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tervals and combining short time series, which increase the number of datasets
that can be used. Recent extensions of EDM to multivariate time series substan-
tially expand the range of applications and mechanistic questions that can be
addressed, including detecting causal coupling, tracking changing interactions
in real time, leveraging short time series from information shared in coupled

variables, modelling dynamically changing stability, scenario exploration, and
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1 | INTRODUCTION

Ecosystems are complex, involving tens to thousands of species that
interact with each other and the environment in nonlinear ways and
on multiple time-scales ranging from seconds to millennia. As a con-
sequence, it is not surprising that models of ecosystem dynamics
are challenged in their ability to make valid predictions. Critically, al-
though we wish to achieve a comprehensive and holistic understand-

ing of ecosystem dynamics, nearly all systems of interest are sparely

management applications involving optimal control.

convergent cross-mapping, early warnings, empirical dynamic modelling, gaussian process,
scenario exploration, simplex, S-map, stability

observed, meaning we typically have data on a relatively small frac-
tion of species' abundance, traits, environmental drivers and other
variables that might contribute to ubiquitous fluctuations in ecosys-
tem state. This ‘partially observed system’ problem is not unique to
ecology; incomplete observations impede advances in domains as
disparate as genetics, neurobiology, climate science and finance.
There are three classes of approaches for addressing the partially
observed system dilemma. The first, and arguably most common

approach is simply to ignore it: to use simplified parametric models
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that focus only on the observed state variables. Examples include
the single-species models widely used in wildlife management and
conservation (FAO, 2020; IUCN, 2020). This approach sidesteps the
problem, essentially treating unobserved variables as process noise.
While there are circumstances (e.g. time-scale separation) where
the ‘process noise approximation’ can be made rigorous, doing so
requires strict assumptions about the dynamics that are difficult to
justify. Most importantly, by ignoring unobserved variables, this ex-
pedient approach foregoes potential gains in predictability and can
produce an oversimplified conception of the system dynamics.

The second class of approaches is to use a well-vetted model for
the system to infer missing state variables and parameters. This tactic
requires a system model that is a good approximation of the underly-
ing dynamics (i.e. hidden Markov or state-space models, see e.g. De
Valpine, 2002; Holmes et al., 2012; Millar & Meyer, 2000). Although
these models often make compelling in-sample predictions, if the ap-
proximation is poor, this approach will generate unreliable estimates of
missing state variables and parameters, and fall short in terms of out-
of-sample prediction (e.g. Deyle, May, et al., 2016; Judd et al., 2008).

In contrast to the prior two, the third class of approaches does not
assume a particular functional form, but instead uses time-series data
in a nonparametric fashion and implicitly accounts for unobserved
state variables. These data-centric methods of ‘attractor reconstruc-
tion’ have appeared in the literature under various monikers including
‘nonlinear forecasting’, ‘(time) delay embedding’, ‘state-space recon-
struction’, and most recently, ‘empirical dynamic modelling’ (EDM).
Delay embedding was first used in ecology by Schaffer (1984) as a
step in constructing a unimodal map, but applications of the method
for forecasting and exploration of dimensionality were first introduced
to ecology in the 1990s by Sugihara and May (1990).

Since the 1990s, there have been many conceptual and statisti-
cal advances in EDM that expand both the range of questions that
can be addressed and the datasets that can be analysed. Our review
is focused on these methodological developments, primarily in the
ecological literature. Before reviewing these, we briefly summarize
the ideas behind EDM and its implementation (for more details, see
Munch et al. (2020) and Chang et al. (2017)). We close with a discus-

sion of some important areas for future development.

2 | OVERVIEW OF EDM

EDM views time series as ‘observation functions’ of a dynamical sys-
tem (a brief video summary can be found here, http:/tinyurl.com/
EDM-intro). In its simplest form, the dynamical system can be thought
of as a homogeneous (i.e. time-invariant) nonlinear system of N state
variables, say x(t) = {x4(t), ... ,xy(t)}, whose dynamics are governed
by % = f(x), and the observed time series y is some function of the
system state, that is, y(t) = P [x(t)]. In ecological applications, an obser-
vation function is often thought of as a state variable, say y(t) = x4 (t)
, but this is not required. In general, observation functions can be any
variable that records displacement of the system as it evolves (e.g. total
abundance of several age classes or species in a functional group).

Natural systems are typically thought to be dissipative, mean-
ing they collapse from a potentially very high N-dimensional space
to a much lower dimensional ‘attractor’ with dimension d, to which
trajectories converge. The attractor can be a point (d = 0), a closed
loop as in a stable limit cycle (d = 1), a torus (d = 2) or a more com-
plex shape with a fractal dimension (e.g. a ‘strange attractor’). The
embedding dimension, E, corresponds to the number of variables
(or coordinate axes) required to resolve the attractor. The Whitney
embedding theorem states that E >2d is sufficient. Assuming the
dynamics are reasonably smooth (most ecological models fall in this
category), trajectories that start from nearby points on the attractor
tend to remain close together, at least for a period of time. EDM ex-
ploits this fact when making forecasts based on the fates of near-by
analogues. Say we are starting from a point, x(t), and wish to pre-
dict the state h steps into the future, x(t + h). Smoothness implies
that we can find a collection of historical points close to x(t), say
x(ty), ..., x(t,), and use their future states to make a prediction. The
simplest way to do so would be to use the average of their future
states, X(t+h)=1/nY_, x(t; + h). Repeating this process over a
wide range of initial states, x(t), provides multiple estimates of the
mapping from x(t) to x(t + h). Interpolating among them results in
an empirically derived discrete time model for the system, that is,
R(t + h) = FIx(t)].

The second, possibly more important, property of dynamical sys-
tems exploited in EDM is described in Takens' (1981) delay embed-
ding theorem, which shows how any one system variable can contain
information about the others. Takens' theorem shows ‘generically’ that
there is a one-to-one correspondence between the attractor in the
original coordinate system, defined by the collection of vectors x(t) =
{x;(t), ..., xy(t)}, and the collection of ‘delay coordinate vectors’ de-
fined by {x;(t),x(t — ), ... x;(t — Er)}, where 7 is the time delay and
E is the embedding dimension. This is profoundly important because
if any one state variable contains information about the others, lags
of that variable can act as a substitute for (and indirectly account for
the dynamics of) unobserved state variables. More generally, Takens'
says that delay coordinates can be constructed from any observation
function of the system, that is, y(t) = {y(t),y(t = 7), ... ,y(t — E7)}. The
original proof for smooth manifolds has been generalized to stochastic
and fractal attractors (Stark et al., 2003). The one-to-one correspon-
dence between x(t) and y(t), provides a justification for constructing
discrete time models of the form y(t + h) = G[y(t)]. In most applica-
tions of EDM, doing so involves two steps: choosing E and z, then
approximating G from data using some flexible approach. We consider
these steps in more detail below.

It is important to note that Takens' theorem was originally re-
stricted to time-invariant, deterministic systems, but was later ex-
tended to forced and stochastic systems (Stark, 1999; Stark et al.,
2003). In a stochastic system, a rigorous delay-embedding map is
given by X =f(X_. ..., Xe_grr€t_pr - 1€, ). However, the ap-
proximation f(xH, ,xtfgr) + & is implicit in most ecological ap-
plications. Simulations show that EDM successfully captures the
conditional mean for an age-structured stochastic population model
(Munch et al., 2020).
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2.1 | Selecting embedding parameters

A variety of methods for selecting r and E have been proposed
and are well described elsewhere (Chang et al.,, 2017; Kantz &
Schreiber, 2003; Li et al., 2021). Since the dynamics in the original
state space are assumed to be smooth, nearby trajectories should
not cross. The objective in selecting r and E is to find values such
that trajectories in delay coordinate space also do not cross. This is
referred to as ‘unfolding’ or ‘embedding’ the attractor. Intuitively,
any point in delay coordinates where trajectories cross is a point
where prediction based on the behaviour of nearby points will be
poor. This can happen, for instance, if E is too small and trajec-
tories that are not actually nearby in a higher-dimensional space
(and head in different directions) appear to be close together in
a lower-dimensional space. This is known as the problem of ‘false
neighbours’ (Kennel et al., 1992) and is addressed in forecasting
(Sugihara & May, 1990).

Early approaches to delay coordinate embedding (Chan &
Tong, 2001; Sauer et al., 1991) suggested selecting 7 based on
minimizing time-series autocorrelation or mutual information,
then choosing E based on nearest neighbour forecasting (Sugihara
& May, 1990) or an equivalent false nearest neighbours algorithm
(Abarbanel & Kennel, 1993). One straightforward approach is
to evaluate prediction accuracy over a grid of E and r and sim-
ply choose the pair that produces the most accurate forecasts
time steps ahead (Sugihara, 1994; Sugihara & May, 1990), pref-
erentially choosing smaller values in the case of statically indis-
tinguishable results. In most ecological applications to date, 7
is usually fixed to 1 since the sampling intervals are often fairly
coarse (e.g. monthly or annual surveys), making E the only free
parameter, which is noteworthy in terms of simplicity. However,
as more high-frequency ecological data become available, esti-
mates of 7 will provide meaningful information on the relevant
time-scale in the system.

Heuristically, when the time series exhibits some near-
periodic behaviour, the product Ez should be close to the recur-
rence time (i.e. average time it takes for the system to return to
a nearby state, see e.g. Kantz & Schreiber, 2003). However, many
systems of interest involve dynamics that play out on disparate
time-scales. When multiple time-scales are present, the use of a
constant 7 can be less desirable, as different values correspond
to modelling dynamics on different time-scales of interest (Judd
& Mees, 1998). Intuitively, if 7 is based on the short time-scale,
many coordinates (i.e. large E) might be needed. Conversely, if zis
based solely on the long time-scale, the high-frequency dynamics
will be treated as noise. Selecting a single 7 based on prediction
accuracy assumes embedding relative to the dominant time-scale.
Constructing delay vectors with several different values of r can
ameliorate this difficulty (Judd & Mees, 1998) and is justified by
the multivariate embedding theorem (Deyle & Sugihara, 2011).
Alternatively, the time-scale problem can be circumvented using
an ensemble of randomly generated delay vectors (see e.g. Tajima
et al., 2015).

2.2 | Fitting the model

Given a collection of delay coordinate vectors, the next step is to
approximate the delay coordinate map. Many different function ap-
proximation schemes have been applied to EDM, each with strengths
and weaknesses, including locally constant models (Simplex;
Sugihara & May, 1990), locally linear models (S-map; Sugihara, 1994),
Gaussian processes (GPs; Munch et al., 2017), polynomial ‘response
surface’ models (Turchin & Taylor, 1992), neural network mod-
els (Nychka et al., 1992) and generalized additive models (Beninca
et al., 2015). Bhat and Munch (2022) show that the algebra of delay
embedding leads naturally to a representation as a recurrent neural
network, opening the way for partially specified models. It is worth
noting that, while some methods are clearly too stiff to be broadly
applicable (e.g. polynomial models), the ‘best’ approach (in terms of
prediction accuracy) depends on many case-specific factors includ-
ing the length of the time series, the amount of noise present and the
shape of the attractor, which a priori is unknown. We highlight a few
features of Simplex, S-map and GP below.

The most widely used models in ecology are the locally constant
(zeroth order) ‘Simplex’ (Sugihara & May, 1990) and the locally linear
(first order) ‘S-map’ (Sugihara, 1994). These function approximations
intentionally have a minimum number of free parameters to reduce
the possibility of overfitting and aid transparency.

The zeroth-order Simplex is a nearest neighbour forecasting
method. A major advantage of Simplex is its extreme simplicity: to
make a prediction from given an initial state, Simplex uses a weighted
average of the future values of the focal state's nearest neighbours.
Since the minimum number of points needed to surround the focal
state in E dimensions is E+ 1, Simplex uses E+ 1 nearest neighbours,
eliminating this as a tunable parameter. Indeed, given that ¢ is typ-
ically set to the sampling interval in ecological applications (r = 1),
in practice E is often the only parameter that is fit to data. As such,
Simplex provides a simple and computationally efficient first pass
in data exploration to test for the presence of determinism using
prediction skill for validation.

The first-order S-map is a locally linear least-squares algorithm
that is applied sequentially to each point on the attractor with
weights that decay exponentially with Euclidean distance from the
focal point in delay coordinate space (Sugihara, 1994). Thus, S-map
contains only one additional free parameter, 6, which controls how
fast the weights decay. Specifically, for any pair of delay vectors at
times t and s, the weight is w;, = exp[ - BZI(yr_,»—yS_,»)z]. Note that
this is defined over all pairs, not just the E+ 1 nearest neighbours.
When 6 = 0, the weights are constant across the whole time series
(all points have equal weight) so the resulting model is equivalent
to an autoregressive (AR) model of order E. Critically, the fact that
the global AR model is a special case of S-map enables a clear test
of the hypothesis that the dynamics are nonlinear (Sugihara, 1994).
Applications of this test find evidence that nonlinear dynamics are
ubiquitous in nature (Anderson et al., 2008; Clark & Luis, 2020;
Glaser, Fogarty, et al., Glaser, Fogarty, et al., 2014; Hsieh et al.,
2005; Klein et al., 2016; Sugihara et al., 1999). To encourage finding
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a parsimonious model, ‘regularized’ versions of S-map have been
developed, though the ideal regularization scheme depends on the
modelling objective (Cenci et al., 2019).

To relax the rigid minimalism of the zeroth- and first-order func-
tion approximations, Munch et al. (2017) introduced a Bayesian ap-
proach to EDM based on GP regression (GP-EDM). GP regression
provides a probabilistic, Bayesian framework for EDM that readily
incorporates prior information and extends to hierarchical modelling
(Munch et al., 2017). In GP-EDM, the covariance function (and its
associated inverse length scales) controls the degree of nonlinearity
that is analogous to the weighting kernel in S-map. Typical applica-
tions of GP-EDM set Cov[G(y;),G(y,)]| = rexp[ - Zf:1¢,»(yt_,-—ys_,-)2]
though other forms are certainly possible. It is also possible to define
the GP using Euclidean distance with a single inverse length scale
parameter (e.g. all ¢; = &), analogous to use of the single 6 parame-
ter in S-map which gives equal weighting in all directions. However,
greater flexibility is obtained by allowing each input to have its own
length scale which is particularly useful for optimizing predictability
with multivariate embedding.

Although the increased flexibility of GP-EDM increases the pos-
sibility of overfitting, this can be substantially minimized through
Bayesian prior specification. In contrast to frequentist ‘wiggliness
penalties’ which generally involve an unknown Lagrange multiplier
that must be determined out of sample, the GP-EDM uses ‘auto-
matic relevance determination’ (ARD) priors (Neal, 1996) to con-
trol the wiggliness of the estimated function. Specifically, Munch
et al. (2017) set the ARD prior such that—in the absence of data—the
modal inverse length scale is zero (i.e. the most likely model is flat),
and the mean inverse length scale is set such that, on average, the
model will have one local maximum over the range of the data. Thus,
the prior shrinks the inverse length scales towards O for irrelevant
inputs, effectively removing them from the model. Using ARD re-
sults in parsimonious collections of inputs. In addition, using input-
specific length scales simplifies extending EDM to multiple types of
inputs where Euclidean distance is not optimal. This is particularly
useful in allowing for unequal lag spacing (Munch et al., 2017), such
as when the dynamics occur on multiple time-scales, for example,
Vier = G[yt,yt73,yt712] for monthly data from a system with strong

seasonal and annual dynamics.

2.3 | Evaluating the model

Regardless of the function approximation scheme chosen, some
measure of model quality/validity is needed. The most widely used
metrics are related to prediction accuracy, such as the Pearson cor-
relation between predicted and observed values, the mean squared
prediction error, mean absolute prediction error, or when appropri-
ate, the percentage correct sign (e.g. positive/negative growth rate).
Because these models are almost entirely data driven, predictions
must be evaluated ‘out of sample’—an idea introduced to ecology
in the 1990s (Sugihara & May, 1990). For small datasets and where
large deviations in the data (steep peaks and deep valleys) are an

important focus, mean squared error in leave-one-out forecasts is
commonly applied. When longer time series are available, leaving
out more of the data or using explicit training and testing datasets
(e.g. Sugihara & May, 1990) is more robust. When we are interested
in using EDM to make predictions in real time, it may be more appro-
priate to use sequential updating where the forecast for each year
depends only on data from earlier in the time series. In this case, pre-
dictions will improve as the training set (library) increases with time
(Giron-Nava et al., 2017; Johnson et al., 2021; Munch et al., 2017),
that is, as the attractor becomes denser and nearest neighbour ana-
logues become more similar—a phenomenon known as convergence
(Sugihara et al., 2012).

Evaluating prediction accuracy over a range of time-scales can
help differentiate linear from nonlinear dynamics, as scale depen-
dence is an important feature of nonlinearity (Sugihara et al., 1999).
When sampling intervals are short relative to the system dynamics,
the series will be highly autocorrelated. Consequently, for one-step
ahead prediction, the constant predictor will do well, and the ‘best’
model will be a linear AR model of low order (S-map with 8 = 0).
With unstable, nonlinear dynamics, prediction accuracy will decay
exponentially as predictions are made further into the future, and
in some cases nonlinear models with higher embedding dimensions
can emerge. Along these lines, ‘trajectory matching’, that is, mini-
mizing the distance between observed and predicted segments,
rather than single points, improves estimation for nonlinear models
(Hooker & Ellner, 2015; Shertzer et al., 2002), and Judd et al. (2008)
have shown that training models using multi-step predictions can

substantially improve out of sample forecast accuracy.

3 | EXTENSIONS OF EDM

Many extensions to univariate EDM have been developed that ad-
dress obstacles to practical application in ecology, such as short
time-series and missing data, and that allow for greater applicability
and inference when using multivariate data. Here we discuss several

extensions that open up a wider range of possibilities.

3.1 | Shorttime series: Leveraging replicates

Many ecological time series are short relative to the time-scale of
the system, which presents a major obstacle to the successful ap-
plication of EDM: if the time series does not adequately cover the
range of possible dynamics and make a sufficient number of ‘cycles’
around the attractor, it can be difficult for EDM to make reliable pre-
dictions. Empirical, results for fish suggest that to obtain appreciable
gains in forecast performance, EDM requires time series spanning 10
times the maturation age of the focal organism (Munch et al., 2018),
though shorter time series may still provide useful predictions (e.g.
Giron-Nava et al., 2017). The maximum estimable embedding dimen-
sion is limited by time-series length, and the use of lags eliminates
the first Er data points as training data, which can be a substantial
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fraction of short time series. Hence, approaches for making better
use of short series are critical for ecological applications.

Concatenating delay matrices for time series that share similar
dynamics is one solution. This includes combining information across
species with similar dynamics or across spatially replicated series
for a single species. Hsieh et al. (2008) proposed a scheme for doing
this designed to limit false-positive assessments of nonlinearity—
concatenating time series for species with similar dynamics such that
the fitting set (library) and test set (predicted) are maximally different
from each other, but internally similar. Here dynamic similarity was
determined by how well each time series could predict another, later
referred to as ‘co-prediction’ (Kuriyama et al., 2020; Liu et al., 2012).

Often, replicate time series are collected for multiple populations
over space. Here, the simplest approach is to assume that all spatial
replicates have identical dynamics so that delay matrices from each
spatial replicate can be combined (Glaser, Ye, & Sugihara, 2014).
Another possibility for leveraging spatially replicated data is to in-
clude lags of neighbouring sites as additional predictors (Johnson
et al., 2021). Simulations indicate that ‘mixed-lag’ embeddings out-
perform concatenation when there is substantial spatial variation in
dynamics, but that concatenation is superior when the dynamics are
spatially uniform (Johnson et al., 2021). The best approach is likely
to vary with the study system, but all can improve performance with
short time series.

Another option is to model the dynamics for multiple popula-
tions in a common hierarchical model, as implemented in GP-EDM
(Munch et al., 2017). This allows for information to be shared across
populations, but does not require the dynamics to be identical.
To account for differences, the hierarchical model has one addi-
tional parameter, referred to as the ‘dynamic correlation’ (Rogers &
Munch, 2020), which estimates the linear similarity between pairs of
(nonlinear) delay maps. Specifically, for two time series x; and y,, with
dynamics x,,; = f(x,) and y, 4 = g(y;), the dynamic correlation mea-
sures corr[f(s),g(s)| over states s, rather than corr|x,, y;| over times t.
Thus, the dynamic correlation provides information on the similarity
of the dynamics irrespective of whether populations are correlated
through time. For example, populations with the same underlying
dynamics (i.e. f = g), but that are out of phase, will have high dynamic
correlation, but low temporal correlation, particularly when the dy-
namics are chaotic. The dynamic correlation can reveal hidden spa-
tial structure in population dynamics and dynamic similarities among
populations that are temporally asynchronous. For instance, Rogers
and Munch et al. (2020) used the dynamic correlation to rule out
spatial differences in dynamics as a source of asynchrony in a crab
metapopulation.

Combining data across similar species or spatial replicates can
be leveraged to obtain better global predictions than would be ob-
tainable using just a single short time series. This requires that the
delay embedding maps are similar (usually a reasonable assumption
for populations of the same species) but not strongly synchronized
(i.e. each series provides some independent information). Combining
series in this way could facilitate prediction of extreme events like
population crashes for species or locations whose time series do not

contain a crash, provided that crashes are found in series with similar

dynamics.

3.2 | Missing data, variable step sizes

Most ecological datasets have at least a few missing observations,
and many long-term sampling programmes have some variability
in the sampling intervals due to weather, equipment failures, fund-
ing lapses and so on. The recent global pandemic, for instance, in-
terrupted sampling in many long-term monitoring programmes
(Viglione, 2020).

In a large dataset with only a handful of missing observations,
ignoring delay vectors containing missing values is of little conse-
quence (Johnson & Munch, 2022) and experience indicates that
small variations in sampling interval do not cause serious problems
(McGowan et al., 2017). However, when missing observations are
more common or steps sizes more variable, some alternative is
needed. This is particularly relevant in short series since every miss-
ing value results in E missing delay vectors. One obvious solution
is to interpolate, either to obtain uniform sampling or fill in data
gaps. However, interpolating can create artefacts and is best when
restricted to small changes in smoothly varying data (Johnson &
Munch, 2022).

Variable step size EDM (VS-EDM; Johnson & Munch, 2022)
circumvents the problems of missing data and variable step sizes
by expanding the delay vector to include the sampling inter-
val. To provide some intuition for this, recall that the solution for
an ordinary differential equation (ODE), ‘;—: =f(x), can be written
as Xy = F(xt,h). Applying this to delay embedding, VS-EDM fits
y(t;) =F [y(tig).ti —tig, ...,y (tig) tiigss — tig)  Although  this
expansion of the delay coordinates can be implemented with any
function approximation scheme (Simplex, S-Map, etc.), this solu-
tion doubles the dimension of the input space, so some regular-
ization is warranted. Using GP-EDM with ARD priors, Johnson and
Munch (2022) showed that VS-EDM substantially outperforms
standard interpolation and dropping missing data, particularly when
time series are relatively short. Importantly, when the step sizes are
fixed, ARD eliminates dependence on the time interval (Johnson &
Munch, 2022). Multi-step-ahead forecasts can be generated directly
from the resulting model by varying the sampling interval.

3.3 | Multivariate embeddings

Univariate delay embedding based on Takens theorem can provide
basic information on predictability, nonlinearity and determin-
ism, but the resulting delay embedding map is difficult to interpret
mechanistically. However, if data on other state variables or relevant
covariates are available, multivariate EDM reconstructions that are
ecologically relevant can be used directly to explore mechanism.
Deyle and Sugihara (2011) opened this path formally by provid-
ing generalizations of Takens' theorem to multivariate embeddings
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that justify mixed lag, multi-variable models where the lags do not
have to be fixed or consecutive. Earlier extensions of Takens' the-
orem to driven systems (e.g. by environmental or stochastic driv-
ers) justify the inclusion of external drivers as additional covariates
(Stark, 1999; Stark et al., 1997). Dixon et al. (1999) provided the first
ecological example of a mechanistic multivariate embedding using
trial and error forecasting with physical drivers to understand spikes
in reef fish spawning.

Multivariate models can potentially improve performance and
provide more information about the underlying system dynamics
and relationships among variables. In particular, they can provide
more interpretable information on time-dependent interactions with
other state variables (e.g. predators, competitors or abiotic drivers).
As with univariate models, lags of multiple variables can be used to
compensate for any remaining unobserved deterministic variables,
for example, Xy, = F[X1¢_1, X145 - 1 X24_1,X2¢_2, ... . Conversely, de-
pendence on lagged values can indicate that relevant state variables
are missing. In addition, when a key driver is essentially stochastic, a
univariate reconstruction may yield poor predictions. For example,
McGowan et al (2016) found that explicitly including stochastic en-
vironmental drivers that were determined to be causal (and whose
effects propagated with a time lag detectable with the prediction
horizon), improved prediction of red tides well beyond that attain-
able with lags of the target variable, chlA, alone.

Practical implementations of multivariate embeddings using
Simplex or S-map typically normalize the values of each time series
to have 0-mean and unit variance, effectively giving each coordinate
of the embedding equal weight/relevance. This has proven to be ef-
fective but can be relaxed in GP-EDM by assigning each coordinate
its own length scale, permitting the ARD to determine the relevance
of different inputs.

Before we discuss multivariate embeddings as a route to mech-
anistic understanding of ecological dynamics, we first address some
of the more counter-intuitive implications of the multivariate em-

bedding theorems.

3.4 | Information leverage with multiview

Multivariate embeddings can be highly advantageous when time
series are short, since many different combinations of variables
and their lags can be used to reconstruct the attractor (Deyle &
Sugihara, 2011). Since each of these reconstructions provides a dif-
ferent view of the underlying dynamical system, there is enormous
potential for leveraging information from multiple data streams. In
fact, the number of possible reconstructions grows combinatorially
(Ye & Sugihara, 2016): Given I lags for each of nvariables, the number

nl n(-1)
E E

m=
of E-dimensional variable combinations is
For example, the number of distinct three-dimensional combinations
(three-dimensional embeddings) for a system with up to 3 lags of 10
variables is nearly 3000.

Ye and Sugihara (2016) introduced ‘multiview’ embedding to
take advantage of this and showed that multiple short time series
can produce very good forecasts even in high-dimensional systems.
Some promising recent implementations of this idea for improving
forecasts are the random embeddings discussed by Ma et al. (2018)
or using state-dependent weightings to improve forecasts (Okuno
et al., 2019). This approach leverages the fact that although there
are many theoretically equivalent embeddings, they each stretch
or shrink the attractor differently in different regions of the state
space, meaning that some may produce better forecasts than others
in different regions.

Although multiview leverages the multiplicity of possi-
ble reconstructions to improve forecasts, many—if not most—
are difficult to interpret mechanistically. Moreover, under the
multivariate embedding theorem, the idea of identifying a
uniquely ‘best’ model that is the mechanistic representation of
the system no longer makes sense. As a simple example, con-
sider a two species model in which x4 =rx,(1-x,) — Xy, and
Yis1 = XYy — My, This system can be rearranged to find that
Xey1 =X (1= x;) = X (cxe_g = m)[r(1 = X,_1) — X / X1} Since these
two representations are algebraically equivalent, estimating maps of
the form X1 = Fy [X;, X_1| and x4 = F, [, y;] should lead to statisti-
cally indistinguishable fits to time series. However, the nonlinearity
in the delay embedding map is more severe (containing terms like
X / X_1 Which blow up as x,_; — 0) compared to the original system
which is much smoother, containing only linear and bilinear terms.
As a consequence of increased nonlinearity, we expect convergence
of the delay map to be slower than the equivalent dynamics in na-
tive coordinates. This is particularly important in stochastic systems
where the delay map includes the noise sequence implying that
causal drivers in native coordinates contain more information than
delay coordinates.

As the dimensionality increases and more series are available,
the model selection problem becomes more difficult, as there could
be potentially thousands of multivariate embeddings with equiva-
lent, or near equivalent, fits. In these cases, we clearly need some
other means of identifying mechanistically relevant predictors (the
causal drivers of the focal variable—what May (2020) called the ‘ac-

tive variables’).

3.5 | Causality

Identifying causal variables and their linkages is central to all of sci-
ence. The variety of different methods proposed to assess causal-
ity from observational (as opposed to experimental) data reflect
fundamentally different views of the underlying system (e.g. linear
stochastic vs. nonlinear deterministic or some combination), with
each approach being more or less suitable for different problems
and domains (e.g. see review by Runge et al. (2019)). Approaches
that rely on correlation to identify causal links can have difficulty
with nonlinear dynamic systems where, contrary to popular belief,
causally coupled causal variables can show no long-term correlation
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with each other, or have correlations that spontaneously switch sign
(mirage correlation Sugihara et al., 2012). These phenomena make
studying causality in ecological systems more difficult.

Regardless of whether conditional mutual information, predic-
tion accuracy or some other metric (M) is used, most approaches
are based on some form Granger causality (Granger, 1986), which
involves comparing M(X|Y,Z) and M(X|Z) to determine whether Y
causes X. Obviously, this fails if Z contains the same information as
Y. But in dynamical systems where Takens' theorem applies, if Z con-
tains lags of X (or other variables) that are sufficient to reconstruct
the attractor, why should we need Y at all? As an example, consider
the two species model from the previous sectionand letZ = {x,,x,_1 }
and Y =y,. All of the relevant information in Y is already contained
in Z, so no causal relationship between Y and X would be found.
However, in stochastic systems, where the rigorous delay coordinate
map must include the noise history (Stark et al., 1997), contempora-
neous values of Y contain more information than lagged values of
X and we can expect M(X,1 |X;,¥;) > M(X;,1|X:, X;_1 ). Indeed, in the
original exposition of Granger causality involving co-integration, the
prescient disclaimer was made that ‘this may not apply to dynamic
systems’.

Convergent cross-mapping (CCM; Sugihara et al., 2012) provides
a solution to these problems. Since the delay coordinates for each
observed variable form a one-to-one projection of the whole attrac-
tor, observables from the same system should produce one-to-one
projections of each other as well; that is, coordinates contain infor-
mation about each other. Hence, if Y causes X, we should be able
to reconstruct Y using the delay coordinates for X. This procedure,
known as cross-mapping, uses the affected target to estimate con-
temporaneous states of the proposed causal driver. Unidirectional
and bidirectional causal effects can be identified: if Y causes X, but
X does not cause Y, delays of X will predict Y, but delays of Y will
not predict X. That is, the direction of causation is opposite to the
direction of cross-mapping (Cummins et al., 2015). If causality is bi-
directional, predictability will be present in both directions. This pro-
cedure works well in systems with weak to moderate coupling where
the variables are not synchronized. When variables are strongly
coupled (e.g. they are synchronized), CCM will indicate bidirectional
causation regardless of which variable drives the other, a case ex-
plicitly excluded from the original exposition (Sugihara et al., 2012).
Ye et al. (2015) extend CCM to cover this case by cross-mapping
with lags: using delay coordinates of X to predict values of Y before
and after contemporaneous states, and noting that effects can never
precede causes (though synchronization may still be problematic).
Cross-mapping with lags can also help reveal causal effects on mixed
timescales (Saberski et al., 2021).

Because causality is transitive, CCM is not able to differentiate
direct and indirect causality unless there are detectable time lags
in causal effect (Ye et al., 2015). However, if data are available for
potential intermediate variables, relative cross-map strength can
in principle help distinguish between direct and indirect coupling.
In cases where two interacting variables are forced by a common

external variable, such as with seasonal forcing, convergence is

generally not observed beyond cross-correlation. However when
cross-mapping and cross-correlation are strong and convergence
is ambiguous, the use of null surrogates based on seasonality can
be used to distinguish cross-map skill that goes beyond the shared
seasonal signal (Deyle, Maher, et al., 2016; Sugihara et al., 2017).
Alternatively, Leng et al. (2020) propose extending the classical no-
tion of partial correlations to CCM, involving ‘partial CCM’ scores.

As with other EDM approaches, we can concatenate delay matri-
ces from spatially replicated series (e.g. experimental plots) to obtain
more robust CCM results from short time series (Glaser, Fogarty,
et al., 2014). Multispatial CCM involves drawing bootstrapped sam-
ples from the pool of all spatially replicated observations and uses
samples weighted by their dynamic similarity to estimate expected
dynamics (Clark et al., 2015).

3.6 | S-map coefficients and interaction strength

Given a collection of causally interacting variables (determined via
CCM or through biological observation), it may be possible to infer
how their interaction strength varies with the state of the system.
The coefficients of the S-map model have been shown to provide
an interpretable measure of state-dependent interactions (Deyle,
May, et al., 2016). Assume that the dynamics in the native coordi-
‘Xt J- Then

in the neighbourhood of a focal point x* on the attractor, the dy-

nate space are given by X, = F[x,] where x, = {x, ...

namics may be approximated as x,,, = F[x*] + J*(x, — x*) where the
Jacobian matrix J*is given by Jij = oF; / ox; evaluated at x*. Since each
J;j indicates how much x;;,, will change for a unit change in x;,, it
can be interpreted as a measure of interaction strength. Importantly,
the regression coefficients obtained by fitting a set of local linear
models provide estimates of the J;;'s and can be used to empirically
estimate interaction strengths and how they vary with the state of
the system (Deyle, May, et al., 2016). Methods for quantifying uncer-
tainty in interaction strength parameters have been proposed using
ensembles of regularized S-map models (Cenci & Saavedra, 2018).

It is worth considering the parallel between the Jacobian interac-
tion coefficients mentioned here and the coefficients of the classi-
cal community matrix. Here, we define the community matrix as the
Jacobian that arises from a first-order Taylor approximation of the
full system, evaluated at equilibrium (May, 1972), that is, J;; = 9F; / 0x;
evaluated at x* The result is a matrix of constant interaction coef-
ficients. lves et al. (2003) proposed using vector autoregression
(VAR/MAR) to estimate a per capita community matrix assuming lin-
ear dynamics around a single equilibrium point. The S-map Jacobian
(Sugihara, 1994), however, is computed sequentially at each point as
the system travels along its attractor and provides information on
how interactions change with system state, that is, J;;(t) = dF; / 9x;
evaluated at x,. Thus, in contrast to the equilibrium case, S-map
coefficients depend on the global model structure realized in the
attractor (Song & Saavedra, 2021). The coefficients represent net
interactions integrated over the course of a time step so that with
short time steps they will closely match expected instantaneous
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interactions (Deyle, May, et al., 2016), noting that coefficients esti-
mated on larger time steps can encompass indirect effects and un-
observed variables in addition to direct effects (Rogers et al., 2020).

The idea of estimating sequential Jacobians can appear su-
perficially similar to dynamic linear models (DLM; e.g. Lamon Il
et al., 1998) in that both are derived from local linear approxima-
tions. However, S-map and DLM make very different assumptions. In
a DLM, parameters vary such that points nearby in time have similar
parameters. In S-map, parameters vary such that points ‘nearby on
the attractor’ (similar states which may be far apart in time) have
similar parameters. Thus, with linear dynamics or with extreme
oversampling where local coefficients change slowly relative to the
sampling rate, DLM can give results similar to S-map. However, with
nonlinear dynamics where states change across successive samples,
S-map provides vastly better estimates of the Jacobian coefficients
than DLM (fig. 2 in Deyle, May, et al., 2016).

It is important to keep in mind that many combinations of state
variables and lags are theoretically equivalent embeddings, and the
sequence of values obtained for S-map coefficients depends on the
embedding used. So, although the interpretation of S-map coeffi-
cients as interaction strengths is sound, it is conditional on the em-
bedding chosen. In light of this, we suggest evaluating the sensitivity
of any specific interaction coefficient to the choice of embedding.
This can be done exhaustively, through a random projection proce-
dure (Ma et al., 2018), or some other ensemble method (e.g. Cenci
& Saavedra, 2018). Consistent results across a range of embeddings
point towards the robustness of the interpretation. Another approach
suggested by Chang et al. (2021) is the ‘multiview distance regularized
S-map’, which combines CCM, multiview embedding and regularized
S-map to provide better estimates of interaction strengths in high-
dimensional systems. This procedure has two steps: (1) using CCM to
identify a set of causally coupled variables, potentially reducing the
number of inputs to S-map and (2) estimating S-map coefficients with
weights determined by the multiview distance metric rather than
standard Euclidean distance. The authors also employed the elastic
net (Cenci et al., 2019) to shrink the S-map coefficients towards O.
This approach produced striking improvements in estimating coeffi-

cients for large systems (Chang et al., 2021).

3.7 | Stability and early warning signals

Ecologists have long used the Jacobian matrix to evaluate stabil-
ity of fixed points in theoretical studies (Allesina & Tang, 2015;
May, 1974). Classical stability analysis uses eigenvalues to charac-
terize the long-run growth of a perturbation (May, 1974), while sin-
gular values (e.g. ‘reactivity’; Caswell & Neubert, 2005) describe the
initial growth of a perturbation. Similarly, if x,,; = F[x,], then a small
change in state, say from x, to x; + A, will be propagated to the next
step as Ay, 4 = J;A; where J, is the Jacobian evaluated at x,. Similarly,
structural stability, say s,, that is, sensitivity of the future state to a
small change in a parameter q, is also driven by the Jacobian. That is,
if s, = 0x, /dq, then s, 4 = J;s, + oF (x;) / 9q.

The S-map coefficients (from either a univariate or multivariate
embedding) provide estimates of the Jacobian elements at each point
in the time series. In light of this, it should be possible to characterize
state-dependent variation in stability using EDM. Specifically, given a
sequence of Jacobians, a corresponding sequence of eigenvalues (e.g.
Ushio et al., 2018), singular values, trace (Cenci & Saavedra, 2019) or
other metrics can be calculated to provide a state-dependent charac-
terization of stability. These estimates describe local contraction or
divergence of trajectories in state space and can provide information
on local predictability (Guégan & Leroux, 2009) and local susceptibil-
ity to perturbations (Abarbanel et al., 1992).

An interesting implementation of this idea is provided by Rypdal
and Sugihara (2019), who modelled dengue fever outbreaks. The at-
tractor was found to collapse seasonally to a fixed point during inter-
outbreak periods, and was modelled in two parts (an outbreak period
with E = 9 and inter-outbreak period with E = 3). A local eigenvalue
could identify the initiation of an ensuing outbreak and estimate its
magnitude, thus providing an early warning signal. The stability of
the inter-outbreak period was shown to be a proxy for the size of the
otherwise unmeasurable susceptible population. Subsequent mod-
els using this susceptibility measure and incorporating CCM-derived
climatic drivers (Nova et al., 2021) have surpassed the best models in
the Dengue Forecasting Challenge.

Local Lyapunov exponents, which evaluate stability within finite
time segments (Abarbanel et al., 1992; Beninca et al., 2015; Ellner &
Turchin, 1995), are a natural extension of stability at individual time
points. The Jacobian for a segment is the product of step-specific
Jacobians. In the long-time limit, the eigenvalues converge to the
global Lyapunov exponent, which is an indicator of chaotic dynamics.
Lyapunov exponents computed over long but finite empirical time
series have been called ‘effective Lyapunov exponents’ (Grassberger
et al., 1988), and give an indication of stable/unstable dynamics over
the period of observation. Significantly, Rogers et al. (2022) found that
effective Lyapunov exponents computed from S-map Jacobians can
identify chaotic dynamics in simulated data from a variety of models,
and when applied to ecological time series from the Global Population
Dynamics Database chaotic dynamics were found to be common.

Local Lyapunov exponents are straightforward to calculate,
whereas precise estimates of global Lyapunov exponents are chal-
lenging to obtain, particularly for systems with strong intermittency
and noise. We note however that unlike global Lyapunov exponents,
which are typically independent of the initial state and are ‘metric
invariant’ (i.e. they are unchanged by a change in coordinates), the
values of local Lyapunov exponents depend, often heavily, on the
initial state, direction of the perturbation and coordinate system in
which they are measured (see e.g. Chang et al., 2021). Thus, when
using lags as surrogate coordinates, care should be taken in the in-
terpretation of local Lyapunov exponents. As with the interpretation
of interaction strength, we suggest evaluating the robustness of the
exponent to variation in choice of embedding.

Cenci and Saavedra (2019) and Cenci et al. (2020) note that the
sensitivity of estimated S-map coefficients to noise leads to negative
bias in the estimation of the dominant eigenvalue, analogous to earlier
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results on estimating Lyapunov exponents (Kendall, 2001). They show
that the volume contraction rate (VCR), given by the trace of the
Jacobian in continuous time (or the log of the determinant over a dis-
crete time step), is more robust to noise for a range of simulation mod-
els and propose the VCR as a data-driven index of structural stability.

3.8 | Scenario exploration

Because EDM produces an empirically driven discrete time model
for the system, the estimated map can be used as we might any other
parameterized model. For instance, it can be used to make predic-
tions, identify equilibria, evaluate parameter sensitivity, evaluate
various ‘what-if’ scenarios or test and optimize policies. For instance,
when we build EDM models that include lags of an environmental
driver and abundance, for example, x; = f(x,_1, T;_1), we can deter-
mine the functional dependence on x (or T) by perturbing the time
series and evaluating the response (Deyle et al., 2013, 2022; Deyle,
Maher, et al., 2016; McGowan et al., 2017). Doing so more generally
with multiple drivers, for example, x; = f(xt—lth—lth—l) can eluci-
date mechanisms that explain seemingly contradictory effects when
viewing drivers one at a time; for example, the effect of absolute
humidity on global flu incidence flips sign at a threshold tempera-
ture (Deyle, Mabher, et al., 2016). In fisheries, scenario exploration
could be used to advise ecosystem-based management with EDM
‘experiments’ that account for changing climatic drivers and differ-
ent harvest policies. Taking this a step further, EDMs can be used to
explore how spatial autocorrelation changes under different (hypo-
thetical) environmental regimes to test hypotheses about sources
of asynchrony (Rogers & Munch, 2020). By numerically evaluating
f(x,T) over a grid of x and T (Rogers & Munch, 2020), EDM can also
suggest reasonable shapes for parametric approximations.

The starting point for many theoretical studies is to find the steady
states and evaluate their stability. Though somewhat at odds with
the dynamical philosophy underlying EDM, it is possible to do so, and
the result is an equation-free estimate of the steady-state or feasible
limit cycles. Specifically, say we have used EDM to extract a model g.
X; = f(Xt_1,X;_p ) from the available time series. As with any parametric
model, the steady state, x*, satisfies x* = f(x*, x*). Plausible values of x*
can be obtained numerically (Munch et al., 2017). In cases where there
is no steady state within the range of the data, the posterior probability
for x* will be nearly flat. This can be extended to models with external
drivers, for example, temperature or harvesting. For example, if catch of
species x is C;and x; = f(xtfi, thl), the estimated steady state, x*(C) =
f(x*,C)is a function of C, which can be used to highlight average impacts

of harvesting on the focal population (Giron-Nava et al., 2021).
3.9 | Hybrid models for predicting and
managing non-analogue futures

In cases where there are acceptable physical models for extrinsic
forcing variables, but where the underlying biology is unresolved,

it may be possible to construct a hybrid model that provides sig-
nificantly better predictions and mechanistic insights for environ-
mental management (McGowan et al., 2017). For example, Deyle
et al. (2022) applied this idea to understand the apparent irrevers-
ibility of eutrophication in Lake Geneva, where deep oxygen levels
remain low despite having achieved fully remediated phosphorus
levels. They used a physical model (Simstrat; Gaudard et al., 2019;
Schwefel et al., 2016) based on climatic inputs (air temperature) to
predict lake turnover, and included this as an additional driver to an
EDM for the biological component. The resulting hybrid gives sub-
stantially better predictions and provides an actionable description
of the emergent processes (biogeochemical, ecological, etc.) that
drive water quality. For example, the hybrid model warns that an
increase in air temperature of 3°C will have the same effect on water
quality as eutrophication in the previous century, and that because
of nonlinearities, effective management controls can change as the
lake state changes so that reducing phosphorus inputs alone may
no longer be sufficient. Models with demonstrated skill in out-of-
sample prediction, that allow us to explore non-stationary, non-
analogue futures, address a signature challenge for 21%%-century

environmental management.

3.10 | Optimal control for conservation and
management

Optimal control theory and Markov decision processes are applied
in many branches of ecology to derive conservation and manage-
ment plans. Doing so requires us to divide the inputs to our dynami-
cal model into ‘state’ and ‘control’ variables and to define a ‘reward,
that is, the target to be optimized. State variables are typically some
measure of the population or ecosystem, and the controls are indi-
ces measuring human interventions, such as harvest rates, protected
areas, nutrient loads, etc. In a conservation context, the reward can
be the size of the breeding population, or some measure of extinc-
tion risk. In harvesting problems, the reward is often the catch or
profit extracted from the system. Given these, and a model for the
system dynamics, an optimal policy can be derived using dynamic
programming (Mangel & Clark, 1989), Pontryagin's maximum princi-
ple (Schaffer, 1983), reinforcement learning or other tools (e.g. linear
programming; Hernandez-Hernandez et al., 1996).

In light of this, the first step to using EDM to derive an op-
timal policy is to estimate a delay embedding map that includes
both the state x; and control u, from the available time series, that
is, X; = f(X,_1,U;_q)- The second step is to characterize the cumula-
tive reward (or penalty) that is to be maximized (or minimized), say
R(xt, ut). An optimal policy is a recipe for determining u; given x; that
maximizes V = ZLO Yt R(x;, us) where y( < 1) is the discount rate.

Boettiger et al. (2015) introduced the idea of coupling opti-
mal control to a nonparametric model of population dynamics, re-
stricted to one-dimensional state spaces. More recently, Brias and
Munch (2021) expanded this framework to constructing policies for
larger state spaces as well as several competing objectives. They
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found that the approximate policies obtained using reinforcement
learning (Sutton & Barto, 2018) were similar to those obtained with
dynamic programming, but scale much better with the input dimen-
sion. In both cases, performance is generally close to optimal and
typically much better than the policy obtained using incorrectly
specified parametric models.

3.11 | Software extensions for implementing EDM

Until recently, the greatest barrier to implementing EDM other
than data constraints has been the accessibility of reliable soft-
ware. This is quickly changing, and a variety software packages
have emerged, most with tutorials, that include many of the tools
and recent extensions described here. For example, C++ EDM (Park
& Sugihara, 2020) is the computational core behind the popular R
package rEDM (Park et al., 2021; Ye et al., 2019) and the even more
popular Python package pyEDM (SugiharalLab, 2021), which imple-
ment Simplex, S-map, CCM and GP-EDM with a single length scale
parameter. Implementations of GP-EDM with separable length scale
parameters, ARD priors, hierarchical structures and variable step
sizes (VS-EDM) are available in the R package GPEDM (Munch &
Rogers, 2022). There are also EDM resources in Stata (Li et al., 2021)
and an efficient KEDM algorithm in Kokkos (Takahashi et al., 2021)
optimized to run massive factorial CCM calculations on very large
databases (100k time series each with 10 k time points). Specialized
visualization tools for S-map coefficient exploration are also becom-

ing available (Natsukawa et al., 2021).

4 | CONCLUSIONS AND FUTURE
DIRECTIONS

The number of datasets, tools for analysis and range of questions
that can be addressed with EDM have expanded dramatically since
Takens introduced time-delay embedding in 1981. These range
from methods for handling short time-series and missing data, to
the causal analysis of multivariate time series, to management ap-
plications. We have seen that the multivariate embedding theorems
provide a formal justification for expanding EDM to multiple data
streams. This results in an explosion of plausible input vectors that
can be leveraged to improve prediction using multiview embedding.
However, since many combinations are theoretically equivalent, ex-
tracting a unigue mechanistic representation by finding the best fit
becomes meaningless. CCM can help address this by using univari-
ate embeddings to identify causally coupled variables. Given a set of
causally coupled variables, we can then apply EDM to address many
of the same tasks we typically reserve for parametric models, for ex-
ample, calculating interaction strengths, computing local Lyapunov
exponents, evaluating what-if scenarios, finding equilibria and evalu-
ating their stability, and computing optimal control policies.
Nevertheless, there are still many interesting areas for fur-
ther method development and applications of EDM. For instance,

long-term changes in dynamics, or ‘non-stationarity,’ are increasingly
important in light of global climate change. Although attractor re-
construction applies formally only to stationary systems, there are
extensions of EDM that can deal with non-stationarity. At its sim-
plest, EDM can provide an equation-free test for non-stationarity by
evaluating prediction accuracy across libraries constructed from dif-
ferent time periods (Schreiber, 1997) or different modes of dynamic
behaviour (Lorimer et al., 2021)—in effect, for anomaly detection.
When the relevant environmental drivers are known, incorporating
these into the embedding may be sufficient for prediction in non-
stationary systems (e.g. Deyle et al., 2013), and longer-term ensem-
ble forecasts may be possible by combining physical models with
EDM (Deyle et al., 2022). When the relevant drivers are unknown,
slow changes can be accommodated by overembedding (Hegger
et al., 2000). When the unknown drivers change more rapidly,
forgetting the past may be more appropriate (Munch et al., 2017).
Ecological applications of EDM to non-stationary systems (or ex-
plicitly test for non-stationarity in systems) are rare so far, but are
clearly an important avenue for future work.

Over the past decade, several methods for anticipating regime
shifts have been developed, most based on the idea of critical slow-
ing down (Scheffer et al., 2012). Although these tools provide robust
indicators of impending bifurcations in a range of scenarios, they do
not, as yet, provide information on what to expect following a critical
transition. On the other hand, Saterberg and McCann (2021) have
recently shown that applying EDM to the same system in different
regimes produced measurably different attractors. These results
suggest EDM could be used to expand the early warning signals
toolbox and allow us to determine more precisely how dynamics will
differ following a critical transition (e.g. Dakos et al., 2017).

One of the great strengths mechanistic models is that auxiliary
information on parameters, sub-models, etc. can be readily incorpo-
rated into model formulation. Extending the EDM toolbox to make
use of mechanistic information (beyond that contained in the avail-
able time series) is an important area for future development. When
there is a clear separation in state, say between environmental forc-
ing and biological responses, hybrid models can be used to incorpo-
rate mechanism (Deyle et al., 2022). Residual delay maps (Sugihara
etal., 1999) and the use of mechanistic models as a priors in Bayesian
EDM (Thorson et al., 2014) also provide routes to building in mech-
anism. More generally, the recursive structure for accounting for
missing state variables proposed by Bhat and Munch (2022) pro-
vides another path to constructing partially specified EDM models.
However, much more work is needed both in determining new ways
to incorporate static observations and in evaluating the relative
value of this information.

Finally, a completely novel application of EDM is in the realm of
simulation, as opposed to prediction. For instance, generative man-
ifold network (GMN) algorithms (Pao et al., 2021), originally devel-
oped for neuroscience, are hypothesized to be useful for simulating
almost any complex dynamical network. Each node of the GMN is
an empirical embedding built using a variant of CCM. It uses con-
cepts from manifold learning, dimensionality reduction, and reservoir
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computing to generate one-step-ahead predictions recursively—each
prediction becomes the added last value, that is then used to predict
the next value. Using neural activity data, Pao et al. (2021) showed
that the GMN is capable of producing novel behaviours not included
in the training set but observed in out-of-sample data, suggesting that
in this case, GMN can be used to explore emergent properties of the
system not explicitly present in the training set. Whether this setup
generalizes to ecological data simulation remains to be seen.

In conclusion, we see that EDM, its extensions and future de-
velopments can be useful for the exploration and prediction of in-
creasingly available ecological data. By embracing the complexity
and high dimensionality of natural ecosystems and making minimal
assumptions, EDM offers a valuable alternative to parametric mod-
elling approaches with potential for many management applications

that are only just beginning to be explored.
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