpq

r . (23)

Here, a†
k denotes the creation operator corresponding to a free

electron with momentum k and O2 is the two-electron part of
the Hamiltonian.82,84 Because the EOM-CC Hamiltonian is not
symmetric, both left and right Dyson orbitals, i.e., Γpq

r and γp as well
as Γr

pq and γp, need to be computed.
In this work, we describe the continuum orbital k by plane

waves. Complete expressions and details of the calculations of mixed
Gaussian-plane-wave integrals are available in Ref. 14. The integra-
tion over �k is carried out using Lebedev’s quadrature, and we found
that for benzene, a very fine integration grid of order 17 is needed for
converged results; calculations with the default grid of order 5 yield
partial widths that break symmetry-imposed constraints. Sample
inputs are given in the supplementary material.

The structure of benzene was optimized with RI-MP2/cc-
pVTZ; the respective Cartesian coordinates are given in the
supplementary material. The fully uncontracted 6-311(2+,+)G∗∗
basis set was used in the CVS-EOM-IP-CCSD and EOM-DIP-CCSD
calculations45,102 to evaluate the partial widths according to Eq. (19).
In line with the frozen-core (fc) CVS approach, the core electrons,
that is, the K-shells on carbons, were frozen in all valence calcula-
tions.92 The decay widths were convoluted with a Gaussian function
with a fixed full width at half maximum equal to 1.15 eV. The
so-obtained Auger intensities were then combined with the Auger
electron energies calculated according to Eq. (5) to generate the final
Auger spectra. To analyze the many-body wave functions in terms
of a molecular orbital framework, we also computed natural orbitals
(NOs).103,104
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C. Complex basis function approach
In the CBF method, we describe the metastable core-ionized

states directly by CCSD, without invoking CVS. In these cal-
culations, �Φ0� from Eq. (6) is a determinant with a core
hole. To obtain the required high-energy solutions of the unre-
stricted Hartree–Fock equations, we used the MOM (maximum
orbital overlap) algorithm.105,106 The IEs are then computed as
differences between the total CCSD energies of the core-ionized
states and that of the neutral molecule, hence the name �CCSD.

In the CBF method,63,107,108 the description of Auger decay
is based on an L2-representation of the resonance wave function
obtained through analytical continuation of the Hamiltonian to the
complex plane. A particular advantage of this approach is that no
assumptions need to be made about the functional form of the wave
function of the Auger electron. The complex resonance energy from
Eq. (1) is computed as eigenvalue of a non-Hermitian Hamiltonian
without invoking perturbation theory and the total decay width is
obtained as Γ = −2 Im(Eres).

The CBF method is related to complex scaling of the
Hamiltonian64,68 through the identity

Eres = �Ψ(r)�Ĥ(reiθ)�Ψ(r)��Ψ(r)�Ψ(r)� = �Ψ(re−iθ)�Ĥ(r)�Ψ(re−iθ)��Ψ(re−iθ)�Ψ(re−iθ)� , (24)

with θ (0 < θ < π�4) as the complex-scaling angle. In the CBF
method, the complex-scaled wave function on the right-hand side
of Eq. (24) is expressed in terms of Gaussian functions with a scaled
exponent that take the form

χ�(r, A) = N�(θ) S�(rA) exp[−α e−2iθr2
A], (25)

where N� is a normalization constant and S� is a polynomial
that depends on the angular quantum number of χ�. By scaling
only selected basis functions, one obtains a finite-basis represen-
tation of the exterior complex-scaled Hamiltonian.109,110 In con-
trast to complex scaling of the Hamiltonian, the CBF method is
compatible with the Born–Oppenheimer approximation and thus
applicable not only to atomic but also to molecular electronic
resonances.

While the resonance energy Eres is independent of the scaling
angle θ in the complete basis set limit, a dependence does exist
when working with a finite basis. We determine the optimal value
for θ through minimization of �d(Eres − E0)�dθ�, where E0 is the
energy of neutral benzene in the present case. While Im(E0) would
be zero in the complete basis set because the ground state of
benzene is stable against loss of electrons, this is not the case in a
finite basis. Previous applications have shown that minimizing this
energy difference generally leads to better results than minimizing�dEres�dθ�.76,111–113 Further theoretical details of the CBF method can
be found elsewhere.63,70,112,114

We note that a variety of applications have shown that CBFs
combined with CC theory provide an accurate description not only
of Auger decay but of other types of electronic resonances such as
temporary anions and molecules in static electric fields as well.112–115

To compute partial Auger decay widths in the framework
of the CBF approach, Matz and Jagau developed two different

procedures.76,77 The first one can be viewed as a generalization of
CVS.36 In this procedure, partial widths are evaluated by applying
projectors that are specific to a particular Auger decay channel.77

The approach works well combined with CCSD, EOM-CCSD,
and configuration interaction singles (CIS) wave functions but
has the disadvantage that each decay channel requires a separate
calculation.

The second approach is based on a decomposition of the imag-
inary energy and works only for CCSD wave functions.76 This
approach, which has the advantage that all partial widths can be
evaluated with a single calculation, was used in the present work.
The partial width of a particular decay channel is computed as the
contribution to the imaginary part of the CCSD energy,

ECCSD = EHF +�
ijab
�1

4
tab
ij + 1

2
ta
i tb

j ��ij�ab� (26)

from those amplitudes tab
ij , where a or b refers to the core hole, and

i and j are the occupied valence orbitals that are empty in the target
state. Note that, because of the two-electron nature of Auger decay,
the Hartree–Fock energy would be real-valued in the complete basis
set limit, and the non-zero value of Im(EHF) results from using a
finite basis.

In the CBF approach, where partial decay widths are evaluated
using Eq. (26) alone, there seemingly is no need to compute the wave
functions of the doubly ionized target states. However, the energies
of these target states are needed to construct the Auger spectrum.
As a first approximation, we used Eq. (4) and the orbital energies
obtained in the Hartree–Fock calculations of the core-ionized states
for this purpose. However, Eq. (4) is a rather crude approxima-
tion of the Auger electron energy, and Eq. (5) represents a natural
improvement.

In contrast to the Feshbach–Fano approach based on EOM-CC
wave functions, there is no obvious way to evaluate Eq. (5) in the
framework of the CBF approach based on CCSD wave functions for
the core-ionized states. In the present work, we evaluated Eq. (5) in
the same way as in Sec. II B, that is, as differences between EOM-
DIP-CCSD and EOM-IP-CCSD energies. However, we found that
the assignment of the partial widths computed with CCSD using
Eq. (26) to channel energies computed with EOM-DIP-CCSD is not
straightforward. This is because the EOM-DIP-CCSD eigenvectors
RDIP are often not represented by a single transition but have contri-
butions from several orbitals. We constructed the partial width for
each DIP state by summing up those CCSD partial widths whose
involved orbitals i and j correspond to the leading EOM-DIP-CCSD
amplitudes (rij > 0.1). We then weighted the contributions by the
corresponding DIP amplitudes rij and linearly combined the result-
ing widths for the DIP states with leading amplitudes corresponding
to the same transition. We only considered DIP states with domi-
nant 2h character because 3h1p configurations do not contribute to
the Auger decay process.

The structure of benzene was taken from Ref. 76. This
structure differs from the one used in Sec. II B on the order of
0.001 Å, which is irrelevant for our purposes. All calculations were
carried out using a modified cc-pCVTZ basis set, where s- and
p-shells were replaced by those from cc-pCV5Z. In the CBF-
CCSD calculations, three complex-scaled s-, p-, and d-shells were
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added to all C atoms. The resulting basis set is denoted cc-
pCVTZ(5sp)+3(spd) and is provided in the supplementary material.

The optimal complex-scaling angle θopt was determined as
12○ by minimization of �d(Eres − E0)�dθ�. For this purpose, the
CBF-CCSD energies of neutral benzene and of the core-ionized 2A1g
state were recalculated in the range 6○–16○ in steps of 1○. The same
optimal value for θ was assumed for the other core-ionized states
since there is evidence that θopt varies little between resonances with
similar electronic structures.70

Benzene has four distinct core-ionized states, two of which are
doubly degenerate. When starting from reference determinants with
a core hole, six core-ionized states can be constructed because the
degeneracy of the 2E1u and 2E2g states is artificially lifted. Accord-
ingly, we computed six sets of partial widths corresponding to the six
core-ionized states. The effect of this artificial symmetry breaking on
the results is discussed in Sec. III. The final Auger spectra were built
by applying a Gaussian broadening function with a full width at half
maximum equal to 1.15 eV to all decay widths in complete analogy
to Sec. II B.

III. RESULTS AND DISCUSSION
A. Energies of core-ionized and valence doubly
ionized states

Table I shows the IEs of benzene. As anticipated, they are very
close, spanning the energy range from 290.78 to 290.86 eV at the
CVS-EOM-IP-CCSD/u6-311(2+,+)G∗∗ level. The computed IEs
agree well with the experimentally determined core-ionization
threshold for benzene of 290.42 eV.52 Using the larger
cc-pCVTZ(5sp) basis improves the agreement by about 0.1 eV. We
note that the excellent agreement of fc-CVS-EOM-IP-CCSD with
the experiment might be due to fortuitous cancellation of errors
in this approach.92 In order to establish the absolute accuracy of
this protocol, it is necessary to go beyond the CCSD level of theory
and include triple excitations as well as relativistic and vibrational
corrections.

The comparison of the different theoretical methods reveals
that CBF-EOM-IP-CCSD yields energies that are systematically too
high by about 1.5 eV. CBF-�CCSD yields energies that are even
higher by ∼1 eV, which can be explained by a better description of

core relaxation in this approach. The last column of Table I shows
that the degeneracy of the 2E1u and 2E2g states is lifted in the �CCSD
calculations. This artificial splitting amounts to about 1 eV.

In the simulation of the Auger spectrum using the
Feshbach–Fano approach, we computed 143 EOM-DIP-CCSD
states (73 singlets and 70 triplets) with dominant 2h character,
whereas in the simulation using the CBF approach, we computed
166 EOM-DIP-CCSD states (88 singlets and 78 triplets). These
states span the range from 24 to 43 eV, which corresponds to
Auger electrons with energies of 244–267 eV. In both simulations,
the number of computed target states is less than the estimated
total number of 2h configurations because of configuration mix-
ing, which stabilizes some states while destabilizing others. The
destabilized states appear at much higher energies and mix with
3h1p configurations, which reduces their contributions to the
Auger spectrum. Our calculations do not include decay channels
corresponding to Auger electrons with energies below 244 eV.

Table II shows the energies and the characters of the 14 lowest
DIP states. The basic structure of the double ionization spectrum is
consistent with Koopmans’ theorem, i.e., the energies of the orbitals
involved in the ionization process. Our DIP energies and the char-
acter of the corresponding wave functions also agree well with
the ADC(2) results from Ref. 55. In accordance with well-known
trends for excitation energies, ADC(2) yields double ionization ener-
gies that are consistently lower than EOM-DIP-CCSD energies by
1.5–2.0 eV.

In agreement with Hund’s rules, the ground state of doubly
ionized benzene is a triplet (3A2g), which is described as ionization
from the doubly degenerate HOMO (1e1g). According to EOM-DIP-
CCSD calculations, its double-ionization energy is 24.85 eV, which
is close to the experimentally determined value of 24.65 eV.116 The
two singlet states, which also result from ionization of the HOMO
(1E2g and 1A1g), appear just 0.6 and 1.1 eV above the ground state.

Above these three states, there is a gap of almost 2 eV, fol-
lowed by a cluster of seven states, which span a range of 0.4 eV
from 27.85 to 28.25 eV. Six of them are ionizations from HOMO and
HOMO − 1 (1e1g ⊗ 3e2g = 1/3E1g ⊕ 1/3B1g ⊕ 1/3B2g), whereas the last
one is a triplet state (3E1u) corresponding to the ionization of HOMO
and HOMO − 2 (1e1g ⊗ 1a2u). Interestingly, the corresponding
singlet state (1E1u) is 3 eV higher in energy, while the singlet-triplet

TABLE I. Core ionization energies (in eV) of benzene.

CVS-EOM-IP-CCSD CVS-EOM-IP-CCSD CBF-EOM-IP-CCSD CBF-�CCSD

Statea Core orbitalb u6-311(2+,+)G∗∗c cc-pCVTZ(5sp)c cc-pCVTZ(5sp) + 3 (spd)c cc-pCVTZ(5sp) + 3 (spd)c

2A1g 1ag 290.86 290.74 292.04 293.10
2E1u 1b3u 290.85 290.72 292.02 291.82
2E1u 1b2u 290.85 290.72 292.02 292.81
2E2g 2ag 290.80 290.68 291.98 291.82
2E2g 1b1g 290.80 290.68 291.98 292.77
2B1u 2b3u 290.78 290.66 291.96 293.03
aIrreducible representations are given for the full molecular point group, D6h , using Mulliken’s convention.
bIrreducible representations are given for the computational point group, D2h , using Q-Chem’s convention.
cFor the definition of basis sets, see Secs. II B and II C. CBF calculations were performed with a scaling angle of 12○ .
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TABLE II. Double ionization energies (eV) of the 14 lowest doubly ionized states of benzene. The composition of the wave
functions in terms of the leading DIP amplitudes is also given.

State Energya Energyb Energyc Compositiona

3A2g 24.85 25.17 23.34 1e−2
1g (0.67)

1E2g 25.48 25.80 23.96 1e−2
1g (0.66)

1A1g 25.92 26.25 24.59 1e−2
1g (0.64), 1a−2

2u (0.28)

3B1g 27.85 28.14 26.19 3e−1
2g 1e−1

1g (0.47)
3E1u 27.90 28.26 26.07 1e−1

1g 1a−1
2u (0.67)

3E1g 27.96 28.24 26.30 3e−1
2g 1e−1

1g (0.47)
1B1g 28.05 28.33 26.44 3e−1

2g 1e−1
1g (0.46), 1a−1

2u 1b−1
2u (0.11)

3B2g 28.07 28.35 26.41 3e−1
2g 1e−1

1g (0.47)
1E1g 28.16 28.43 26.55 3e−1

2g 1e−1
1g (0.46), 1a−1

2u 3e−1
1u (0.11)

1B2g 28.25 28.52 26.63 3e−1
2g 1e−1

1g (0.47)

1A1u 29.90 30.16 28.08 1e−1
1g 3e−1

1u (0.47)
3E2u 29.98 30.26 28.32 1e−1

1g 3e−1
1u (0.41), 3e−1

2g 1a−1
2u (0.11), 1e−1

1g 1b−1
2u (0.11)

3A1u 30.04 30.29 28.22 1e−1
1g 3e−1

1u (0.47)
1E2u 30.04 30.31 28.39 1e−1

1g 3e−1
1u (0.37), 3e−1

2g 1a−1
2u (0.38), 1e−1

1g 1b−1
2u (0.15)

aComputed with EOM-DIP-CCSD/u6-311(2+,+)G∗∗ .
bComputed with EOM-DIP-CCSD/cc-pCVTZ(5sp).
cComputed with ADC(2), taken from Tarantelli et al.55

splittings of the states described as HOMO ⊗ HOMO − 1 amount
to at most 0.2 eV. This difference arises due to the very different
values of the respective exchange integrals, �1e1g1e1g �1a2u1a2u�≈ 0.341 hartree, �1e1g1e1g �3e2g3e2g� ≈ 0.036 hartree, which were
computed by summing over all degenerate orbitals.

Next comes a second distinct gap of 1.7 eV, after which the
structure of the DIP spectrum becomes less resolved. The next group
of doubly ionized states, which is only partly included in Table II,
results from ionization from HOMO and HOMO − 3, but these
states are separated by only 1 eV from higher-lying ones. Notably,
the lowest-lying state in this group is a singlet (1A1u) and not a
triplet. This can be explained by the low value of the exchange
integral �1e1g1e1g �3e1u3e1u� ≈ 0.067 hartree.

As one can see from Table II, the low-lying DIP states are
well represented by a single 2h configuration. However, this changes
at higher energies, where we observe considerable configuration
mixing so that many states cannot be described by a single 2h config-
uration. This has also been observed in the ADC(2) study of doubly
ionized benzene by Tarantelli et al.55 and in an ADC(2) study of
doubly ionized fluorinated benzenes.57 We note that some of the
higher-lying DIP states also show considerable 3h1p character. The
lowest state with predominant 3h1p character appears at around
36.5 eV corresponding to an Auger electron energy of 255.0 eV.
While the energy of these satellite states is overestimated by
EOM-DIP-CCSD, the effect on the Auger spectrum is small because
of their small contribution to the two-body Dyson orbital [Eqs. (20)
and (21)].

The analysis of the EOM-DIP-CCSD wave functions in terms
of NOs and their populations shown in Fig. 5 confirms these
observations. For the neutral ground state, the shape of the NOs is
very similar to that of the canonical Hartree–Fock MOs from Fig. 3.

FIG. 5. Frontier NOs and their occupation numbers for the ground state of benzene
and selected doubly ionized states. Irreducible representations are given for the
D6h point group (in red) and for the largest Abelian subgroup (D2h, in black).
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By comparing the NO occupations of the DIP states with those of
the neutral reference state, one can infer the character of the orbitals
from which the electrons are removed in the course of Auger decay.
For example, for the 3A2g state at 24.85 eV and the 1A1g state at
25.92 eV, the occupation numbers of the 1b3g and 1b2g NOs change
from 1.92 to 1.01 relative to the neutral reference. This implies that a
total of 1.82 electrons are removed from these NOs, which together
represent the 1e1g shell in the full point group, while 0.18 electrons
are removed from other orbitals. For the 3B1g state at 27.85 eV, the
occupation numbers of the 6ag and 1b3g NOs change from 1.95 to
1.53, and those of the 3b2g and 1b2g NOs from 1.92 to 1.50. This
means that a total of 1.68 electrons are removed from the 1e1g and
3e2g shells, and 0.32 electrons are removed from other orbitals.

B. Density of states
Figure 6 shows the densities of singlet and triplet DIP states

computed with EOM-DIP-CCSD together with the ADC(2) results
from Ref. 55. As discussed in Sec. II A and in Ref. 55, the density
of DIP states can be considered a crude approximation to the Auger
spectrum.

Figure 6 illustrates that, after application of a broadening func-
tion, most DIP states are no longer individually discernible. Rather, a
spectrum with a few broad peaks, each comprising many DIP states,
is obtained. An exception is the lowest peak in the triplet manifold
at 25 eV, which corresponds to the 3A2g state. This state (the first
entry in Table II) originates from the double ionization of the doubly
degenerate HOMO. The lowest-lying singlet peak at around 26 eV
is composed of two states (1E2g and 1A1g), which are derived by
ionization of the HOMO (see Table II). The next two peaks,
which are well separated from the higher-lying ones, comprise
four triplet and three singlet channels, respectively, as detailed in
Table II. Beyond 30 eV, each peak in the singlet and triplet spectrum
comprises an even larger number of DIP states.

Figure 6 shows that, after application of a uniform shift, the
agreement between EOM-DIP-CCSD and ADC(2) is very good for
the lowest two peaks in each panel, still acceptable for the third peak,
and substantially worse at higher energies. While the uniform shift
can be justified by the well-known performances of EOM-CCSD and
ADC(2) (see Sec. III A), the reason for deteriorating agreement at
higher energies is less obvious. It may be related to the increasing
admixture of 3h1p configurations that we observe in the higher-lying
DIP states. ADC(2) treats these doubly excited configurations at a
lower level than EOM-CCSD, which may lead to a poor descrip-
tion of states in which the weight of these configurations becomes
comparable to the weight of the 2h configurations.

Importantly, Fig. 6 only provides a crude picture of the Auger
spectrum. The most important shortcoming is that it suggests
equal contributions of singlet and triplet channels to the spectrum,
whereas it is clear from theoretical considerations that the contri-
butions of triplet states are smaller (see Appendix). One needs to
compute the partial widths of the decay channels for quantitative
modeling, and we do so in Sec. III C.

C. Total Auger spectrum
The non-resonant Auger spectra of benzene computed with

the two different methods discussed in Sec. II (Feshbach–Fano and
CBFs) are shown in Fig. 7. The largest partial widths are given in

FIG. 6. Density of singlet and triplet DIP states in benzene computed with EOM-
DIP-CCSD/u6-311(2+,+)G∗∗ and ADC(2) (from Ref. 55). To match the lowest-
lying EOM-DIP-CCSD peaks, the ADC(2) data were shifted by 2.15 and 1.33 eV
for singlet and triplet states, respectively.

Tables S1 and S3 in the supplementary material. Notably, there are
many channels with partial widths of the same order of magnitude,
and there is not a single channel with a width of more than 2 meV.
Thus, the data in the tables cannot be interpreted without actually
constructing the spectrum.

The comparison of the two spectra in Fig. 7 illustrates the very
good agreement between the two theoretical approaches, despite
the vastly different treatment of the outgoing electron. This cross-
validates our two approaches. For the CBF method, Fig. S4 in
the supplementary material shows how using Eq. (4) instead of
Eq. (5) for the peak positions leads to a substantially different Auger
spectrum. This demonstrates the importance of using a high-level
electronic-structure model.
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FIG. 7. The non-resonant Auger spectrum of benzene computed using the
Feshbach–Fano approach (red curve) and the CBF approach (green curve).
The DIP energies needed for the positions of the peaks were computed with
EOM-DIP-CCSD for both approaches (see Secs. II B and II C).

The two spectra in Fig. 7 have eight and nine distinct peaks,
respectively, which we loosely group into the following categories
based on the Auger electron energies: (a) peaks above 262 eV, (b)
peaks between 252 and 262 eV, and (c) peaks below 252 eV. The two
peaks above 262 eV are the easiest to describe. They correspond to
the two lowest peaks in the density of singlet states (see Fig. 6) and
arise from double ionization of the HOMO and mixed ionization of
HOMO/HOMO − 1, respectively.

In the range between 252 and 262 eV, each peak is composed
of many decay channels. As one would expect, contributions
from lower-lying orbitals become more important with decreas-
ing Auger electron energy. We observe that the final states in this
energy range have a predominant 2h character and are thus well
represented by EOM-DIP-CCSD. Below 252 eV, contributions from
lower-lying orbitals gain even more weight, and the final states
develop substantial 3h1p character, which makes their description
by EOM-DIP-CCSD less reliable. This affects both spectra in Fig. 7
equally.

Additionally, we investigated the contributions of singlet and
triplet states to the computed spectra. As discussed in the Appendix
and in Refs. 55 and 83, singlet channels are expected to have
notably larger Auger intensities in comparison to triplet channels.
Figure 8 shows that this is indeed the case with both approaches—the
Auger spectrum of benzene is dominated by contributions from
singlets.

Interestingly, the 3A2g ground state of the benzene dication has
zero Auger intensity in both of our approaches (Feshbach–Fano and
CBF). Likewise, the contributions of the low-lying triplets listed in
Table II are very small. Only below 260 eV, the triplet contributions
become noticeable. At these energies, they visibly affect the shape
of the spectrum. This is most evident for the peak around 250 eV,
which becomes the most intense peak in the spectrum due to the

FIG. 8. Contributions from singlet and triplet decay channels to the non-resonant
Auger spectrum of benzene. Top: Feshbach–Fano approach, bottom: CBF
approach.

combined contributions of singlets and triplets. We reiterate that
such differences in the Auger intensity of singlet and triplet channels
are not apparent from the density of states shown in Fig. 6. Thus, a
mere analysis of decay channels does not provide a complete picture
of Auger decay.

Furthermore, we note that the triplet contributions are overes-
timated by the Feshbach–Fano approach as compared to the CBF
approach. Such overestimation of triplet intensities was observed in
previous studies, where it was attributed to the limitations of the
plane-wave treatment of the Auger electron.75 It was also shown that
using Coulomb waves improved the results.14,75 Despite this limita-
tion of the plane-wave treatment, the overall spectrum in Fig. 7 is
barely affected; Feshbach–Fano and CBF agree well with each other
in the entire energy range.
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D. Auger spectra corresponding to individual
core-ionized states

To analyze the contributions of the four different core-ionized
states (2A1g , 2E1u, 2E2g , 2B1u) to the overall Auger spectrum in Fig. 7,
we plotted the spectra resulting from selective ionization in Fig. 9.
Here, the contributions of degenerate core orbitals (e1u, e2g) were
added together. We anticipate that our results will provide useful
insights into Auger spectroscopy experiments using narrow-band
x-rays, which may lead to selective core-ionization.

Our results show that the symmetry of the core holes impacts
the intensity pattern despite their very similar energies. Although the
individual spectra have a general structure that is similar to that of
the overall spectrum in Fig. 7, the decay width corresponding to a
particular Auger electron energy differs. For example, the 2B1u state

FIG. 9. Auger spectra of benzene corresponding to selective ionization of each
core orbital. The spectra are normalized individually, and the degenerate core
orbitals (e1u and e2g) are treated together. Top four panels: Feshbach–Fano
approach. Bottom four panels: CBF approach.

produces enhanced intensity in the Auger electron energy regime
around 250 eV, whereas the 2A1g state mostly stimulates an energy
regime closer to 255 eV.

The inspection of Fig. 9 also illustrates more substantial differ-
ences between the Feshbach–Fano and the CBF approach that are
not visible in the overall spectrum in Fig. 7. For example, it appears
that the CBF approach overestimates the intensity of the decay
channels around 260 eV for the degenerate core holes (e2g and e1u).
This may be due to the shortcoming of the CBF/CCSD approach
discussed in Sec. III A, namely that the degeneracy of the e2g and e1u
core orbitals is lifted. Fig. S5 shows the same data as in Fig. 9, but
normalized together rather than individually, illustrating the effect
of the artificial symmetry breaking on the CBF spectra. In addition,
Fig. S5 shows that there is more variation among the individual spec-
tra in the CBF approach than in the Feshbach–Fano approach for the
non-degenerate core-hole states as well.

E. Total decay widths
We also calculated the total decay widths of all core-ionized

states; the results are shown in Table III. The variation in the width
among the core holes does not exceed 15%, which is not surprising
given that all states are derived from C(1s) orbitals. However, the
widths computed with CBFs are about a factor of two larger than
those computed with the Feshbach–Fano approach: 80 vs 45 meV,
corresponding to lifetimes of 8.3 and 14.6 fs, respectively. This is
most likely due to the latter calculations including only a limited
number of decay channels. The issue of underestimation of total
decay widths in Feshbach–Fano approaches has been noted most
recently by Coriani and co-workers, who reported that the theory
gives higher lifetimes than experiment: 9 fs were computed as the
lifetime for core-excited ozone, as compared to 4 fs obtained for
water from a O 1s photoelectron spectrum.117

In contrast, in the CBF approach, the total decay width is
computed directly without considering individual decay channels.
We note that both approaches violate symmetry-imposed con-
straints, yielding different widths for degenerate orbitals. In the
Feshbach–Fano calculations, the core-hole states are exactly degen-
erate, and the mismatch in widths occurs because a different number
of decay channels are included in the calculations. In the CBF
approach, the symmetry violation is more pronounced and happens
because the core-hole states are described based on independent
open-shell CCSD calculations.

TABLE III. Total decay widths of the core-ionized states of benzene in meV.

Core orbital Feshbach–Fano CBF

1ag (1a1g) 41.70 76.45
1b2u (1e1u) 44.20 78.84
1b3u (1e1u) 43.10 84.80
2ag (1e2g) 46.20 84.63
1b1g (1e2g) 47.30 78.02
2b3u (1b1u) 48.60 75.23

Average width 45.17 79.66
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A quantitative assessment of the computed total decay widths
in Table III is difficult because no experimental values have been
reported for benzene. However, several experiments have been
conducted for methane.118–121 Values for the natural linewidth of
the C(1s) core-hole state reported from these measurements vary
significantly between 83 ± 10 meV (7.9 fs) and 120 ± 10 meV (5.5 fs),
which underpins our supposition that the Feshbach–Fano calcula-
tions underestimate the total decay widths and the CBF results are
more accurate.

F. Comparison to the experimental Auger spectrum
Figure 10 compares the Auger spectrum from the most recent

experiment53 (see Fig. 2, spectrum C) and our theoretical Auger
spectra from Fig. 7. The experimental spectrum has a broad struc-
ture with various unresolved bands. Eight distinct peaks can be
distinguished, two of which are in the high Auger electron energy
regime above 262 eV. The latter two peaks, which are relatively
well resolved in the experimental spectrum, can be, on the basis
of our calculations, unambiguously assigned to final states arising
from double ionization of the HOMO and HOMO/HOMO − 1,
respectively.

However, the intensity pattern of these two peaks differs
between theory and experiment. We note that our two theoretical
spectra agree with the one reported by Tarantelli et al.;55 on the other
hand, the three experimental spectra agree with each other as well in
this respect. Provided that the experimental intensity pattern is real
and not an artifact of calibration or detection, a possible explanation
for the mismatch could be the contribution of resonant Auger
decay to the experimental spectra. Both participator and spectator
resonant Auger decay contribute intensity, especially for the higher-
energy Auger electrons. The mismatch could also be due to the effect
of nuclear motion, which is neglected in the present treatment. For

FIG. 10. The theoretical Auger spectra of benzene from Fig. 7 computed using
Feshbach–Fano and CBF approaches compared to the most recent experiment.53

The experimental spectrum is shifted by −1.60 eV to match the theory peak at
253.15 eV.

example, it has been shown for the water molecule that vibrational
effects can modify Auger intensities considerably.122 We will explore
the intensity mismatch between theory and experiment in future
work.

At lower Auger electron energies, the experimental spectrum
has five peaks in the region between 250 and 260 eV and one
peak below 250 eV. Both theoretical spectra reproduce the intensity
pattern of these peaks quite well: (a) all peaks are more intense than
the two above 260 eV, (b) the peak below 250 eV is somewhat less
intense than the ones between 250 and 260 eV, and (c) the most
intense peak is the one around 250–251 eV. The weak trend in
the intensity between 250 and 260 eV is captured better by the
Feshbach–Fano approach, whereas the CBF approach seems to
overestimate the intensity of the peak at around 260 eV. However,
the CBF spectrum is superior below 250 eV, where two well-resolved
peaks are obtained, whereas the Feshbach–Fano spectrum only has
a weak shoulder this is likely because we computed fewer DIP states
for the latter spectrum.

We also note that the higher electron-energy peaks in the exper-
imental spectrum do not fully align with those in the theoretical
spectra, even after the experimental spectrum is shifted by 1.60 eV.
This misalignment may be either due to an insufficient level of
correlation treatment in EOM-IP-CCSD or some problems in the
experiments. We reiterate that there is a noticeable disagreement
between the three measurements, as seen in Fig. 2 and in the
supplementary material.

IV. CONCLUSIONS
We have reported a theoretical ab initio study of Auger decay

in benzene. Partial Auger decay widths were computed with two
methods from non-Hermitian quantum chemistry combined with
CC and EOM-CC theory. Namely, we used the Feshbach–Fano
projection operator approach and, independently, the method of
CBFs. In total, we considered over 1000 transitions corresponding
to Auger electron energies in the range from 245 to 270 eV, which
illustrates the complexity of Auger decay in benzene.

Our two theoretical Auger spectra are in excellent agreement
with each other and in reasonable agreement with experimental
Auger spectra as well. This showcases the power of non-Hermitian
quantum chemistry and cross-validates the Feshbach–Fano and the
CBF approaches. Our Auger spectra are also in qualitative agreement
with an Auger spectrum derived from the density of doubly ionized
valence states, which validates the statistical approach of Tarantelli
et al.55

Our work illustrates the strengths and weaknesses of the
Feshbach–Fano and the CBF approaches. On the one hand,
Feshbach–Fano calculations are computationally less expensive
because there is no need for optimizing the complex-scaling angle
or complex algebra altogether. Also, smaller basis sets as com-
pared to CBF calculations appear to be sufficient. Moreover, our
Feshbach–Fano calculations preserve the degeneracy of the benzene
core holes, whereas this is not the case in the CBF treatment, which
is based on core-hole reference states. The latter problem could,
however, be circumvented by using a closed-shell reference in the
CBF calculations.

On the other hand, CBF calculations provide direct access to
total decay widths, whereas Feshbach–Fano calculations only yield
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partial widths. Moreover, the Feshbach–Fano approach overesti-
mates the contributions of triplet decay channels, likely due to using
plane waves for representing the Auger electron, whereas the CBF
approach gives more realistic singlet-triplet branching ratios. This
shortcoming of the Feshbach–Fano approach can likely be remedied
by improving the free-electron description.

We note that we could not resolve a conspicuous discrep-
ancy between theory and experiment regarding the intensity of the
two peaks in the spectrum with the highest Auger electron ener-
gies. This suggests possible extensions of our current work that
are worthwhile to pursue: the consideration of resonant contribu-
tions to the Auger spectrum as well as the study of vibrational
effects.

In conclusion, we see our work as a testament to the power
and usefulness of non-Hermitian extensions of ab initio quantum-
chemical methods. We also expect that our work will motivate
further theoretical and experimental work in the area of Auger
decay.

SUPPLEMENTAL MATERIAL

Supplementary material is available: an analysis of the experi-
mental spectra; additional data, and the results of the calculations.
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APPENDIX A: AUGER INTENSITIES
OF SINGLET VERSUS TRIPLET CHANNELS
IN THE FESHBACH–FANO APPROACH

Following Ågren and co-workers,82,84 we analyze the expres-
sions of the Auger intensity, Eq. (23), in terms of different spin
blocks of the two-body Dyson orbitals to explain differences in
relative intensities of triplet and singlet channels. We analyze the
contribution to the total intensity due to Γpq

r ; a similar analysis can
be carried out for Γr

pq (left and right Dyson orbitals are slightly differ-
ent because of the non-Hermitian nature of EOM-CC; for the sake
of brevity, only the right part of the transition amplitude is shown in
the following equations).

Here, we are interested in the two-electron part of the
width, which is computed by contracting the two-body Dyson
orbitals84 Γpq

r —that connect EOM-IP (ΨN−1) and EOM-DIP (ΨN−2)
states—with two-electron integrals in which one index corresponds
to the plane wave.

From the definition of Γpq
r [Eq. (21)] and Fig. 4 one can see that

index r corresponds to the core orbital and indices p and q to the
valence orbitals. Since the operators for the core and valence orbitals
operate in different orbital subspaces, they commute. Therefore, the
expression for the two-body Dyson orbital connecting the core-hole
state and a DIP state can be written as

Γpq
r = �Ψ0�p†q†�ΨN−2�, (A1)

where Ψ0 is the neutral CCSD reference state re-created from the
EOM-IP state by filling the core hole with operator r. Equation (A1)
shows that the leading contribution to Γ is given by the 2h DIP
amplitudes.

Following these preparations, we can now analyze the spin sym-
metry of Γpq

r . First, for a state with an α core-hole, Γpq
α is non-zero and

Γpq
β is zero; the converse is true for a state with a β hole. For the DIP

states with Ms = 0, Γαα
r and Γββ

r = 0. By using the spin symmetry of
the singlet and triplet states with the same orbital occupations, we
can write that for a singlet DIP state

Γαβ
r = −Γβα

r (A2)

and for a triplet DIP state

Γαβ
r = Γβα

r . (A3)

To estimate the relative contributions to the Auger intensity,
we need to carry out spin integration of the two-electron integrals.
The expression for the partial width in terms of different spin blocks
can be written as follows by considering an α core hole and the spin
symmetry of k to be β:

Γ̃ = 1
2�pqr
�pq�krα�Γpq

rα

= 1
2�pqr
�pαqβ�kβrα�Γpαqβ

rα + 1
2�pqr
�pβqα�kβrα�Γpβqα

rα
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= 1
2�pqr
[�pαqβ�kβrα� − �pαqβ�rαkβ�]Γpαqβ

rα

+ 1
2�pqr
[�pβqα�kβrα� − �pβqα�rαkβ�]Γpβqα

rα

= 1
2�pqr
[−�pαqβ�rαkβ�Γpαqβ

rα + �pβqα�kβrα�Γpβqα
rα ]. (A4)

Integrating the spins out and substituting Eqs. (A2) and (A3),
the partial widths become

Γ̃singlet = 1
2�pqr
[�pq�kr� + �pq�rk�]Γpq

r ,

Γ̃triplet = 1
2�pqr
[�pq�kr� − �pq�rk�]Γpq

r .
(A5)

In the above expressions, indices p, q, and r correspond to spatial
orbitals. As one can see, in the singlet contribution, the two two-
electron integrals, which can be interpreted as Coulomb interaction
between the core hole, the valence electrons, and a free electron, are
connected by a plus sign, whereas in the triplet contribution, they
are connected by a minus sign, leading to partial cancellation.

APPENDIX B: AUGER INTENSITIES OF SINGLET
VERSUS TRIPLET CHANNELS IN THE COMPLEX
BASIS FUNCTION APPROACH

As discussed in Sec. II C, the Auger intensities can be computed
from the partial decay widths obtained through energy decompo-
sition analysis of the imaginary part of the CBF-CCSD energy in
Eq. (26). For the purpose of this work, the contribution of the single
amplitudes is negligible76 and is, therefore, omitted in the following
discussion. The partial decay width of a specific channel � can then
be written as

−Γ�

2
= 1

4
Im�tab

ij �ij�ab� + tab
ji �ji�ab� + tba

ij �ij�ba� + tba
ji �ji�ba��

= Im�tab
ij �ij�ab��, (B1)

where a, b, i, and j refer to those spin orbitals, which give rise to decay
channel �. Note that Eq. (B1) does not include any summation. We
now consider the CBF-CCSD energy of a core-ionized state where
the core hole has β spin. Then, if index a refers to the core hole, b
represents the outgoing Auger electron and can have α or β spin. i
and j are valence orbitals and can also have either α or β spin. Thus,
we end up with three spin cases: taβbβ

iβjβ
, taβbα

iβjα
, taβbα

iαjβ
.

Recalling that b stands for the outgoing Auger electron and that
the core hole has β spin, the ββ spin case can be related to a triplet
final state, while the αβ and βα spin cases correspond to singlet final
states. This assignment is necessarily approximate for an open-shell
CCSD wave function, which is not a spin eigenfunction. However,
it would be exact, for example, for an EOM-IP-CCSD wave func-
tion. Note, in particular, that for EOM-IP-CCSD, the αβ and βα
spin cases do not contribute to the MS = 0 components of the triplet
channels.77

The contributions to the decay width can thus be written as

− Γ triplet
�

2
= Im�taβbβ

iβjβ
��aβbβ�iβjβ� − �aβbβ�jβiβ���, (B2)

−Γ singlet
�

2
= Im�taβbα

iβjα
��aβbα�iβjα� − �aβbα�jαiβ��

+ taβbα
iαjβ
��aβbα�iαjβ� − �aβbα�jβiα���

= Im�taβbα
iβjα
�aβbα�iβjα� − taβbα

iαjβ
�aβbα�jβiα��. (B3)

Equations (B2) and (B3) represent contributions to the imaginary
part of the same-spin and opposite-spin correlation energies. From
this, we can conclude that the partial widths of the triplet chan-
nels are smaller than those of the singlet channels because it is
well known that the opposite-spin correlation energy is usually
considerably higher than the same-spin correlation energy.123
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