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Conspectus 
 

RNA molecules convey biological information both in their linear sequence and in their base-

paired secondary and tertiary structures. Chemical probing experiments, which involve treating 

an RNA with a reagent that modifies conformationally dynamic nucleotides, have broadly 

enabled examination of short- and long-range RNA structure in diverse contexts, including in 

living cells. For decades, chemical probing experiments have been interpreted in a per-

nucleotide way, such that the reactivity measured at each nucleotide reports the average 

structure at a position over all RNA molecules within a sample. However, there are numerous 

important cases where per-nucleotide chemical probing falls short, including for RNAs that are 

bound by proteins, RNAs that form complex higher order structures, and RNAs that sample 

multiple conformations. 

 

Recent experimental and computational innovations have started a revolution in RNA structure 

analysis by transforming chemical probing into a massively parallel, single-molecule experiment.  

Enabled by a specialized reverse transcription strategy called mutational profiling (MaP), 

multiple chemical modification events can be measured within individual RNA molecules. 

Nucleotides that communicate structurally through direct base pairing or large-scale folding-

unfolding transitions will react with chemical probes in a correlated manner, thereby revealing 

structural complexity hidden to conventional approaches. These single-molecule correlated 

chemical probing (smCCP) experiments can be interpreted to directly identify nucleotides that 
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base pair (the PAIR-MaP strategy) and to reveal long-range, through-space structural 

communication (RING-MaP). Correlated probing can also define the thermodynamic 

populations of complex RNA ensembles (DANCE-MaP). Complex RNA-protein networks can be 

interrogated by crosslinking proteins to RNA and measuring correlations between cross-linked 

positions (RNP-MaP).  

 

smCCP thus visualizes RNA secondary and higher-order structure with unprecedented 

accuracy, defining novel structures, RNA-protein interaction networks, time-resolved dynamics, 

and allosteric structural switches. These strategies are not mutually exclusive; in favorable 

cases, multiple levels of RNA structure – base pairing, through-space structural communication, 

and equilibrium ensembles – can be resolved concurrently. The physical experimentation 

required for smCCP is profoundly simple, and experiments are readily performed in cells on 

RNAs of any size, including large noncoding RNAs and messenger RNAs. Single-molecule 

correlated chemical probing is paving the way for a new generation of biophysical studies on 

RNA in living systems. 
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The Oft-Hidden Complexity of RNA Structure 
RNA molecules are inherently driven to fold back on themselves into complex secondary 

structures consisting of A-U, G-C, and G-U base-pairing interactions, and frequently into higher-

order tertiary structures that are stabilized by a diverse array of non-canonical interactions.5,6 

However, our understanding of the functional roles of RNA structure has been limited by the 

difficulty of measuring RNA structure, particularly in cells. Chemical probing experiments are 

one of the oldest and most broadly accessible strategies for interrogating RNA structure and 

use chemical reagents to preferentially modify unpaired or conformationally dynamic RNA 

regions. These experiments have made it possible to experimentally monitor RNA structure at 

per-nucleotide resolution.7–9  For RNAs that form well-determined structures, probing data can 

be used to guide accurate modeling of RNA structure (Figure 1A). However, there are many 

cases where per-nucleotide methods do not work well, and these challenging cases often 

correspond to RNAs that mediate important biology.  

 

Per-nucleotide methods suffer from critical deficiencies. First, per-nucleotide chemical probing 

primarily measures local nucleotide conformational flexibility. That’s it. It is often impossible to 

establish why a nucleotide is conformationally flexible or not. For example, per-nucleotide 

methods cannot distinguish whether a nucleotide is constrained due to base pairing versus 

tertiary interactions, or because it is bound by an RNA-binding protein (Figure 1B). Second, 

conventional per-nucleotide probing is a time averaged ensemble measurement. If an RNA 

samples multiple conformations, or is partially bound by small-molecule or protein ligands, the 

per-nucleotide signal reflects a rough average over all states in the sample (Figure 1C). Thus, 

per-nucleotide probing often gives an incomplete picture of the most interesting and biologically 

impactful RNA structures.  

 

Single Molecule Correlated Chemical Probing and Mutational Profiling 
Many features of RNA structure that are missed by per-nucleotide probing methods can be 

monitored if reactions are measured simultaneously at multiple nucleotides in the same RNA 

strand (Figure 1D).1 RNA structures link the molecular environments of sequence-distant 

nucleotides, and these interacting (or communicating) nucleotides will react with chemical 

probes in a correlated manner. These correlated reactivities in turn encode information on 

higher-order features of an RNA. The beauty of single-molecule correlated chemical probing 

(smCCP) is its experimental simplicity. smCCP experiments use essentially the same 

straightforward methods as conventional per-nucleotide experiments. The RNA is treated with a 
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chemical reagent, which, over the course of the experiment, forms chemical adducts across the 

molecule. Structurally linked nucleotides are recurrently modified together or are modified in a 

mutually exclusive manner, and analysis frameworks then parse these relationships to identify 

individual base pairs,2,10 through-space structural communication,1,11,12 RNA-protein (RNP) 

interactions,3 and conformational ensembles (Figure 2A).4 

 

Mutational profiling (MaP) is the conceptual insight that makes smCCP possible. MaP was 

originally invented to accurately read out per-nucleotide probing information using massively 

parallel sequencing,13,14 but we quickly recognized that MaP also enables measurement of 

through-space structural communication in RNA.1 MaP exploits relaxed fidelity conditions that 

allow a reverse transcriptase enzyme to read through chemically modified nucleotides, leaving 

behind a mutation or small deletion at the sites of chemical adducts in the synthesized 

complementary DNA (cDNA) (Figure 2B).1,13,15 Modification information is read out by 

massively parallel sequencing, where each mutation-containing cDNA corresponds to a single 

modified RNA molecule.  

 

To date, smCCP has been primarily performed using the classic chemical reagent dimethyl 

sulfate (DMS). DMS reacts efficiently at the canonical base pairing faces of adenine and 

cytosine, and recent innovations allow DMS to react with the pairing faces of guanosine and 

uracil as well, albeit with lower efficiencies (Figure 2C).2 DMS is a favored reagent because it is 

highly soluble, reactive, and cell permeable, supporting multiple modifications within single RNA 

molecules. Because DMS forms adducts on the base-pairing face of each nucleotide, non-

templated nucleotides are incorporated at a high rate during MaP. Probes other than DMS have 

varying mechanisms of action, but the procedural steps for probing are nearly the same for all 

smCCP experiments.  

 

Using MaP, sites of chemical adducts are detected across the length of an RNA strand and 

computational analysis then reveals correlations (Figure 2D). If two nucleotides are individually 

reactive and react together no more often than expected by their independent probabilities, their 

correlation is zero. By contrast, if two nucleotides in the same RNA strand tend to form chemical 

adducts jointly, then the two sites show positive correlation. Reaction at one nucleotide can also 

be correlated with the lack of reactivity at another, leading to a negative correlation. Until the 

invention of MaP, all chemical probing experiments performed with RNA were interpreted in a 



 6 

per-nucleotide way (Figure 2E, left).  Now, multiple levels of information can be extracted from a 

smCCP experiment depending on the algorithm used to interpret the data. In the following 

sections, we describe how smCCP information can be used to define RNA structure at 

increasing levels of complexity (Figure 2E, right). 

 

What Single-Molecule Correlated Probing Measures 

The first smCCP experiments emphasized the richness and complexity of smCCP data.1 

Pioneering smCCP analyses of the P546 domain of a group I intron, which forms a U-shaped 

structure,16 produced dense information corresponding to many ways two nucleotides might 

show correlated reactivity, or not. First, we detected correlated reactivities between multiple 

canonical and non-canonical base pairs (Figure 3, left). Second, this RNA is stabilized by an 

RNA tetraloop that binds to a tetraloop receptor motif, and we detected strong correlations 

reflective of the close-in-space tetraloop-receptor interaction. In addition, correlated nucleotides 

revealed other correct and specific – but very complex, and not close-in-space – coupled tertiary 

and helix-helix interactions (Figure 3, right). Some of these complex tertiary interactions likely 

reflect coordinated large-scale movements of the two arms of the U, indicative of structural 

breathing. Thus, in the absence of prior knowledge, teasing out correlation signals that are 

distinct to each level of RNA structure is non-trivial and has required ongoing development of 

sophisticated computational strategies. 

 

Direct Detection of Base Pairs 
Base pairing generally protects RNA nucleobases from DMS modification. Nonetheless, 

analysis of our early MaP datasets revealed that even base-paired nucleotides are measurably 

reactive, enabling direct detection of base pairing from rare, correlated modification events.2,10 

Mechanistically, transient base pair opening permits DMS modification of a nucleobase within a 

pair.2 Once one nucleobase is modified, the base pair is permanently destabilized, increasing 

the odds of modification at nearby opposing nucleobases and giving rise to a measurable 

correlation (Figure 4A). However, these base-pairing correlations are weak, requiring the 

development of strategies to reliably identify authentic pairing signals. Key breakthroughs 

enabling in-cell base pair detection included devising conditions that support DMS modification 

of uracil and guanine (Figure 2C), amplifying signals computationally by summing modification 

events over 3-nucleotide windows (Figure 4B), and developing algorithms that specifically 

detect correlations arising from paired bases.  
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The resulting strategy identifies RNA duplexes from correlations that occur between 

complementary 3-nucleotide-wide regions, which we call PAIRs (pairs ascertained from 

interacting RNA regions).2 Nucleotide reactivity and correlation strength prioritize PAIRs as high 

versus medium confidence (Figure 4B). High-confidence PAIRs provide remarkably specific 

measures of a predominant RNA structure (positive predictive value >95%), with ~45% of 

helices generating detectable PAIRs. For example, PAIR analysis applied to the E. coli 16S 

ribosomal RNA revealed numerous high-confidence PAIRs that precisely mirror the known 

structure, effectively defining its global architecture (Figure 4C). Medium confidence PAIRs 

report on less stable or alternatively paired states. These two types of PAIRs provide a direct 

visualization of RNA folding landscapes, that, especially in cells, is more accurate and 

informative for modeling RNA secondary structure than provided by conventional per-nucleotide 

reactivities (Figure 4C). PAIRs also often provide direct evidence of long-range helices and 

pseudoknots,2 which are particularly challenging to model confidently from reactivity data alone.  

 

In one representative example, PAIR analysis provided critical insight into regulation of the E. 

coli rpsB gene by its encoded protein product, ribosomal protein S2 (Figure 4D).2 The rpsB 5'-

UTR encodes an element that binds excess S2 to inhibit translation and enable autoregulation 

of S2 protein levels. Ribosomal protein autoregulatory elements typically fold into structures that 

resemble three-dimensional motifs within ribosomal RNA, but prior analyses had failed to 

identify such homologies in the S2 element.17 In-cell smCCP analysis detected numerous 

PAIRs that defined the structural architecture of the S2 element, including a metastable long-

range helix (P1) and a pseudoknot (PK) (Figure 4D), which possesses clear homology to the S2 

binding site on the ribosomal RNA (Figure 4E). The PK helix was only observed in cells, 

emphasizing the value of in-cell probing.2 In sum, PAIR analysis provides direct visualization of 

both stable and alternative base pairing states, and dramatically improves the ability to model 

complex RNA structures in cells. 

 

Through-Space Structural Communication 
The original and most direct application of smCCP is to identify strong correlations between 

reactive nucleotides, called RNA interaction groups (RINGs), that report on (often complex) 

through-space structural communication networks (Figure 5A).1 After filtering out correlations 

arising from base pairing,11,18 RINGs provide a measure of long-range communication often 

reflective of tertiary structure.  
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Large RNAs fold via complex pathways that can be partially inferred from – but are not 

measured definitively by – per-nucleotide probing. We used smCCP to follow the Mg2+-induced 

folding of the 265-nucleotide catalytic core of a bacterial RNase P enzyme.19 DMS-based 

smCCP experiments typically require a ~5 minute probing reaction, which prevents resolving 

fast dynamics. We thus introduced the chemical probe trimethyloxonium (TMO), which reacts 

90-fold faster than DMS (Figure 5B).19 In the absence of Mg2+ (the pre-folded state), we 

observed multiple RINGs indicative of non-native interactions (Figure 5C, left). Upon adding 

Mg2+, RINGs formed rapidly between nucleotides in two loops that form a long-range tertiary 

structure, followed by strengthening of RINGs in the core of the RNA (Figure 5C, middle and 

right). RINGs thus revealed that folding of the RNase P catalytic core proceeds in an 

unexpected and non-hierarchical way: The L5.1-L15.1 loop-loop tertiary structure forms early 

and guides formation of subsequent base pairs and tertiary interactions.19 Even for an RNA 

whose structural biogenesis has been studied for decades, smCCP illuminated previously 

undetected, but critical, steps in the folding pathway.  

 

The difference in insight provided by per-nucleotide and smCCP can be dramatic, as 

exemplified by in-cell smCCP studies of the bacterial ribosome.12 Based on conventional per-

nucleotide analysis, binding by the antibiotic spectinomycin alters DMS reactivity at only a single 

nucleotide in the 1,542-nucleotide long 16S RNA (Figure 6A). The protected nucleotide, C1192, 

forms hydrogen bonds with the antibiotic (Figure 6B).20 By contrast, RING analysis of these 

same probing data revealed extensive changes in reactivity networks that extend throughout the 

16S RNA (Figure 6C). Nucleotides that show dense correlations with other nucleotides can be 

grouped into four major networks and these networks recapitulate the known domains of the 

ribosome (Figure 6D). In the absence of spectinomycin, these domain-specific-networks are 

sparsely linked to each other, indicating that distinct domains move largely independently of one 

another (Figure 6C, top). By comparison, spectinomycin binding increases the strength and 

quantity of through-space structural correlations, both within each domain and between 

domains, with structural communication extending tens of angstroms from the spectinomycin 

binding site (Figure 6C, E). These increases in RING correlations show how a small antibiotic, 

interacting at a single site, functions as a jam that globally restricts the conformational freedom 

of the megadalton ribosome, preventing domains from moving independently as required during 

translation.12,21 
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Comprehensive RNA ensemble analysis 
smCCP provides a solution to one of the most challenging problems in RNA structure analysis: 

measuring RNA structural ensembles. Many RNAs fold into ensembles of alternative structures, 

a subset of which are linked to RNA regulatory functions.22 Conventional per-nucleotide 

analysis reports averages over all molecules in a sample, and is fundamentally unable to 

capture such structural complexity. We realized early on that smCCP had the potential to 

resolve multiple co-existing states.1 Each state within an RNA ensemble will have a unique 

reactivity profile, reflective of its underlying structure. Ensemble information is thus encoded as 

multivalent correlations between all modified positions in a molecule (Figures 1D, 2A, 7A).  

 

We devised a maximum likelihood algorithm to determine whether smCCP data are consistent 

with a single per-nucleotide reactivity profile, or multiple co-existing profiles.4 For RNAs that 

populate ensembles, this strategy determines how many reactivity patterns contribute to the 

overall profile and yields per-nucleotide reactivity profiles and relative populations for each 

ensemble member with populations ≥10% (Figure 7A). Significantly, once the reactivity profiles 

have been deconvoluted, it is then possible to assign each smCCP read, corresponding to 

individual RNA molecules, to each ensemble state (Figure 7B). Consequently, the strategies 

discussed above can be applied to measure PAIRs and RINGs for each state in an ensemble, 

creating an unprecedently rich view of RNA structure. We call this integrated ensemble 

determination strategy DANCE, or deconvolution and annotation of RNA conformational 

ensembles.4   

 

We validated DANCE using the add adenine riboswitch system, which populates a two-state 

equilibrium consisting of translation ON and OFF states.4,23 The ON state features an adenine-

binding aptamer domain and accessible ribosome binding site, whereas the OFF state masks 

the ribosome binding site (SD) via base pairing (Figure 7C). DANCE visualizes this equilibrium 

in remarkable detail, with reactivities and PAIRs mapping the known secondary structure in 

each state, and RINGs identifying the tertiary structure unique to the ON state (Figure 7C). 

Populations measured by DANCE are thermodynamically accurate: we could directly measure 

the Kd for adenine binding from the ON state population. Thus, DANCE provides biophysical 

level insight, in a (simple) chemical probing experiment that can be performed in cells. 
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We used DANCE to examine the structure of the human 7SK RNP complex in cells (Figure 8).4 

The 7SK RNA regulates global cellular transcription by binding and inhibiting the transcription 

factor P-TEFb.24 Multiple groups, employing diverse approaches, had developed conflicting 

models for the 7SK RNA structure, in part, because 7SK functions as an ensemble and does 

not exist as a single state. In-cell ensemble deconvolution resolved these discrepancies and 

revealed that 7SK populates three structural states, comprising a P-TEFb-bound and two P-

TEFb-released states (Figure 8A). DANCE analysis further revealed PAIR and RING 

correlations critical for defining the structures of each state, including potential tertiary 

interactions, unique to the P-TEFb-released state (Figure 8B). Functionally, the 7SK ensemble 

links structural remodeling of a “P-TEFb aptamer domain” to formation of new structures in a 

“release factor binding domain”, creating an allosteric mechanism for regulating P-TEFb binding 

and release (Figure 8C).  

 

DANCE also allowed us to measure how the 7SK structural ensemble relates to global 

transcriptional activity.4 For example, in fast-growing and more transcriptionally active Jurkat 

cells, 7SK binds less P-TEFb than in slower growing RPE-1 cells (Figure 8D). Transcription is 

further downregulated in quiescent RPE-1 cells, resulting in an additional shift in 7SK towards 

the P-TEFb bound state. The transcriptional activator flavopiridol does the opposite, pushing the 

7SK population towards P-TEFb-released states (Figure 8D). We could also intentionally 

upregulate transcription using antisense oligos that stabilize P-TEFb-released states of 7SK, 

establishing the 7SK ensemble as potential drug target. 

 

Recent studies by other groups provide additional examples where smCCP enabled discovery 

of functional RNA ensembles in viral RNAs and plant lncRNAs.25–27 Collectively, these studies 

reveal how RNA structural ensembles integrate cellular signals to control biology. smCCP 

specifically makes it possible to "see" these once-invisible RNA mechanisms.  

 

Probing RNA-protein interaction networks 
Many RNA structure probing experiments can be improved by inventing a MaP version. In one 

compelling example, we devised a smCCP strategy to measure higher-order RNA-protein 

interactions (RNP-MaP).3 RNP-MaP uses the bifunctional chemical probe SDA (succinimidyl 

4,4’-azipentanoate) to crosslink proteins bound to RNA. The NHS (N-hydroxysuccinimide) ester 

moiety of SDA reacts with protein lysine residues, and the diazirine moiety is photo-activated 

with UV light to trigger reaction with proximal RNA nucleotides. The crosslinked proteins are 
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then digested, leaving behind small adducts that are read out by MaP (Figure 9A). As lysine 

residues are highly enriched in RNA-binding protein domains,28 this strategy captures most 

RNA-protein interactions. RNP-MaP yields two distinct classes of information (Figure 9B). 

Protein crosslinks on RNA generate mutation signals during MaP and measure RNA-protein 

interactions at nucleotide resolution. Correlations between crosslinks then reveal networks of 

protein-protein communication on RNA molecules in cells.  

 

RNP-MaP accurately defined protein networks in diverse RNPs of known structure.3 For 

example, the U1 small nuclear ribonucleoprotein (snRNP) is stabilized by assembly of the ring-

shaped Sm protein complex with U1 RNA.29 RNP-MaP detected multiple, strong correlations 

between nucleotides at the the Sm ring binding site and other proteins in the U1 snRNP, 

including a long distance interaction with the 70K protein, revealing the protein-network 

architecture of this complex (Figure 9C).  

 

In larger RNAs, RNP-MaP identifies analogous highly networked “hubs”, where multiple strong 

correlations converge (Figure 9D). Such hub analysis enabled us to identify conserved 

functional regions across the 20 kb XIST RNA, even in the absence of significant linear 

sequence homology between species.3 For example, sequences in a motif called region E are 

divergent between human XIST and mouse Xist RNAs. Nonetheless, region E contains the 

highest density of protein-binding nucleotides and of protein-protein communication networks in 

both human XIST (Figure 9D) and mouse Xist RNAs,3 emphasizing their likely functional 

importance.  

 

We further used RNP-MaP network strengths to classify proteins with known XIST binding 

sites30 into functional “communities”. We identified a highly networked community of region E-

binding proteins and showed that the network of region E RNA and E-binding proteins is 

important for assembly of XIST into an RNP compartment (Figure 9E). In sum, by inventing a 

smCCP version of an RNA-protein crosslinking experiment, we defined network intensity as a 

new property of RNA-protein interactions in cells, and used this insight to identify and 

characterize novel functional elements in very large RNAs. 

 

Nuances and Limitations 
Most fundamentally, smCCP is a single molecule strategy and therefore does not measure 

structural communication between different RNA (or other) molecules. Nonetheless, with careful 
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design, it is clearly possible to measure inter-molecular interactions, as exemplified by 

measuring ligand binding to riboswitches or the ribosome,4,12 or protein binding via the RNP-

MaP strategy (Figures 6, 7 and 9).3 We look forward to seeing many future innovative 

examples. 

 

Experimental details matter for successful smCCP experiments.  First, it is important to confirm 

that each sequencing read corresponds to an individual molecule: each analyzed sequence 

must be unique and not an artifact of library preparation. Second, smCCP involves multiple-hit, 

reagent-induced weakening of RNA structure, and accumulation of chemical adducts has the 

potential to push RNAs towards non-native conformations. Data to date suggest that misfolding 

artifacts are rare1,2,4,25–27 but care is required to ensure that RNA integrity is maintained. 

Strategies and reagents that employ shorter probing times are likely to yield more accurate 

structural data. Third, smCCP experiments provide superior information when performed under 

conditions that monitor all four ribonucleotides. DMS and other alkylating reagents are strongly 

acidifying, and thus rigorous buffering is essential.1,2 Fourth, smCCP data are best interpreted 

using high read depths (typically corresponding to 0.3-1 million unique RNA molecules). New 

reagents, improved MaP strategies, and alternative algorithms will likely lower sequencing depth 

requirements for some smCCP applications (as has been reported for ensemble 

deconvolution26). Further reductions in sequencing costs are needed for smCCP to be practical 

on whole-transcriptome scales.  

 

smCCP data are physically and structurally rich, but complex. The spatial resolution of 

detectable interactions is enormous, extending from individual base pairs, angstroms apart 

(Figure 4),2 to long-range tertiary interactions spanning many nanometers (Figures 5 and 6).12,19 

Distinguishing short versus long-range interactions, and direct versus indirect, remains 

imperfect. All strategies for deconvoluting smCCP data involve assumptions and simplifications, 

and care is required not to misinterpret a complex RNA system. We think the 7SK RNA, which 

is highly expressed and contains significant but not extreme structural heterogeneity, represents 

a strong emerging reference system for smCCP analysis in cells and to understand differences 

among deconvolution algorithms. Going forward, we anticipate many advances as increasingly 

sophisticated and well-validated algorithms are developed to interpret and deconvolute rich 

smCCP data.  
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Future opportunities 
Any experiment that creates chemical adducts on RNA can, in principle, be performed as a 

smCCP experiment. In coming years, we envision smCCP being used to monitor in-cell, time-

dependent assembly of RNA-protein and RNA-RNA complexes, and to measure RNA-small 

molecule interactions. MaP can also detect many types of epigenetic RNA modifications, and 

smCCP is well-suited for resolving how epigenetic modifications influence higher-order RNA 

structure and ternary complex assembly.  

 

A major opportunity exists in melding smCCP with SHAPE probing, which would yield two major 

advantages relative to using DMS. SHAPE chemistry exploits hydroxyl-selective electrophiles 

that react with the ribose 2'-OH group, with the consequence that many SHAPE reagents react 

evenly with all four ribonucleotides regardless of base identity.8,9,14,31 SHAPE also provides a 

holistic, biophysically rigorous measurement of local nucleotide flexibility.14 Recent studies have 

shown potential success using single-molecule SHAPE probing for ensemble deconvolution.27 It 

is likely that both (i) new highly reactive, short half-life SHAPE reagents that destabilize local 

RNA structure and (ii) new reverse transcription enzymes and strategies, capable of detecting 

these adducts with high efficiency, need to be identified to realize the full potential of smCCP 

applications. The future clearly lies in a universal experiment that measures both nucleotide-

level RNA biophysics and inter-nucleotide structural communication in cells.  

 

There are also significant opportunities to harness smCCP data to model complex RNA and 

RNA-protein three-dimensional structures. RING measurements clearly convey abundant 

information about RNA tertiary structure,1,4,11,12,19 but are often challenging to interpret.  New 

algorithms, such as machine and deep learning approaches, should advance analysis of three-

dimensional RNA structures, especially in cells. There may also be opportunities to combine 

smCCP with complementary mutation scanning strategies32 to obtain even higher-dimensional 

datasets.  

 

New sequencing technologies will eventually extend the sequence length limits for smCCP to 

enable visualization of much longer-distance communication events in RNA. Innovations-in-

waiting include harnessing highly processive reverse transcriptases33 and long-read methods to 

sequence full-length cDNAs, or performing direct RNA nanopore sequencing,34,35 and are the 

likely future of smCCP. 
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In sum, we hope that the profound simplicity and experimental concision of MaP-based 

chemical probing, the established and emerging algorithmic frameworks for data analysis, and 

the expansive room for technology growth inspire RNA biologists to pick up their pipettes and try 

MaP and smCCP. The field will continue to benefit and mature rapidly from these collective 

discoveries. 
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Figure Legends 
 

Figure 1: Comparison of per-nucleotide and single-molecule correlated chemical probing.  (A) 
Structures that per-nucleotide probing characterizes well.  (B, C) Classes of structures better 

probed by smCCP than by per-nucleotide probing.  (D) Through-space interactions measurable 

by chemical probing. 

 

Figure 2: Conceptual framework for smCCP. (A) Filtering observed chemical adducts to reveal 
distinct tiers of RNA structure.  (B) The mutational profiling (MaP) strategy, which leverages 

relaxed fidelity reverse transcription (RT).1,13 (C) Schemes for methylation of all four 

ribonucleotides at their base pairing faces, based on carrying out reactions under well-buffered 

conditions.2 (D) Illustration of correlated modifications at nucleotides i and j. (E) Comparison of 

per-nucleotide versus single-molecule probing methods. 

 

Figure 3: Visualization of the rich, but complex, classes of correlations observed using smCCP 

in the absence of structure-level filters and algorithms. Adapted with permission from ref. 1. 
 

Figure 4: The PAIR strategy for direct base pair detection. (A) Mechanism underlying detecting 
correlated modifications at base-paired nucleotides. (B) Strategy for identifying high and 

moderate confidence PAIRs. PAIR interactions are shown as arcs. (C) Per-nucleotide and PAIR 

data for the 1542 nt long E. coli 16S rRNA under (natively extracted) cell-free conditions. Per-

nucleotide reactivities and PAIR correlations are obtained from the same experiment. (D) In-cell 

PAIRs for the S2 binding element located in the 5'-UTR of the E. coli rpsB gene. (E) Structural 

homology between the S2 mRNA binding element and S2 binding site in the 16S rRNA. 

Conserved nucleotides are shown in orange; P1 and PK helices are in color. Adapted with 

permission from ref. 2. 
 

Figure 5: Time-resolved smCCP analysis of a complex RNA folding reaction.  (A) Mechanism 
for detecting RING through-space tertiary interactions. (B) Comparison of DMS and TMO 

reagents. (C) Pairwise, through-space RINGs observed as a function of time for Mg2+-induced 

folding of the B. stearothermophilus ribonuclease P catalytic domain. RINGs are shown as 

green lines superimposed on base pairing and three-dimensional models of the RNA. 

Mechanistically informative RINGs are emphasized with asterisks. Adapted from ref. 19. 
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Figure 6: Per-nucleotide and smCCP of the E. coli 16S ribosomal RNA in fully assembled 30S 
subunits, in cells. (A) Per-nucleotide analysis indicates spectinomycin (Spc) binding alters 

reactivity of a single C nucleotide. (B) Spc binds near nucleotide C1192 (PDB: 4V56)21. (C) 

smCCP data resolve four major structural networks (blue, red, yellow, green). Nucleotides are 

shown as nodes, correlation strength by line thickness.  (D) Networks, defined de novo by 

smCCP, visualized on the three-dimensional structure of the 30S ribosome.  Strongly correlated 

nucleotides are shown as spheres.  Body and Platform networks correspond closely to 

conventional domain assignments, whereas two RING networks occur in the Head domain, 

which we designated outer-head (red) and inner-head and spine domains (blue). (E) 

Visualization of strengthened correlations in context of the three-dimensional structure of the 

30S subunit.  Image illustrates most significant correlations in the presence of Spc, minus those 

in absence of antibiotic. Spc binding site is shown in yellow. Adapted from ref. 12.  
 

Figure 7: DANCE strategy for comprehensive characterization of RNA ensembles. (A) 
Illustration of deconvolution of an RNA ensemble, based on smCCP. (B) The DANCE algorithm. 

(C) DANCE applied to the add adenine riboswitch, which folds into translation ON and OFF 

states in an adenine-dependent manner. (left) DANCE resolved reactivities, PAIRs, RINGs, and 

state-specific pairing probabilities computed for each state. Through-space interactions are 

shown with arcs.  (middle) The same data shown using conventional secondary structure 

diagrams. (right) ON state RINGs superimposed on the crystal structure of the aptamer domain 

(PDB: 4TZX)36. Adapted with permission from ref. 4. 
 

Figure 8: Discovery of large-scale structural switch in the human 7SK RNA. (A) In-cell DANCE 
experiments resolve three states from what is otherwise a heterogenous averaged reactivity 

profile. (B) PAIR-supported structural models for states A and B, corresponding to P-TEFb 

bound and released states. State B features a dense network of RINGs, suggestive of tertiary 

structure within the central junction. State H (not shown) has a heterogenous structure 

consistent with an alternative P-TEFb-released state. (C) Model for how the 7SK ensemble 

functions as an allosteric switch to sequester and release P-TEFb. (D) Population of 7SK states 

changes across cell types, and dynamically remodels in response to cell growth state, and 

transcriptional stress (Flavopiridol). Adapted with permission from ref. 4. 
 
Figure 9: Design and application of RNP-MaP. (A) In-cell RNP-MaP probing, where an NHS-
diazirine (SDA) crosslinks RNA-protein complexes (RNPs). Crosslink sites are read out by MaP 
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reverse transcription. (B) Data reveal crosslink-induced mutations and correlations, indicative of 

protein-binding sites and interaction networks, respectively. (C) RNP-MaP specifies protein 

binding sites (green) from background signal (grey) and identifies protein-protein communication 

(orange) on the U1 small nuclear RNA. Highlighted interactions are projected onto high-

resolution structures (PDB: 3CW1)37. Communication between 70K and Sm protein ring is 

emphasized with red arcs. (D) RNP-MaP site density (top) and summed strengths of nucleotide 

correlations (bottom) over 51 nucleotide windows, visualized across the human XIST RNA. 

Locations of functionally conserved core (black) and expanded (gray) tandem repeat arrays and 

of highly networked regions are emphasized. (E) Community analysis of XIST-binding proteins 

yields three functional groups. Two communities (5′ silencing and compartmentalization) 

correspond to proteins that bind highly networked regions of XIST. Micrograph of RNP granules 

formed by an RNA including XIST region E (purple), visualized in the context of the nucleus 

(DAPI stain, blue). Adapted with permission from ref. 3. 
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