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Abstract
We show that cyclic products of projections onto convex subsets of Hadamard spaces
can behave in a more complicated way than in Hilbert spaces, resolving a problem
formulated by Miroslav Bačák. Namely, we construct an example of convex subsets
in a Hadamard space such that the corresponding cyclic product of projections is not
asymptotically regular.
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1 Introduction

The method of cyclic projections is a classical algorithm seeking an intersection point
of a finite family C1, . . . ,Ck of closed convex subsets in a Hilbert space X . Denote
by Pi the closest point projection X → Ci ; it sends a point x ∈ X to the (necessarily
unique) point Pi (x) in Ci that minimizes the distance to x . Given a point x ∈ X ,
consider the sequence xn = Pn(x), where P is the cyclic composition of projections
P = P1 ◦ · · · ◦ Pk . The method of cyclic projections analyzes the sequence (xn) and
tries to find a limit point x∞, to show x∞ ∈ C1 ∩ · · · ∩ Ck and to understand the rate
of convergence.

Let us list some results in the area. If the intersection C1 ∩ · · · ∩ Ck is non-empty,
then (xn) always converges weakly to some point in C1 ∩ · · · ∩Ck [14]. However, this
convergence does not need to be strong [19]. If, in addition, Ci are linear subspaces,
then the convergence is strong [18, 23]. If the intersectionC1∩· · ·∩Ck is not assumed
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to be non-empty, the analysis of the sequence (xn) is more complicated. However, in
[11] it has been established that the cyclic product P = P1 ◦ · · · ◦ Pk is asymptotically
regular; by definition, this means that for any starting point x ∈ X , we have |xn −
xn+1| → 0 as n → ∞. The rates of convergence, respectively, and the rates of
asymptotic regularity have been investigated in several works, see, for instance, [12,
20]. For further reference, see [4, 7, 8, 12, 17].

More recently, the method of cyclic projections has been investigated beyond the
setting of Hilbert spaces in so-called Hadamard spaces (also known as CAT(0) spaces,
or globally non-positively curved spaces in the sense of Alexandrov). This class of
metric spaces includes hyperbolic spaces, metric trees, as well as complete simply
connected Riemannianmanifolds of non-positive curvature; it has played an important
role in many areas of mathematics in the last decades. We assume some familiarity
with Hadamard spaces, refer the reader to [2, 3, 9, 10, 15, 16] as general references on
this subject. For the introduction and applications of the method of cyclic projections
in Hadamard spaces, see [6], [7,Section 6.8], and the references therein.

Hadamard spaces are defined (loosely speaking) by the property that their distance
function is at least as convex as the distance function on a Hilbert space. In particular,
Hadamard spaces contain a huge variety of convex subsets; closest point projections
to closed convex subsets are well defined and 1-Lipschitz, and the questions discussed
above about cyclic projections are absolutely meaningful in a Hadamard space X .

Many results discussed above have been transferred from the linear setting ofHilbert
spaces to general Hadamard spaces. For instance, if the subsets Ci have a non-empty
intersection, then the cyclic product of projections P is asymptotically regular, and
for any initial point x ∈ X , the sequence xn = Pn(x) converges weakly to a point
x∞ ∈ C1 ∩ · · · ∩ Ck [5, 8]. (The weak topology on Hadamard spaces is discussed in
[6, 7, 22].) The rate of convergence in this setting has been studied in [21].

Therefore, it is somewhat surprising that the fundamental result of Heinz Bauschke
[11] for (possibly) non-intersecting convex subsets Ci does not admit a generalization
to the setting of Hadamard spaces. The following main result of this paper provides a
negative answer to the question of Miroslav Bačák [7, Problem 6.13].

Theorem 1.1 There exist aHadamard space X andcompact convex subsetsC1, . . . ,Ck

in X such that the composition of the closest point projections P = P1 ◦ · · · ◦ Pk is
not asymptotically regular.

We provide an explicit example with X being a product of two trees, proving the
theorem for k = 3. Setting C3 = · · · = Ck defines examples for any k ≥ 3.

In this example, all subsets Ci are isometric to the unit interval, and the projections
Pi map all of these segments isometrically onto Ci and the composition P = P1 ◦
P2 ◦ P3 maps C1 to itself isometrically but exchanges the endpoints of this interval.
A stronger version of the theorem is proved in the appendix; it requires a somewhat
deeper understanding of the geometry of Hadamard spaces. It seems possible, but
would require some non-trivial technical work, to adapt the example from the appendix
so that the Hadamard space becomes a smooth Hadamard manifold.

On the other hand, in the case k = 2, the result of Heinz Bauschke [11] does admit
a generalization; in this case, the algorithm is sufficiently simple to be controlled
explicitly, even providing an optimal rate of asymptotic regularity. As it was pointed
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out by an anonymous referee, the following statement follows from [5,Theorem 3.3],
under the additional assumption of the existence of a fixed point of the composition
P .

Proposition 1.2 Let C1,C2 be two closed convex subsets of a Hadamard space X.
Then the composition P = P1 ◦ P2 is asymptotically regular.

Moreover, |xn − xn+1| = o
(

1√
n

)
for any x ∈ X and xn = Pn(x).

Here and further, we denote by |x − y| the distance between points x and y in any
metric space, even without linear structure.

Examples given by the real axis C1 ⊂ R
2 and the set

C2 = { (x, y) : x > 0, y ≥ 1 + x−ε }

reveal that the convergence rate in Proposition 1.2 cannot be improved to O(n− 1
2−ε)

for any ε > 0.
This also shows that the optimal rate of asymptotic regularity for cyclic product

of projections on two convex subsets is the same for the Euclidean plane and general
Hadamard spaces.

2 Three Segments in a Product of Two Tripods

In this section, we prove Theorem 1.1.

Proof A union of three unit segments that share one endpoint with the induced length
metric will be called a tripod. Consider two tripods S and T and the product space
X = S × T . Our space X is a product of two trees and thus of two Hadamard spaces.
Hence, X is a Hadamard space.

TS

a

b c

u

v w

Denote by a, b, c and u, v, w the sides of S and T , respectively.
The following diagram shows 3 isometric copies of 2×2-square in X ; they are

obtained as the products of two pairs of sides in S and T as labeled.
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a bb acc

vvu

uww

C1 C2 C2

C3 C3 C1

Consider the segments C1, C2, and C3 shown on the diagram; they all have slope
−1 and project to each other isometrically. Note that each projection Pi reverses the
shown orientation. It follows that the composition P = P1 ◦ P2 ◦ P3 sends the segment
C1 to itself isometrically and changes the orientation of the segment. In particular, P
exchanges the ends of the segment; hence, P is not asymptotically regular. (In fact,
for an end e of C1, and any n, we have |Pn(e) − Pn+1(e)| = 1.)

Finally, setting C3 = · · · = Ck defines examples for any k ≥ 3. 
�

3 Two Sets

In this section, we prove Proposition 1.2.

C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2

C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1

x

y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1

x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1

y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2

x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2

s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1

r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1

a1

a2 b1

Proof By definition, xn ∈ C1 for all n. Set yn+1 = P2 ◦ Pn(x), so y1 = P2(x),
x1 = P1(y1), y2 = P2(x1), and so on. Further set

rn :=|xn − xn+1|,
sn :=|yn − yn+1|.

Since the closest point projection is non-expanding, we get

s1 ≥ r1 ≥ s2 ≥ r2 ≥ · · · (1)
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Set

an := |xn − yn| = distC1 yn,

bn := |yn+1 − xn| = distC2xn .

Note that

a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · (2)

Since C1 is convex and xn ∈ C1 lies at the minimal distance from yn , we have
�[xn xn−1

yn ] ≥ π
2 . Since X is a Hadamard space,

r2n ≤ b2n − a2n+1.

Therefore, (2) implies that

∑
n

r2n ≤ b21.

By (1), rn is non-increasing. Therefore, rn = o( 1√
n
). 
�

4 Conclusions

We have shown that a cyclic product of k ≥ 3 projections onto convex subsets of a
Hadamard space does not need to be asymptotically regular, even if the convex subsets
involved are compact. This should be seen in contrast to the asymptotic regularity
of such maps in Hilbert spaces and to the fact that many other results about cyclic
projections generalize easily from the linear setting to the setting of Hadamard spaces.
On the other hand, we show that a cyclic product of two projections to convex subsets
of Hadamard spaces must always be asymptotically regular.
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Appendix: Three Disks

While the cyclic product of projections P constructed in Sect. 2 is not asymptotically
regular, its square P2 is the identity on C1; in particular, P2 is asymptotically regular.
The construction in Sect. 2 produces a Möbius band B divided into three rectangles
and a map from B to a Hadamard space that is distance-preserving on each rectangle.

In this appendix, we produce a Hadamard space that contains an embedding of a
twisted solid torus with arbitrary twisting angle, such that the solid torus consists of 3
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isometrically embedded flat cylinders. In this case, we obtain again 3 projections onto
convex sets, each of them isometric to a Euclidean disk, the bases of the cylinders.
Then the cyclic product of these projections is the rotation of a disk by the prescribed
twisting angle α. In particular, if α

π
is irrational, then any power of this cyclic product

of projections may not be asymptotically regular.

Theorem A.1 There is a cyclic projection P as in Theorem 1.1 such that any of its
powers Pm is not asymptotically regular.

Proof of A.1 Fix an angle α and a small ε > 0. Consider the closed ε-neighborhood A
of a closed geodesic γ in the unit sphere S3. Note that the boundary of A is a saddle
surface in S3; hence, it has curvature bounded from above by 1. Thus, A is a compact
Riemannian manifold with boundary, such that the curvature of the interior and of the
boundary is bounded from above by 1. Therefore, by the result of StephanieAlexander,
David Berg and Richard Bishop [1], A equipped with the induced intrinsic metric is
locally CAT(1). The universal cover Ã of A with its induced metric is locally CAT(1)
as well. Since Ã does not contain closed geodesics, it is CAT(1), by the generalized
Hadamard–Cartan theorem [3,8.13.3], [10,6.8+6.9], [13].

Denote by E the inverse image of γ in Ã. The isometry group of Ã contains the
group of translations along E and the rotations that fix E . Let T be the composition
of translation along E of length 2 ·π + 10 · ε and the rotation by angle α. The element
T generates a discrete subgroup � in the group of isometries of Ã that acts freely and
discretely on Ã.

Set Y = Ã/�. Since ε is small, any non-trivial element of � moves every point
of Ã by more than 2 · π . Therefore, Y is a compact locally CAT(1) space that does
not contain closed geodesics of length less than 2 · π . Hence, by the generalized
Hadamard–Cartan theorem [3], Y is CAT(1). By construction, Y is locally isometric
to S3 outside its boundary B. The projection of E to Y is a closed geodesicG of length
2 · π + 10 · ε.

Denote by X the Euclidean cone over Y ; sinceY is CAT(1), we get that X is CAT(0);
see [3]. Moreover, X is locally Euclidean outside its boundary — the cone over B.

The cone Z over the closed geodesic G is the Euclidean cone over a circle of length
2 ·π +10 · ε. By construction, Z is a locally convex subset of X . Hence, Z is a convex
subset of X [2,2.2.12]. Let us consider a geodesic triangle [q1q2q3] in Z that surrounds
the origin o of the cone Z .

By construction, the sides of the triangle [q1q2q3] lie in the flat part of X . Thus,
we can find a small r > 0 such that the 2 · r -neighborhood U1 of the geodesic [q1q2]
is isometric to a convex subset of the Euclidean space. We can assume that 2 · r -
neighborhoods U2 of [q2q3] and U3 of [q3q1] have the same property.

Denote by Ci the disk of radius r centered at qi and being orthogonal to Z . By
construction, Ci and Ci+1, for i = 1, 2, 3 (mod 3) are contained in Ui . Since Z is
convex, Ci and Ci+1 are parallel inside Ui , thus their convex hull Qi is isometric
to the cylinder Ci × [qi , qi+1] with bottom and top Ci and Ci+1. In particular, the
projection Pi defines an isometry Ci+1 → Ci .

By construction, the composition P = P1 ◦ P2 ◦ P3 : C1 → C1 rotates C1 by angle
α. If α

π
is irrational, then P , as well as all its powers, are not asymptotically regular.

As before, setting C3 = · · · = Ck defines examples for any k ≥ 3. 
�
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