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Abstract

Directed Evolution (DE), a landmark wet-lab method originated in 1960s, enables
discovery of novel protein designs via evolving a population of candidate sequences.
Recent advances in biotechnology has made it possible to collect high-throughput
data, allowing the use of machine learning to map out a protein’s sequence-to-
function relation. There is a growing interest in machine learning-assisted DE
for accelerating protein optimization. Yet the theoretical understanding of DE,
as well as the use of machine learning in DE, remains limited. In this paper, we
connect DE with the bandit learning theory and make a first attempt to study regret
minimization in DE. We propose a Thompson Sampling-guided Directed Evolution
(TS-DE) framework for sequence optimization, where the sequence-to-function
mapping is unknown and querying a single value is subject to costly and noisy
measurements. TS-DE updates a posterior of the function based on collected
measurements. It uses a posterior-sampled function estimate to guide the crossover
recombination and mutation steps in DE. In the case of a linear model, we show

that TS-DE enjoys a Bayesian regret of order Õ(d2
√
MT )2, where d is feature

dimension, M is population size and T is number of rounds. This regret bound
is nearly optimal, confirming that bandit learning can provably accelerate DE. It
may have implications for more general sequence optimization and evolutionary
algorithms.

1 Introduction

Protein engineering means to design a nucleic acids sequence for maximizing a utility function
that measures certain fitness or biochemical/enzymatic properties, i.e., stability, binding affinity,
or catalytic activity. Due to the combinatorial sequence space and lack of knowledge about the
sequence-to-function map, engineering and identifying optimal protein designs were a quite daunting
task. It is only until recently that synthesis of nucleic acid sequences and measurement of protein
function became reasonably scalable [37, 50], allowing rational optimization or directed evolution
of protein designs. Nonetheless, because of the complex landscape of protein functions and the
bottleneck of wet-lab experimentation, this remains a very difficult problem.

Directed evolution (DE), one of the top molecular technology breakthrough in the past century,
demonstrate human’s ability to engineer proteins at will. DE is a method for exploring new protein
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2Õ(·) ignores the logarithmic terms.
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designs with properties of interest and maximal utility, by mimicking the natural evolution. It works
by artificially evolving a population of variants, via mutation and recombination, while constantly
selecting high-potential variants [7, 8, 29, 22, 43, 37]. The development of directed evolution
methods was honored in 2018 with the awarding of the Nobel Prize in Chemistry to Frances Arnold
for evolution of enzymes, and George Smith and Gregory Winter for phage display [4, 41, 46]. See
Figure 1.1 for illustrations of mutation and crossover recombination.

Figure 1.1: Illustration of mutation and crossover
recombination. Mutating a sequence means to re-
place a targeted or random entry (site) by a ran-
dom or designated value. Recombination involves
two or multiple sequences. For example, parent
sequences can crossover, exchange subsequences
and generate children.

However, DE often remains expensive and time-
consuming. The major considerations center on
cost and data quality. First, the ability to synthe-
size and mutate new biological sequences have
been exponentially improved thanks to synthetic
chemistry advances. Second, given a popula-
tion of sequences S, selecting and identifying
the set of optimal sequences is straightforward,
using low-cost parallel sequencing which works
well with pooled selection assays. Third, us-
ing pooled measurement to evaluate the average
value of protein function (mean fitness) over a
population S is generally easy, as such bulk mea-
surements is low-cost and high-quality. Finally,
querying f(x) for a given x is often expensive,
and the cost adds up quickly if many queries are
needed. It can be desirable to perform this pro-
cedure in small-scale batches to optimize time
and resource consumption.

Such difficulties have motivated scientists to ap-
ply machine learning approaches to accelerate
DE, beginning with Fox et al. [15] and followed by many. Recent development of directed evolution
have increasingly utilized in silico exploration and machine learning beyond experimental approaches
[50, 14, 11, 40, 16]. While these attempts have proved to be successful in simulation and sometimes
in real experiments, little is known about the statistical theory of DE.

In this paper, a primary objective is to bridge the directed evolution process with bandit learning
theory. In particular, we want to express machine learning-assisted DE as a bandit optimization
process, with a theoretical justification. Further, we aim to understand how a machine learning model,
as simple as linear, can accelerate DE and reduce the overall cost of evaluation. Specifically, we
propose a Bayesian bandit model for DE, namely the Thompson Sampling-guided Directed Evolution
framework, which combines posterior model sampling with directed mutation and recombination.
The theoretical analysis shows that the crossover selection mimics an optimization iteration, and the
optimization progress is proportional to a level of population diversity. In the case of the linear model,

we establish a Bayesian regret bound Õ(d2
√
MT ) that depends polynomially on feature dimension

d and optimally in batch size M and time steps T . We finally harmonize our theoretical analysis with
a set of simulation and real-world experimental data.

2 Related work

Our analysis is related to the theoretical literature on evolutionary algorithms and linear bandits.

Evolutionary algorithm. The success of DE motivated a large body of works on evolutionary algo-
rithms for optimization. Evolutionary algorithm (EA) [6] is a large class of randomized optimization
algorithms, based on the heuristic of mimicking natural evolution. Despite many variants, a typical
EA usually maintains a population of solutions and improves the solutions by alternating between
reproduction step which produces new offspring solutions, and selection step where solutions are
evaluated by the objective function and only the good ones are saved to the next round. Theoretical
understandings of EA are focusing on specific EAs, among which the most well-studied setting is
(1 + 1)-EA, with parent population size and offspring population size are both 1 to optimize linear

objective function on the Boolean space {0, 1}d, see [13, 21, 23, 24, 31, 48]. EA analysis focuses
on optimization and reducing the running time instead of minimizing total regret as in bandit theory.
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There are other results on population based EAs, such as (1 + λ)-EA [10, 17], (µ+ 1)-EA [47] and
the most general (µ+ λ)-EA, where µ and λ represent the parent population size and the offspring
population size respectively. However, this group of works only adopted mutation. The understanding
of the role played by recombination in evolutionary algorithms was left as blank in the (µ+ λ)-EA
framework, while our paper provides a population-based regret minimization analysis with both
mutation and recombination.

There are a few works [26, 25, 44, 28] studying EAs with recombination (which are also called
genetic algorithms (GAs)). However, their algorithms and analysis are tailored to artificial test
objectives and the results are not able to generalize even to linear objectives. Recently, the running
time analysis of some natural EAs with recombination has been conducted [35, 36], but still their
results are constrained under specific objectives such as ONEMAX and JUMP. We refer readers to
the book by [52] for a more comprehensive review of EA.

Linear bandits. Bandit is a powerful framework formulating the sequential decision making
process under uncertainties. Under this framework, linear bandits is a central and fruitful branch
where in each round a learner makes her decision and receives a noisy reward with its mean value
modelled by a linear function of the decision, aiming to maximize her total reward (or minimize
total regret equivalently) over multiple rounds [5, 32, 1]. In the same spirit, the process evolving a
population of genetic sequences to maximize a linear utility over the evolution trajectory, while getting
access to noisy utility values through evaluating sequences along the way, can be mathematically
formulated from the perspective of linear bandits. One of the main solution in linear bandits is the
upper confidence bound-based (UCB) strategy represented by LinUCB [32], where the learner makes
decision according to upper confidence bounds of the estimated reward and the accumulated regret is

proven to be Õ
(
d
√
T
)

. A similar strategy is optimism in the face of uncertainty (OFU) principle

in Abbasi-Yadkori et al. [1]. The other approach is the Thompson Sampling (TS) strategy, which
randomizes actions on the basis of their probabilities to be optimal. Russo and Van Roy [38] proved

the Bayesian regret of TS algorithm is also of order Õ
(
d
√
T
)

. And there are more results on the

regret of TS(-like) algorithms solving linear bandits in the frequentist view [3, 2, 19]. TS is also
powerful beyond the scope of linear bandits, such as contextual bandits [3], reinforcement learning
[51]. We also refer readers to the book by [30] for a delicate review of bandit theory.

Remark. It is important to note that our problem is not a multi-armed bandit problem. In bandits,
one can choose actions freely from the full action set. However, in biological experiments, it
is expensive to synthesize a new protein design sequence out of thin air. Instead, mutation and
recombination are used to generate new designs easily at a low cost. Thus our algorithm can only
guide the selection step in the DE process. Its regret is not directly comparable with the regret of
multi-arm bandits. To the best of our knowledge, this is the first work that studies the bandit theory
and regret bound of mutation and recombination-enabled DE.

3 Bandit model for directed evolution

3.1 Process overview

We illustrate the Thompson Sampling-guided Directed Evolution (TS-DE) process in Figure 3.1.
A population St at time t consists of M candidate sequences. It evolves via mutation, crossover
recombination, selection, and function evaluation to the next generation St+1. The mutation and
crossover selection are guided using a learnt function fθ̃t , in order to filter out unwanted candidates

and keep only a small batch for costly evaluation. Collected data are fed into a Thompson Sampling
module for posterior update of fθ̃t . Full details of the mutation, crossover selection, and Thompson

Sampling modules will be given in Section 4.

3.2 Motif feature, utility model, recombination and mutation operators

A genetic sequence comprises of functional motifs, i.e., functional subsequences that may encode
particular features of protein, also known as protein motifs [33, 42, 9]. Such genetic motifs are known
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Figure 3.1: Thompson sampling-guided directed evolution

to be “evolutionarily conserved”, in the sense that they tend to evolve as units, under mutation and
recombination.

Suppose a genetic sequence seq is made up of d genetic motifs, given by seq =
(seq(1), seq(2), · · · , seq(d)). Machine learning models for protein utility prediction are often based
on motif features [49, 9, 34]. Let X be the space of genetic sequences of interest. We assume that a
binary motif feature map is given, defined as follows.

Definition 3.1 (Binary Motif Feature Embedding). Let φ be the genetic motif feature map given by:

φ : X → {0, 1}d, φ(seq) := (φ1(seq(1)), · · · , φd(seq(d))) (3.1)

such that at each dimension i, φi(x(i)) is a binary feature of motif x(i).

The binary motif feature provides a minimalist abstraction for evolutionary processes where 0, 1
correspond to favorable and nonfavorable directions, respectively, for each motif. Theoretical analysis
for evolutionary optimization algorithms made the same assumption and viewed binary sequence
optimization as a fundamental problem [13, 21, 23, 24, 31, 48].

Since a protein function is largely determined by its motif, it is common to model the protein utility
f : X → R as a function of motif features, i.e., f(seq) := fθ?(x), x = φ(seq), ∀seq ∈ X , under a
parameterization by θ? [15, 50, 40, 16].

In this work, we study the most elementary Bayesian linear model, where f is a linear model
parameterized by θ∗ with a Gaussian prior, given as follows.

Assumption 3.2. (Linear Bayesian Utility Model) Assume the utility fθ? is a linear function param-
eterized by θ? ∈ R

d, which is sampled from a Gaussian prior, i.e.

fθ?(x) = 〈θ?, x〉, θ? ∼ N (0, λ−1
I), λ > 0. (3.2)

Since motifs tend to mutate and recombine with one another in units, it is often sufficient to focus on
recombination and mutation on the motif level, rather than on the entry level. Further, recombination
that breaks a motif often result in insignificant low-fitness descendants. Therefore, it suffices to focus
on motif-level directed evolution for simplicity of presentation and theory. For theoretical simplicity,
we define recombination and mutation operators on the motif level:

Definition 3.3 (Directed Mutation Operator). Let x be the motif feature sequence, I ⊂ [d] be a
collection of targeted sites and µ ∈ (0, 1) be a mutation rate. The mutation operator Mut(x, I, µ)
generates a sequence x′ such that while for ∀j 6∈ I, x′

j = xj , for ∀i ∈ I, x′
i is independently induced

to be {
x′
i ∼ unif({0, 1}), w.p. µ,

x′
i = xi, otherwise.

(3.3)
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Definition 3.4 (Recombination Operator). Let x, y be the motif features associated with two parental
genetic sequences. The recombination operator Rcb(x, y) generates a child sequence z such that zi’s
are independent and

zi =

{
xi w.p. 1

2
yi w.p. 1

2

, ∀i ∈ [d]. (3.4)

We remark that Definitions 3.3, 3.4 are mathematical simplifications of their real-world counterparts.
In real world, mutation and recombination can take various forms depending on the context. In our
analysis, we define them in a minimalist-style to keep theory generalizable and interpretable.

3.3 Regret minimization problem formulation

Evaluating the protein function for a design sequence x is a most costly and time-consuming step in
protein engineering. In the DE process, we consider that regret is incurred only when sequences are
evaluated. We also assume that each evaluation is subject to a Gaussian noise with known variance.

Assumption 3.5. (Noisy Feedback) Upon querying the utility of x, we get an independent noisy
evaluation given by

u(x) ∼ N (fθ?(x), σ2). (3.5)

Our goal is to maximize the Bayesian regret, i.e., the cumulative sum of optimality gaps between
evaluated sequences and the optimal.

Definition 3.6 (Bayesian Regret). Denote by fθ?(x?) the optimal utility value over X , {xt,i}Mi=1 are
the evaluated individuals in each iteration. Throughout T iteration, the accumulated regret is defined
as

BayesRGT(T,M) = E

[
T∑

t=1

M∑

i=1

(fθ?(x?)− fθ?(xt,i))

]
,

where M is number of sequences selected for evaluation per timestep, and E is taken over the prior
of θ? and all randomness in the DE process.

4 Thompson Sampling-guided directed evolution (TS-DE)

We restate our goal as to direct a population of genetic sequence to evolve towards higher utility
value, until its population-average converges to the optimum fθ?(x?). Our knowledge of f is to be
learned from noisy evaluations of selected sequences along the way. In this section, by integrating the
biological technique - directed evolution - with Thompson Sampling, a Bayesian bandit method, we
propose the Thompson Sampling-guided Directed Evolution algorithm (TS-DE) as shown in Alg.1,
where in each round Thompson sampling gives an estimate of θ?, based on which key operators of
DE: mutation, recombination and selection are implemented.

4.1 Crossover-then-selection and directed mutation

Pairwise crossover is a most common type of recombination in natural evolution. Let x, y be a
random pair of parents, and let z = Rcb(x, y) be a child. If given a utility function f , we select z
only if the child performs better than the parents’ average. Module 1 formulates this procedure.

Module 1 Crossover Selection(f, S)

1: Inputs: utility function f(x) = 〈θ, x〉, a population of sequences S
2: Initialization: S′ ← ∅
3: while |S′| < |S| do
4: Sample x and y from S uniformly with replacement.
5: Recombination: z ← Rcb(x, y) (Definition 3.4).

6: Selection: S′ ← S′ ∪ {x′} if f(z) ≥ f(x)+f(y)
2 .

7: end while
8: Output: S′

5



Next we turn to designing the strategy for adding directed mutation under a given f as guidance
and propose Module 2. An ideal mutation will diversify the population while preserving its fitness
level as much as possible. So we add directed mutation to sites where the single site fitness over the
population is less than of a uniformly distributed sequence. Formally, we only add mutation to site i
if 1

M

∑
x∈S θi · xi ≤ θi · x̄i, where x̄i is the mean of uniformly random xi.

Module 2 Directed Mutation(f, S, µ)

1: Inputs: utility function f(x) = 〈θ, x〉, a population of sequences S, mutation rate µ
2: Initialization: I ← ∅,S ′ ← ∅
3: for i ∈ [d] do
4: if 1

M

∑
x∈S θi · xi ≤ θi · x̄i then

5: I ← I ∪ {i}.
6: end if
7: end for
8: Directed Mutation: x′ = Mut(x, I, µ) (Definition 3.3) and S′ ← S′ ∪ {x′} for all x ∈ S.
9: Output: S′

4.2 Full algorithm

Finally, we are ready to combine all modules and state the full algorithm in Algorithm 1. At each
time step t, a posterior distribution is first computed using the data collected in history. Then we

sample a θ̃t from the posterior and do the corresponding directed mutation and crossover selection
using this sampled weight, and augment the dataset for the next iteration with the measurements of
resulting new population. The procedure is repeated until the time limit T is reached.

Algorithm 1 Thompson Sampling-Guided Directed Evolution (TS-DE)

1: Inputs: number of rounds T , initial population S0 = {x0,i}Mi=1 of size M , mutation rate µ, σ
2: Initialization: dataset D0 ← ∅, Φt−1 = 0, U0 = 0
3: for t = 1 to T do
4: Posterior update

Vt =
1

σ2
Φ>

t−1Φt−1 + λI, θ̂t =
1

σ2
V −1
t Φ>

t−1Ut−1. (4.1)

5: Thompson Sampling θ̃t ∼ N (θ̂t, V
−1
t ).

6: S′
t−1 = Directed Mutation(fθ̃t , St−1, µ) (Module 2).

7: St = Crossover Selection(fθ̃t , S
′
t−1) (Module 1).

8: Evaluation and data collection Evaluate the utilities of all individuals in St and
Dt ← Dt−1 ∪ {xt,i, u(xt,i)}Mi=1. Update Φ>

t ←
(
Φ>

t−1, xt,1, · · · , xt,M

)
, Ut ←(

U>
t−1, u(xt,1), · · · , u(xt,M )

)>
.

9: t← t+ 1.
10: end for

5 Main results

In this section, we analyze the performance of TS-DE (Algorithm 1). We will show that the crossover
selection module essentially mimics an optimization iteration that strictly improves the population’s
fitness along the designated direction. By using a Bayesian regret analysis, we show the DE modules,
when combined with posterior sampling, can effectively optimize towards the best protein design
while learning θ?.

5.1 Crossover selection as an optimization iteration

Let f by any utility function, and let F (S) := avgx∈S f(x) denote the population average utility.
Our first result states an ascent property showing that Crossover Selection strictly improves the
population average.
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Theorem 5.1 (Ascent Property of Recombination-then-Selection). Let f(x) = 〈θ, x〉 and let S be a
set of sequences. Let S′ = Crossover Selection(f, S), then it satisfies

E [F (S′)] ≥ F (S) +
Ex,y [‖θ · (x− y) ‖]

2
√
2

≥ F (S) +
1√
2d

∑

i

|θi|Vari(S), (5.1)

where Vari(S) denotes the variance of xi when x is uniformly sampled from S.

Figure 5.1: Ascent property of
crossover recombination

Proof sketch. See Figure 5.1 for illustration. Given x and y,

z = Rcb(x, y) can be represented by z = x+y
2 + x−y

2 · e,
where the · denotes the entrywise multiplication between
two vectors and e = (ei, · · · , ed) with ei’s being indepen-

dent Rademacher variables. Then f(z) equals
f(x)+f(y)

2 +
1
2

∑d
i=1 θi (xi − yi) ei. After the selection step, the expected

amount by which f(z) exceeds its parents’ average is at least
1
2E

[∣∣∣
∑d

i=1 θi (xi − yi) ei

∣∣∣
]
, which has a tight lower bound of

1
2
√
2
‖θ · (x− y) ‖ according to Haagerup [18]. The full proof

is given in Appendix C.1. �

Remark on diversity. Analysis above reveals an in-
triguing observation: the optimization progress of
Crossover Selection scales linearly with

∑
i θiVari(S),

i.e., sum of per-motif variances across population S. It measures a level of “diversity” of S with
respect to direction θ. More diverse population would enjoy larger progress from crossover selection.
This observation is consistent with the natural evolution theory that diversity is key to the adaptability
of a population to cope with evolving environment where fitness traits are essential [45].

5.2 Regret bound of TS-DE

Our main result is a Bayesian regret bound for TS-DE. Recall from Definition 3.6 that

BayesRGT(T,M) = E[
∑T

t=1

∑M
i=1(fθ?(x?)− fθ?(xt,i))].

Theorem 5.2. Under Assumption 3.2 and 3.5, when the population size is sufficient s.t. M =

Ω
(

log(dT )
µ2

)
, Alg.1 admits its Bayesian regret s.t.

BayesRGT(T,M) = Õ

(
d

µ
√
λ
· d
√
MT

)
. (5.2)

If we let λ = 1, µ = 1/2, σ2 = 1, the Bayesian regret simplifies to Õ(d2
√
MT ).

Remark on regret bound. Regret bound of Theorem 5.2 is optimal in M,T . For comparison, the

Bayesian regret of Gaussian linear model is Õ(d
√
T ) [27], also in contextual linear bandit with batch

update, the optimal regret is Õ(d
√
MT ) [20]. Our TS-DS regret has two extra factors of

√
d. One√

d is due to that the l2 norm of our feature vectors are
√
d, while linear bandit theory often assumes

feature to have norm 1. Another factor of
√
d is due to the evolutionary nature of DE, i.e., TS-DE is

not allowed to any possible action but have to select those from the evolving population.

5.3 Proof sketch

Denote by x? and x?
t the maximums of fθ? and fθ̃t . Denote by F ?

t := fθ̃t(x
?
t ) the maximum value

of fθ̃t and denote by Ft(S) the average value of fθ̃t over set S.

Step 1: Regret decomposition. With expectation taken over all stochasticity, posterior sampling

guarantees BayesRGT(T,M) =
∑T

t=1

∑M
i=1 E

[
fθ̃t(x

?
t )− fθ?(xt,i)

]
since conditioned on data

Dt−1, fθ?(x?) and fθ̃t(x
?
t ) are identically distributed. Then by breaking fθ̃t(x

?
t )− fθ?(xt,i) down
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to the sum of fθ̃t(x
?
t )− fθ̃t(xt,i) and fθ̃t(xt,i)− fθ?(xt,i), we decompose the total regret into

BayesRGT(T,M) = M · E
[

T∑

t=1

(F ?
t − Ft(St))

]

︸ ︷︷ ︸
H1

+E

[
T∑

t=1

M∑

i=1

〈θ̃t − θ?, xt,i〉
]

︸ ︷︷ ︸
H2

. (5.3)

Step 2: Bounding H1 using linear convergence. H1 is the accumulated optimization error under
a time-varying objective fθ̃t . After calling S′

t−1 = Directed Mutation(fθ̃t , St−1, µ) and St =

Crossover Selection(fθ̃t , S
′
t−1) at step t, the ascent property (5.1) together with property of

the mutation module yields a linear convergence towards F ?
t , i.e., E

[
F ?
t − Ft(St) | St−1, θ̃t

]
≤

γ(F ?
t − Ft(St−1)) with a modulus of contraction γ ∈ (0, 1) s.t. 1

1−γ = O
(√

d
µ

)
. It follows that

F ?
t+1 − Ft+1(St+1) ≤ γ [F ?

t − Ft(St)] + error terms + et+1,

where et+1 is a martigale difference. Applying the above recursively to H1, we get H1 ≤

1

1− γ
· E [F ?

1 − F1(S0)]

︸ ︷︷ ︸
O( 1

1−γ
)

+E

[
T∑

k=2

γT−k+1F ?
k − γT−1F ?

1

]

︸ ︷︷ ︸
O( 1

1−γ
)

+E

[
T∑

t=1

t−1∑

k=1

γt−k (Fk(Sk)− Fk+1(Sk))

]

︸ ︷︷ ︸
κ

,

which is dominated by term κ and M · κ ≤ 1
1−γ ·

∑T−1
t=1

∑M
i=1

∣∣∣〈θ̃t − θ̃t+1, xt,i〉
∣∣∣ = O

(
1

1−γH2

)
.

Step 3: Bounding H2. H2 is the accumulated prediction error of θ̃t, which is a classic term to bound

in bandit literature and is of Õ
(
d1.5
√
MT

)
by using a batched self-normalization bound. �

6 Experiments

6.1 Simulation

We test the TS-DE by simulating the evolution of a population of sequences in {0, 1}d. We set the
initial population to be all zeros, and set λ = 1, σ = 1.

Regret and convergence results. Figure 6.1 shows the regret curves and learning curves of TS-DE,
with comparison to basic DE. In the left panel of Figure 6.1, we plot the population-averaged Bayesian
regret of TS-DE with various values of M , where d = 10, T = 100 and µ = 0.8. These results
confirm our sublinear regret bounds. In the right panel of Figure 6.1, we tested TS-DE using various
mutation rates, and compared them with a basic DE approach 3. The comparison shows that TS-DE
converges significantly faster, while the convergence of DE is much slower and very sensitive to
mutation scheduling.

Visualizing the evolution of a population. We visualize the evolution trajectory of population St in
one run of TS-DE, with d = 40, M = 20 and µ = 0.1. In the left panel of Fig.6.2, we visualize the
evolving high-dimensional population St by mapping them to 2D (via PCA and KDE density contour
plot). In the right panel of Fig.6.2, we plot the fitness distribution of each St. These plots illustrate
how TS-DE balances the exploration-exploitation trade-off: It guides St to “diversify” initially and
then quickly approach and concentrate around a maximal solution.

6.2 Real-world experiment validation

Having demonstrated our approach with simulations, we use real-world experiments to showcase the
validity and generalizability of our method. The TS-DE method is adapted to work with real-world
motif features (continuous-valued instead of binary), linear model and multiple rounds of wet-lab

3The basic DE approach does not employ any function estimate. It does random mutation with a predefined
mutation rate and random crossover recombination. It evaluates every candidate sequence and uses the noisy
feedback in replace of f

θ̃
for selection.
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Figure 6.1: Regret and fitness curves of TS-DE during evolution. Left: Population-averaged
regret with varying population sizes M . Each curve is averaged over 100 trials. Right: Fitness curves
of TS-DE with varying values of µ, compared with basic DE with varying mutation rates. (The purple
curve plots basic DE without mutation, we modified the initial population to be uniformly distributed
in this case to make it non-trivial.)

Figure 6.2: Evolving population of TS-DE and fitness levels. Left panels: Visualization of popula-
tion evolution projected in 2D shown, taken at 6 snapshots. Right panel: The population’s fitness
distribution shifts towards optimal during evolution. ? denotes the optimal solution.

experiments for optimizing a CRISPR design sequence. Our approach together with high-throughput
experiment identified a high-performing sequence with 30+ fold improvement in efficiency. Notably,
the optimized CRISPR designs generated by our DE approach is part of another manuscript (in press
at a biological journal, Molecular Cell), demonstrating real-world utility of our method. We postpone
more details about this real-world validation to Appendix B.1 and Figure B.1.
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A Proof of Theorem 5.2

A.1 Notations

We address the following notations that frequently occur throughout the proof section. Denote by f
an arbitrary linear fitness function f(x) := 〈θ, x〉 parameterized by some θ ∈ R

d and denote by F ?

its maximum. Define F (S) := avgx∈S f(x), the average fitness under f of population S. While f

represents arbitrary fitness function, {fθ̃t(x) := 〈θ̃t, x〉}t∈[T ] are the linear function parameterized

by {θ̃t}t∈[T ] obtained by posterior sampling in each iteration of Alg.1. Corresponding to each fθ̃t ,

F ?
t := fθ̃t(x

?
t ) is its maximum value and x?

t is its one maximum point. Denote by Ft(S) the average

fθ̃t value over S. For a clear display, denote by L, an upper bound for the l2 norm of any xt,i

evaluated, i.e. ‖xt,i‖ ≤ L and in our setting, take L =
√
d. Without clarification ‖ · ‖ denotes the l2

norm by default and ‖ · ‖A denotes the norm normalized by matrix A.

A.2 Routine of Alg.1 and filtrations

Figure A.1: Routine of Alg.1. Red lines represent stochastic steps. Dash lines indicate θ̃t is involved
in those steps.

In Alg.1, there are three steps introducing stochasticity. Two of which are calling Module 2 as S′
t−1 =

Directed Mutation(fθ̃t , St−1, µ) and calling as St = Crossover Selection(fθ̃t , S
′
t−1). An-

other one is Thompson sampling step s.t. θ̃t is sampled from the posterior of θ? given data Dt−1. Fig.
A.1 illustrates how these three steps are built into the algorithm routine.

There are two other sources of stochasticity inherited from the problem setting: the prior of θ?

(Assumption 3.2) and the noisy feedback {u(xt,i)}Mi=1 (Assumption 3.5), which are revealed in the
evaluation step. Including all stochasticity, the trajectory of Alg.1 is

θ?, θ̃1, S
′
0, S1, {u(x1,i)}Mi=1, · · · , θ̃t+1, S

′
t, St+1, {u(xt+1,i)}Mi=1, · · · , θ̃T , S′

T−1, ST , {u(xT,i)}Mi=1.
(A.1)

At the convenience of analysis, we introduce multiple lines of the history up to time step t by carefully
partitioning the trajectory (A.1), using σ(·) to represent the minimal sigma algebra expanded by ·.
Definition A.1. Define a filtration

{
HM

t

}T−1

t=0
with HM

t be the information accumulated after t
rounds of Alg.1 but before the Directed Mutation step in round t+ 1.

HM
0 : = σ

(
θ?, θ̃1

)
,

HM
t : =

(
HM

t−1, σ
(
S′
t−1, St, {u(xt,i)}Mi=1, θ̃t+1

))
, t ∈ [T − 1].

Definition A.2. Define a filtration
{
HR

t

}T−1

t=0
withHR

t be the information accumulated after t rounds
of Alg.1 but before the Recombination and Selection step in round t+ 1.

HR
0 : = σ

(
θ?, θ̃1, S

′
0

)
,

HR
t : =

(
HR

t−1, σ
(
St, {u(xt,i)}Mi=1, θ̃t+1, S

′
t

))
, t ∈ [T − 1].
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A.3 Property of Directed Mutation (Module 2)

Given a fitness function f(x) := 〈θ, x〉, a useful observation is that for the dimension where θi ≥ 0,
feature value 1 is more favorable than 0 in terms of a higher fitness. So in a population S, for each
dimension i, the ratio of individuals who are with the favored feature is a key quantity, and we define
it formally as follows.

Definition A.3 (Ratio of the Favored Feature). Under a fitness function f(x) := 〈θ, x〉, for a
population S, define

pθi (S) =

{
#{x∈S:xi=0}

|S| θi < 0
#{x∈S:xi=1}

|S| θi ≥ 0,
∀i ∈ [d], (A.2)

and we are allowed to omit the superscript θ of pθi (S) when θ is clear from the context.

We show the following property of Directed Mutation.

Lemma A.4. Suppose S′ = Directed Mutation(f, S, µ), then the population-averaged fitness of
S′ will not decrease compared to that of S in expectation, that is,

E [F (S′)] ≥ F (S). (A.3)

And for ∀δ ∈ (0, 1), if |S| = Ω
(

log( d
δ
)

µ2

)
, then with probability 1− δ,

pi (S
′) ≥ µ

4
, ∀i ∈ [d]. (A.4)

Proof. See Appendix D.1.

A.3.1 High probability events on mini p
θ̃t+1

i (S′
t)

The Directed Mutation step of Alg.1 ensures S′
t is always sufficient with the feature favored by

current fθ̃t+1
in each dimension i throughout T rounds, i.e. mini p

θ̃t+1

i (S′
t) is lower bounded for

∀t+ 1 ∈ [T ], recall Definition A.3 for the definition of pθi (S).

We introduce the following line of events where this sufficiency of S′
t holds and show the intersection

of them happens with high probability when the population size M is sufficiently large.

Definition A.5. Define EDM
t to be the event where mini p

θ̃s+1

i (S′
s) is lower bounded by µ

4 for
∀s ≤ t, that is

EDM
t := {∀s ≤ t, min

i
p
θ̃s+1

i (S′
s) ≥

µ

4
}. (A.5)

Also define EDM as the intersection of {EDM
t }T−1

t=0 .

Lemma A.6. For ∀δ ∈ (0, 1), if the population size is sufficiently large s.t. M = O
(

log( dT
δ

)

µ2

)
, then

P (EDM) ≥ 1− δ. (A.6)

Since event EDM is independent from the realization of θ?, thus it still holds with high probability

when conditioned on θ?. Denote by Eθ?

DM, the event EDM conditioned on θ?, then

P

(
Eθ?

DM

)
≥ 1− δ.

Proof. See Appendix D.2.

A.4 Linear convergence of Crossover Selection (Module 1)

Continuing from Theorem 5.1, when S is sufficient with the feature favored by f in every dimension,
i.e. mini pi(S) is lower bounded, then in expectation, F (S′) converges linearly to F ? with a nontrivial
convergence rate.
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Lemma A.7 (Linear Convergence). Suppose S′ = Crossover Selection(f, S), then

E [F (S′)] ≥ F (S) + η (F ? − F (S)) , (A.7)

with factor η = mini pi(S)√
2d

.

Proof. See Appendix D.3.

A.5 Thompson Sampling

According to Assumption 3.5, in the dataset Dt =
{
{xs,i, u(xs,i)}Mi=1 , s = [t]

}

u(xs,i) = fθ?(xs,i) + ξs,i, (A.8)

with ξs,i i.i.d. sampled from N (0, σ2) and independent from all other stochasticity.

Therefore, by Bayes’ Rule, the posterior of θ? give Dt−1 is also Gaussian distributed, for ∀t ∈ [T ]:

θ̃t ∼ N (θ̂t, V
−1
t ), (A.9)

where

Vt =
1

σ2
Φ>

t−1Φt−1 + λI, (A.10)

θ̂t =
1

σ2
V −1
t Φ>

t−1Ut−1, (A.11)

recall from Alg. 1 for the updating rules of Φt and Ut.

Given the posterior distribution (A.9), we are able to show θ̃t concentrates to θ? in term of the
normalized distance between them.

A.5.1 High probability events on

∥∥∥θ̃t − θ?
∥∥∥
Vt

We introduce two useful lines of high probability events similar to those in Abeille and Lazaric [2],
except here these events are defined conditioned on any realization of θ? sampled from its prior. We
rephrased the definition to match our notations.

Definition A.8. Conditioned on θ?, for any given probability tolerance δ ∈ (0, 1), each time step

t ∈ [T ] and a line of (θ? dependent) radiuses {βθ?

t (δ)}Tt=1, we define Êθ?

t as the event where θ̂s
concentrates around θ? for all previous steps s ≤ t, i.e.

Êθ?

t (δ) =

{
∀s ≤ t,

∥∥∥θ̂s − θ?
∥∥∥
Vs

≤ βθ?

s (δ)

∣∣∣∣ θ
?

}
. (A.12)

with a line of (θ? independent) radiuses {αt (δ)}Tt=1, we also define Ẽθ?

t as the event where the

sampled parameter θ̃s concentrates around θ̂s for all steps s ≤ t, i.e.

Ẽθ?

t (δ) =

{
∀s ≤ t,

∥∥∥θ̃s − θ̂s

∥∥∥
Vs

≤ αs (δ)

∣∣∣∣ θ
?

}
. (A.13)

Then under the same δ and θ?, which are omitted here, we have Ê := ÊT ⊂ · · · ⊂ Ê1, Ẽ := ẼT ⊂
· · · ⊂ Ẽ1 and define Eθ?

(δ) := Êθ?

(δ) ∩ Ẽθ?

(δ).

With appropriate choices of {βt} and {αt}, event Eθ?

(δ) defined above happens with high probability
as stated in the following lemma.

Lemma A.9. Under Assumption 3.2 and 3.5, conditioned on any realization of θ? drawn from
its prior, for ∀δ ∈ (0, 1) and any series of feature vectors

(
{x1,i}Mi=1, · · · , {xT,i}Mi=1

)
where each

‖xt,i‖ ≤ L, P
(
Eθ? ( δ

2

))
≥ 1− δ with βθ?

t (δ) and αt (δ) specified as

βθ?

t (δ) =

√
2 log

(
1

δ

)
+ d log

(
σ2λd+ tML2

σ2λd

)
+
√
λ‖θ?‖, ∀t ∈ [T ]. (A.14)

αt (δ) = 2

√
d log

(
T

δ

)
+
√
d, ∀t ∈ [T ]. (A.15)

Proof. See Appendix D.4.
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A.6 Prediction error under batch update

Before regret decomposition, one more preparation to have is a modified concentration on the

accumulated prediction error of θ̃t catering for the batch-data update routine in Alg.1. In the
following lemma, we summarize a more general version of this concentration result.

Lemma A.10. Suppose at any timestep at lies in a confidence ellipsoid around bt in the sense that

‖at − bt‖Vt
≤ ηt(δ), ∀t ∈ [T ],

and ‖xt,i‖ ≤ L, ∀t ∈ [T ], i ∈ [M ], then it holds that,

T∑

t=1

M∑

i=1

|〈at − bt, xt,i〉|

≤ηT (δ)
√

2L2 + 2λ

λ
·
√
dMT log

(
σ2dλ+MTL2

σ2dλ

)
+ ηT (δ)

2L√
λ
· dM log

(
σ2dλ+MTL2

σ2dλ

)
.

(A.16)

And let us give an alias RGT(ηT (δ)) to the RHS of (A.16).

Proof. See Appendix D.6.

A.7 Regret decomposition

Recall the notation that x? is a maximum point of fθ? .

By the scheme of posterior sampling, fθ?(x?) and fθ̃t(x
?
t ) are identically distributed conditioned on

Dt−1, which leads to

E

[
fθ?(x?)− fθ̃t(x

?
t )
∣∣∣Dt−1

]
= 0. (A.17)

With expectation taken over all stochasticity, the per-round Bayesian regret is

E

[
M∑

i=1

(fθ?(x?)− fθ?(xt,i))

]
=

M∑

i=1

E

[
fθ?(x?)− fθ̃t(x

?
t )
]
+

M∑

i=1

E

[
fθ̃t(x

?
t )− fθ?(xt,i)

]

=

M∑

i=1

E

[
E

[
fθ?(x?)− fθ̃t(x

?
t )
∣∣∣Dt−1

]]
+

M∑

i=1

E

[
fθ̃t(x

?
t )− fθ?(xt,i)

]

(A.17)
=

M∑

i=1

E

[
fθ̃t(x

?
t )− fθ?(xt,i)

]

=

M∑

i=1

E

[
fθ̃t(x

?
t )− fθ̃t(xt,i) + fθ̃t(xt,i)− fθ?(xt,i)

]

= E [M (F ?
t − Ft(St))] + E

[
M∑

i=1

〈θ̃t − θ?, xt,i〉
]
.

Then the total Bayesian regret over T rounds sums up to be

BayesRGT(T,M) = E

[
M

T∑

t=1

F ?
t − Ft(St)

]
+ E

[
T∑

t=1

M∑

i=1

〈θ̃t − θ?, xt,i〉
]

= Eθ?∼π

[
Eθ?

[
M

T∑

t=1

F ?
t − Ft(St)

]]
+ Eθ?∼π

[
Eθ?

[
T∑

t=1

M∑

i=1

〈θ̃t − θ?, xt,i〉
]]

,

(A.18)

where Eθ? [·] denotes the conditional expectation on a given θ?: E [ ·| θ?].
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Note that under any realization of θ?, the regret of each individual at any time step should be no more
than the range of fθ? on domain X . For any θ ∈ Rd parameterizing the fitness fθ as fθ(x) = 〈θ, x〉,
denote by Bθ

f an upper bound for the range of fθ, i.e.

Bθ
f := 2L‖θ‖ ≥ max

x
fθ(x)−min

x
fθ(x). (A.19)

For the regret of each individual in each step, it holds that

fθ?(x?)− fθ?(xt,i) ≤ 2‖θ?‖L = Bθ?

f . (A.20)

Therefore, when bounding the total regret decomposed as (A.18), it is reasonable to truncate terms in

the RHS of (A.18) with Bθ?

f to derive a tighter bound.

BayesRGT(T,M) ≤Eθ?∼π

[
MEθ?

[
T∑

t=1

min
{
F ?
t − Ft(St), B

θ?

f

}]]
(A.21)

+ Eθ?∼π

[
Eθ?

[
T∑

t=1

M∑

i=1

min
{∣∣∣〈θ̃t − θ?, xt,i〉

∣∣∣ , Bθ?

f

}]]
(A.22)

A.8 Bounding the first half (A.21)

A.8.1 After calling S′
t−1 = Directed Mutation(fθ̃t , St−1, µ)

As shown in Lemma A.4, the population average of S′
t under fθ̃t+1

in not decreasing from that of St,

that is

E
[
Ft+1(S

′
t)|HM

t

]
≥ Ft+1(St). (A.23)

The other property of Directed Mutation is to ensure that w.h.p. mini p
θ̃t+1

i (S′
t) is lower bounded

for ∀t+ 1 ∈ [T ], which is stated in the definition of event Eθ?

DM (Definition A.5). So from here on,

given any realization of θ?, our further analysis is conditioned on Eθ?

:= Eθ? ( δ
2

)
∩ Eθ?

DM.

Corollary A.11. Given any realization of θ?, if M = Ω
(

log( dT
δ

)

µ2
M

)
, then P

(
Eθ?) ≥ 1 − 2δ for

∀δ ∈ (0, 1). Conditioned on Eθ?

:= Eθ? ( δ
2

)
∩ Eθ?

DM, it is guaranteed that

min
i

p
θ̃t+1

i (S′
t) ≥ CS′ :=

µ

4
, ∀t+ 1 ∈ [T ], (A.24)

‖θ̃t − θ?‖Vt
≤ βθ?

t

(
δ

2

)
+ αt

(
δ

2

)
, ∀t ∈ [T ]. (A.25)

where recall the definition of βθ?

t and αt from (A.14) and (A.15).

Proof. The proof is directly derived by combining Lemma A.6 and Lemma A.9.

A.8.2 After calling St = Crossover Selection(fθ̃t , S
′
t−1)

Conditioned on θ?, we are about to decompose
∑T

t=1 (F
?
t − Ft(St)) by leveraging the linear conver-

gence property shown in Lemma A.7. Conditionally on Eθ?

, applying Lemma A.7 to each call of
Crossover Selection(fθ̃t , S

′
t−1) guarantees for ∀t+ 1 ∈ [T ],

EEθ?

[
Ft+1(St+1)|HR

t

]
≥ EEθ?

[
Ft+1(S

′
t) +

mini p
θ̃t+1

i (S′
t)√

2d

(
F ?
t+1 − Ft+1(S

′
t)
)
∣∣∣∣∣H

R
t

]

(A.24)

≥ Ft+1(S
′
t) +

CS′√
2d

(
F ?
t+1 − Ft+1(S

′
t)
)
, (A.26)

where EEθ? [·] is the conditional expectation on event Eθ?

.
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Recall (A.23) that
E
[
Ft+1(S

′
t)|HM

t

]
≥ Ft+1(St). (A.23 revisited)

Conditioned on Eθ?

, it still holds that

EEθ?

[
Ft+1(S

′
t)|HM

t

]
≥ Ft+1(St), (A.27)

since in Eθ?

, Eθ? ( δ
2

)
holds independent from the Directed Mutation step S′

t = DM(fθ̃t+1
, St, µM ),

and conditioned on Eθ?

DM, Ft+1(S
′
t)|HM

t tends to be greater then it was unconditionally.

Along withHM
t ⊂ HR

t , we have

EEθ?

[
Ft+1(St+1)|HM

t

]
≥ EEθ?

[
EEθ?

[
Ft+1(St+1)|HR

t

]∣∣HM
t

]
(A.28)

(A.26)

≥ EEθ?

[
Ft+1(S

′
t) +

CS′√
2d

(
F ?
t+1 − Ft+1(S

′
t)
)∣∣∣∣HM

t

]
(A.29)

(A.27)

≥ Ft+1(St) +
CS′√
2d

(
F ?
t+1 − Ft+1(St)

)
. (A.30)

By introducing the convergence rate γ := 1− CS′√
2d

s.t. 1
1−γ = O

(√
d

µ

)
and an residual term

et+1 := EEθ?

[
Ft+1(St+1)|HM

t

]
− Ft+1(St+1),

we have
F ?
t+1 − Ft+1(St+1) ≤ γ(F ?

t+1 − Ft+1(St)) + et+1, (A.31)

where {et}Tt=1 is a martingale difference with

EEθ? [et+1 | HM
t ] = 0. (A.32)

Thus,

F ?
t+1 − Ft+1(St+1) ≤ γ(F ?

t+1 − Ft+1(St)) + et+1

= γ
[
F ?
t − Ft(St) + F ?

t+1 − F ?
t + Ft(St)− Ft+1(St)

]
+ et+1

= γ [F ?
t − Ft(St)] + γ

[
F ?
t+1 − F ?

t + Ft(St)− Ft+1(St)
]
+ et+1.

Therefore we have the recursion that

F ?
t −Ft(St) ≤ γt (F ?

1 − F1(S0))+

t−1∑

k=1

γt−k
(
F ?
k+1 − F ?

k

)
+

t−1∑

k=1

γt−k (Fk(Sk)− Fk+1(Sk))+

t∑

k=1

γt−kek,

(A.33)

summing up which from t = 1 to T gives

T∑

t=1

F ?
t − Ft(St) ≤

T∑

t=1

t∑

k=1

γt−kek (A.34)

+

T∑

t=1

γt (F ?
1 − F1(S0)) (A.35)

+
T∑

t=1

t−1∑

k=1

γt−k
(
F ?
k+1 − F ?

k

)
(A.36)

+

T∑

t=1

t−1∑

k=1

γt−k (Fk(Sk)− Fk+1(Sk)) . (A.37)

As it appears in (A.21), what matters in bounding regret is the expected truncated value of
∑T

t=1 F
?
t −

Ft(St), which is

Eθ?∼π

[
MEθ?

[
T∑

t=1

min
{
F ?
t − Ft(St), B

θ?

f

}]]
, (A.21 revisited)
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and the decomposition of
∑T

t=1 F
?
t − Ft(St) into four terms as above holds conditionally on Eθ?

.

So from here on, we progress with first upper bounding Eθ?

[∑T
t=1 min

{
F ?
t − Ft(St), B

θ?

f

}]
by

Eθ?

[
T∑

t=1

min
{
F ?
t − Ft(St), B

θ?

f

}]
≤ 2δTBθ?

f + (1− 2δ)EEθ?

[
T∑

t=1

F ?
t − Ft(St)

]
, (A.38)

and then upper bounding EEθ?

[∑T
t=1 F

?
t − Ft(St)

]
with

EEθ?

[
T∑

t=1

F ?
t − Ft(St)

]
≤EEθ?

[
T∑

t=1

t∑

k=1

γt−kek

]
(A.39)

+ EEθ?

[
T∑

t=1

γt (F ?
1 − F1(S0))

]
(A.40)

+ EEθ?

[
T∑

t=1

t−1∑

k=1

γt−k
(
F ?
k+1 − F ?

k

)
]

(A.41)

+ EEθ?

[
T∑

t=1

t−1∑

k=1

γt−k (Fk(Sk)− Fk+1(Sk))

]
. (A.42)

A.8.3 Term (A.39)

{et}Tt=1 is claimed to be a martingale difference when first being introduced, that is, recall (A.32)
that

EEθ? [et+1 | HM
t ] = 0, ∀t+ 1 ∈ [T ]. (A.32 revisited)

Thus by the property of martingale difference,

EEθ? [et+1] = EEθ?

[
EEθ?

[
et+1 | HM

t

]]
= 0, ∀t+ 1 ∈ [T ].

Then by the linearity of EEθ? [·]:

EEθ?

[
T∑

t=1

t∑

k=1

γt−kek

]
=

T∑

t=1

t∑

k=1

EEθ?

[
γt−kek

]

=

T∑

t=1

t∑

k=1

γt−k
EEθ? [ek]

= 0. (A.43)

A.8.4 Term (A.40)

Before looking into the term (A.40), we first introduce the following lemma upper bounding the

expectation of θ̃t’s l2 norm conditioned on event Eθ?

.

Lemma A.12. For ∀t ∈ [T ], EEθ?

[
‖θ̃t‖

]
has the following upper bound.

EEθ?

[
‖θ̃t‖

]
≤ 2‖θ?‖+ 2

√
d

λ
. (A.44)

Proof. See Appendix D.8.

What is to take expectation in (A.40) is of constant order because

T∑

t=1

γt−1 (F ?
1 − F1(S0)) ≤

1

1− γ
|F ?

1 − F1(S0)| ≤
1

1− γ
Bθ̃1

f , (A.45)
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where Bθ̃1
f = 2L‖θ̃1‖.

Then by taking expectation over both sides of (A.45), we have

EEθ?

[
T∑

t=1

γt (F ?
1 − F1(S0))

]
≤ 2L

1− γ
EEθ?

[
‖θ̃1‖

]
≤ 2

1− γ

(
Bθ?

f + 2

√
d

λ
L

)
. (A.46)

A.8.5 Term (A.41)

Rearrange terms to sum up in (A.41) as

T∑

t=1

t−1∑

k=1

γt−k
(
F ?
k+1 − F ?

k

)
=

T−1∑

k=1

(
F ?
k+1 − F ?

k

) T∑

t=k+1

γt−k

=
T−1∑

k=1

γ − γT−k+1

1− γ

(
F ?
k+1 − F ?

k

)

=
γ

1− γ
(F ?

T − F ?
1 )−

T−1∑

k=1

γT−k+1

1− γ

(
F ?
k+1 − F ?

k

)

=
γ

1− γ
(F ?

T − F ?
1 )−

γ2

1− γ
F ?
T +

T−1∑

k=2

γT−k+1F ?
k +

γT

1− γ
F ?
1

=

T∑

k=2

γT−k+1F ?
k − γT−1F ?

1 .

Thus by taking expectation conditioned on Eθ?

over the absolute value of RHS, we have

EEθ?

[
T∑

t=1

t−1∑

k=1

γt−k
(
F ?
k+1 − F ?

k

)
]
≤ EEθ?

[
T∑

k=2

γT−k+1 |F ?
k |
]
+ EEθ?

[
γT−1 |F ?

1 |
]

≤ L

T∑

k=2

γT−k+1 · EEθ?

[
‖θ̃k‖

]
+ LγT−1 · EEθ?

[
‖θ̃1‖

]

≤
T−1∑

k=0

γk

(
2‖θ?‖L+ 2

√
d

λ
L

)

≤ 1

1− γ

(
Bθ?

f + 2

√
d

λ
L

)
. (A.47)

A.8.6 Term (A.42)

We start off by rearranging terms in the summation:
∑T

t=1

∑t−1
k=1 γ

t−k (Fk(Sk)− Fk+1(Sk)).

T∑

t=1

t−1∑

k=1

γt−k (Fk(Sk)− Fk+1(Sk)) =

T−1∑

k=1

(Fk(Sk)− Fk+1(Sk))

T∑

t=k+1

γt−k

=

T−1∑

k=1

γ − γT−k+1

1− γ
(Fk(Sk)− Fk+1(Sk))

=
T−1∑

k=1

γ − γT−k+1

1− γ
〈θ̃k − θ̃k+1,

1

M

∑

x∈Sk

x〉

≤ 1

1− γ

1

M

T−1∑

t=1

M∑

i=1

∣∣∣〈θ̃t − θ̃t+1, xt,i〉
∣∣∣ . (A.48)
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In the following Corollary A.13, we bound the RHS above by constructing a high probability

confidence ellipsoid for θ̃t+1 − θ̃t and then completing with a call of Lemma A.10.

Corollary A.13. For any realization of θ?, conditioned on event Eθ?

, it holds that

T∑

t=1

t−1∑

k=1

γt−k (Fk(Sk)− Fk+1(Sk)) ≤
1

1− γ

1

M
RGT

(
2βθ?

T

(
δ

2

)
+ 2αT

(
δ

2

))
. (A.49)

Proof. See Appendix D.9.

Therefore, after taking expectation conditioned on Eθ?

, we still have

EEθ?

[
T∑

t=1

t−1∑

k=1

γt−k (Fk(Sk)− Fk+1(Sk))

]
≤ 1

M
· 1

1− γ
RGT

(
2βθ?

T

(
δ

2

)
+ 2αT

(
δ

2

))
.

(A.50)

A.8.7 Pulling 4 terms into the final bound of the first half (A.21)

Going back to the contribution coming from the first half of the regret decomposition (A.18), plugging
(A.43), (A.46), (A.47) and (A.50) into (A.38), it holds that, for ∀δ ∈ (0, 1)

MEθ?

[
T∑

t=1

min
{
F ?
t − Ft(St), B

θ?

f

}]
≤2δMT ·Bθ?

f + (1− 2δ)M · EEθ?

[
T∑

t=1

F ?
t − Ft(St)

]

≤2δMT ·Bθ?

f + (1− 2δ) · 3M

1− γ

(
Bθ?

f + 2

√
d

λ
L

)
.

+ (1− 2δ) · 1

1− γ
RGT

(
2βθ?

T

(
δ

2

)
+ 2αT

(
δ

2

))
.

(A.51)

Averaging (A.51) over the prior of θ?, we have

ME

[
T∑

t=1

min
{
F ?
t − Ft(St), B

θ?

f

}]
=Eθ?∼π

[
MEθ?

[
T∑

t=1

min
{
F ?
t − Ft(St), B

θ?

f

}]]

≤2δ · Eθ?∼π

[
Bθ?

f

]
·MT

+
3(1− 2δ)

1− γ
·
(
Eθ?∼π

[
Bθ?

f

]
+ 2

√
d

λ
L

)
·M

+
1− 2δ

1− γ
· Eθ?∼π

[
RGT

(
2βθ?

T

(
δ

2

)
+ 2αT

(
δ

2

))]
.

(A.52)

A.9 The Second Half of Regret Bound as in (A.22)

Conditioned on Eθ? ( δ
2

)
, which holds with probability 1− δ, θ̃t lies in a confidence ellipsoid around

θ? at all times,

‖θ̃t − θ?‖Vt
≤ ηt(δ), ∀t ∈ [T ].

We wrap up an upper bound for
∑T

t=1

∑M
i=1

∣∣∣〈θ̃t − θ?, xt,i〉
∣∣∣ derived by calling Lemma A.10 into

the corollary as follows.

Corollary A.14. Conditioned on Eθ? ( δ
2

)
, the part of total regret contributed by the prediction error

of TS sampled θ̃t is upper bounded by

T∑

t=1

M∑

i=1

∣∣∣〈θ̃t − θ?, xt,i〉
∣∣∣ ≤ RGT

(
βθ?

T

(
δ

2

)
+ αT

(
δ

2

))
. (A.53)
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Proof. Lemma A.10 directly applies by customizing the parameter ηt(δ) to be βθ?

T

(
δ
2

)
+αT

(
δ
2

)
.

With Corollary A.14 ready, we take expectation first conditioned on θ? and then over the prior of θ?,
which finally gives an upper bound of (A.22) as

Eθ?∼π

[
Eθ?

[
T∑

t=1

M∑

i=1

min
{∣∣∣〈θ̃t − θ?, xt,i〉

∣∣∣ , Bθ?

f

}]]

≤Eθ?∼π

[
δMTBθ?

f + (1− δ)RGT

(
βθ?

T

(
δ

2

)
+ αT

(
δ

2

))]

=δ · Eθ?∼π

[
Bθ?

f

]
·MT + (1− δ) · Eθ?∼π

[
RGT

(
βθ?

T

(
δ

2

)
+ αT

(
δ

2

))]
. (A.54)

A.10 Final Bound: Combining The Two Halves (A.21) and (A.22)

Pulling two parts (A.52) and (A.54) into the regret decomposition (A.18), for ∀δ ∈ (0, 1), with γ s.t.
1

1−γ = O
(√

d
µ

)
, the Bayesian regret of Alg.1 is bounded by

BayesRGT(T,M) ≤3δ · Eθ?∼π

[
Bθ?

f

]
·MT

+
3(1− 2δ)

1− γ
·
(
Eθ?∼π

[
Bθ?

f

]
+ 2

√
d

λ
L

)
·M

+ (1− δ) · Eθ?∼π

[
RGT

(
βθ?

T

(
δ

2

)
+ αT

(
δ

2

))]

+
1− 2δ

1− γ
· Eθ?∼π

[
RGT

(
2βθ?

T

(
δ

2

)
+ 2αT

(
δ

2

))]
.

By taking the probability of failure δ to be of O( 1
T ), we finally arrive at

BayesRGT(T,M) ≤O
(

1

1− γ
·
(
Eθ?∼π

[
Bθ?

f

]
+ 2

√
d

λ
L

)
·M

+
1

1− γ
· Eθ?∼π

[
RGT

(
2βθ?

T

(
1

2T

)
+ 2αT

(
1

2T

))])
, (A.55)

where Bθ?

f = 2L‖θ?‖ and 1
1−γ = O

(√
d

µ

)
.

The orders of two expectations in (A.55) is claimed as follows.

Claim A.15. The orders of Eθ?∼π

[
Bθ?

f

]
and Eθ?∼π

[
RGT

(
2βθ?

T

(
1
2T

)
+ 2αT

(
1
2T

))]
are:

• Eθ?∼π

[
Bθ?

f

]
is of order

O

(√
d

λ
L

)
. (A.56)

• Eθ?∼π

[
RGT

(
2βθ?

T

(
1
2T

)
+ 2αT

(
1
2T

))]
is of order

O

(
L√
λ
d
√
M(
√
T +
√
dM) log

(
σ2λd+ TML2

σ2λd

))
. (A.57)

Proof. See Appendix D.10.

Therefore, use Õ to hide logarithmic term and lower O(1) order term on T , recall 1
1−γ = O

(√
d

µ

)

and L =
√
d, we finally arrived at a Bayesian regret of order

BayesRGT(T,M) = Õ

(√
d

µ
· L√

λ
· d
√
MT

)
= Õ

(
d

µ
√
λ
· d
√
MT

)
. (A.58)
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B Real-world experiment validation

B.1 Optimizing sequence fitness for CRISPR gene-editing

Our TS-DE method was adapted for use in a gene-editing application in real-world experiments.
Briefly, gene-editing, exemplified by technology derived from the Clustered Regularly Interspaced
Short Palindromic Repeats, or CRISPR system, is a powerful tool for engineering genetic information
in living organisms, and has transformed basic research and human therapeutics [12]. The efficiency
and outcome of CRISPR gene-editing is highly dependent on the selection of guideRNA sequences,
which form a complex with CRISPR proteins to perform gene-editing [39]. The TS-DE was applied
to guide high-throughput CRISPR gene-editing experiments. In particular, we use known genomic
motif features and a linear model for modeling the log editing capacity. At the beginning of each
round of experiment, we computationally generate a new library of design sequences by randomly
generating mutations and recombinations based on the previous population. Then we apply the
bandit linear model to select sequences with high predicted fitness, and evaluate their actual editing
capacities in the next round of experiments. A total of 14,358 unique guideRNA sequences were
measured, and the log capacity improved by ≈ 5. Notably, the optimized CRISPR designs generated
by our DE approach is part of another manuscript (Hughes NW, Zhang J, Pierce J, Qu Y, Wang C,
Agrawal A., Morri M, Neff N, Winslow MM, Wang M, and Cong L. Machine Learning Optimized
Cas12a Barcoding Enables Recovery of Single-Cell Lineages and Transcriptional Profiles. Molecular
Cell. 2022. In Press.), demonstrating real-world utility of current method. See Fig.B.1 (borrowed
from Hughes et al, 2022) for an illustration of the pipeline. We refer to Hughes et al, 2022 for more
details on the experiment and computation.

Remark The above real-world application of bandit DE differs from Algorithm 1 and generalizes
it in a number of ways. For example, features used for predicting the gene-editing efficiency are not
limited to motif features. Also they are not binary valued. Second, recombination and mutation were
not done exactly as in Modules 1 and 2. They were randomized on the basepair level rather than the
motif level. Despite these differences, our method was able to guide the experiment and accelerate
discovery. This demonstrates the bandit DE method may have broad generalizability and it is not
restricted to the abstract mathematical model formulated in this paper.

Figure B.1: Evolving CRISPR sequences using iterative real-world experiments and acceler-
ated DE Left panels: Workflow overview. Right panel: Fitness distribution showing accelerated
optimization using DE with Bandit learning. (Ths figure is borrowed from Hughes et al, 2022)

C Proof of Theorem 5.1

C.1 Ascent property of Crossover Selection

Proof. Since each z ∈ S′ is generated in the same way independently and F (S′) is the fitness
averaging over all z’s, thus

E [F (S′)] = E [f(z)| z ∈ S′] ,

with the expectation taken over the randomness in sampling z’s parents x and y and in crossing over
x and y. Using notation Ex,y [·] := E [ ·|x, y], the conditional expectation given x and y, rewrite
E [f(z)| z ∈ S′] as

E [f(z)| z ∈ S′] = E

[
Ex,y

[
f(z)

∣∣∣∣f(z) ≥
f(x) + f(y)

2

]]
,
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where the inner expectation is taken over the randomness in the recombination step z ← Rcb(x, y),
and the outer expectation is over sampling x and y.

Given x and y, a recombined child sample z can be represented by

z =
x+ y

2
+

x− y

2
· e, (C.1)

where the · operator here multiplies two vector entrywisely into a new vector and e is a vector
consisting of d independent Rademacher variables, that is e = (ei, · · · , ed)> and

ei
i.i.d.∼ Rad .

Thus f(z) is computed as

f(z) =
f(x) + f(y)

2
+

1

2

d∑

i=1

θi (xi − yi) ei. (C.2)

And then f(z) ≥ f(x)+f(y)
2 is equivalent to

∑d
i=1 θi (xi − yi) ei ≥ 0, so

Ex,y

[
f(z)

∣∣∣∣f(z) ≥
f(x) + f(y)

2

]

=
f(x) + f(y)

2
+

1

2
E

[
d∑

i=1

θi (xi − yi) ei

∣∣∣∣∣

d∑

i=1

θi (xi − yi) ≥ 0

]

f(x) + f(y)

2
+

1

2
E

[∣∣∣∣∣

d∑

i=1

θi (xi − yi) ei

∣∣∣∣∣

]
(C.3)

≥f(x) + f(y)

2
+

C

2
‖θ · (x− y) ‖,

where (C.3) holds because
∑d

i=1 θi (xi − yi) ei is symmetrically distributed around 0. And in the

last line, · is still the entrywise multiplication between vectors and C ≥ 1√
2

according to Haagerup

[18].

Thus,

E [F (S′)] = E

[
Ea,b

[
f(z)

∣∣∣∣f(z) ≥
f(x) + f(y)

2

]]

≥ E

[
f(x) + f(y)

2

]
+

1

2
√
2
E [‖θ · (x− y) ‖]

≥ F (S) +
1

2
√
2
E [‖θ · (x− y) ‖] . (C.4)

By Cauchy-Schwarz, we have

‖θ · (x− y) ‖ ≥ 1√
d

d∑

i=1

|θi||xi − yi|

Thus, by averaging over all x and y sampled from S,

E [‖θ · (x− y) ‖] ≥ 1√
d

d∑

i=1

|θi|E [|xi − yi|]

When ∀i ∈ [d], xi, yi ∈ {0, 1} for all x and y’s in S, then

E [|xi − yi|] ≥ E

[
(xi − yi)

2
]
= 2V ari(S),

E [‖θ · (x− y) ‖] ≥ 2√
d

d∑

i=1

|θi|V ari(S), (C.5)
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where V ari(S) denotes the variance of xi when x is uniformly sampled from S.

Therefore,

E [F (S′)] ≥ F (S) +
1√
2d

∑

i

|θi|V ari(S).

D Omitted Proofs in Appendix A

D.1 Proof of Lemma A.4

Proof. For ∀i 6∈ I , ∀x ∈ S is not induced to mutate at site i, thus for x′ = Mut(x, I, µ), x′
i = xi and

pi(S
′) = pi(S).

For i ∈ I, after the directed mutation formulated as (3.3), E [I {x′
i = 1}] = (1− µ)I {xi = 1}+ µ

2 .

E [pi(S
′)] = (1− µ)pi(S) +

µ

2
= pi(S) +

(
1

2
− pi(S)

)
µ.

Since i ∈ I iff 1
M

∑
x∈S θi · xi ≤ θi · x̄i, which is equivalent to pi(S) ≤ 1

2 , showing that the i-th
dimension is not sufficient with the favored feature. Then the directed mutation strictly increases
pi(S) for any insufficient dimension i by boosting it by µ

(
1
2 − pi(S)

)
≥ 0, which resulting in a

|θi|-increase in the utility value per unit of increase in pi(S).

Therefore, E [F (S′)] ≥ F (S) and

E [pi(S
′)] = pi(S) >

1

2
, ∀i 6∈ I,

E [pi(S
′)] = pi(S) +

(
1

2
− pi(S)

)
µ ≥ µ

2
, ∀i ∈ I.

Thus, after calling S′ = Directed Mutation(f, S, µ), E [pi(S
′)] ≥ µ

2 , ∀i ∈ [d]. By a standard
argument of concentration and a union bound taken over i ∈ [d], with probability 1− δ,

pi(S
′) ≥ µ

4
, ∀i ∈ [d]

when |S| = Ω
(

log( d
δ
)

µ2

)
.

D.2 Proof of Lemma A.6

Proof. Lemma A.6 is derived by taking union bound over t + 1 ∈ [T ] upon mini p
θ̃t+1

i (S′
t) ≥ µ

4
obtained by instantiating (A.4) for S′

t and fθ̃t+1
in Lemma A.4.

D.3 Proof of Lemma A.7

Proof. Recall from Theorem 5.1 that

E [F (S′)] ≥ F (S) +
1√
2d

∑

i

|θi|Vari(S), (5.1 revisited)

where V ari(S) is the variance of xi when x is uniformly sampled from S. Using pi(S) defined in
Definition A.3

Vari(S) = pi(S) (1− pi(S)) . (D.1)

Then, it suffices to prove

d∑

i=1

|θi|pi(S) (1− pi(S)) ≥ min
i

pi(S) · (F ? − F (S)) .
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Taking a closer look at the suboptimality gap F ? − F (S), it is easily observed that

F ? =
∑

i:θi≥0

θi +
∑

i:θi<0

0, (D.2)

F (S) =
∑

i:θi≥0

θi [pi(S) · 1 + (1− pi(S)) · 0] +
∑

i:θi<0

θi [pi(S) · 0 + (1− pi(S)) · 1]

=
∑

i:θi≥0

θi · pi(S) +
∑

i:θi<0

θi · (1− pi(S)). (D.3)

Plugging in (D.2) and (D.3), we have

F ? − F (S) =
∑

i

|θi|(1− pi(S)). (D.4)

Therefore,
d∑

i=1

|θi|pi(S) (1− pi(S)) ≥ min
i

pi(S) · (F ? − F (S)) .

D.4 Proof of Lemma A.9

Proof. We finish the proof by lower bounding the probabilities of two events Êθ? ( δ
2

)
and Ẽθ? ( δ

2

)

by 1− δ
2 separately. Recall that for ∀t ∈ [T ]

θ̃t ∼ N (θ̂t, V
−1
t ), (A.9 revisited)

Vt =
1

σ2
Φ>

t−1Φt−1 + λI, (A.10 revisited)

θ̂t =
1

σ2
V −1
t Φ>

t−1Ut−1. (A.11 revisited)

Bounding P

(
Êθ? ( δ

2

))
.

Plugging (A.10) into (A.11), we will see θ̂t is related to the regularized least square estimator (RLS):

θ̂t =
1

σ2
V −1
t Φ>

t−1Ut−1 =
(
Φ>

t−1Φt−1 + σ2λI
)−1

Φ>
t−1Ut−1.

For any fixed ground truth θ?, θ̂t is a RLS estimator of θ? regularized by σ2λ · I . Conditioned on θ?,
define a filtration w.r.t. the data {(xt,i, u(xt,i)) , i ∈ [M ], t ∈ [T − 1]} collected along the way.

Definition D.1. Define Ft be the information accumulated after the t-th batch of data points is
collected.

F0 : = σ (θ?) (D.5)

Ft : = {Ft−1, σ (xt,1, u(xt,1), · · · , xt,M , u(xt,M ))}. (D.6)

Then we fine grind the filtration {Ft}T−1
t=0 to be

F0 ⊂ F0,1 ⊂ · · · ⊂ F0,M ⊂ F1 ⊂ · · · ⊂ Ft−1 ⊂ Ft−1,1 ⊂ · · · Ft−1,M ⊂ Ft−1 ⊂ · · · ⊂ FT−1

(D.7)
by essentially adding M layers between Ft−1 and Ft and each layer Ft−1,i contains the information
obtained after (xt,i, u(xt,i)) is added to the dataset.

Under Assumption 3.5, each feedback u(xt,i) satisfies

u(xt,i) = fθ?(xt,i) + ξt,i, (A.8 revisited)

where
ξt,i| Ft,i ∼ N

(
0, σ2

)
.

Then bounding P

(
Êθ? ( δ

2

))
is a straightforward application of the Theorem 2 in [1], wrapped up

into the following proposition.
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Proposition D.2. Under Assumption 3.5, for ∀δ ∈ (0, 1) and any Ft,i-adapted data sequence(
{x0,i}Mi=1, · · · , {xT−1,i}Mi=1

)
s.t. ‖xt,i‖ ≤ L,

P

(
∃t ∈ [T ] :

∥∥∥θ̂t − θ?
∥∥∥
Vt

≥ βt (δ)

∣∣∣∣F0

)
≤ δ. (D.8)

From the result above, we have

P

(
Êθ?

(
δ

2

))
= P

(∥∥∥θ̂t − θ?
∥∥∥
Vt

≤ βt

(
δ

2

)
, ∀t ∈ [T ]

∣∣∣∣ θ
?

)

= 1− P

(
∃t ∈ [T ] :

∥∥∥θ̂t − θ?
∥∥∥
Vt

≥ βt

(
δ

2

)∣∣∣∣ θ
?

)

≥ 1− δ

2
.

Bounding P

(
Êθ? ( δ

2

))
. Recall that θ̃t is sampled from posterior distribution N (θ̂t, V

−1
t ) indepen-

dently from θ?, then we have

∥∥∥θ̃t − θ̂t

∥∥∥
2

Vt

=
∥∥∥V

1
2

t (θ̃t − θ̂t)
∥∥∥
2

, ∀t ∈ [T ] (D.9)

where V
1
2

t (θ̃t − θ̂t) ∼ N (0, I). Thus

∥∥∥θ̃t − θ̂t

∥∥∥
2

Vt

∼ χ2
d independently from θ?. From the concentra-

tion of χ2
d random variable, we have

P

(
χd ≥ 2

√
d log

(
1

δ

)
+
√
d

)
≤ δ.

Therefore, by taking a union bound over ∀t ∈ [T ], we have

P

(
Ẽ

(
δ

2

)∣∣∣∣ θ
?

)
= P

(
Ẽ

(
δ

2

))

= P

(∥∥∥θ̃t − θ̂t

∥∥∥
Vt

≤ αt

(
δ

2

)
, ∀t ∈ [T ]

)

≥ 1−
T∑

t=1

P

(∥∥∥θ̃t − θ̂t

∥∥∥
Vt

≤ αt

(
δ

2

))

≥ 1−
T∑

t=1

δ

2T
= 1− δ

2
.

D.5 Proof of Proposition D.2

Proof. Use notation Ṽt := Φ>
t−1Φt−1 + σ2λI , then Vt = 1

σ2 Ṽt and θ̂t = Ṽ −1
t Φ>

t−1Ut−1.
According to Theorem 2 in [1], for ∀δ ∈ (0, 1) and any Ft,i-adapted data sequence(
{x0,i}Mi=1, · · · , {xT−1,i}Mi=1

)
s.t. ‖xt,i‖ ≤ L,

P

(
∃t ∈ [T ] :

∥∥∥θ̂t − θ?
∥∥∥
Ṽt

≥ σ · βt (δ)

∣∣∣∣F0

)
≤ δ.

Therefore, since

∥∥∥θ̂t − θ?
∥∥∥
Vt

=
∥∥∥θ̂t − θ?

∥∥∥
1

σ2 Ṽt

= 1
σ

∥∥∥θ̂t − θ?
∥∥∥
Ṽt

P

(
∃t ∈ [T ] :

∥∥∥θ̂t − θ?
∥∥∥
Vt

≥ βt (δ)

∣∣∣∣F0

)
≤ δ.
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D.6 Proof of Lemma A.10

Proof. We are about to take a closer look at the incremental increase of the determinant of Vt,

define Vt,l =
1
σ2

(
σ2λI +

∑t−1
i=1

∑M
j=1 xi,jx

T
i,j +

∑l
j=1 xt,jx

T
t,j

)
for ∀t ∈ [T ], l ∈ [M ] and thus

Vt,0 = Vt . Mark the time steps where Vt has significant increase in its determinant by C := {t ∈
[T ] : det(Vt+1)

det(Vt)
> 2}. Then the prediction errors in T rounds can be divided into two parts as

T∑

t=1

M∑

i=1

|〈at − bt, xt,i〉| =
∑

t/∈C

M∑

i=1

|〈at − bt, xt,i〉|+
∑

t∈C

M∑

i=1

|〈at − bt, xt,i〉| . (D.10)

The first half of (D.10) consists of error accumulated in the rounds where det(Vt) didn’t increased
much after having a batch update of size M , so we bound this part in the same spirit of bounding the
case where only rank-1 update happens per round. Result is stated in the following claim.

Claim D.3. The first half of (D.10) is bounded by

∑

t/∈C

M∑

i=1

|〈at − bt, xt,i〉| ≤ ηT (δ)

√
2L2 + 2λ

λ

√
MT log

(
det (VT+1)

det (V1)

)
. (D.11)

For the second half of (D.10), we are about to bound by showing |C| is small. Notice that

det (VT+1)

det (V1)
=

T∏

t=1

det (Vt+1)

det (Vt)
≥
∏

t∈C

det (Vt+1)

det (Vt)
≥ 2|C|, (D.12)

thus |C| should not be greater than 2 log
(

det(VT+1)
det(V1)

)
. And for ∀t ∈ [T ], i ∈ [M ]

|〈at − bt, xt,i〉| ≤ ‖at − bt‖Vt
‖xt,i‖V −1

t
≤ ηT (δ)L√

λ
. (D.13)

Putting two parts together, we have

T∑

t=1

M∑

i=1

|〈at − bt, xt,i〉| =
∑

t/∈C

M∑

i=1

|〈at − bt, xt,i〉|+
∑

t∈C

M∑

i=1

|〈at − bt, xt,i〉|

≤ηT (δ)
√

2L2 + 2λ

λ

√
MT log

(
det (VT+1)

det (V1)

)
+ ηT (δ)

L√
λ
|C|M

≤ηT (δ)
√

2L2 + 2λ

λ

√
MT log

(
det (VT+1)

det (V1)

)
+ ηT (δ)

2L√
λ
M log

(
det (VT+1)

det (V1)

)

≤ηT (δ)
√

2L2 + 2λ

λ

√
dMT log

(
σ2dλ+MTL2

σ2dλ

)
+ ηT (δ)

2L√
λ
dM log

(
σ2dλ+MTL2

σ2dλ

)
.

where the final line is referring to the result in [1] that

log

(
det (VT+1)

det (V1)

)
≤ d log

(
σ2dλ+MTL2

σ2dλ

)
.

D.7 Proof of Claim D.3

Proof. With probability 1 − δ, for ∀t ∈ [T ], normalized by Vt, at and bt concentrate around each
other with in a radius of ηt(δ), thus

|〈at − bt, xt,i〉| ≤ ‖at − bt‖Vt
‖xt,i‖V −1

t
≤ ηt(δ)‖xt,i‖V −1

t
.
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Summing over all individuals in time steps t /∈ C , we have

∑

t/∈C

M∑

i=1

|〈at − bt, xt,i〉| ≤
∑

t/∈C

M∑

i=1

ηt(δ)‖xt,i‖V −1

t

≤ ηT (δ)
∑

t/∈C

M∑

i=1

‖xt,i‖V −1

t

≤ ηT (δ)

√√√√MT
∑

t/∈C

M∑

i=1

‖xt,i‖2V −1

t

≤ ηT (δ)

√√√√L2 + λ

λ
·MT

∑

t/∈C

M∑

i=1

log
(
1 + ‖xt,i‖2V −1

t

)
, (D.14)

where (D.14) holds because

‖xt,i‖2V −1

t

≤ λmax(V
−1
t )‖xt,i‖2 ≤

L2

λ
.

Continuing from (D.14), we can substitute the normalization matrix V −1
t with V −1

t,i , at the cost of

inflating by 2, and then following the classic self-normalized bound on data points. Recall the Lemma
12 in [1]:

‖x‖2
A

‖x‖2
B

≤ det(A)

det(B)
, if A � B. (D.15)

Substituting V −1
t with V −1

t,i−1 in ‖xt,i‖2V −1

t

, noticing
det(V −1

t )

det(V −1

t,i−1
)
=

det(Vt,i−1)
det(Vt)

≤ det(Vt+1)
det(Vt)

≤ 2 when

t 6∈ C, leads to

‖xt,i‖2V −1

t

≤ 2‖xt,i‖2V −1

t,i

,

log
(
1 + ‖xt,i‖2V −1

t

)
≤ log

(
1 + 2‖xt,i‖2V −1

t,i−1

)

≤ 2 log
(
1 + ‖xt,i‖2V −1

t,i−1

)
.

Then it follows the self-normalized bound in [1] and gives that

∑

t/∈C

M∑

i=1

log(1 + ‖xt,i‖2V −1

t

) ≤ 2
∑

t/∈C

M∑

i=1

log
(
1 + ‖xt,i‖2V −1

t,i−1

)

≤ 2

T∑

t=1

M∑

i=1

log
(
1 + ‖xt,i‖2V −1

t,i−1

)

≤ 2 log

(
det (VT+1)

det (V1)

)
.

Therefore, the first half of (D.10) is bounded by

∑

t/∈C

M∑

i=1

|〈at − bt, xt,i〉| ≤ ηT (δ)

√
2L2 + 2λ

λ

√
MT log

(
det (VT+1)

det (V1)

)
.

D.8 Proof of Lemma A.12

Proof. By triangle inequality

EEθ?

[
‖θ̃t‖

]
≤ ‖θ?‖+ EEθ?

[
‖θ̃t − θ̂t‖

]
+ EEθ?

[
‖θ̂t − θ?‖

]
.
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Along with λmin(Vt) ≥ λ since Vt is regularized with λI in its definition, then we have

EEθ?

[
‖θ̃t‖

]
≤ ‖θ?‖+ 1√

λ
EEθ?

[
‖θ̃t − θ̂t‖Vt

]
+

1√
λ
EEθ?

[
‖θ̂t − θ?‖Vt

]
.

And in event Eθ?

:= Eθ? ( δ
2

)
∩Eθ?

DM, Eθ?

DM is independent from the sampling of θ̃t, and conditioned

on event Eθ? ( δ
2

)
, both ‖θ̃t − θ̂t‖Vt

and ‖θ̂t − θ?‖Vt
tend to be smaller than it is unconditionally.

Thus, we lift the condition on Eθ?

to get an upper bound as

EEθ?

[
‖θ̃t‖

]
≤ ‖θ?‖+ 1√

λ
Eθ?

[
‖θ̃t − θ̂t‖Vt

]
+

1√
λ
Eθ?

[
‖θ̂t − θ?‖Vt

]
. (D.16)

Recall that conditioned on any realization of θ?, θ̃t is sampled from

θ̃t ∼ N (θ̂t, V
−1
t ) (A.9 revisited)

with

Vt =
1

σ2
Φ>

t−1Φt−1 + λI, (A.10 revisited)

θ̂t =
1

σ2
V −1
t Φ>

t−1Ut−1. (A.11 revisited)

So

∥∥∥θ̃t − θ̂t

∥∥∥
2

Vt

∼ χ2
d independent from θ? and thus

Eθ?

[
‖θ̃t − θ̂t‖Vt

]
≤
√
d. (D.17)

Also, from (A.11), let Ut−1 = Φt−1θ
? + ξt−1 and ξt−1 be the corresponding noise vector, then

θ̂t − θ? is computed as

θ̂t − θ? =
1

σ2
V −1
t Φ>

t−1Ut−1 − θ?

A.10
=
(
Φ>

t−1Φt−1 + σ2λI
)−1

Φ>
t−1Ut−1 − θ?

=
(
Φ>

t−1Φt−1 + σ2λI
)−1

Φ>
t−1(Φt−1θ

? + ξt−1)− θ?

=
(
Φ>

t−1Φt−1 + σ2λI
)−1

Φ>
t−1ξt−1 − σ2λ

(
Φ>

t−1Φt−1 + σ2λI
)−1

θ?

=
1

σ2
V −1
t Φ>

t−1ξt−1 − λV −1
t θ?.

Thus,

Eθ?

[
‖θ̂t − θ?‖Vt

]
≤ 1

σ2
Eθ?

[
‖V −1

t Φ>
t−1ξt−1‖Vt

]
+ λEθ?

[
‖V −1

t θ?‖Vt

]
, (D.18)

where

Eθ?

[
‖V −1

t θ?‖Vt

]
= Eθ?

[√
θ?>V −1

t θ?
]
≤ 1√

λ
‖θ?‖, (D.19)

and

Eθ?

[
‖V −1

t Φ>
t−1ξt−1‖Vt

]
=Eθ?

[√
ξ>t−1Φt−1V

−1
t Φ>

t−1ξt−1

]

=Eθ?

[
E

[√
ξ>t−1Φt−1V

−1
t Φ>

t−1ξt−1

∣∣∣∣Φt−1

]]

v:=Φ>

t−1ξt−1

= Eθ?

[
E

[√
v>V −1

t v

∣∣∣∣Φt−1

]]
,

with v ∈ R
d following the distribution N (0, σ2Φ>

t−1Φt−1) conditioned on Φt−1 because the noise

vector ξt−1 | Φt−1 ∼ N (0, σ2I). Recall Vt =
1
σ2Φ

>
t−1Φt−1 + λI , therefore

Eθ?

[
‖V −1

t Φ>
t−1ξt−1‖Vt

]
≤ σ2

√
d. (D.20)

30



Plugging (D.19) and (D.20) into (D.18), we have

Eθ?

[
‖θ̂t − θ?‖Vt

]
≤
√
d+
√
λ‖θ?‖. (D.21)

Then plug the inequality above together with (D.17) into (D.16), we finally arrive at

EEθ?

[
‖θ̃t‖

]
≤ 2‖θ?‖+ 2

√
d

λ
.

D.9 Proof of Corollary A.13

Proof. As shown in Lemma A.9, conditioned on event Eθ? ( δ
2

)
, TS estimate θ̃ts are not far away

from θ? simultaneously:

‖θ̃t − θ?‖Vt
≤ βθ?

t

(
δ

2

)
+ αt

(
δ

2

)
, ∀t ∈ [T ]. (D.22)

Thus for ∀t ∈ [T − 1], θ̃t should not be far away from θ̃t−1 with the same high probability. From
equation (D.22), we have

‖θ̃t − θ?‖Vt
≤ βθ?

t

(
δ

2

)
+ αt

(
δ

2

)
,

‖θ̃t+1 − θ?‖Vt
≤ ‖θ̃t+1 − θ?‖Vt+1

≤ βθ?

t+1

(
δ

2

)
+ αt+1

(
δ

2

)

By the triangle inequality of norm ‖ · ‖Vt
, it holds that

‖θ̃t − θ̃t+1‖Vt
≤ ‖θ̃t − θ?‖Vt

+ ‖θ̃t+1 − θ?‖Vt

≤ 2βθ?

t+1

(
δ

2

)
+ 2αt+1

(
δ

2

)
,

where the last inequality holds due to the monotonicity in {βθ?

t

(
δ
2

)
}Tt=1 and {αt

(
δ
2

)
}Tt=1.

Therefore, we have built up the confidence ellipsoid for θ̃t − θ̃t+1 as

‖θ̃t − θ̃t+1‖Vt
≤ 2βθ?

t+1

(
δ

2

)
+ 2αt+1

(
δ

2

)
,

which fits into the condition of Lemma A.10 and leads to the result that

T−1∑

t=1

M∑

i=1

∣∣∣〈θ̃t − θ̃t+1, xt,i〉
∣∣∣ ≤ RGT

(
2βθ?

T

(
δ

2

)
+ 2αT

(
δ

2

))
.

D.10 Proof of Claim A.15

Proof. • Eθ?∼π

[
Bθ?

f

]
.

Recall that θ? is coming from the prior N
(
0, λ−1

I
)
, so θ?(i)

i.i.d.∼ N
(
0, λ− 1

2

)
, then

E [‖θ?‖] ≤
√
E [‖θ?‖2] =

√
d

λ
,

E

[
Bθ?

f

]
= 2L · E [‖θ?‖] = O

(√
d

λ
L

)
.
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• Eθ?∼π

[
RGT

(
βθ?

T

(
1
2T

)
+ αT

(
1
2T

))]
.

Recall from (A.16)the definition of RGT(ηT (δ)) as

RGT(ηT (δ)) = ηT (δ)

√
2L2 + 2λ

λ
·
√
dMT log

(
σ2dλ+MTL2

σ2dλ

)
+ηT (δ)

2L√
λ
·dM log

(
σ2dλ+MTL2

σ2dλ

)
),

in which only term ηT (δ) is θ? dependent.

Also recall the definitions of βθ?

T (δ) and αT (δ) from (A.14) and (A.15), we have

Eθ?∼π

[
βθ?

T

(
1

2T

)]
≤
√
2 log (2T ) + d log

(
σ2λd+ TML2

σ2λd

)
+
√
d, (D.23)

Eθ?∼π

[
αT

(
1

2T

)]
= 2
√
2d log (2T ) +

√
d. (D.24)

Plugging into ηT (δ) = βθ?

T (δ) + αT (δ), then

Eθ?∼π

[
ηT

(
1

2T

)]
= Eθ?∼π
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T

(
1
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)]
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[
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1

2T
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≤
√
2 log (2T ) + d log

(
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)
+
√
d+ 2

√
2d log (2T ) +

√
d

= O

(√
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(
σ2λd+ TML2
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. (D.25)

Therefore, we bound the order of Eθ?∼π

[
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T
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1
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(
1
2T

))]
by
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[
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(
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(
1

2T

)
+ αT

(
1
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))]

=O
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L√
λ
d
√
MT log

(
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σ2λd
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+O

(
L√
λ
d

3
2M log

(
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.
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