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ABSTRACT
An extensive literature is available on design selection criteria and analysis techniques for two-level supersat-
urated designs. The most notable design selection criteria are the popular E(s2)-criterion, UE(s2)-criterion,
and more recently, the var(s+)-criterion, while the most notable analysis technique is the Gauss-Dantzig
Selector. It has been observed that while the Gauss-Dantzig Selector is often the preferred analysis tech-
nique, differences in the screening performance of different designs are not captured well by any of the
common design selection criteria. In addition, none of the criteria have any direct connection to the Gauss-
Dantzig Selector. We develop two new design selection criteria inspired by large sample desiderata of the
Gauss-Dantzig Selector. Then, using a multi-objective Pareto-based coordinate exchange algorithm, we find
Pareto eficient designs. The obtained Pareto eficient designs perform better in about 85% of the considered
cases as screening designs than the var(s+)-optimal designs, especially when the true signs of effects are
known. For the remaining 15% of the cases as well as for the unknown effect signs, the Pareto eficient
designs perform at par with the var(s+)-optimal designs.
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1. Introduction

Screening experiments often use a small number of runs to
study a large number of factors of which only a small por-
tion is expected to be important to explain variability in a
response variable (effect sparsity). A follow-up study is usually
conducted with the selected factors to determine how they affect
the response variable. Therefore, it is not overly restrictive to
use two-level factors at the screening stage. We consider designs
with n runs and m two-level factors under the main effects
model such that n ≤  m. These designs are supersaturated for
a main effects model.

The standard design optimality criteria are inadequate for
supersaturated designs (SSDs) because they require the model
matrix to have a full column rank, which does not hold for SSDs.
As a result, there is extensive literature on alternate optimality
criteria for SSDs starting with the E(s2)-optimality criterion
(Booth and Cox 1962). Several other criteria, such as UE(s2)-
and Bayes D-optimality (see, Jones, Lin, and Nachtsheim 2008;
Jones and Majumdar 2014, respectively), have been proposed
and studied. But none of these criteria are directly related to
the screening performance of the designs and can lead to the
selection of inferior designs for that task. Weese, Edwards, and
Smucker (2017) devised a promising criterion, called var(s+),
and Weese et al. (2021) showed that var(s+)-optimal designs
have excellent screening capability, especially when the effect
signs are known.

There is also a growing literature on analysis methods for
SSDs. The Gauss-Dantzig Selector (GDS) has surfaced as the
best choice in several studies (Phoa, Pan, and Xu 2009; Marley
and Woods 2010; Weese, Smucker, and Edwards 2015; Weese,
Edwards, and Smucker 2017) that have compared different anal-
ysis methods for SSDs. Recently Jones et al. (2020) proposed a
two-stage analysis method for special designs to which they
refer as group-orthogonal SSDs. The analysis method is based
on smaller models that can be fit using least squares. One attrac-
tive feature of this method is that there is a direct connection
between the design selection and the method of analysis. Weese
et al. (2021) compare an improved analysis method of group-
orthogonal SSDs to using GDS with their var(s+) designs. They
conclude that for identifying active effects while minimizing
error rates the var(s+)/GDS approach should be used. We pro-
pose a new design selection method that, combined with GDS,
results in designs that tend to perform better than the var(s+)
designs.

Our method, developed in Section 3, uses two criteria moti-
vated by two large sample desiderata of GDS. Adapting a multi-
objective Pareto-based coordinate exchange algorithm, we then
f ind Pareto ef icient designs based on measures of closeness
to meeting these desiderata. We illustrate the success of our
method in Section 4 and provide Pareto eficient designs for
5 ≤  n ≤  25 and n +  1 ≤  m ≤  2n in the supplementary
materials.
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2. Background

2.1. The Model and GDS

Let 1n be the n ×  1 column of 1s, and X be the n ×  m design
matrix of 1s and −1s corresponding to the m factors. The main
effects model is

y =  β01n +  Xβ +  ² , (1)

where β0 is the overall mean, β is a m ×  1 vector of parameters
corresponding to the m main effects, y =  (y1, . . . , yi, . . . , yn)
and ²  =  (²1, . . . , ²i , . . . , ²n) are n ×  1 vectors of responses
and errors, respectively. We assume that yi’s are independent
given the design matrix X, and that the error terms, ²i , are
normally distributed with mean 0 and variance σ 2. Except when
discussing existing design criteria in Section 2.2, we will center
the response vector and center and normalize the columns of
the model matrix X. After this transformation we do not need
an intercept parameter in the model. We name the transformed
y and X as yc and Z, respectively. We retain the notation β in (1)
with the new yc and Z.

For reasons discussed in the Section 1, we use GDS to analyze
SSDs. GDS (Candès and Tao 2007) was first adopted for SSDs
by Phoa, Pan, and Xu (2009). The first stage of GDS, called the
Dantzig Selector, uses convex optimization to find parameter
estimates. For the centered response yc and centered and nor-
malized Z, the estimator β is a solution to

min ||β||1 subject to ||ZT(yc −  Zβ)||∞ ≤  δ, (2)

where ||β||1 =  |β1| +  · · · +  |βm| is the `1 norm, ||b||∞ =
max(|b1|, . . . , |bm|) is the `∞ norm, and δ is a tuning parameter.
In the second stage, only the effects whose estimates exceed
in magnitude a tuning parameter γ  are declared active. These
effects are then re-estimated using ordinary least squares. This
is done for multiple values of δ � (0, ||ZTyc||∞), and model
selection criteria like AIC, BIC, adjusted R2, etc. can be used to
select the best value of δ (Phoa, Pan, and Xu 2009; Marley and
Woods 2010; Weese et al. 2021). For the choice of γ , recently
Weese et al. (2021) evaluated three options and suggested using
the data-driven value of 0.1 ×  ||β||∞, where β corresponds to
the solution when δ =  0 in (2). Following Weese et al. (2021),
we use this choice of γ  and use BIC to tune δ.

2.2. Existing Design Criteria

Most existing design criteria are formulated in terms of the main
effects model in Equation (1). Moreover, based on the premise
that orthogonal columns are good for disentangling active main
effects, albeit not possible in the supersaturated design setting,
the focus is on finding designs that minimize some function of
the absolute pairwise correlations between the columns of X or
of [1n X]. The first criterion, the E(s2)-optimality, surfaced
in Booth and Cox (1962) where the authors proposed to find a
design that minimizes the average squared inner-products
between all columns of X, that is, to minimize

E(s2) =  ¡ ¢
X  

(xTxj)2, (3)
2     1≤i<j≤m

among all balanced designs, where a balanced design is one that
has an equal number of ±1s for each factor. By definition, bal-
anced designs only exist for even n. Lower bounds to the E(s2)-
criterion have been obtained and designs satisfying the lower
bounds have been constructed (Lin 1993; Nguyen 1996; Tang
and Wu 1997; Cheng 1997; Butler et al. 2001; Bulutoglu and
Cheng 2004; Nguyen and Cheng 2008). Readers are referred to
Georgiou (2014) and references therein for an excellent review.
The identification of E(s2)-optimal designs for general n and
m has turned out to be challenging. Dropping the requirement
of balance, Marley and Woods (2010) extended this definition
by including the sum of squares of the inner products of all
columns with the column 1n to (3). This extended definition
was named the UE(s2)-criterion by Jones and Majumdar (2014)
who then also obtained the optimality bounds and constructed
optimal designs for this criterion. Thus, a design is a UE(s2)-
optimal design if it minimizes

� �

UE(s2) =  ¡m+1¢ �
X

(1T x i )2  +      
X  

(xTxj)2� (4)
2 i=1 1≤i<j≤m

among all SSDs with the same values of n and m. Jones and
Majumdar (2014) and Cheng et al. (2018) suggested a few cri-
teria to further discriminate between UE(s2)-optimal designs.
In addition, SSDs have also been studied under other criteria,
such as Bayes D-optimality (Jones, Lin, and Nachtsheim 2008), a
class of B-optimality criteria (Deng, Lin, and Wang 1996), the
resolution-rank of a design (Deng, Lin, and Wang 1999), the
estimation capacity based model-robust criterion (Jones et al.
2009), and maximizing the minimum power for different
designs (Weese, Smucker, and Edwards 2015). The var(s) cri-
terion was introduced in Weese, Smucker, and Edwards (2015)
where

var(s) =  UE(s2) −  (UE(s))2, (5)

where
� �

UE(s) =  ¡m+1¢ �
X

(1T x i )  +      
X  

(xTxj)�,
2 i=1 1≤i<j≤m

and a var(s)-optimal design is one that minimizes var(s) among
all possible SSDs subject to a specified UE(s2) eficiency. Further,
with the additional constraint that UE(s) > 0, Weese, Edwards,
and Smucker (2017) called it the constrained-positive var(s), or
var(s+), criterion. The use of s in E(s2), UE(s2), var(s), and
var(s+) is attributed to the fact that traditionally the inner
products xTxj were denoted by sij’s for i, j =  1, . . . , m.

Assessment of SSDs should be based on their performance
in effect screening. The screening performance can be studied
via simulations. Two common criteria to assess the performance
are

• power: the proportion of active effects correctly identified in
a specified scenario, and

• (Type 1) error: the proportion of inactive effects declared to
be important in a specified scenario.
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Distribution of power and error are studied over multiple
iterations for each scenario. Following previous studies, we con-
sider a design to be a good design if it has high average power
and low average error across a range of different simulation
scenarios. In other contexts, power and error are also referred to
as true positive rate and false positive rate, respectively, however,
for consistency with the screening design literature, we retain
the terms power and error throughout this work. Several studies
comparing the screening performance of different designs have
concluded that optimal and eficient designs perform approxi-
mately equally well, no matter which optimality criterion is used
(Marley and Woods 2010; Weese, Smucker, and Edwards 2015).
Nonetheless, design choice matters. Random designs (±1s being
assigned to each entry of X with probability 0.5) generally do not
perform well, making it important to select a design judiciously.
Weese et al. (2021) concluded that, while using GDS, (a) var(s+)
designs have better screening performance than other SSDs
when the effect signs are known, and (b) the var(s+) designs
and UE(s2)-optimal designs have identical performance when
the ef fect signs are unknown. The claim in (b) is generally true
but there are situations when some UE(s2)-optimal designs have
an inferior screening performance (see examples for (n, m) =
(12, 14), (20, 37) in the supplementary materials).

3. Design Criteria based on GDS Analysis

Weese et al. (2021) concluded that var(s+) designs are strong
performers especially if the signs of the effects are known. While
they used the GDS analysis as part of their screening strategy,
there is no explicit connection between the analysis and the
design selection criterion. In this section we build a design
selection method that is motivated by the GDS analysis. We
will use the transformed versions of y and X, that is, yc and Z,
respectively, and the true parameter vectorβ has m components
corresponding to m main effects. For a given δ and n-run design,

let β
n
(δ) =  (β1 (δ), . . . , βm(δ)) be the GDS estimate of β.

3.1. When Does GDS Work Well?

A good GDS estimate β
n
(δ) of the true parameter β should

possess two large sample properties:

(a) Estimation consistency: The estimation consistency asks
that there exists a δ (≥  0) such that

||β
n
(δ) −  β||2 =  op(1),

where ||b||2 =  (b1 +  · · · +  b2 )0.5 denotes the ̀ 2 norm of b.
(b) Model selection consistency: The model selection consis-

tency asks that there exists a δ (≥  0) such that

P({i � 1, . . . , m : β i (δ) =  0}
=  {i � 1, . . . , m : β i =  0}) →  1 as n →  ∞.

It is not too hard to see that one property does not necessarily
imply the other and that it would be desirable for βn(δ) to
have both properties for the given δ. As is common in the
literature, we will replace (b) by the stronger condition of weak
sign consistency, namely,

(c) Weak sign consistency: The weak sign consistency asks that

P(�δ ≥  0, sign(β
n
(δ)) =  sign(β)) →  1 as n →  ∞,

where sign(β) =  (sign(β1), . . . , sign(βm)) and sign(βi) =
1, −1, 0 if βi > 0, βi < 0, and βi =  0, respectively, i =
1, . . . , m.

Condition (a) is satisfied if the matrix Z satisfies the uniform
uncertainty principle (Candès and Tao 2007) (which states that
the matrix Z obeys the restricted isometry principle defined
in the next section), whereas Condition (c) is satisfied only if
Z satisfies the weak irrepresentable conditions (Gai, Zhu, and
Lin 2013). These conditions are further discussed in the
following sections. Neither of these conditions is easy to verify,
and our new design selection method will therefore be based on
surrogates for these two conditions.

3.2. Estimation Consistency

Candès and Tao (2005, 2007) showed that GDS correctly esti-
mates the true β with large probability provided that β is suf-
ficiently sparse and that the matrix Z satisfies the Restricted
Isometry Principle (RIP) with small values of the isometry con-
stants. For a positive integer k (≤  m), let Fk denote the set of all
subsets of {1, 2, . . . , m} of size k, and let f denote an element in
Fk. Rephrasing Candès and Tao (2007), the k-restricted isometry
constant τk of Z is the smallest quantity such that

(1 −  τ k )
X

a 2  ≤  ||
X

aiz i||2 ≤  (1 +  τ k )
X

a 2 (6)
i�f i�f i�f

for all f � Fk and for any k constants (ai), i � f . Here zi denotes
the ith column of Z. Note that if, for some f � Fk, the vectors zi,
i � f , are orthogonal, then for that f it would be fine for τk to be
0. But we cannot have orthogonality for all f � Fk, so that τk in
(6) will have to be positive. With a smaller value of τk so that (6)
holds for all f � Fk and all (ai), i � f , the columns of Z
can be considered being “closer” to orthogonality. Design choice
matters to make this happen. Moreover, it assures, through the
RIP results, that the Dantzig Selector can, with high probability,
correctly recover active effects under sparsity. For example, with
τk + τ2k  + τ3k  < 1, the Dantzig Selector is very accurate if there
are no more than k active effects (Candès and Tao 2007). While
this condition can be satisfied for larger n and m (e.g., for n =
1000 and m =  5000, even for random designs it is often satisfied
for k up to 30), it fails to hold for typical sizes of n and m in
screening experiments. Nonetheless, as we will see, it pays to aim
for designs with relatively small isometry constants τk for a range
of values for k.

3.2.1. The Estimation Consistency-based Criterion
Let Zf be the n×k matrix obtained by only keeping the columns
of Z corresponding to the indices in f . The term || i�f aizi||
in (6) is equal to aTZf Zf a, where a is a k ×  1 vector of the
constants (ai), i � f . With λf 1 ≤  λf 2 ≤  · · · ≤  λ fk  as the k
ordered eigenvalues of ZTZf , we know that,

λf 1aTa ≤  aTZTZf a ≤  λfkaTa, (7)
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for any a and f � Fk. Also, for any f , λf 1 ≤  1, λfk ≥  1, and λf 1

=  λfk  =  1 implies pairwise orthogonality of the columns in Zf

. Def ineτ f =  max(1− λf 1 , λfk − 1) for each f � Fk. From (7), we

see that (6) holds for τk =  maxf τ
f . With the GDS analysis in

mind, if we expect k active effects, we should aim for designs
with relatively small values of τk , τ2k and τ3k . In other words,
we should consider a range of values for k. In addition, rather

than just focusing on maxf τ
f , it is beneficial to look at the tail of

the distribution of τ f over f . For a given k, the distribution of

the τ f ’s over f can vary considerably for two designs. Comparing

these designs just based on maxf τ
f is not a very robust measure.

A design with relatively few τ f ’s near its maximum, would
allow a smaller value for the isometry constant except for a few
choices of f � Fk. After considering different options through
simulations, we found that the 95th percentile of the distribution

of the τ f ’s offered a more meaningful comparison of designs in
terms of screening performance than the maximum. With ζk as

the 95th percentile of the τ f ’s for a given design, we propose to
use the following estimation consistency-based criterion.

EC-optimality: For fixed n and m, a design is EC-optimal if it
minimizes

EC =  mean(ζ2, . . . , ζdn/2e). (8)

A larger range than 2, . . . dn/2e could have been considered,
but the required increase in computational expense offered little
in return. One could also consider other functions than the
mean of the ζk’s, but there was no compelling reason to make a
different choice. Finally, computing ζk exactly for a given design

requires the computation of m values for τ f . We return to this
in Section 3.4.

3.3. Weak Sign Consistency

For an integer k, 1 ≤  k ≤  m, let f � Fk and Zf be defined as
in Section 3.2. We write f for the complement of f in {1, . . . , m},
and use Cf1,f2 to denote the matrix Zf Zf2 for f1, f2 � {1, . . . , m},

where the two subsets can be of different sizes. Finally, we use f �

� F to denote the (unknown) subset corresponding to k
active effects. For f �, the Weak Irrepresentable Conditions
(WICs) for Dantzig Selector (Gai, Zhu, and Lin 2013) require
that there exists a set f � Fk so that Cf �,f is invertible and

|C¯�,f C
−

,f sign(βf�)| < 1m−k

|Cf ,f �C−1 sign(C−1 sign(βf�))| < 1m−k (9)

hold element-wise in absolute value. The WICs are necessary for
weak sign consistency of the Dantzig Selector (Gai, Zhu, and Lin
2013).

Since, typically, we know neither the value of k nor the active
ef fects nor the signs of the active ef fects nor the seft , if any,
for which the WICs are satisfied, these inequalities are virtually
impossible to check. Even if one is willing to specify a value for k,
for each of the m choices for f � � Fk and each of the 2k choices
for sign(β f �) we would have to find an f � Fk so that the WICs
are satisfied. For larger m, this is computationally infeasible for
even modest values of k. Therefore, we now devise a criterion
based on simplified WICs to distinguish between designs.

3.3.1. The Weak Sign Consistency-based Criterion
We simplify the WICs by assuming that: (a) the true signs of
active effects are known, and (b) the set f is the same as f �.
Based on our simulations, the assumption in (b) is not all that
restrictive. In fact, the WICs for LASSO use f =  f �, so, our
designs would also work well if LASSO was instead used as
analysis tool. Note that if (a) holds and it is known that an
active effect has a negative sign, then we can simply multiply the
corresponding column in Z by −1 to make the sign of that ef fect
positive. So, without loss of generality, when (a) holds we can
take the signs for all active effects to be positive. The assumption
in (a) is slightly more restrictive but it is not without precedence
(Weese et al. 2021). As we will see in Section 4, the designs that
we identify with these simplifications also perform well when
the signs are unknown. For the set of true active effects f � of
size k, the simplified WICs require that Cf �,f� is invertible and

|C¯�,f �C−1 
�1k| < 1m−k

|Cf�,f�Cf�,f�sign(Cf�,f�1k)| < 1m−k (10)

hold element-wise in absolute value. For a given design, let γ
denote the proportion of sets f � of size k for which the simplified
WICs are satisfied. Then, using the same range of k as for EC-
optimality, we define the following weak sign consistency-based
criterion:

For f �, the Weak Irrepresentable Conditions (WICs) for
Dantzig Selector (Gai, Zhu, and Lin 2013) require that there
exists a set f � Fk so that Cf �,f is invertible and

WSC-optimality: For fixed n and m, a design is WSC-optimal if
it maximizes

WSC =  mean(γ2, . . . , γdn/2e). (11)

Ideally for any given design and value of k, we would like to
evaluate ζk in (8) and γk in (11). But that is impossible given the
rapid growth of k , especially when searching for good designs.
Instead, for a given m and k, we will use min(s, ) subsets of
size k. If s ≥      m , we use all subsets of size k and otherwise
randomly select s subsets. Writing Ss =  (S2, . . . , Sdn/2e) for
the collection of sets used, we approximate EC and WSC based
on Ss.

3.4. Pareto Optimalty

While EC-optimal designs and WSC-optimal designs often
appear to perform well as screening designs, based on empirical
evidence we recommend using both criteria for finding good
screening designs. One approach is to optimize a weighted
linear combination of the two criteria. But optimal designs
would depend heavily on the non-interpretable weights (Lu,
Anderson-Cook, and Robinson 2011). Another approach is to
find designs that optimize one criterion meeting a threshold for
the other criterion, as was done with var(s+)-optimality. But
there is neither a natural threshold nor a natural choice for the
roles of the two criteria in our case. Instead, we will search for
Pareto optimal designs using both criteria (see, Lu, Anderson-
Cook, and Robinson 2011; Cao, Smucker, and Robinson 2017).
This searches for designs that are not dominated by other
designs. Design d1 dominates design d2 if d1 is at least as good as
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d2 on both criteria and is strictly better on at least one of them.
The collection of all such designs form the Pareto front. A recent
computationally eficient state-of-the-art algorithm for finding
designs on the Pareto front is the hybrid elitist Pareto optimality-
based coordinate exchange algorithm (called EPCEA) of Cao,
Smucker, and Robinson (2017).

The hybrid EPCEA algorithm uses three operators: the coor-
dinate exchange operator, the enhanced elitism operator, and the
multi-start operator. The coordinate exchange operator takes
design d and the number of maximum coordinate exchanges
niter as inputs and outputs a set of nondominated designs at the
Pareto front. It sequentially exchanges each element of d with
another in the set {−1, 1} either until a set of non-dominated
designs can no longer be improved by coordinate exchanges
or the niter number of possible exchanges are considered. The
details of this operator remain the same as in Cao, Smucker,
and Robinson (2017) and are provided in the supplementary
materials. Before discussing our modifications, we first present
the EPCEA algorithm of (Cao, Smucker, and Robinson 2017):

(1) Set i =  1.
(2) Start with an initial design di.
(3) Find the set of designs at the Pareto front (say, P0 ) using the

coordinate exchange operator with inputs di and niter.
(4) Enhanced elitism operator:

(4.1) Perform the coordinate exchange operator on each

design that belongs to P g
i  

but not in P g −1  for g =
0, 1, 2, . . . with P being the empty set. Find all non-
dominated designs among the resultant designs and

the designs in P g  and call the new set P g +1 .

(4.2) Stop when P g
i  

=  P g −1  (Condition A) is met.

(5) Multi-start operator: Set i =  i + 1. Repeat steps (2)–(4) for
a different initial design di as long as i ≤  ndes.

(6) Find all non-dominated designs among all the resultant
designs obtained in step (5) for i =  1, . . . , ndes and produce
a final set of non-dominated designs at the Pareto front.

Notice that the designs obtained in step (6) of the EPCEA are
only Pareto eficient since the true Pareto front is not known.
Finding global Pareto optimal designs is nearly impossible
except perhaps for small values of n and m. Also, since n ≤  m,
correlations between factors cannot be completely avoided. But,
typically, SSDs with two columns having a perfect correlation
of ± 1  are avoided as are the columns with all 1s or all −1s. In
the same spirit, we ignore potential exchanges in the coordinate
exchange operator that would result in a perfect correlation.
Additionally, in Algorithm 1, we adapt the EPCEA algorithm
for SSDs by making the following three changes:

(i) Two further conditions are added to step (4.2) in the
EPCEA. Condition B requires step (4.1) to stop if g ≤  100,
that is, the enhanced elitism operator is used at most
g =  100 times. Condition C requires that step (4.1) be
stopped if the cardinality of the set P  reaches 100, that is,
we allow a maximum number of 100 designs at the Pareto
front at each iteration. These additions are added purely
due to computational considerations. The new step (4.2)
becomes “stop when any of Conditions A, B, or C is met.”

Algorithm 1: Modified EPCEA for SSDs

inputs : the number of sets s, the maximum number of
coordinate exchanges niter, the number of choices
for Ss ntry, the number of initial designs ndes and
designs d1, . . . , dndes.

1 for i =  1 →  ndes do
2 for j =  1 →  ntry do
3 For the jth choice of the collection Ss, say Ss, design

di, and niter exchanges, run steps (2)-(4) of the
EPCEA to obtain non-dominated designs at the
Pareto front, say Pj ;

4 end

5 For the collection Sntry×s (= �ntrySj ) of size (ntry ×  s),

retain the non-dominated designs from �ntryPj to

produce a set P i ;
6 end
7 For a different collection S5s of size 5s, combine all

resultant designs from P 1,…, P ndes to produce a final set
of Pareto eficient designs PF ;
output: output designs in PF

(ii) Steps (2)–(4) of the EPCEA produce a set of non-
dominated designs at the Pareto front when starting from
design di. While different designs with the same criteria
values may result in different screening performance,
using all of them further in EPCEA results in a large
computational cost. For each starting design, we retain
one arbitrary design among all designs obtained in steps
(2)–(4) with the same values of the two criteria. Similarly,
we retain designs with the unique values of both criteria in
step (6).

(iii) Recall, from the discussion at the end of Section 3.3.1,
that the values of our criteria are dependent on Ss. For a
given design di and a choice of s, we repeat steps (2)–(4)
of the EPCEA for ntry different choices of the collection
Ss. Similar to (ii), we also retain unique designs for each
collection. This step assesses the sensitivity of the EPCEA
to the choice of Ss. In the next section, we demonstrate that
the Pareto fronts are not very sensitive to the choice of Ss.
Therefore, we could use a small value of ntry to keep the
computation time manageable.

Algorithm 1 presents the EPCEA with these three modifi-
cations. Despite massive simplifications, Algorithm 1 remains
computationally expensive. For example, starting with ndes =  1
and ntry =  2 for n =  16, m =  31, Algorithm 1) termi-
nated in about 26 hr on a Desktop with an Intel Xeon CPU @
3.70GHz processor with 32GB RAM. Nevertheless, finding
simplified Pareto eficient designs is a worthwhile exercise since,
as demonstrated in the next section, they perform better than
the state-of-the-art designs in about 85% of the considered cases,
and equivalent in the remaining 15% cases, when the effect signs
are known.

The final choices for the inputs in Algorithm 1 are all moti-
vated by computational costs. Algorithm 1 could converge in
less than niter coordinate exchanges, but if it does not, setting



¡m
5

¢
¡

k

¢

designs.

TECHNOMETRICS 101

Figure 1. Pareto fronts starting from two different designs for n =  9 and m =  10. Each point corresponds to a different design, while different symbols indicate the stage
at which the design was found.

a higher value of niter increases computational costs. Recall that
for every coordinate exchange, EC and WSC are both calculated
over s(dn/2e −  1) sets. Therefore, the higher the value of s,
the larger the computational cost. Line 7 of Algorithm 1 uses a
collection of size 5s. Though the choice is somewhat arbitrary, it
is used to achieve more stable criteria values for producing a
final set of non-dominated designs. Next, a large value of ntry
does not necessarily result in better values of EC and WSC.
However, using ntry =  1 could lead to poor results with a bad
choice of Ss. We suggest using a few different values of ntry to get
stable results. Finally, starting from a good design often leads to
faster and better solutions. As a result, we deploy var(s+)-
optimal designs as one of the initial designs.

4. Pareto Eficient Designs
Figure 2. Final designs at the Pareto Front for n =  9 and m =  10. Each

We first illustrate Algorithm 1 by means of two examples: (a) point corresponds to a different design. The designs labeled 1 through 4 are the n
=  9, m =  10, and (b) n =  14, m =  24. We use the Pareto eficient designs found when using a var(s+) and random design as starting

same 12 simulation scenarios as in Weese et al. (2021), the
details of which are now provided for the sake of completeness.
The number of active ef fects are taken to bed0.25ne, d0.50ne,
or d0.75ne, with magnitude generated as Exp(1) + SN, where      respectively, in step (4) of the EPCEA. The four hexagons in
SN = 1 or 3. Ef fect signs are assumed to be known (all ef fect panel (a) and three hexagons in panel (b) represent the Pareto
signs positive) or unknown (effect signs randomly selected from      eficient designs obtained from the initial designs d1 and d2,
± 1  with probability 0.5), denoted by K and U, respectively.      respectively. Changes in criteria values are much higher for d2
The magnitudes of inactive effects are generated by taking the      than for d1 indicating that d2 had a lot of room for improve-
absolute value of N(0, 6−2) and errors are independent N(0,1).      ment. For this example, Algorithm 1 converges in 4 steps for
The responses are then generated using model (1). We denote      both starting designs. Step 7 of Algorithm 1 results in four
the simulation scenarios with a triplet: (SN, Sparsity, Direction).      Pareto eficient designs in PF  displayed as blue dots in Figure 2.
For example, the triplet (1, 0.25n, K) implies that the true model      Designs 2, 3, and 4 were generated by d1, while design 1 was
has d0.25ne active effects with SN=1, and signs of effects are      generated by d2. In Figure 3, we show the performance of the
assumed to be known.                                                                      leftmost and rightmost designs on the Pareto Front, labeled,

respectively, as 1 and 4 in Figure 2. Power and error for the other
Example 4.1. Let n =  9 and m =  10. For k =  2 to k =  dn/2e = two designs, labeled as 2 and 3 in Figure 2, falls between power
5, since =  252 is small, we run Algorithm 1 with ntry =  1 and error for designs 1 and 4. As shown in Figure 3, the Pareto
and sk =      m . The value of niter is set to 5000. Additionally, eficient designs have a better screening performance than d1
set ndes =  2, and use a var(s+)-optimal design (d1) and a and d2 when effects signs are known (panel (a)) and perform
randomly created design (d2) as initial designs. In Figure 1, dots equivalently to the var(s+)-optimal design when effect signs
labeled “Start design” (light and dark pink in panels (a) and (b), are unknown (panel (b)). The standard deviations of power
respectively) correspond to the two initial designs. Triangles, and error for each design-scenario combination in Figure 3 are
squares, diamonds, and hexagons correspond to g =  1, 2, 3, 4, provided in the supplementary materials.
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Figure 3. Average screening performance (power (solid lines) and error (broken lines)) of the four selected designs from Figure 2 over 10,000 iterations for n =  9 and
m =  10.

Figure 4. Pareto Fronts for 10 different starting sets for n =  14 and m =  24, five for d1 and another five for d2. The hollow symbols correspond to the values of the starting
design on the five different sets, and the filled symbols correspond to Pareto eficient designs for these different sets.

Example 4.2. Let n =  14 and m =  24. We set niter =  5000,
and ndes =  2, once starting with an E(s2)-optimal design (d1)
and once with a var(s+)-optimal design (d2). Since dn/2e     is

huge, we use s =  1000. Recall that s =  s if s < , and ,
otherwise. Therefore, for Ss =  S1000 =  (S2, S3, S4, S5, S6, S7),
components S2 and S3 use all sets whereas S4 to S7 use 1000
randomly selected sets. We use five different choices of S1000

setting ntry =  5. In panel (a) of Figure 4, starting from d1,
five different colors represent Pareto eficient designs for five
different choices of Ss. Panel (b) shows the same development
when starting from a var(s+)-optimal design. The final values
of g are (13, 9, 14, 16, 9) for the five different choices in panel (a)
versus (10, 10, 12, 13, 10) for panel (b). Thus, for some collection
Ss, the Pareto front PF is reached faster than for others. However,
Figures 4–6 give some assurance that the choice of collection
and starting design lead to only minor differences in the criteria
values for the designs and, more importantly, the screening
performance of the designs.

Figure 5, similar to Figure 2, shows the f inal 10 Pareto ef i-
cient designs (in blue) that constitute the PF as well as two initial
starting designs (in dark and light pink). Designs numbered 1–
7 are the ones obtained from d1, whereas designs marked 8–10

1 2 
345 6 7                           

0.66

9 10 0.68

d1-Es2
0.7

0.72

0.74

0.76

0.78

0.8

0.82
d2-Var(s+)

0.84

0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

WSC - Maximize

Figure 5. Final designs at the Pareto Front for n =  14 and m =  24.

are obtained from d2. This clear divide based on the choice of
the initial design is uncommon (see the Supplementary Material
for other examples). Similar to Example 4.1, in Figure 6, we
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Figure 6. Average screening performance (power (solid lines) and error (broken lines)) of the four selected designs from Figure 5 over 10,000 iterations for n =  14 and
m =  24.

show the performance of the leftmost and rightmost designs on
the Pareto Front, labeled as 1 and 10 in Figure 5. The power
and error of the designs labeled 8 and 9 were similar to those of
design 10, whereas the performances of designs labeled 2 to 7
were similar to that of design 1. Similar to Example 4.1, panel
(a) of Figure 6 shows that for known effect signs, Pareto eficient
designs perform better than both the E(s2)-optimal design as
well as the var(s+)-design. In panel (b) of Figure 6,
all designs have equivalent screening performance for unknown
effect signs. The standard deviations of power and error iter-
ations for each design-scenario combination in Figure 6 are
provided in the supplementary materials.

Panel (a) in Figure 6 shows that design 10 performs slightly
better than design 1. Design 10 is at the right end of the Pareto
front in Figure 5. The behavior that designs toward the right
end of Pareto Front perform better is also reflected in Figure 3,
design 1 performs worse than design 4, though the differences
are small. We evaluate this further in the next example.

Example 4.3. Let n =  16 and m =  28. We use niter =  5000,
ntry =  5, s =  1000, and ndes =  2 with a UE(s2)-optimal and
a var(s+)-optimal design. Algorithm 1 provides twelve Pareto
eficient designs (numbered 1 to 12 from left to right on the
Pareto front). We observe that, for known effect signs, with small
increases in the error for all eight designs, the power increases as
we move from left to right on the Pareto front, except for the first
two scenarios where the power seems constant across different
designs. The figures that illustrate this as well as the figure that
compares Pareto eficient designs with the starting designs are
provided in the supplementary materials. Based on these three
examples as well as several others shown in the supplementary
materials, designs at the right end of the Pareto front empirically
seem to have a better screening performance.

In addition to the examples discussed here, the screening
performance of Pareto eficient designs obtained using ntry =  2
and var(s+) design as the initial design, for 5 ≤  n ≤  25
and n +  1 ≤  m ≤  2n are provided in the supplementary
materials. For each n and m, at most two Pareto eficient designs

on the right end of the Pareto front are also provided. The
screening performance and designs corresponding to the exam-
ples from Weese et al. (2021) are also separately provided in
the Supplementary Material. As a summary, when the effect
signs are known, Pareto eficient designs perform better than
the var(s+)-optimal designs in about 85% of the considered
cases and perform equivalently in all other cases except for one.
When the effect signs are unknown, Pareto eficient designs
perform at par with the var(s+)-optimal designs in all cases. It
is also worth noting that our criterion is not a surrogate for the
var(s+) criterion. Of the 315 Pareto eficient designs, only 2 have
a smaller var(s) value than the corresponding var(s+)-optimal
design.

5. Conclusions

Supersaturated designs for main effects models have been exten-
sively studied. Several optimality criteria and several analysis
methods have been studied in the supersaturated design litera-
ture. While GDS is often the preferred method of analysis, until
recently, it has been observed that no available design criterion is
able to discriminate between good and bad designs from a
screening perspective. Recently, the var(s+)-optimal designs
are empirically shown to have a better performance than other
designs, especially when effect signs are known. However, none
of these criteria are directly connected to GDS.

With the aim of finding a connection between design selec-
tion and GDS, we propose two new criteria inspired by the
large sample properties of GDS. For GDS to perform well, small
values of k-restricted isometry constants and a large propor-
tion of sets satisfying the weak irrepresentable conditions are
desirable. A design that performs poorly for one or a small
number of models with k active effects may not be a bad design
if it performs relatively well for most other models. Therefore,
we consider the upper tail behavior of the isometry constants
through the EC-optimality. In addition, since evaluating WICs
is computationally expensive, we evaluate the proportion of sets
satisfying the simplified WICs through the WSC-optimality.
We then find Pareto eficient designs using an advanced multi-
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objective coordinate exchange algorithm. For known signs, we
see that the Pareto eficient designs have better screening per-
formance than var(s+)-optimal designs for about 85% of the
considered cases. For the remaining 15% cases as well as for the
unknown effect signs, the Pareto eficient designs perform at par
with the var(s+)-optimal designs.

Despite simplifications, the two criteria remain computation-
ally expensive. Given that Pareto eficient designs are directly
connected to GDS and have a superior screening performance,
an eficient algorithm could be a useful contribution to the SSD
literature.

Supplementary Materials

All designs used here are provided in the supplementary materials along
with (a) the performance of additional examples, (b) Pareto eficient designs
and their screening performance for 5 ≤  n ≤  25 and n + 1 ≤  m ≤  2n, and
(c) MATLAB code implementation of Algorithm 1.
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