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Abstract 41 

Boreal peatlands are highly heterogeneous and play a significant role in the global 42 

carbon (C) cycle. However, the effects of the peatland-dominated heterogeneity within 43 

the boreal landscape are rarely quantified. Here, we use field-based measurements, 44 

high-resolution land cover classification, and biogeochemical and atmospheric models 45 

to estimate the C budget and corresponding radiative effect (RE) for a boreal landscape 46 

(Kaamanen) that is rich in peatlands and aquatic ecosystems. The average present-day, 47 

landscape-scale CO2 and CH4 budgets were -108 ± 10 and 2.28 ± 0.19 g C m-2 yr-1, 48 

respectively. We find that peatland heterogeneity accounts for 88% of the variability in 49 

CH4-C budget across the Kaamanen landscape despite only comprising 26% of the area. 50 

Moreover, peatland heterogeneity dominates the variability in RE that combines CO2 51 

and CH4 exchanges within the landscape, accounting for 65% and 79% over the 100-yr 52 

and 25-yr time horizons, respectively. Future warming tends to enhance this 53 

heterogeneity. Aggregating peatland classification or mis-classifying peatlands can 54 

significantly alter the estimated magnitude and even the sign of the RE due to 55 

landscape-scale C exchanges. Scrutiny of global land cover products revealed 56 

significant shortcomings in their representation of boreal peatlands, calling for 57 

improved mapping of boreal peatland heterogeneity to reduce the uncertainty in C 58 

budgets and C-climate feedback. 59 

 60 

Keywords: boreal, landscape, peatland, heterogeneity, carbon, radiative effect  61 
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1 Introduction 62 

The boreal biome, consisting of forest, peatland, and lake ecosystems, occurs in 63 

continental interiors at 45.5-71.4oN and covers about 15.1 million km2 or 10.3% of 64 

Earth’s land surface area (Helbig et al., 2020; Olson et al., 2001). This vast and 65 

patterned area stores more carbon (C) than the atmosphere (~ 1000 GtC vs. 860 GtC), 66 

most of which resides in soils and peatlands (Bradshaw & Warkentin, 2015; 67 

Friedlingstein et al., 2020; Hugelius et al., 2020; Nichols & Peteet, 2019). Moreover, 68 

the boreal ecosystems are vulnerable to environmental changes (Åberg, Jansson, & 69 

Jonsson, 2010; Hopple et al., 2020; Loisel et al., 2021), and thus their functioning in 70 

the changing climate is vital to the global C budget (Comyn-Platt et al., 2018; Gauthier, 71 

Bernier, Kuuluvainen, Shvidenko, & Schepaschenko, 2015; Tagesson et al., 2020). 72 

 73 

Landscape processes are important for the upscaling of C budget across a biome since 74 

Earth System Models (ESMs) or statistical models such as machine learning are 75 

generally performed based on grid cells that are composed of multiple land units 76 

(Lawrence et al., 2018). A typical boreal landscape shows a mosaic of diverse forests, 77 

peatlands, and water bodies with large differences in their abiotic and biotic 78 

characteristics (Chapin III, Matson, & Vitousek, 2011; Hugelius et al., 2020; 79 

Verpoorter, Kutser, Seekell, & Tranvik, 2014). Therefore, the exploration of C budget 80 

and its climate impact at the landscape scale by considering the mosaic structure is 81 

crucial for accurately estimating the C budget across the boreal biome and hence for 82 

better understanding global C-climate feedbacks. 83 

 84 
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Despite their significance, our understanding of the landscape-scale C dynamics, 85 

including both carbon dioxide (CO2) and methane (CH4), in the circumpolar region 86 

mainly derives from tundra (Sturtevant & Oechel, 2013; Treat et al., 2018; Weller et 87 

al., 1995) and the transition zone between the tundra and boreal biomes (Christensen et 88 

al., 2007; O'Shea et al., 2014; Tang et al., 2015). Within the boreal biome, most studies 89 

have been aimed at the C dynamics of individual ecosystems (Clemmensen et al., 2013; 90 

Guo et al., 2020; Johansson et al., 2006) or the entire boreal zone (Kicklighter, Melillo, 91 

Monier, Sokolov, & Zhuang, 2019; Tagesson et al., 2020), with only a few landscape-92 

scale studies that consider both CO2 and CH4 exchange and forest, peatland, and aquatic 93 

ecosystems at the same time. These studies have advanced our understanding for 94 

example by showing the difference between short- and long-term C dynamics within a 95 

catchment (Juutinen et al., 2013), the need for integrating terrestrial and aquatic fluxes 96 

at the landscape scale (Aurela et al., 2015; Chi et al., 2020; Juutinen et al., 2013), and 97 

the application of airborne measurements of CO2 and CH4 fluxes to regional upscaling 98 

(O'Shea et al., 2014). In spite of these advances, there are major knowledge gaps. First, 99 

a fine-resolution mapping of different land cover types (LCTs) within a peatland 100 

complex, and thus the detailed quantification of heterogeneity in peatland C dynamics 101 

relative to the landscape-scale heterogeneity, is lacking. Second, remote sensing-based 102 

land cover classification is prone to classification errors. For example, peatlands 103 

adjacent to or embedded in forests may become classified as forests (Thompson, 104 

Simpson, & Beaudoin, 2016), and peatlands adjacent to lakes and flooded areas 105 

classified as lakes (Matthews, Johnson, Genovese, Du, & Bastviken, 2020). Little is 106 

known about how such LCT aggregation or misclassification affects the estimated 107 

landscape-scale C budgets. Third, our knowledge of the potential trajectories of the 108 

LCT-specific C budget heterogeneity under future warming conditions is limited. These 109 
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knowledge gaps undermine current C inventories, remote sensing-based upscaling 110 

products and procedures, and especially ESMs, in which the peatlands are considered 111 

as a single block entity, if at all (Loisel et al., 2021). This points to an urgent need to 112 

better understand what level of detail is needed to characterize the heterogeneous boreal 113 

landscapes and their response to warming. 114 

 115 

To fill these research gaps, we conducted an in-depth study in a typical northern boreal 116 

landscape located in northern Finland. We performed a high-resolution land cover 117 

classification based on multi-source remote sensing and field data. We collected large 118 

amounts of LCT-specific data including ecosystem-atmosphere fluxes of CO2 and CH4, 119 

soil and vegetation properties, and meteorological and hydrological variables. With 120 

these data, we calibrated and validated terrestrial and aquatic biogeochemical models, 121 

and simulated daily greenhouse gas (GHG) fluxes under present and future conditions. 122 

In addition, we estimated the potential development of the radiative effect of these 123 

fluxes. With these analyses, we aim to quantify the heterogeneity in peatland C 124 

dynamics and their radiative effect relative to that in the landscape scale and 125 

demonstrate the importance of accurately mapping the small-scale variation in peatland 126 

types within a typical boreal landscape. To assess the need for improved peatland 127 

mapping within the boreal zone, we surveyed how accurately the peatlands within the 128 

study area are depicted in current global, continental, and national land cover products. 129 

 130 
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2 Materials and methods 131 

2.1 Study area 132 

This study was conducted in a 32.8 km2 northern boreal catchment situated in northern 133 

Finland (69.13-69.26°N, 27.21-27.45°E; 155 m a.s.l), about 200 km south of the Arctic 134 

Ocean (Figure 1). The catchment is characterized by subarctic climate (Aurela, Laurila, 135 

& Tuovinen, 2001). The mean annual air temperature during the period from 1981 to 136 

2010 at the Inari Ivalo weather station (59 km south of Kaamanen) was -0.4 ℃, with 137 

the warmest and coldest monthly air temperature being 14.0 ℃ and -12.8 ℃ in July 138 

and January, respectively (Pirinen et al., 2012). During the aforementioned period, the 139 

mean annual precipitation was 472 mm, and the mean annual relative humidity was 140 

79% (Pirinen et al., 2012). 141 

 142 

2.2 Land cover classification 143 

Land cover in the study area was classified using a geographic object-based image 144 

analysis approach, following the methodology described by Räsänen, Juutinen, Tuittila, 145 

Aurela, and Virtanen (2019) and Räsänen and Virtanen (2019). Object-based 146 

approaches have been documented to be effective in particular when analyzing high-147 

spatial resolution remote sensing imagery (Blaschke et al., 2014; Chen, Weng, Hay, & 148 

He, 2018), and it has been shown that inclusion of multi-source (i.e., multiple types of 149 

remote sensing data) and multi-temporal remote sensing data increases land cover 150 

classification accuracy (Amani et al., 2017; Chasmer et al., 2020; Halabisky, Babcock, 151 

& Moskal, 2018; Karlson et al., 2019; Räsänen & Virtanen, 2019). Specifically, a 152 

WorldView-2 satellite image (WV-2, DigitalGlobe Inc., Westminster, CO, USA) was 153 

segmented with a full lambda schedule segmentation with an average segment size of 154 

0.2 ha. For each segment, 352 features, including spectral, topographic, vegetation 155 
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height, and texture features, were calculated from the WorldView-2 image, four 156 

PlanetScope satellite images (PS, Planet Labs Inc., San Francisco, CA, USA) from 157 

different phenological stages and aerial lidar data (National Land Survey of Finland) 158 

(Table S1). 159 

 160 

Training data were collected from 16 transects of 0.25-1.0 km in length and visual 161 

interpretation of an aerial orthophoto. In total, there were 1058 training segments (18-162 

383 in each LCT). A supervised random forest classification (Breiman, 2001) was used 163 

to classify 11 LCTs (excluding streams) (Table 1; Figure S1). Accuracy of the 164 

classification was assessed with a pixel-based approach utilizing 359 vegetation plots, 165 

of which 137 were circular plots with a radius of 5 m (of which 59 were in transects, 166 

and 78 randomly sampled), 204 were quadrats with a 50 cm side length (in transects), 167 

and 18 were circular plots with a radius of 20 cm (Räsänen & Virtanen, 2019). 168 

 169 

After the random forest classification, the stream LCT was added to the map from 170 

National Land Survey of Finland topographic database. Owing to large differences in 171 

hydrology and C dynamics (Figures S2-S7; Table S2), the fen string LCT was split into 172 

string top and string margin fractions by assuming that 59.2% of the string belong to 173 

tops and 40.8% to margins as per the land cover classification conducted for a peatland 174 

area within the landscape (Heiskanen et al., 2021; Räsänen & Virtanen, 2019) (Table 175 

2). 176 

 177 
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2.3 Flux measurements 178 

The ecosystem-atmosphere fluxes of CO2 and CH4 were measured on the dominant 179 

peatland surfaces, i.e., pine bog, string top, string margin, tall sedge fen, and flark fen, 180 

using a static chamber technique (Heiskanen et al., 2021; Juutinen et al., 2013; Laine, 181 

Riutta, Juutinen, Väliranta, & Tuittila, 2009). The measurements were made repeatedly 182 

during the growing seasons 2005, 2006, 2017, and 2018 (Heiskanen et al., 2021; 183 

Juutinen et al., 2013; Laine et al., 2009). Permanent chamber bases were installed in 184 

replicate for each peatland type. 185 

 186 

Net ecosystem CO2 exchange (NEE) was measured using transparent chambers 187 

equipped with a fan and an infra-red gas analyzer (in 2005-2006, EGM-3, PP-systems, 188 

MA, USA; in 2017-2018, Picarro G2401, Picarro Inc., CA, USA), and was determined 189 

from several (2-4) replicate measurements. Ecosystem respiration (ER) was measured 190 

using opaque chambers. Fluxes were calculated from concentration changes using 191 

standard methods (Heiskanen et al., 2021; Juutinen et al., 2013; Laine et al., 2009). 192 

Gross primary productivity (GPP) was calculated as the difference between NEE and 193 

ER. Positive fluxes in this study indicate a C flux to the atmosphere, while negative 194 

values represent C uptake by the ecosystem. 195 

 196 

In 2005-2006, the CH4 fluxes were determined in aluminum chambers equipped with a 197 

fan, and CH4 concentration was measured using gas chromatographs (HP-5710A and 198 

HP-5890A, Palo Alto, CA, USA) equipped with a flame ionization detector (Juutinen 199 

et al., 2013). In 2017-2018, the CH4 flux measurements were conducted with the CO2 200 

chamber flux set-up. 201 
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 202 

In the pine forest (69.1°N, 27.3°E), NEE was measured using the eddy covariance (EC) 203 

technique from June 2017 to December 2018 (Heiskanen et al., 2021). The NEE data 204 

for birch forest were derived from the EC measurements conducted at Petsikko 205 

(69.28°N, 27.14°E) in June–September 1996 (Aurela, Tuovinen, & Laurila, 2001). 206 

 207 

At a lake within the study landscape, the CO2 and CH4 fluxes were measured manually 208 

with a Picarro G2401 (Picarro Inc., CA, USA) and floating chambers during the 209 

summer season (June–August) of 2017 (Juutinen et al., 2013). 210 

 211 

2.4 Terrestrial ecosystem modeling 212 

Ecosystem C dynamics of the terrestrial land cover types in the study landscape were 213 

simulated using a process-based biogeochemistry model, NEST-DNDC (Zhang, Sachs, 214 

Li, & Boike, 2012). It integrates a widely used biogeochemical model DeNitrification-215 

DeComposition (DNDC) (Kou et al., 2020; Li, Aber, Stange, Butterbach-Bahl, & 216 

Papen, 2000) with the Northern Ecosystem Soil Temperature model (NEST) (Zhang, 217 

Chen, & Cihlar, 2003). Thus, the model can effectively simulate C dynamics in LCTs 218 

of the cold circumpolar regions (Deng et al., 2017; Treat et al., 2018; Zhang et al., 219 

2012). In the model, all LCTs share common climate and atmospheric environmental 220 

conditions (e.g., atmospheric CO2 and nitrogen (N) concentration), but they differ in 221 

their assigned land types, soil, and vegetation characteristics. Therefore, the model is 222 

particularly suitable to work with ecosystem C dynamics in fragmented circumpolar 223 

landscapes (Zhang et al., 2012). 224 

 225 
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In this study, the simulations with the NEST-DNDC model for the terrestrial LCTs 226 

were conducted through the following three steps. First, the datasets required for model 227 

input were prepared, including data associated with climate, soil, and vegetation. Of 228 

them, the climate dataset, shared by all LCTs, include historical meteorological 229 

observations for 1996 and 2005-2018, and future data for 2019-2099. The historical 230 

climate dataset, including daily mean, maximum, and minimum air temperatures, 231 

precipitation, wind speed, global radiation, and relative humidity, were derived from 232 

the Utsjoki Kevo weather station (69.8°N, 27.0°E) of the Finnish Meteorological 233 

Institute. The future climate data was extracted from the bias-corrected dataset of the 234 

International Impact Model Intercomparison Project (ISIMIP) output from HadGEM2-235 

ES (Frieler et al., 2017). 236 

 237 

The LCT-specific soil variables that were used to drive the model consisted of texture, 238 

bulk density, pH, soil C concentration, and soil C:N ratio (Table S2). The soil texture 239 

was loamy sand for forests and pristine peat for peatlands. In all peatlands, soil samples 240 

of a known volume were collected from layers 0–5 cm and 15–20 cm beneath the litter 241 

layer (the layer where vascular plant and moss leaf structures are still discernible) using 242 

a knife and scissors. The samples were dried (48 h at 75 °C) and weighted for dry mass. 243 

Bulk density was calculated based on the volume and dry mass of the samples. Parts of 244 

dry samples were ground using a ball mill and 0.2 g subsamples of ground material 245 

were analyzed for total C and N concentrations using a LECO CNS-2000 analyzer 246 

(LECO Corporation, Saint Joseph, MI, USA). Soil pH was estimated in the field in 247 

water collected at the depth of 30 cm. In models, means of the two peat layers were 248 

used for bulk density, C concentration, and C:N ratio. In pine, birch and pine-birch 249 

mixed forests, pits were dug to a depth of 100 cm and horizontal soil cores (length 5 250 
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cm, diameter 3 cm) were collected from the organic (O) and eluvial (E) horizons, from 251 

the top and bottom parts of the illuvial (B) horizon, and at the depth of 50 and 100 cm. 252 

These samples were analyzed following the procedures described for peatland samples 253 

except that the pH was measured from O horizon samples and samples collected at 30 254 

cm depth in distilled water solution. In models, means of values of all available soil 255 

horizons were used for forest soil bulk density, C concentration, C:N ratio, and pH. 256 

Vegetation data included in the models consisted of aboveground plant biomass and 257 

leaf area index (LAI) of different LCTs (Tables S3-S4). The aboveground biomass and 258 

LAI of each LCT was determined based on 130 circular plots with a 5 m radius (71 259 

random plots, 59 plots in transects) distributed among the LCTs (see Supplementary 260 

Text for detailed information). 261 

 262 

Second, we calibrated and validated the model for different LCTs (Figures S2-S15). 263 

The observed C fluxes used for the model calibration included the 1996 data of birch 264 

forest, the 2006 data of pine bog, string margin, tall sedge fen, and flark fen, and the 265 

2017 data of string top and pine forest. The calibrated models were then validated with 266 

the remaining C flux data, from 2005 for pine bog, string margin, tall sedge fen, and 267 

flark fen, from 2017 for string margin, and from 2018 for string top, string margin, and 268 

pine forest. Finally, we ran the calibrated and validated model for the period 2005-2018 269 

for the dominant terrestrial LCTs. To explore the potential trajectory of RE 270 

heterogeneity under warming, we then drove the model for the period 2019-2099 with 271 

variable temperature from two Representative Concentration Pathway scenarios, 272 

RCP4.5 and RCP8.5, keeping other climatic and atmospheric inputs constant (2005-273 

2018 averages) (Lucht et al., 2002). The C budget of mixed forest and open forest was 274 

simulated based on parameters from pine/birch forest and their own soil and vegetation 275 
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data. The pine bog simulation was also used for birch swamp (covering only 0.12% of 276 

study area) in the landscape-scale estimation of C budget and RE since observations 277 

were lacking for birch swamp. 278 

 279 

2.5 Aquatic ecosystem modeling 280 

The Arctic Lake Biogeochemistry Model (ALBM), which is a one-dimensional 281 

process-based climate-sensitive lake biogeochemistry model, was used to simulate the 282 

CO2 and CH4 fluxes from lakes in the study area (Guo et al., 2020; Tan, Zhuang, & 283 

Anthony, 2015; Tan et al., 2017). For lake C fluxes, the model simulates both the 284 

diffusive and the ebullitive emission. The model was first calibrated against 285 

observations of water temperature and C fluxes of the lake using the Monte Carlo 286 

method with 10,000 parameter sample sets. The optimum parameter set was then 287 

selected based on the total root-mean-square error of the modeled CO2 and CH4 fluxes. 288 

Finally, we run simulations over the same period forced by the same meteorological 289 

data as for the other LCTs (Figure S16). The lake simulation was also used for streams 290 

in the landscape-scale estimation of C budget and RE. 291 

 292 

2.6 Radiative effect of greenhouse gas fluxes 293 

The annual CO2 and CH4 flux densities (g m-2 yr-1) of each LCT during the period of 294 

2005-2099 were used as input to estimate the radiative effect (RE) of these fluxes, i.e., 295 

their contribution to Earth’s radiative balance. We expressed this effect as the 296 

cumulative RE due to an annual emission or uptake pulse over time horizons of 25 and 297 

100 yr, which was calculated using a dynamic radiative forcing (RF) model (Lohila et 298 

al., 2010; Mathijssen et al., 2017; Piilo et al., 2020). Even though we used a RF model 299 

here, it is important to note that we refer to this quantity as RE, as it does not represent 300 
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a forcing that would result from a perturbation to Earth’s energy balance (Neubauer, 301 

2021). This modelling is performed in order to obtain a common metric for the CO2 302 

and CH4 fluxes, in a similar vein to the CO2-equivalent fluxes derived from the global 303 

warming potential concept; however, using RE as the common metric provides 304 

additional flexibility as we can dynamically account for the effect of changing 305 

background concentrations. 306 

 307 

In the RF model, CO2 and CH4 pulses were assumed to be instantaneously and 308 

completely mixed in the atmosphere (Myhre et al., 2013). The resulting atmospheric 309 

concentration pulses were modeled to decay according to characteristic time scales 310 

related to global biogeochemical cycles. For CO2, these dynamics were implemented 311 

as a weighted sum of four exponential functions, where the shortest perturbation time 312 

was 4.3 yr and the slowest decay function effectively corresponded to a permanent 313 

atmospheric change for 22% of each annual pulse (Joos et al., 2013). The evolution of 314 

the atmospheric CH4 concentration perturbation was calculated as an exponential decay 315 

with a single atmospheric perturbation time scale of 12.4 yr (Myhre et al., 2013). 316 

 317 

The annual emission/uptake pulses were integrated over time by accounting for their 318 

timing and decay, resulting in time series of atmospheric CO2 and CH4 concentration 319 

changes. Atmospheric oxidation of the emitted CH4 molecules to CO2, which generates 320 

an indirect RE, was included in the model assuming an 80% efficiency for the CH4-to-321 

CO2 conversion (Boucher, Friedlingstein, Collins, & Shine, 2009). The instantaneous 322 

RE resulting from the modeled CO2 and CH4 concentration changes was calculated with 323 

a radiative efficiency parameterization (Etminan, Myhre, Highwood, & Shine, 2016). 324 

This parameterization takes into account the spectral interactions between CO2, CH4, 325 
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and nitrous oxide. The model also includes an estimate for the indirect CH4-induced 326 

RE due to ozone and stratospheric water vapor changes (Myhre et al., 2013). The RE 327 

due to ecosystem-atmosphere fluxes was calculated as a marginal change with respect 328 

to specified, variable background concentrations (Lohila et al., 2010). These 329 

concentrations were adopted from the RCP scenarios (Meinshausen et al., 2011). In this 330 

study, the total RE refers to the sum of the RE due to CO2 and CH4. 331 

 332 

2.7 Statistical analysis 333 

The landscape-scale C budget and RE were estimated by weighting the C budget and 334 

RE of each LCT (except non-vegetated) with the corresponding relative area within the 335 

catchment. The role of peatlands in the landscape-scale heterogeneity in C budget and 336 

RE was quantified at two levels, based on the LCT-specific C fluxes expressed (1) per 337 

unit area (‘LCT-based heterogeneity’) and (2) as area-weighted budgets (‘area-based 338 

heterogeneity’). For the LCT-based heterogeneity, we calculated the Sum of Squared 339 

Deviations (SSD) from the arithmetic mean among peatland LCTs and that among all 340 

LCTs within the landscape and then divided the peatland SSD by the landscape SSD. 341 

For the area-based heterogeneity, we calculated the ratio between the SSD from the 342 

area-weighted mean among peatland LCTs and that among all LCTs within the boreal 343 

landscape. 344 

 345 

To illustrate the uncertainty in the landscape-scale results due to aggregation or 346 

misclassification of peatlands, we tested the statistical difference among different land 347 

cover scenarios (i.e., scenarios that peatlands are combined, and scenarios that 348 

peatlands are mis-classified as non-peatland LCTs) with Least Significant Difference 349 

(LSD). Combining peatland LCTs is relevant because peatland LCTs in the current 350 
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circumpolar peatland maps are generally expressed as a uniform land cover type 351 

(Hugelius et al., 2020; Xu, Morris, Liu, & Holden, 2018), without capturing spatial 352 

heterogeneity among different peatland types. In remote sensing-based products, 353 

peatlands can also be confused with other terrestrial or aquatic LCTs. Most commonly, 354 

forested peatland is mis-classified as forest (Thompson et al., 2016) and open water-355 

logged peatland with low vegetation as a lake (Matthews et al., 2020). 356 

 357 

When estimating potential trajectories of RE heterogeneity among different LCTs 358 

under future warming scenarios, the relative importance of CO2 and CH4 in explaining 359 

the trend of total RE heterogeneity was analyzed with the random forest technique 360 

(Delgado-Baquerizo et al., 2018). 361 

 362 

2.8 Survey of land cover products 363 

We surveyed seven widely used global land cover products in our study area and 364 

assessed how well peatlands are presented in them by calculating the fractional 365 

peatland/wetland area and estimating the spatial agreement with our LCT data by error 366 

matrices (Frey & Smith, 2007; Krankina et al., 2008). Moreover, we included in the 367 

comparison one continental and one national land cover product. The nine products 368 

considered are detailed in Table 3. 369 

 370 

3 Results 371 

3.1 Landscape heterogeneity 372 

Twelve LCTs were distinguished within the studied boreal landscape with high spatial 373 

resolution land cover classification (Figures 1, S1; Tables 1-2), with an overall accuracy 374 

of 73.1% (Table S5). Four of these LCTs were forests (i.e., pine, birch, mixed, and open 375 
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forests, occupying 60.6% of the landscape), two were water bodies (i.e., lake and 376 

stream, 13.2%), one represents non-vegetated areas (0.7%), and five were peatlands 377 

(25.5%) that were distributed along a gradient from forests to water bodies (Table 1). 378 

Among the peatland LCTs, pine bog (9.3%), birch swamp (0.1%), and fen string 379 

(including thin, elongated, and smaller, rounded elevated microforms; 2.7% string top 380 

and 1.8% string margin) were characterized as dry communities as their water tables 381 

were below the peat surface (Tables 2, S2). Of these, pine bog and birch swamp 382 

represent forested dry peatlands while string top and margin represent open dry 383 

peatland habitats (Table 1). The two water-logged peatland LCTs, i.e., tall sedge fen 384 

(5.6%) and flark fen (6.0%), represent open wet peatland habitats (Tables 1-2, S2). 385 

 386 

3.2 Carbon budget under present climate 387 

The various LCTs differ in vegetation, soil, and hydrological characteristics (Figures 388 

S2-S16; Tables 1, S2-S4), leading to heterogeneity in the ecosystem-atmosphere fluxes 389 

of CO2 and CH4 (Figure 2). For the total C budget (sum of CO2-C and CH4-C budgets), 390 

the terrestrial LCTs (peatlands and forests) functioned as C sinks, while lakes 391 

functioned as a significant C source (mean ± 95% confidence interval: 27 ± 2 g C m-2 392 

yr-1) during the period 2005-2018 (Figure 2a). Among the peatland LCTs, the C budget 393 

ranged from a large C sequestration in pine bog (-141 ± 17 g C m-2 yr-1) to a small 394 

sequestration in tall sedge fen (-17 ± 3 g C m-2 yr-1), while among the forest types, the 395 

largest C sink was found for pine forest (-154 ± 17 g C m-2 yr-1) and the smallest for 396 

open forest (-45 ± 6 g C m-2 yr-1) (Figure 2a). The variability and magnitude of the total 397 

C budget was dominated by CO2 (Figure 2b). Most peatland LCTs emitted CH4 to the 398 

atmosphere, with the largest emission from the water-logged peatland LCTs (tall sedge 399 

fen: 19 ± 1 g C m-2 yr-1; flark fen: 17 ± 2 g C m-2 yr-1) (Figure 2e). Forests functioned 400 
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as weak CH4 sinks (-0.23 ± 0.02 to -0.26 ± 0.02 g C m-2 yr-1), while lakes were CH4 401 

sources (1.33 ± 0.09 g C m-2 yr-1) (Figure 2e). 402 

 403 

By quantifying the role of peatlands in the landscape-scale heterogeneity in C budget 404 

at the LCT level, we found that the variability in the total C mass budget among 405 

peatland LCTs accounted for 38 ± 5 % of the variability due to all landscape LCTs 406 

combined (Figure 2f). The CO2-C budget, GPP, and ER heterogeneity had a similar 407 

peatland contribution (33 ± 5 %, 36 ± 1 %, and 39 ± 2 %, respectively) (Figure 2f). 408 

Compared to them, peatlands explained a significantly larger part of the variability (81 409 

± 0.5 %) in the CH4-C budget (Figure 2f). 410 

 411 

The landscape-scale C budget, obtained by weighting the CO2 and CH4 exchange rates 412 

of each LCT by the corresponding areas (Table 2), was -106 ± 11 g C m-2 yr-1 in 2005-413 

2018. It was dominated by the CO2 uptake of -108 ± 10 g C m-2 yr-1 while the CH4 414 

emission was 2.28 ± 0.19 g C m-2 yr-1 (landscape mean in Figure 2a-e). Peatlands 415 

explained a smaller part of the variability in total C budget (19 ± 3 %), CO2-C budget 416 

(15 ± 3 %), GPP (16 ± 1 %), and ER (19 ± 1 %) compared to the LCT level (Figure 2g). 417 

These proportions were also less than the proportion of the total peatland area within 418 

the landscape (26%) (Table 2). However, peatlands explained as much as 88 ± 0.1 % 419 

of the CH4 flux variability when scaling them with LCT areas (Figure 2g). 420 

 421 

3.3 Radiative effect of present carbon budget 422 

The different heterogeneities in CO2-C and CH4-C budgets, together with the different 423 

radiative impacts of CO2 and CH4 (Myhre et al., 2013), led to a further layer of LCT 424 
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heterogeneity in the C flux effect on radiative balance (Figure 3). The total RE 425 

generated by CO2 and CH4 fluxes varied greatly among the peatland LCTs (Figure 3a). 426 

Specifically, pine bog had the greatest negative RE (-37 ± 4 fW m-2 over the 100-yr 427 

time horizon, 1 fW = 10-15 W), followed by string top (-25 ± 3 fW m-2). In contrast, tall 428 

sedge fen exhibited the largest positive RE among all the LCTs (69 ± 6 fW m-2), 429 

followed by flark fen (52 ± 7 fW m-2). Consequently, the RE generated by different 430 

peatland types spanned a range of 107 ± 9 fW m-2, which was more than twice that 431 

among the forest and aquatic LCTs (56 ± 5 fW m-2) (Figure 3a). 432 

 433 

Despite comprising just 26% of the landscape area, the variability among peatland types 434 

accounted for 77 ± 3 % to 81 ± 1% of the total variability in RE at the LCT level and 435 

65 ± 4% to 79 ± 2 % when considering LCT areas, depending on the time horizon 436 

(Figure 3d-e). These were similar to the corresponding SSD ratio for the CH4-C budget 437 

(LCT-based: 81 ± 0.5 %; area-based: 88 ± 0.1 %) and much larger than those for the 438 

CO2-C budget (LCT-based: 33 ± 5 %; area-based: 15 ± 3 %) (Figure 3d-e). 439 

 440 

3.4 Uncertainty due to biased peatland classification 441 

The area-weighted total RE resulting from the CO2 and CH4 budgets was -20 ± 3 fW 442 

m-2 per unit area of the region over the 100-yr time horizon (CO2: -30 ± 3 fW m-2; CH4: 443 

10 ± 1 fW m-2; landscape mean in Figure 3a-c). 444 

 445 

Using this result as a baseline (Scenario 1, Figure 4), we analyzed the potential 446 

deviation in RE for scenarios in which peatland LCTs were combined (Scenario set 2 447 

in Figure 4) or mis-classified as forests or lakes (Scenario set 3 in Figure 4). Regarding 448 
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scenarios in which peatland LCTs are combined, our results showed that the negative 449 

RE over the 100-yr time horizon significantly decreased when all the peatland LCTs 450 

were pooled into the forested dry peatland class (pine bog, -32 ± 3 fW m-2, Scenario 451 

2a) or treated as string top (-29 ± 3 fW m-2, Scenario 2b) (Figure 4a). On the other hand, 452 

the negative RE significantly increased when all the peatland LCTs were classified as 453 

water-logged peatland (tall sedge fen, -5 ± 3 fW m-2, Scenario 2d; flark fen, -10 ± 4 fW 454 

m-2, Scenario 2e) (Figure 4a). This suggests that, to accurately estimate the regional 455 

RE, the LCT mapping must be able to distinguish between the water-logged and dry 456 

peatland areas within the landscape. Consistent with this point, when all the water-457 

logged peatland areas were classified as tall sedge fen and all the dry peatland LCTs 458 

were classified as string top, RE did not change significantly (Scenario 2f, Figure 4a). 459 

 460 

Regarding scenarios that peatlands are confused with other terrestrial or aquatic LCTs, 461 

our results showed that the uncertainty in RE was insignificant if pine bog (the 462 

dominant forested peatland in the landscape) was identified as pine forest (-21 ± 4 fW 463 

m-2, Scenario 3a, Figure 4a). This was associated with the comparable CO2 budgets and 464 

the consistently small CH4 emissions of the forested peatlands and their corresponding 465 

forest types (Figure 2). Similarly, when flark fen, an open water-logged peatland with 466 

low vegetation cover, was classified as a lake, the modeled RE did not change 467 

significantly (Scenario 3b, Figure 4a). However, when the two above-mentioned 468 

misclassification scenarios were adopted simultaneously and the remaining open 469 

peatland LCTs were represented by a single open dry peatland type (string top), the 470 

negative RE decreased significantly (Scenario 3c, Figure 4a). Our results demonstrate 471 

the potentially high sensitivity of the modeled RE to peatland classification (Figure 4a). 472 
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Further analyses showed that over a shorter time horizon (25 yr) this sensitivity 473 

involved not only the magnitude but also the sign of RE (Figure 4b). 474 

 475 

Like RE, our results also demonstrated that the aggregation or misclassification of 476 

peatlands could significantly alter the estimated landscape-scale C budget, although the 477 

differences among various scenarios were smaller compared to RE (Figure 4c). 478 

Moreover, we found that the landscape-scale CO2 budget and its RE did not differ 479 

significantly (p > 0.05) from those calculated with the full LCT classification (Scenario 480 

1) in any peatland aggregation or misclassification scenario (Figure 4d-f). In contrast, 481 

there were significant differences in the landscape-scale CH4 budget and its RE among 482 

different scenarios (Figure 4d-f). 483 

 484 

3.5 Radiative effect of future carbon budget 485 

Based on our RE calculations with the LCT fluxes modeled until 2099, we found that 486 

the variation in total RE due to the C budget of different peatland LCTs significantly 487 

increased during 2005-2099 under both RCP scenarios considered (p < 0.001; Figure 488 

5a-b). Even though the radiative efficiency (i.e., RE per atmospheric GHG change) is 489 

concurrently reduced as background concentrations increase (Etminan et al., 2016; 490 

Meinshausen et al., 2011), the warming-induced changes in GHG fluxes resulted in an 491 

amplified variability in the RE of total C budget among peatland LCTs. Compared to 492 

the present period (2005-2018), the peatland heterogeneity in total RE during 2086-493 

2099 was enhanced by 143% under RCP4.5 and by 243% under RCP8.5 (Figure 5a-b). 494 

Moreover, the SSD of total RE among all the landscape LCTs also significantly 495 

increased under the two RCP scenarios (p < 0.001; Figure 5a-b), indicating an amplified 496 
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heterogeneity in RE at the landscape scale as well. Similar to the total RE, the SSD of 497 

CH4-induced RE among the peatland LCTs significantly increased with warming under 498 

both climate change scenarios (p < 0.001; Figure 5c-d). Moreover, our results showed 499 

that, compared to CO2-C exchange, the RE heterogeneity due to CH4-C budget had a 500 

larger relative importance in explaining the trend of total RE heterogeneity among 501 

peatlands during 2005-2099 (Figure 5e-f). 502 

 503 

3.6 Survey of different land cover products 504 

Compared to the 25.5% areal coverage of peatlands within the Kaamanen landscape 505 

revealed by our classification, there was no peatland/wetland specified in the global 506 

land cover map of GLCC, MODIS.LCT or GLWD; the coverage was 0.1% in both 507 

GlobCover2009 and FROM-GLC10, as high as 58.0% in GLC2000, and 24.8% in 508 

PEATMAP (Figure 6; Table 3). Although the proportion of peatlands was similar in 509 

PEATMAP and this study, the spatial agreement between their areas was only 48.5% 510 

(Table 3). The corresponding spatial agreement for GLC2000, GlobCover2009, and 511 

FROM-GLC10 were 21.8%, 0.1%, and 0.01%, respectively (Table 3). Regarding the 512 

peatland/wetland heterogeneity, there was only one peatland/wetland type defined in 513 

any of the considered global products including such a LCT, i.e., ‘regularly flooded 514 

shrub and/or herbaceous cover’ in GLC2000, ‘closed to open (>15%) grassland or 515 

woody vegetation on regularly flooded or waterlogged soil’ in GlobCover2009, 516 

‘wetland’ in FROM-GLC10, and ‘peatland’ in PEATMAP (Figure 6). 517 

 518 

The European-level product, CLC2018EU.25ha, has a similar peatland representation 519 

to PEATMAP, i.e., one peatland category (‘peatbog’), with a 25.3% areal coverage and 520 
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44.8% spatial agreement (Figure 6; Table 3). Unlike the larger scale products, the 521 

national data base CLC2018FI.20m provides multiple peatland classes for the 522 

Kaamanen landscape (‘Broad-leaved forest on peatland’, ‘Coniferous forest on 523 

peatland’, ‘Mixed forest on peatland’, ‘Transitional woodland/shrub cc 10-30% on 524 

peatland’ (cc = canopy closure), ‘Peatbog’, ‘Terrestrial inland marsh’, and ‘Aquatic 525 

inland marsh’), with a relatively accurate peatland area (28.6%) and a high score of 526 

spatial agreement (62.0%) (Figure 6; Table 3). On the other hand, the ‘Peatbog’ class, 527 

which in CLC2018FI.20m is defined as open peatlands smaller than 25 ha 528 

(https://ckan.ymparisto.fi/dataset/corine-maanpeite-2018), alone occupied about 84% 529 

of the total peatland/wetland area (Figure 6). This indicates that, although there are 530 

multiple peatland/wetland classes and forested peatlands are separated from forests and 531 

open peatlands, there is no separation of small peatland patterns in CLC2018FI.20m 532 

either. 533 

 534 

4 Discussion 535 

This study couples a detailed land cover classification of a typical boreal landscape with 536 

quantification of spatial heterogeneity in C budget and its climate impact (RE); based 537 

on these comprehensive data, we assessed the effect of peatland classification accuracy 538 

on C budget and RE, derived potential trajectories of RE heterogeneity under future 539 

warming conditions and surveyed peatland representation in global land cover 540 

products. This was motivated by the fact that landscapes including peatlands are 541 

widespread across the boreal biome. By overlaying two maps, i.e., the map of terrestrial 542 

ecoregions of the world (Olson et al., 2001) and the latest northern peatland map with 543 

10-km pixels (Hugelius et al., 2020), we find that there are approximately 150,400 10-544 

km pixels within the boreal zone, of which 140,700 (i.e., 94%) contain peatlands 545 

https://ckan.ymparisto.fi/dataset/corine-maanpeite-2018
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(peatland area fraction > 0) (Figure S17a). Our results jointly advocate the detailed 546 

delineation of peatland heterogeneity, i.e., determining a sufficient number of LCTs 547 

with differing characteristics, so that we can reduce uncertainties in C budget estimates 548 

of the boreal biome. This conclusion is further supported by previous studies that 549 

focused on individual boreal peatland ecosystems (Heiskanen et al., 2021; Li et al., 550 

2016; Lund et al., 2010). 551 

 552 

Indeed, recently, there have been multiple attempts to produce local, regional, national, 553 

and circumpolar databases of northern peatlands. In part of these attempts, however, all 554 

peatlands and wetlands have been lumped into one class (Hird, DeLancey, McDermid, 555 

& Kariyeva, 2017; Hugelius et al., 2020; Karlson et al., 2019; Tanneberger et al., 2017; 556 

Xu et al., 2018), but there exist approaches that include separate classes for different 557 

peatland types (Amani et al., 2017; Bourgeau-Chavez et al., 2017; Korpela, Haapanen, 558 

Korrensalo, Tuittila, & Vesala, 2020; Mahdianpari et al., 2020; Olefeldt et al., 2021; 559 

Räsänen & Virtanen, 2019). Currently, the most detailed circumpolar database uses 560 

existing GIS datasets and machine learning modeling to estimate the fractional 561 

coverage of five different wetland classes in 0.5o grid cells (Olefeldt et al., 2021). Also 562 

some other data products have relied on existing GIS databases (Hugelius et al., 2020; 563 

Tanneberger et al., 2017; Xu et al., 2018), while others have used remotely sensed data 564 

that enable construction of higher spatial resolution datasets (Amani et al., 2017; 565 

Bourgeau-Chavez et al., 2017; Hird et al., 2017; Karlson et al., 2019; Mahdianpari et 566 

al., 2020; Räsänen & Virtanen, 2019). 567 

 568 

To generate locally accurate maps of peatland LCTs, it has been shown that ultra-high 569 

spatial resolution (pixel size < 1 m) airborne or drone data are required (Korpela et al., 570 
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2020; Räsänen & Virtanen, 2019). Nevertheless, the use of such data is presently 571 

impossible for large regions, but maps based on high-resolution satellite data (pixel size 572 

< 30 m) are, at least in some cases, sufficient to predict the proportional area of different 573 

LCTs (Bartsch, Hofler, Kroisleitner, & Trofaier, 2016; Mahdianpari et al., 2020; Treat 574 

et al., 2018). In practice, however, even the national-scale land cover product 575 

(CLC2018FI.20m), while showing possible guidelines for larger scale maps and the 576 

best performance of the products compared in this study, depicts peatlands at much 577 

coarser than the nominal 20-m pixel level. 578 

 579 

Both at small and large scales, peatland LCT detection requires multiple remote sensing 580 

data sources that bring complementary information, including, e.g., optical data 581 

depicting spectral properties of land cover, lidar data providing information about 582 

topography and vegetation structure, and synthetic aperture radar (SAR) data sensitive 583 

to moisture and surface structure (Amani et al., 2017; Bourgeau-Chavez et al., 2017; 584 

Hird et al., 2017; Karlson et al., 2019; Mahdianpari et al., 2020; Räsänen, Manninen, 585 

Korkiakoski, Lohila, & Virtanen, 2021; Räsänen & Virtanen, 2019). Freely available 586 

high-resolution remote sensing datasets, such as Sentinel-1 SAR, optical Sentinel-2 and 587 

Landsat 8, and ArcticDEM topographic data would enable the generation of 588 

circumpolar maps of peatland LCTs. Such maps could be upscaled from local peatland 589 

maps and field inventories; vice versa, circumpolar maps could be downscaled to 590 

locally accurate products with high resolution datasets, such as airborne or drone lidar 591 

and hyperspectral data. 592 

 593 

Besides the large spatial heterogeneity, boreal peatlands can also vary temporally under 594 

environmental changes. Our modeling results showed that the LCT-based RE 595 
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heterogeneity among peatland types could be enhanced in future warming conditions, 596 

suggesting that peatland heterogeneity in climate feedback to C fluxes would change 597 

with environmental changes irrespective of land cover change. The reason why we did 598 

not consider changes in peatland area or LCT distribution within the Kaamanen 599 

landscape is that paleoecological evidence indicates that there has not been any major 600 

changes in the surface microtopography and vegetation taxonomic composition since 601 

the formation of the irregular string and flark pattern ca. 1000 yr ago (Piilo et al., 2020). 602 

Furthermore, there is no permafrost within the study area (Aurela, Laurila, et al., 2001), 603 

and hence permafrost thawing, which could induce drastic changes in peatland types 604 

and distribution (Helbig et al., 2017; Johansson et al., 2006; Payette, Delwaide, 605 

Caccianiga, & Beauchemin, 2004), has no effect there. However, as 77% of the 10-km 606 

peatland pixels of the boreal map do contain permafrost (Figure S17b), the 607 

heterogeneity of peatlands potentially increases across the northern boreal landscape 608 

with permafrost thawing. Overall, vegetation and hydrology changes affecting the 609 

peatland distribution and characteristics within the boreal zone cannot be ruled out. 610 

These potential changes under environmental changes highlight not only the delineation 611 

of the spatial heterogeneity of peatlands, but also their temporal dynamics. 612 

 613 

5 Conclusions 614 

Based on an extensive set of field data including CO2 and CH4 fluxes, soil and 615 

vegetation characteristics, and an explicit land cover classification, we modeled the C 616 

budgets and their radiative climate effects both for the boreal landscape and its 617 

individual LCTs. The average present-day, landscape-scale budgets of CO2 and CH4 618 

were -108 ± 10 and 2.3 ± 0.2 g C m-2 yr-1, respectively. We show that, despite only 619 

comprising 26% of the study area, peatlands within the Kaamanen boreal landscape 620 
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account for 88% of the area-based heterogeneity in CH4-C budget, and 65% and 79% 621 

of that in the total radiative effect over the 100-yr and 25-yr time horizons, respectively. 622 

Misclassifying peatlands or inadequately representing the heterogeneity among the 623 

peatland types can alter the magnitude of the modeled radiative effect significantly over 624 

the 100-yr time horizon, and even change the sign over the 25-yr time horizon. 625 

Warming tends to enhance the RE heterogeneity of peatland C budgets. We also 626 

observed that global land cover products have obvious biases in their classification of 627 

boreal peatlands. Overall, this study implies the great significance of resolving land 628 

cover specifics, especially peatland heterogeneity, in sufficient detail across the boreal 629 

biome for constraining the circumpolar C-climate nexus.  630 
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Table 1. Land cover types (LCTs) and their dominant species in the tree, understory, and ground layers. 955 

Land cover type Tree layer Field layer Ground layer 

Pine forest 
Canopy cover > 10%, pine (Pinus sylvestris) 

cover > 2/3 of total canopy cover 

Evergreen shrubs (e.g., Vaccinium vitis-idaea, 

Empetrum nigrum, and Calluna vulgaris), and also 

some deciduous shrubs 

Feather mosses and lichens 

Birch forest 
Canopy cover > 10%, birch (Betula pubescens) 

cover > 2/3 of total canopy cover 
Evergreen and deciduous shrubs Feather mosses and lichens 

Mixed forest 

Multiple tree species, including pine, birch, and 

few aspen (Populus tremula), canopy cover > 

10%, cover of minority species > 1/3 

Evergreen (Vaccinium vitis-idaea) and deciduous 

(Vaccinium myrtillus, Vaccinium uliginosum) shrubs 
Feather mosses and lichens 

Open forest Forest with tree canopy cover < 10% Evergreen shrubs, and some deciduous shrubs Lichens, and some feather mosses 

Pine bog Peatland with coverage of pine trees > 1% 

Evergreen (Rhododendron tomentosum) and 

deciduous (Vaccinium uliginosum, Betula nana) 

shrubs, and some forbs (Rubus chamaemorus) and 

graminoids (mostly Carex spp.) 

Sphagnum, feather mosses, and lichens 

Birch swamp Peatland with coverage of birch trees > 2% Forbs, grasses, and shrubs Sphagnum and feather mosses 

String Peatland with few trees (< 1% coverage) 
Evergreen and deciduous dwarf shrubs as well as 

forbs (esp. Rubus chamaemorus) 
Sphagnum and feather mosses, and some lichens 

Tall sedge fen None 
Sedges, also deciduous shrubs (e.g., Betula nana, 

Salix spp.) and forbs 
Sphagnum, wet brown mosses, and open water 

Flark fen None Grasses and forbs Open water, bare peat, and wet brown mosses 

Lake None None Open water 

Stream None None Open water 

Non-vegetated None None 
Mostly human made bare areas, sand with some 

stones, and all roads in the area 

  956 
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Table 2. The area extent of different land cover types (LCTs). 957 

 958 

Major LCT Specific LCT Area (km2) Area fraction (%) 

Peatland 
Pine bog 3.06 9.32 

Birch swamp 0.04 0.12 

String top 0.87 2.65 

String margin 0.60 1.83 

Tall sedge fen 1.85 5.64 

Flark fen 1.96 5.97 

Forest 
Pine forest 17.36 52.89 

Birch forest 0.14 0.43 

Mixed forest 1.94 5.91 

Open forest 0.44 1.34 

Water body 
Lake 4.32 13.16 

Stream 0.02 0.06 

Non-vegetated 
 0.22 0.67 

Total 
 32.82 100 
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Table 3. Assessment of peatland/wetland representation in different land cover products for the Kaamanen boreal landscape. 959 

Product Reference Scale Version Methodology 
Spatial 

resolution 

Peatland/wetland 

relevant class label 

Peatland/wetland 

area (%) 

Spatial 

agreement 

(%) 

Global Land Cover 

Characterization 

(GLCC) 

Loveland et al. (2000) Global version 2 
Remote 

sensing 
1 km - 0 0 

Moderate 

Resolution Imaging 

Spectroradiometer 

Land Cover Type 

(MODIS.LCT) 

Sulla-Menashe, Gray, Abercrombie, 

and Friedl (2019) 
Global 

MCD12Q1 

v006 

Remote 

sensing 
500 m - 0 0 

Global Land Cover 

2000 (GLC2000) 
Bartholomé and Belward (2005) Global 

Global 

Product 

v1.1 

Remote 

sensing 
1 km 

Regularly flooded 

shrub and/or 

herbaceous cover 

58.0 21.8 

Global Land Cover 

Map for 2009 

(GlobCover2009) 

Arino et al. (2012) Global v2.3 
Remote 

sensing 
300 m 

Closed to open (>15%) 

grassland or woody 

vegetation on regularly 

flooded or waterlogged 

soil 

0.1 0.1 

First 10-m 

resolution global 

land cover product 

(FROM-GLC10) 

Gong et al. (2019) Global v01 
Remote 

sensing 
10 m Wetland 0.1 0.01 

Global Lakes and 

Wetlands Database 

(GLWD) 

Lehner and Döll (2004) Global level 3 Database 30 second - 0 0 

PEATMAP Xu et al. (2018) Global Finland Meta-analysis Shapefile Peatland 24.8 48.5 

CORINE Land 

Cover 2018 EU, 25 

ha 

(CLC2018EU.25ha) 

https://land.copernicus.eu/pan-

european/corine-land-cover/clc2018 
Continental 2018, 25 ha 

Remote 

sensing and 

database 

Shapefile 

(minimum 

unit 25 ha) 

Peatbog 25.3 44.8 

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
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Note: BFPL, CFPL, MFPL, TWPL, TIM, and AIM indicate Broad-leaved forest on peatland, Coniferous forest on peatland, Mixed forest on 960 

peatland, Transitional woodland/shrub cc 10-30% on peatland (cc = canopy closure), Terrestrial inland marsh, and Aquatic inland marsh, 961 

respectively.  962 

CORINE Land 

Cover 2018 FI, 20 

m 

(CLC2018FI.20m) 

https://ckan.ymparisto.fi/dataset/corine-

maanpeite-2018 
National 2018, 20 m 

Remote 

sensing and 

database 

20 m 

BFPL, CFPL, MFPL, 

TWPL, peatbog, TIM, 

and AIM 

28.6 62.0 

https://ckan.ymparisto.fi/dataset/corine-maanpeite-2018
https://ckan.ymparisto.fi/dataset/corine-maanpeite-2018
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963 

Figure 1. Location (a), land cover types (b), 0.5-m resolution false color aerial 964 

images (c-d), and photographs of different peatland types (e-i) of the Kaamanen 965 

catchment. Panels (c) and (d) correspond to Areal image 1 and 2, respectively, in panel 966 

(b). 967 
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968 

Figure 2. Heterogeneity in carbon (C) budget within the Kaamanen boreal 969 

landscape during 2005-2018. (a) Net C budgets combining carbon dioxide (CO2) and 970 

methane (CH4) among land cover types (LCTs) and their area-weighted landscape 971 

mean; (b) CO2 budgets (net ecosystem CO2 exchange, NEE); (c) Gross primary 972 

productivity (GPP); (d) Ecosystem respiration (ER); (e) CH4 budgets; (f) Ratio between 973 

the Sum of Squared Deviations (SSD) from the arithmetic mean C budget among 974 

peatland LCTs (SSDP-LCT) and that among all landscape LCTs (SSDL-LCT); (g) Ratio 975 

between the SSD from the area-weighted landscape mean among peatland LCTs (SSDP-976 

Area) and that among all landscape LCTs (SSDL-Area). In panels (a)-(e), a positive value 977 

means output from the ecosystem being a C output. The diamond symbol in panels (a)-978 

(e) and the bar and number in panels (f)-(g) indicate the mean annual value, and the979 

error bar in all panels denotes the 95% confidence interval. 980 
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981 

Figure 3. Heterogeneity in radiative effect (RE) of present carbon (C) budget 982 

within the Kaamanen boreal landscape. (a) Total RE due to carbon dioxide (CO2) 983 

and methane (CH4) exchange of different land cover types (LCTs) and their area-984 

weighted landscape mean; (b) RE due to CO2 exchange; (c) RE due to CH4 exchange; 985 

(d) Ratio between the Sum of Squared Deviations (SSD) from the arithmetic mean RE986 

among peatland LCTs (SSDP-LCT) and that among all landscape LCTs (SSDL-LCT); (e) 987 

Ratio between the SSD from the area-weighted landscape mean among peatland LCTs 988 

(SSDP-Area) and that among all landscape LCTs (SSDL-Area). The RE represents the 989 

cumulative RE due to an annual emission or uptake pulse over time horizons of 25 and 990 

100 yr, calculated based on C flux densities (g m-2 yr-1, i.e., flux per m2 of each LCT) 991 

during 2005-2018 and assuming the RCP4.5 scenario. The diamond symbol in panels 992 

(a)-(c) and the bar and number in panels (d)-(e) indicate the mean annual value, and the 993 

error bar in all panels denotes the 95% confidence interval. 1fW = 10-15 W.  994 
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995 

Figure 4. Uncertainty in radiative effect (RE) of landscape-scale carbon (C) budget 996 

due to aggregation or misclassification of peatlands. RE is calculated based on the 997 

C budget during 2005-2018 assuming the RCP4.5 scenario. (a-b) Total RE calculated 998 

based on landscape-scale total C budget with 100-yr and 25-yr time horizons; (c) 999 

Landscape-scale total C budget during 2005-2018; (d-e) RE calculated based on 1000 
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landscape-scale CO2 and CH4 budgets with 100-yr and 25-yr time horizons; (f) 1001 

Landscape-scale CO2 and CH4 budgets. RCP4.5 scenario is assumed for RE. Scenario 1002 

1 is based on the observed land cover type (LCT) data described in Table 2. In scenario 1003 

2, peatlands are not distinguished but assumed to consist of a single type (in 2a-2e, pine 1004 

bog, string top, string margin, tall sedge fen, and flark fen, respectively). In scenario 2f, 1005 

all dry peatlands are allocated to string top and all water-logged peatlands are classified 1006 

as tall sedge fen. In scenario 3, peatlands are mis-classified as non-peatland LCTs: (3a) 1007 

forested peatlands (pine bog and birch swamp) as corresponding forests (pine and birch 1008 

forest, respectively), (3b) the open water-logged peatland with low vegetation cover 1009 

(flark fen) as lake, and (3c) the simultaneous occurrence of scenarios 3a and 3b and a 1010 

misclassification of all other open peatlands (string top, string margin, and tall sedge 1011 

fen) as open dry peatland (represented by string top). The bar and error bar in the plot 1012 

represent the mean value and its 95% confidence interval, respectively, and the letters 1013 

denote the statistical difference among different scenarios. 1fW = 10-15 W.   1014 
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1015 

Figure 5. Potential trajectory of heterogeneity in radiative effect (RE) among 1016 

different land cover types (LCTs) under future warming scenarios (RCP4.5 and 1017 

RCP8.5). RE represents the cumulative RE due to an annual emission or uptake pulse 1018 

over the 100-yr time horizon, calculated based on flux densities (g m-2 yr-1, i.e., flux per 1019 

m2 of each LCT) of CO2 and methane CH4 during 2005-2099. (a)-(b) Sum of Squared 1020 

Deviations (SSD) from the mean total RE among peatland LCTs (SSDP-LCT) and that 1021 

among all landscape LCTs (SSDL-LCT); (c)-(d) SSDP-LCT of the CO2- and CH4-induced 1022 
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RE; (e)-(f) Relative importance of CO2 and CH4 in explaining the trend in total RE 1023 

heterogeneity among peatlands. *** denotes p < 0.001. In all panels, r denotes the 1024 

correlation coefficient between SSD and temperature. To reflect warming effects, 1025 

biogeochemical models were driven with variable temperature while other input data 1026 

were kept constant (2005-2018 averages). 1fW = 10-15 W.  1027 
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1028 

Figure 6. Land cover of the Kaamanen boreal landscape classified by global (a-g), 1029 

continental (h), and national (i) land cover products and this study (j). (a) GLCC; 1030 

(b) MODIS.LCT; (c) GLC2000; (d) GlobCover2009; (e) FROM-GLC10; (f) GLWD;1031 

(g) PEATMAP; (h) CLC2018EU.25ha; (i) CLC2018FI.20m; (j) Peatland types1032 

revealed by this study. For GLCC, ENF = Evergreen Needleleaf Forest and CS = 1033 

Closed Shrublands, respectively; for MODIS.LCT, ENF = Evergreen Needleleaf 1034 

Forests, WS = Woody Savannas, and S = Savannas, respectively; for GLC2000, TC = 1035 

Tree Cover (needle-leaved, evergreen), M = Mosaic (Tree cover / Other natural 1036 

vegetation), SC = Shrub Cover (closed-open, deciduous (with or without sparse tree 1037 

layer)), and RFSHC = Regularly flooded shrub and/or herbaceous cover, respectively; 1038 

for GlobCover2009, ONDEF = Open (15-40%) needleleaved deciduous or evergreen 1039 

forest (>5m), MFSG = Mosaic forest or shrubland (50-70%) / grassland (20-50%), 1040 

MGFS = Mosaic grassland (50-70%) / forest or shrubland (20-50%), SV = Sparse 1041 

(<15%) vegetation, GWRFWS = Closed to open (>15%) grassland or woody 1042 
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vegetation on regularly flooded or waterlogged soil - Fresh, brackish or saline water, 1043 

and WB = Water bodies, respectively; for FROM-GLC10, IS = Impervious surface; for 1044 

CLC2018EU.25ha, there are three classes within the Kaamanen landscape (Coniferous 1045 

forest, Peatbog, Water body) and only Peatbog is shown here; for CLC2018FI.20m, 1046 

AS = Artificial surface, BFMS = Broad-leaved forest on mineral soil, BFPL = Broad-1047 

leaved forest on peatland, CFMS = Coniferous forest on mineral soil, CFPL = 1048 

Coniferous forest on peatland, MFMS = Mixed forest on mineral soil, MFPL = Mixed 1049 

forest on peatland, TWMS = Transitional woodland/shrub on mineral soil, TWPL = 1050 

Transitional woodland/shrub on peatland, BDS = Beach, dune, and sand plain, TIM = 1051 

Terrestrial inland marsh, AIM = Aquatic inland marsh, WC = Water course, and WB 1052 

=  Water body, respectively; for our classification, only peatland classes are shown here. 1053 

More information about the land cover products is presented in Table 3. 1054 




