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Abstract

Boreal peatlands are highly heterogeneous and play a significant role in the global
carbon (C) cycle. However, the effects of the peatland-dominated heterogeneity within
the boreal landscape are rarely quantified. Here, we use field-based measurements,
high-resolution land cover classification, and biogeochemical and atmospheric models
to estimate the C budget and corresponding radiative effect (RE) for a boreal landscape
(Kaamanen) that is rich in peatlands and aquatic ecosystems. The average present-day,
landscape-scale CO2 and CH4 budgets were -108 + 10 and 2.28 £ 0.19 ¢ C m™ yr'!,
respectively. We find that peatland heterogeneity accounts for 88% of the variability in
CHa4-C budget across the Kaamanen landscape despite only comprising 26% of the area.
Moreover, peatland heterogeneity dominates the variability in RE that combines CO»
and CH4 exchanges within the landscape, accounting for 65% and 79% over the 100-yr
and 25-yr time horizons, respectively. Future warming tends to enhance this
heterogeneity. Aggregating peatland classification or mis-classifying peatlands can
significantly alter the estimated magnitude and even the sign of the RE due to
landscape-scale C exchanges. Scrutiny of global land cover products revealed
significant shortcomings in their representation of boreal peatlands, calling for
improved mapping of boreal peatland heterogeneity to reduce the uncertainty in C

budgets and C-climate feedback.

Keywords: boreal, landscape, peatland, heterogeneity, carbon, radiative effect
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1 Introduction

The boreal biome, consisting of forest, peatland, and lake ecosystems, occurs in
continental interiors at 45.5-71.4°N and covers about 15.1 million km? or 10.3% of
Earth’s land surface area (Helbig et al., 2020; Olson et al., 2001). This vast and
patterned area stores more carbon (C) than the atmosphere (~ 1000 GtC vs. 860 GtC),
most of which resides in soils and peatlands (Bradshaw & Warkentin, 2015;
Friedlingstein et al., 2020; Hugelius et al., 2020; Nichols & Peteet, 2019). Moreover,
the boreal ecosystems are vulnerable to environmental changes (Aberg, Jansson, &
Jonsson, 2010; Hopple et al., 2020; Loisel et al., 2021), and thus their functioning in
the changing climate is vital to the global C budget (Comyn-Platt et al., 2018; Gauthier,

Bernier, Kuuluvainen, Shvidenko, & Schepaschenko, 2015; Tagesson et al., 2020).

Landscape processes are important for the upscaling of C budget across a biome since
Earth System Models (ESMs) or statistical models such as machine learning are
generally performed based on grid cells that are composed of multiple land units
(Lawrence et al., 2018). A typical boreal landscape shows a mosaic of diverse forests,
peatlands, and water bodies with large differences in their abiotic and biotic
characteristics (Chapin III, Matson, & Vitousek, 2011; Hugelius et al., 2020;
Verpoorter, Kutser, Seekell, & Tranvik, 2014). Therefore, the exploration of C budget
and its climate impact at the landscape scale by considering the mosaic structure is
crucial for accurately estimating the C budget across the boreal biome and hence for

better understanding global C-climate feedbacks.
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Despite their significance, our understanding of the landscape-scale C dynamics,
including both carbon dioxide (CO2) and methane (CHs), in the circumpolar region
mainly derives from tundra (Sturtevant & Oechel, 2013; Treat et al., 2018; Weller et
al., 1995) and the transition zone between the tundra and boreal biomes (Christensen et
al., 2007; O'Shea et al., 2014; Tang et al., 2015). Within the boreal biome, most studies
have been aimed at the C dynamics of individual ecosystems (Clemmensen et al., 2013;
Guo et al., 2020; Johansson et al., 2006) or the entire boreal zone (Kicklighter, Melillo,
Monier, Sokolov, & Zhuang, 2019; Tagesson et al., 2020), with only a few landscape-
scale studies that consider both CO; and CH4 exchange and forest, peatland, and aquatic
ecosystems at the same time. These studies have advanced our understanding for
example by showing the difference between short- and long-term C dynamics within a
catchment (Juutinen et al., 2013), the need for integrating terrestrial and aquatic fluxes
at the landscape scale (Aurela et al., 2015; Chi et al., 2020; Juutinen et al., 2013), and
the application of airborne measurements of CO; and CHj4 fluxes to regional upscaling
(O'Shea et al., 2014). In spite of these advances, there are major knowledge gaps. First,
a fine-resolution mapping of different land cover types (LCTs) within a peatland
complex, and thus the detailed quantification of heterogeneity in peatland C dynamics
relative to the landscape-scale heterogeneity, is lacking. Second, remote sensing-based
land cover classification is prone to classification errors. For example, peatlands
adjacent to or embedded in forests may become classified as forests (Thompson,
Simpson, & Beaudoin, 2016), and peatlands adjacent to lakes and flooded areas
classified as lakes (Matthews, Johnson, Genovese, Du, & Bastviken, 2020). Little is
known about how such LCT aggregation or misclassification affects the estimated
landscape-scale C budgets. Third, our knowledge of the potential trajectories of the

LCT-specific C budget heterogeneity under future warming conditions is limited. These
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knowledge gaps undermine current C inventories, remote sensing-based upscaling
products and procedures, and especially ESMs, in which the peatlands are considered
as a single block entity, if at all (Loisel et al., 2021). This points to an urgent need to
better understand what level of detail is needed to characterize the heterogeneous boreal

landscapes and their response to warming.

To fill these research gaps, we conducted an in-depth study in a typical northern boreal
landscape located in northern Finland. We performed a high-resolution land cover
classification based on multi-source remote sensing and field data. We collected large
amounts of LCT-specific data including ecosystem-atmosphere fluxes of CO» and CHa,
soil and vegetation properties, and meteorological and hydrological variables. With
these data, we calibrated and validated terrestrial and aquatic biogeochemical models,
and simulated daily greenhouse gas (GHG) fluxes under present and future conditions.
In addition, we estimated the potential development of the radiative effect of these
fluxes. With these analyses, we aim to quantify the heterogeneity in peatland C
dynamics and their radiative effect relative to that in the landscape scale and
demonstrate the importance of accurately mapping the small-scale variation in peatland
types within a typical boreal landscape. To assess the need for improved peatland
mapping within the boreal zone, we surveyed how accurately the peatlands within the

study area are depicted in current global, continental, and national land cover products.
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2 Materials and methods

2.1 Study area

This study was conducted in a 32.8 km? northern boreal catchment situated in northern
Finland (69.13-69.26°N, 27.21-27.45°E; 155 m a.s.l), about 200 km south of the Arctic
Ocean (Figure 1). The catchment is characterized by subarctic climate (Aurela, Laurila,
& Tuovinen, 2001). The mean annual air temperature during the period from 1981 to
2010 at the Inari Ivalo weather station (59 km south of Kaamanen) was -0.4 °C, with
the warmest and coldest monthly air temperature being 14.0 °C and -12.8 °C in July
and January, respectively (Pirinen et al., 2012). During the aforementioned period, the
mean annual precipitation was 472 mm, and the mean annual relative humidity was

79% (Pirinen et al., 2012).

2.2 Land cover classification

Land cover in the study area was classified using a geographic object-based image
analysis approach, following the methodology described by Résédnen, Juutinen, Tuittila,
Aurela, and Virtanen (2019) and Résdnen and Virtanen (2019). Object-based
approaches have been documented to be effective in particular when analyzing high-
spatial resolution remote sensing imagery (Blaschke et al., 2014; Chen, Weng, Hay, &
He, 2018), and it has been shown that inclusion of multi-source (i.e., multiple types of
remote sensing data) and multi-temporal remote sensing data increases land cover
classification accuracy (Amani et al., 2017; Chasmer et al., 2020; Halabisky, Babcock,
& Moskal, 2018; Karlson et al., 2019; Résdnen & Virtanen, 2019). Specifically, a
WorldView-2 satellite image (WV-2, DigitalGlobe Inc., Westminster, CO, USA) was
segmented with a full lambda schedule segmentation with an average segment size of

0.2 ha. For each segment, 352 features, including spectral, topographic, vegetation
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height, and texture features, were calculated from the WorldView-2 image, four
PlanetScope satellite images (PS, Planet Labs Inc., San Francisco, CA, USA) from
different phenological stages and aerial lidar data (National Land Survey of Finland)

(Table S1).

Training data were collected from 16 transects of 0.25-1.0 km in length and visual
interpretation of an aerial orthophoto. In total, there were 1058 training segments (18-
383 in each LCT). A supervised random forest classification (Breiman, 2001) was used
to classify 11 LCTs (excluding streams) (Table 1; Figure S1). Accuracy of the
classification was assessed with a pixel-based approach utilizing 359 vegetation plots,
of which 137 were circular plots with a radius of 5 m (of which 59 were in transects,
and 78 randomly sampled), 204 were quadrats with a 50 cm side length (in transects),

and 18 were circular plots with a radius of 20 cm (Résdnen & Virtanen, 2019).

After the random forest classification, the stream LCT was added to the map from
National Land Survey of Finland topographic database. Owing to large differences in
hydrology and C dynamics (Figures S2-S7; Table S2), the fen string LCT was split into
string top and string margin fractions by assuming that 59.2% of the string belong to
tops and 40.8% to margins as per the land cover classification conducted for a peatland
area within the landscape (Heiskanen et al., 2021; Risdnen & Virtanen, 2019) (Table

2).
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2.3 Flux measurements

The ecosystem-atmosphere fluxes of CO2 and CH4 were measured on the dominant
peatland surfaces, i.e., pine bog, string top, string margin, tall sedge fen, and flark fen,
using a static chamber technique (Heiskanen et al., 2021; Juutinen et al., 2013; Laine,
Riutta, Juutinen, Viliranta, & Tuittila, 2009). The measurements were made repeatedly
during the growing seasons 2005, 2006, 2017, and 2018 (Heiskanen et al., 2021;
Juutinen et al., 2013; Laine et al., 2009). Permanent chamber bases were installed in

replicate for each peatland type.

Net ecosystem CO> exchange (NEE) was measured using transparent chambers
equipped with a fan and an infra-red gas analyzer (in 2005-2006, EGM-3, PP-systems,
MA, USA; in 2017-2018, Picarro G2401, Picarro Inc., CA, USA), and was determined
from several (2-4) replicate measurements. Ecosystem respiration (ER) was measured
using opaque chambers. Fluxes were calculated from concentration changes using
standard methods (Heiskanen et al., 2021; Juutinen et al., 2013; Laine et al., 2009).
Gross primary productivity (GPP) was calculated as the difference between NEE and
ER. Positive fluxes in this study indicate a C flux to the atmosphere, while negative

values represent C uptake by the ecosystem.

In 2005-2006, the CH4 fluxes were determined in aluminum chambers equipped with a
fan, and CH4 concentration was measured using gas chromatographs (HP-5710A and
HP-5890A, Palo Alto, CA, USA) equipped with a flame ionization detector (Juutinen
et al., 2013). In 2017-2018, the CH4 flux measurements were conducted with the CO,

chamber flux set-up.
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In the pine forest (69.1°N, 27.3°E), NEE was measured using the eddy covariance (EC)
technique from June 2017 to December 2018 (Heiskanen et al., 2021). The NEE data
for birch forest were derived from the EC measurements conducted at Petsikko

(69.28°N, 27.14°E) in June—September 1996 (Aurela, Tuovinen, & Laurila, 2001).

At a lake within the study landscape, the CO; and CH4 fluxes were measured manually
with a Picarro G2401 (Picarro Inc., CA, USA) and floating chambers during the

summer season (June—August) of 2017 (Juutinen et al., 2013).

2.4 Terrestrial ecosystem modeling

Ecosystem C dynamics of the terrestrial land cover types in the study landscape were
simulated using a process-based biogeochemistry model, NEST-DNDC (Zhang, Sachs,
Li, & Boike, 2012). It integrates a widely used biogeochemical model DeNitrification-
DeComposition (DNDC) (Kou et al., 2020; Li, Aber, Stange, Butterbach-Bahl, &
Papen, 2000) with the Northern Ecosystem Soil Temperature model (NEST) (Zhang,
Chen, & Cihlar, 2003). Thus, the model can effectively simulate C dynamics in LCTs
of the cold circumpolar regions (Deng et al., 2017; Treat et al., 2018; Zhang et al.,
2012). In the model, all LCTs share common climate and atmospheric environmental
conditions (e.g., atmospheric CO; and nitrogen (N) concentration), but they differ in
their assigned land types, soil, and vegetation characteristics. Therefore, the model is
particularly suitable to work with ecosystem C dynamics in fragmented circumpolar

landscapes (Zhang et al., 2012).

10
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In this study, the simulations with the NEST-DNDC model for the terrestrial LCTs
were conducted through the following three steps. First, the datasets required for model
input were prepared, including data associated with climate, soil, and vegetation. Of
them, the climate dataset, shared by all LCTs, include historical meteorological
observations for 1996 and 2005-2018, and future data for 2019-2099. The historical
climate dataset, including daily mean, maximum, and minimum air temperatures,
precipitation, wind speed, global radiation, and relative humidity, were derived from
the Utsjoki Kevo weather station (69.8°N, 27.0°E) of the Finnish Meteorological
Institute. The future climate data was extracted from the bias-corrected dataset of the
International Impact Model Intercomparison Project (ISIMIP) output from HadGEM2-

ES (Frieler et al., 2017).

The LCT-specific soil variables that were used to drive the model consisted of texture,
bulk density, pH, soil C concentration, and soil C:N ratio (Table S2). The soil texture
was loamy sand for forests and pristine peat for peatlands. In all peatlands, soil samples
of a known volume were collected from layers 0—-5 cm and 15-20 cm beneath the litter
layer (the layer where vascular plant and moss leaf structures are still discernible) using
a knife and scissors. The samples were dried (48 h at 75 °C) and weighted for dry mass.
Bulk density was calculated based on the volume and dry mass of the samples. Parts of
dry samples were ground using a ball mill and 0.2 g subsamples of ground material
were analyzed for total C and N concentrations using a LECO CNS-2000 analyzer
(LECO Corporation, Saint Joseph, MI, USA). Soil pH was estimated in the field in
water collected at the depth of 30 cm. In models, means of the two peat layers were
used for bulk density, C concentration, and C:N ratio. In pine, birch and pine-birch

mixed forests, pits were dug to a depth of 100 cm and horizontal soil cores (length 5

11
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cm, diameter 3 cm) were collected from the organic (O) and eluvial (E) horizons, from
the top and bottom parts of the illuvial (B) horizon, and at the depth of 50 and 100 cm.
These samples were analyzed following the procedures described for peatland samples
except that the pH was measured from O horizon samples and samples collected at 30
cm depth in distilled water solution. In models, means of values of all available soil
horizons were used for forest soil bulk density, C concentration, C:N ratio, and pH.
Vegetation data included in the models consisted of aboveground plant biomass and
leaf area index (LAI) of different LCTs (Tables S3-S4). The aboveground biomass and
LAI of each LCT was determined based on 130 circular plots with a 5 m radius (71
random plots, 59 plots in transects) distributed among the LCTs (see Supplementary

Text for detailed information).

Second, we calibrated and validated the model for different LCTs (Figures S2-S15).
The observed C fluxes used for the model calibration included the 1996 data of birch
forest, the 2006 data of pine bog, string margin, tall sedge fen, and flark fen, and the
2017 data of string top and pine forest. The calibrated models were then validated with
the remaining C flux data, from 2005 for pine bog, string margin, tall sedge fen, and
flark fen, from 2017 for string margin, and from 2018 for string top, string margin, and
pine forest. Finally, we ran the calibrated and validated model for the period 2005-2018
for the dominant terrestrial LCTs. To explore the potential trajectory of RE
heterogeneity under warming, we then drove the model for the period 2019-2099 with
variable temperature from two Representative Concentration Pathway scenarios,
RCP4.5 and RCP8.5, keeping other climatic and atmospheric inputs constant (2005-
2018 averages) (Lucht et al., 2002). The C budget of mixed forest and open forest was

simulated based on parameters from pine/birch forest and their own soil and vegetation

12
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data. The pine bog simulation was also used for birch swamp (covering only 0.12% of
study area) in the landscape-scale estimation of C budget and RE since observations

were lacking for birch swamp.

2.5 Aquatic ecosystem modeling

The Arctic Lake Biogeochemistry Model (ALBM), which is a one-dimensional
process-based climate-sensitive lake biogeochemistry model, was used to simulate the
CO» and CH4 fluxes from lakes in the study area (Guo et al., 2020; Tan, Zhuang, &
Anthony, 2015; Tan et al., 2017). For lake C fluxes, the model simulates both the
diffusive and the ebullitive emission. The model was first calibrated against
observations of water temperature and C fluxes of the lake using the Monte Carlo
method with 10,000 parameter sample sets. The optimum parameter set was then
selected based on the total root-mean-square error of the modeled CO; and CHj4 fluxes.
Finally, we run simulations over the same period forced by the same meteorological
data as for the other LCTs (Figure S16). The lake simulation was also used for streams

in the landscape-scale estimation of C budget and RE.

2.6 Radiative effect of greenhouse gas fluxes

The annual CO, and CH4 flux densities (g m™ yr'!) of each LCT during the period of
2005-2099 were used as input to estimate the radiative effect (RE) of these fluxes, i.e.,
their contribution to Earth’s radiative balance. We expressed this effect as the
cumulative RE due to an annual emission or uptake pulse over time horizons of 25 and
100 yr, which was calculated using a dynamic radiative forcing (RF) model (Lohila et
al., 2010; Mathijssen et al., 2017; Piilo et al., 2020). Even though we used a RF model

here, it is important to note that we refer to this quantity as RE, as it does not represent

13
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a forcing that would result from a perturbation to Earth’s energy balance (Neubauer,
2021). This modelling is performed in order to obtain a common metric for the CO>
and CHj4 fluxes, in a similar vein to the CO»-equivalent fluxes derived from the global
warming potential concept; however, using RE as the common metric provides
additional flexibility as we can dynamically account for the effect of changing

background concentrations.

In the RF model, CO; and CH4 pulses were assumed to be instantaneously and
completely mixed in the atmosphere (Myhre et al., 2013). The resulting atmospheric
concentration pulses were modeled to decay according to characteristic time scales
related to global biogeochemical cycles. For COz, these dynamics were implemented
as a weighted sum of four exponential functions, where the shortest perturbation time
was 4.3 yr and the slowest decay function effectively corresponded to a permanent
atmospheric change for 22% of each annual pulse (Joos et al., 2013). The evolution of
the atmospheric CH4 concentration perturbation was calculated as an exponential decay

with a single atmospheric perturbation time scale of 12.4 yr (Myhre et al., 2013).

The annual emission/uptake pulses were integrated over time by accounting for their
timing and decay, resulting in time series of atmospheric CO2 and CH4 concentration
changes. Atmospheric oxidation of the emitted CH4 molecules to CO», which generates
an indirect RE, was included in the model assuming an 80% efficiency for the CHa-to-
CO; conversion (Boucher, Friedlingstein, Collins, & Shine, 2009). The instantaneous
RE resulting from the modeled CO2 and CH4 concentration changes was calculated with
a radiative efficiency parameterization (Etminan, Myhre, Highwood, & Shine, 2016).

This parameterization takes into account the spectral interactions between CO2, CHa,
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and nitrous oxide. The model also includes an estimate for the indirect CHs-induced
RE due to ozone and stratospheric water vapor changes (Myhre et al., 2013). The RE
due to ecosystem-atmosphere fluxes was calculated as a marginal change with respect
to specified, variable background concentrations (Lohila et al., 2010). These
concentrations were adopted from the RCP scenarios (Meinshausen et al., 2011). In this

study, the total RE refers to the sum of the RE due to CO; and CHa.

2.7 Statistical analysis

The landscape-scale C budget and RE were estimated by weighting the C budget and
RE of each LCT (except non-vegetated) with the corresponding relative area within the
catchment. The role of peatlands in the landscape-scale heterogeneity in C budget and
RE was quantified at two levels, based on the LCT-specific C fluxes expressed (1) per
unit area (‘LCT-based heterogeneity’) and (2) as area-weighted budgets (‘area-based
heterogeneity’). For the LCT-based heterogeneity, we calculated the Sum of Squared
Deviations (SSD) from the arithmetic mean among peatland LCTs and that among all
LCTs within the landscape and then divided the peatland SSD by the landscape SSD.
For the area-based heterogeneity, we calculated the ratio between the SSD from the
area-weighted mean among peatland LCTs and that among all LCTs within the boreal

landscape.

To illustrate the uncertainty in the landscape-scale results due to aggregation or
misclassification of peatlands, we tested the statistical difference among different land
cover scenarios (i.e., scenarios that peatlands are combined, and scenarios that
peatlands are mis-classified as non-peatland LCTs) with Least Significant Difference

(LSD). Combining peatland LCTs is relevant because peatland LCTs in the current
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circumpolar peatland maps are generally expressed as a uniform land cover type
(Hugelius et al., 2020; Xu, Morris, Liu, & Holden, 2018), without capturing spatial
heterogeneity among different peatland types. In remote sensing-based products,
peatlands can also be confused with other terrestrial or aquatic LCTs. Most commonly,
forested peatland is mis-classified as forest (Thompson et al., 2016) and open water-

logged peatland with low vegetation as a lake (Matthews et al., 2020).

When estimating potential trajectories of RE heterogeneity among different LCTs
under future warming scenarios, the relative importance of CO2 and CH4 in explaining
the trend of total RE heterogeneity was analyzed with the random forest technique

(Delgado-Baquerizo et al., 2018).

2.8 Survey of land cover products

We surveyed seven widely used global land cover products in our study area and
assessed how well peatlands are presented in them by calculating the fractional
peatland/wetland area and estimating the spatial agreement with our LCT data by error
matrices (Frey & Smith, 2007; Krankina et al., 2008). Moreover, we included in the
comparison one continental and one national land cover product. The nine products

considered are detailed in Table 3.

3 Results

3.1 Landscape heterogeneity

Twelve LCTs were distinguished within the studied boreal landscape with high spatial
resolution land cover classification (Figures 1, S1; Tables 1-2), with an overall accuracy

of 73.1% (Table S5). Four of these LCTs were forests (i.e., pine, birch, mixed, and open
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forests, occupying 60.6% of the landscape), two were water bodies (i.e., lake and
stream, 13.2%), one represents non-vegetated areas (0.7%), and five were peatlands
(25.5%) that were distributed along a gradient from forests to water bodies (Table 1).
Among the peatland LCTs, pine bog (9.3%), birch swamp (0.1%), and fen string
(including thin, elongated, and smaller, rounded elevated microforms; 2.7% string top
and 1.8% string margin) were characterized as dry communities as their water tables
were below the peat surface (Tables 2, S2). Of these, pine bog and birch swamp
represent forested dry peatlands while string top and margin represent open dry
peatland habitats (Table 1). The two water-logged peatland LCTs, i.e., tall sedge fen

(5.6%) and flark fen (6.0%), represent open wet peatland habitats (Tables 1-2, S2).

3.2 Carbon budget under present climate

The various LCTs differ in vegetation, soil, and hydrological characteristics (Figures
S2-S16; Tables 1, S2-S4), leading to heterogeneity in the ecosystem-atmosphere fluxes
of CO2 and CHj4 (Figure 2). For the total C budget (sum of CO,-C and CH4-C budgets),
the terrestrial LCTs (peatlands and forests) functioned as C sinks, while lakes
functioned as a significant C source (mean + 95% confidence interval: 27 £ 2 g C m™
yr'!) during the period 2005-2018 (Figure 2a). Among the peatland LCTs, the C budget
ranged from a large C sequestration in pine bog (-141 £ 17 g C m™ yr'!) to a small
sequestration in tall sedge fen (-17 £ 3 g C m™ yr'!), while among the forest types, the
largest C sink was found for pine forest (-154 £ 17 g C m™ yr'!) and the smallest for
open forest (-45 = 6 g C m? yr'!) (Figure 2a). The variability and magnitude of the total
C budget was dominated by CO» (Figure 2b). Most peatland LCTs emitted CH4 to the
atmosphere, with the largest emission from the water-logged peatland LCTs (tall sedge
fen: 19+ 1 g C m? yr''; flark fen: 17 =2 g C m? yr'!) (Figure 2e). Forests functioned
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as weak CHy sinks (-0.23 + 0.02 to -0.26 + 0.02 g C m yr!), while lakes were CHy4

sources (1.33 £ 0.09 g C m? yr'!") (Figure 2e).

By quantifying the role of peatlands in the landscape-scale heterogeneity in C budget
at the LCT level, we found that the variability in the total C mass budget among
peatland LCTs accounted for 38 £ 5 % of the variability due to all landscape LCTs
combined (Figure 2f). The CO,-C budget, GPP, and ER heterogeneity had a similar
peatland contribution (33 £ 5 %, 36 + 1 %, and 39 + 2 %, respectively) (Figure 2f).
Compared to them, peatlands explained a significantly larger part of the variability (81

+ 0.5 %) in the CH4-C budget (Figure 2f).

The landscape-scale C budget, obtained by weighting the CO2 and CH4 exchange rates
of each LCT by the corresponding areas (Table 2), was -106 = 11 g C m™ yr'! in 2005-
2018. It was dominated by the CO> uptake of -108 = 10 g C m? yr'! while the CHs4
emission was 2.28 + 0.19 g C m? yr! (landscape mean in Figure 2a-¢). Peatlands
explained a smaller part of the variability in total C budget (19 + 3 %), CO»-C budget
(15+3 %), GPP (16 £ 1 %), and ER (19 £ 1 %) compared to the LCT level (Figure 2g).
These proportions were also less than the proportion of the total peatland area within
the landscape (26%) (Table 2). However, peatlands explained as much as 88 = 0.1 %

of the CH4 flux variability when scaling them with LCT areas (Figure 2g).

3.3 Radiative effect of present carbon budget
The different heterogeneities in CO,-C and CH4-C budgets, together with the different

radiative impacts of CO> and CH4 (Myhre et al., 2013), led to a further layer of LCT
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heterogeneity in the C flux effect on radiative balance (Figure 3). The total RE
generated by CO; and CHj4 fluxes varied greatly among the peatland LCTs (Figure 3a).
Specifically, pine bog had the greatest negative RE (-37 + 4 fW m™ over the 100-yr
time horizon, 1 fW = 10715 W), followed by string top (-25 = 3 fW m™). In contrast, tall
sedge fen exhibited the largest positive RE among all the LCTs (69 + 6 fW m?),
followed by flark fen (52 = 7 fW m™). Consequently, the RE generated by different
peatland types spanned a range of 107 £ 9 fW m™, which was more than twice that

among the forest and aquatic LCTs (56 £ 5 fW m™) (Figure 3a).

Despite comprising just 26% of the landscape area, the variability among peatland types
accounted for 77 £ 3 % to 81 + 1% of the total variability in RE at the LCT level and
65 £ 4% to 79 + 2 % when considering LCT areas, depending on the time horizon
(Figure 3d-e). These were similar to the corresponding SSD ratio for the CHs-C budget
(LCT-based: 81 + 0.5 %; area-based: 88 + 0.1 %) and much larger than those for the

CO»-C budget (LCT-based: 33 + 5 %; area-based: 15 + 3 %) (Figure 3d-¢).

3.4 Uncertainty due to biased peatland classification
The area-weighted total RE resulting from the CO2 and CH4 budgets was -20 + 3 fW
m per unit area of the region over the 100-yr time horizon (CO2: -30 + 3 fW m2; CHa:

10 + 1 fW m; landscape mean in Figure 3a-c).

Using this result as a baseline (Scenario 1, Figure 4), we analyzed the potential
deviation in RE for scenarios in which peatland LCTs were combined (Scenario set 2

in Figure 4) or mis-classified as forests or lakes (Scenario set 3 in Figure 4). Regarding
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scenarios in which peatland LCTs are combined, our results showed that the negative
RE over the 100-yr time horizon significantly decreased when all the peatland LCTs
were pooled into the forested dry peatland class (pine bog, -32 + 3 fW m™, Scenario
2a) or treated as string top (-29 = 3 fW m™, Scenario 2b) (Figure 4a). On the other hand,
the negative RE significantly increased when all the peatland LCTs were classified as
water-logged peatland (tall sedge fen, -5 + 3 fW m™, Scenario 2d; flark fen, -10 + 4 fW
m™, Scenario 2e) (Figure 4a). This suggests that, to accurately estimate the regional
RE, the LCT mapping must be able to distinguish between the water-logged and dry
peatland areas within the landscape. Consistent with this point, when all the water-
logged peatland areas were classified as tall sedge fen and all the dry peatland LCTs

were classified as string top, RE did not change significantly (Scenario 2f, Figure 4a).

Regarding scenarios that peatlands are confused with other terrestrial or aquatic LCTs,
our results showed that the uncertainty in RE was insignificant if pine bog (the
dominant forested peatland in the landscape) was identified as pine forest (-21 £ 4 fW
m™, Scenario 3a, Figure 4a). This was associated with the comparable CO, budgets and
the consistently small CH4 emissions of the forested peatlands and their corresponding
forest types (Figure 2). Similarly, when flark fen, an open water-logged peatland with
low vegetation cover, was classified as a lake, the modeled RE did not change
significantly (Scenario 3b, Figure 4a). However, when the two above-mentioned
misclassification scenarios were adopted simultaneously and the remaining open
peatland LCTs were represented by a single open dry peatland type (string top), the
negative RE decreased significantly (Scenario 3c, Figure 4a). Our results demonstrate

the potentially high sensitivity of the modeled RE to peatland classification (Figure 4a).
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Further analyses showed that over a shorter time horizon (25 yr) this sensitivity

involved not only the magnitude but also the sign of RE (Figure 4b).

Like RE, our results also demonstrated that the aggregation or misclassification of
peatlands could significantly alter the estimated landscape-scale C budget, although the
differences among various scenarios were smaller compared to RE (Figure 4c).
Moreover, we found that the landscape-scale CO> budget and its RE did not differ
significantly (p > 0.05) from those calculated with the full LCT classification (Scenario
1) in any peatland aggregation or misclassification scenario (Figure 4d-f). In contrast,
there were significant differences in the landscape-scale CH4 budget and its RE among

different scenarios (Figure 4d-f).

3.5 Radiative effect of future carbon budget

Based on our RE calculations with the LCT fluxes modeled until 2099, we found that
the variation in total RE due to the C budget of different peatland LCTs significantly
increased during 2005-2099 under both RCP scenarios considered (p < 0.001; Figure
5a-b). Even though the radiative efficiency (i.e., RE per atmospheric GHG change) is
concurrently reduced as background concentrations increase (Etminan et al., 2016;
Meinshausen et al., 2011), the warming-induced changes in GHG fluxes resulted in an
amplified variability in the RE of total C budget among peatland LCTs. Compared to
the present period (2005-2018), the peatland heterogeneity in total RE during 2086-
2099 was enhanced by 143% under RCP4.5 and by 243% under RCP8.5 (Figure 5a-b).
Moreover, the SSD of total RE among all the landscape LCTs also significantly

increased under the two RCP scenarios (p < 0.001; Figure 5a-b), indicating an amplified

21



497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

heterogeneity in RE at the landscape scale as well. Similar to the total RE, the SSD of
CHs-induced RE among the peatland LCTs significantly increased with warming under
both climate change scenarios (p < 0.001; Figure 5c-d). Moreover, our results showed
that, compared to CO,-C exchange, the RE heterogeneity due to CH4-C budget had a
larger relative importance in explaining the trend of total RE heterogeneity among

peatlands during 2005-2099 (Figure 5e-f).

3.6 Survey of different land cover products

Compared to the 25.5% areal coverage of peatlands within the Kaamanen landscape
revealed by our classification, there was no peatland/wetland specified in the global
land cover map of GLCC, MODIS.LCT or GLWD; the coverage was 0.1% in both
GlobCover2009 and FROM-GLCI10, as high as 58.0% in GLC2000, and 24.8% in
PEATMAP (Figure 6; Table 3). Although the proportion of peatlands was similar in
PEATMAP and this study, the spatial agreement between their areas was only 48.5%
(Table 3). The corresponding spatial agreement for GLC2000, GlobCover2009, and
FROM-GLC10 were 21.8%, 0.1%, and 0.01%, respectively (Table 3). Regarding the
peatland/wetland heterogeneity, there was only one peatland/wetland type defined in
any of the considered global products including such a LCT, i.e., ‘regularly flooded
shrub and/or herbaceous cover’ in GLC2000, ‘closed to open (>15%) grassland or
woody vegetation on regularly flooded or waterlogged soil’ in GlobCover2009,

‘wetland’ in FROM-GLC10, and ‘peatland’ in PEATMAP (Figure 6).

The European-level product, CLC2018EU.25ha, has a similar peatland representation

to PEATMAP, i.e., one peatland category (‘peatbog’), with a 25.3% areal coverage and
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44.8% spatial agreement (Figure 6; Table 3). Unlike the larger scale products, the
national data base CLC2018F1.20m provides multiple peatland classes for the
Kaamanen landscape (‘Broad-leaved forest on peatland’, ‘Coniferous forest on
peatland’, ‘Mixed forest on peatland’, ‘Transitional woodland/shrub cc 10-30% on
peatland’ (cc = canopy closure), ‘Peatbog’, ‘Terrestrial inland marsh’, and ‘Aquatic
inland marsh’), with a relatively accurate peatland area (28.6%) and a high score of
spatial agreement (62.0%) (Figure 6; Table 3). On the other hand, the ‘Peatbog’ class,
which in CLC2018FL.20m is defined as open peatlands smaller than 25 ha
(https://ckan.ymparisto.fi/dataset/corine-maanpeite-2018), alone occupied about 84%
of the total peatland/wetland area (Figure 6). This indicates that, although there are
multiple peatland/wetland classes and forested peatlands are separated from forests and
open peatlands, there is no separation of small peatland patterns in CLC2018FI.20m

either.

4 Discussion

This study couples a detailed land cover classification of a typical boreal landscape with
quantification of spatial heterogeneity in C budget and its climate impact (RE); based
on these comprehensive data, we assessed the effect of peatland classification accuracy
on C budget and RE, derived potential trajectories of RE heterogeneity under future
warming conditions and surveyed peatland representation in global land cover
products. This was motivated by the fact that landscapes including peatlands are
widespread across the boreal biome. By overlaying two maps, i.e., the map of terrestrial
ecoregions of the world (Olson et al., 2001) and the latest northern peatland map with
10-km pixels (Hugelius et al., 2020), we find that there are approximately 150,400 10-

km pixels within the boreal zone, of which 140,700 (i.e., 94%) contain peatlands
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(peatland area fraction > 0) (Figure S17a). Our results jointly advocate the detailed
delineation of peatland heterogeneity, i.e., determining a sufficient number of LCTs
with differing characteristics, so that we can reduce uncertainties in C budget estimates
of the boreal biome. This conclusion is further supported by previous studies that
focused on individual boreal peatland ecosystems (Heiskanen et al., 2021; Li et al.,

2016; Lund et al., 2010).

Indeed, recently, there have been multiple attempts to produce local, regional, national,
and circumpolar databases of northern peatlands. In part of these attempts, however, all
peatlands and wetlands have been lumped into one class (Hird, DeLancey, McDermid,
& Kariyeva, 2017; Hugelius et al., 2020; Karlson et al., 2019; Tanneberger et al., 2017;
Xu et al., 2018), but there exist approaches that include separate classes for different
peatland types (Amani et al., 2017; Bourgeau-Chavez et al., 2017; Korpela, Haapanen,
Korrensalo, Tuittila, & Vesala, 2020; Mahdianpari et al., 2020; Olefeldt et al., 2021;
Résénen & Virtanen, 2019). Currently, the most detailed circumpolar database uses
existing GIS datasets and machine learning modeling to estimate the fractional
coverage of five different wetland classes in 0.5° grid cells (Olefeldt et al., 2021). Also
some other data products have relied on existing GIS databases (Hugelius et al., 2020;
Tanneberger et al., 2017; Xu et al., 2018), while others have used remotely sensed data
that enable construction of higher spatial resolution datasets (Amani et al., 2017;
Bourgeau-Chavez et al., 2017; Hird et al., 2017; Karlson et al., 2019; Mahdianpari et

al., 2020; Rasdnen & Virtanen, 2019).

To generate locally accurate maps of peatland LCTs, it has been shown that ultra-high

spatial resolution (pixel size < 1 m) airborne or drone data are required (Korpela et al.,
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2020; Résdnen & Virtanen, 2019). Nevertheless, the use of such data is presently
impossible for large regions, but maps based on high-resolution satellite data (pixel size
<30 m) are, at least in some cases, sufficient to predict the proportional area of different
LCTs (Bartsch, Hofler, Kroisleitner, & Trofaier, 2016; Mahdianpari et al., 2020; Treat
et al., 2018). In practice, however, even the national-scale land cover product
(CLC2018FI.20m), while showing possible guidelines for larger scale maps and the
best performance of the products compared in this study, depicts peatlands at much

coarser than the nominal 20-m pixel level.

Both at small and large scales, peatland LCT detection requires multiple remote sensing
data sources that bring complementary information, including, e.g., optical data
depicting spectral properties of land cover, lidar data providing information about
topography and vegetation structure, and synthetic aperture radar (SAR) data sensitive
to moisture and surface structure (Amani et al., 2017; Bourgeau-Chavez et al., 2017;
Hird et al., 2017; Karlson et al., 2019; Mahdianpari et al., 2020; Rasédnen, Manninen,
Korkiakoski, Lohila, & Virtanen, 2021; Risdnen & Virtanen, 2019). Freely available
high-resolution remote sensing datasets, such as Sentinel-1 SAR, optical Sentinel-2 and
Landsat 8, and ArcticDEM topographic data would enable the generation of
circumpolar maps of peatland LCTs. Such maps could be upscaled from local peatland
maps and field inventories; vice versa, circumpolar maps could be downscaled to
locally accurate products with high resolution datasets, such as airborne or drone lidar

and hyperspectral data.

Besides the large spatial heterogeneity, boreal peatlands can also vary temporally under

environmental changes. Our modeling results showed that the LCT-based RE
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heterogeneity among peatland types could be enhanced in future warming conditions,
suggesting that peatland heterogeneity in climate feedback to C fluxes would change
with environmental changes irrespective of land cover change. The reason why we did
not consider changes in peatland area or LCT distribution within the Kaamanen
landscape is that paleoecological evidence indicates that there has not been any major
changes in the surface microtopography and vegetation taxonomic composition since
the formation of the irregular string and flark pattern ca. 1000 yr ago (Piilo et al., 2020).
Furthermore, there is no permafrost within the study area (Aurela, Laurila, et al., 2001),
and hence permafrost thawing, which could induce drastic changes in peatland types
and distribution (Helbig et al., 2017; Johansson et al., 2006; Payette, Delwaide,
Caccianiga, & Beauchemin, 2004), has no effect there. However, as 77% of the 10-km
peatland pixels of the boreal map do contain permafrost (Figure S17b), the
heterogeneity of peatlands potentially increases across the northern boreal landscape
with permafrost thawing. Overall, vegetation and hydrology changes affecting the
peatland distribution and characteristics within the boreal zone cannot be ruled out.
These potential changes under environmental changes highlight not only the delineation

of the spatial heterogeneity of peatlands, but also their temporal dynamics.

5 Conclusions

Based on an extensive set of field data including CO; and CHj4 fluxes, soil and
vegetation characteristics, and an explicit land cover classification, we modeled the C
budgets and their radiative climate effects both for the boreal landscape and its
individual LCTs. The average present-day, landscape-scale budgets of CO, and CH4
were -108 + 10 and 2.3 £ 0.2 g C m? yr'!, respectively. We show that, despite only

comprising 26% of the study area, peatlands within the Kaamanen boreal landscape
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account for 88% of the area-based heterogeneity in CH4-C budget, and 65% and 79%
of that in the total radiative effect over the 100-yr and 25-yr time horizons, respectively.
Misclassifying peatlands or inadequately representing the heterogeneity among the
peatland types can alter the magnitude of the modeled radiative effect significantly over
the 100-yr time horizon, and even change the sign over the 25-yr time horizon.
Warming tends to enhance the RE heterogeneity of peatland C budgets. We also
observed that global land cover products have obvious biases in their classification of
boreal peatlands. Overall, this study implies the great significance of resolving land
cover specifics, especially peatland heterogeneity, in sufficient detail across the boreal

biome for constraining the circumpolar C-climate nexus.
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Table 1. Land cover types (LCTs) and their dominant species in the tree, understory, and ground layers.

Land cover type

Tree layer

Field layer

Ground layer

Pine forest

Birch forest

Mixed forest

Open forest

Pine bog

Birch swamp

String

Tall sedge fen

Flark fen
Lake

Stream

Non-vegetated

Canopy cover > 10%, pine (Pinus sylvestris)
cover > 2/3 of total canopy cover

Canopy cover > 10%, birch (Betula pubescens)
cover > 2/3 of total canopy cover

Multiple tree species, including pine, birch, and
few aspen (Populus tremula), canopy cover >
10%, cover of minority species > 1/3

Forest with tree canopy cover < 10%

Peatland with coverage of pine trees > 1%

Peatland with coverage of birch trees > 2%

Peatland with few trees (< 1% coverage)

None

None
None

None

None

Evergreen shrubs (e.g., Vaccinium vitis-idaea,
Empetrum nigrum, and Calluna vulgaris), and also
some deciduous shrubs

Evergreen and deciduous shrubs

Evergreen (Vaccinium vitis-idaea) and deciduous
(Vaccinium myrtillus, Vaccinium uliginosum) shrubs

Evergreen shrubs, and some deciduous shrubs

Evergreen (Rhododendron tomentosum) and
deciduous (Vaccinium uliginosum, Betula nana)
shrubs, and some forbs (Rubus chamaemorus) and
graminoids (mostly Carex spp.)

Forbs, grasses, and shrubs

Evergreen and deciduous dwarf shrubs as well as
forbs (esp. Rubus chamaemorus)

Sedges, also deciduous shrubs (e.g., Betula nana,
Salix spp.) and forbs

Grasses and forbs
None

None

None

Feather mosses and lichens

Feather mosses and lichens

Feather mosses and lichens

Lichens, and some feather mosses

Sphagnum, feather mosses, and lichens

Sphagnum and feather mosses

Sphagnum and feather mosses, and some lichens

Sphagnum, wet brown mosses, and open water

Open water, bare peat, and wet brown mosses
Open water

Open water

Mostly human made bare areas, sand with some
stones, and all roads in the area
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957  Table 2. The area extent of different land cover types (LCTs).

Major LCT Specific LCT Area (km?) Area fraction (%)

Peatland Pine bog 3.06 9.32
Birch swamp 0.04 0.12

String top 0.87 2.65

String margin 0.60 1.83

Tall sedge fen 1.85 5.64

Flark fen 1.96 5.97
Forest Pine forest 1736 52.89
Birch forest 0.14 0.43

Mixed forest 1.94 591

Open forest 0.44 1.34
Waterbody [ e 432 13.16
Stream 0.02 0.06

Non-vegetated 022 067
Total 32.82 100

958
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959

Table 3. Assessment of peatland/wetland representation in different land cover products for the Kaamanen boreal landscape.

q Spatial
Product Reference Scale Version Methodology Spatu.nl Peatland/wetland Peatland/v:etland agreement
resolution relevant class label area (%) (%)
(1]
Global Land Cover Remote
Characterization Loveland et al. (2000) Global version 2 sensin 1 km - 0 0
(GLCC) &
Moderate
Resolution Imaging .
Spectroradiometer Sulla-Menashe, .Gray, Abercrombie, Global MCDI12Q1 Rempte 500 m i 0 0
and Friedl (2019) v006 sensing
Land Cover Type
(MODIS.LCT)
Global Regularly flooded
Global Land Cover Bartholomé and Belward (2005) Global Product Remote 1 km shrub and/or 58.0 21.8
2000 (GLC2000) sensing
vl.l herbaceous cover
Closed to open (>15%)
Global Land Cover Remote grassland or woody
Map for 2009 Arino et al. (2012) Global v2.3 sensin 300 m vegetation on regularly 0.1 0.1
(GlobCover2009) & flooded or waterlogged
soil
First 10-m
resolution global Gong et al. (2019) Global Vol Remote 10m Wetland 0.1 0.01
land cover product sensing
(FROM-GLCI10)
Global Lakes and
Wetlands Database Lehner and Doll (2004) Global level 3 Database 30 second - 0 0
(GLWD)
PEATMAP Xu et al. (2018) Global Finland Meta-analysis Shapefile Peatland 24.8 48.5
CORINE Land
) . Remote Shapefile
Cover 2018 EU, 25 https.//lanq.copem1<,us.eu/pan— Continental 2018,25ha  sensing and (minimum Peatbog 253 44.8
ha european/corine-land-cover/clc2018 database nit 25 ha)
(CLC2018EU.25ha) "
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https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018

CORINE Land

. . - N . Remote BFPL, CFPL, MFPL,
Cover 2018 FI, 20 https.//ckan.vmparlsto.fl/dataspt/cormc- National 2018,20 m sensing and 20 m TWPL, peatbog, TIM, 28.6 62.0
m maanpeite-2018 databa. and AIM
(CLC2018F1.20m) ¢

960 Note: BFPL, CFPL, MFPL, TWPL, TIM, and AIM indicate Broad-leaved forest on peatland, Coniferous forest on peatland, Mixed forest on
961  peatland, Transitional woodland/shrub cc 10-30% on peatland (cc = canopy closure), Terrestrial inland marsh, and Aquatic inland marsh,
962  respectively.
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Birch swamp

Pine forest Peatland

Mixed forest

Birch forest
| Openforest

Pine bog
| Birch swamp

String

Tall sedge fen

Flark fen

Lake

Stream

Tall sedge fen

Flark fen

o
iy #‘ Aerial image 2 Non-vegetated

963 © 'k

964  Figure 1. Location (a), land cover types (b), 0.5-m resolution false color aerial
965 images (c-d), and photographs of different peatland types (e-i) of the Kaamanen
966 catchment. Panels (c) and (d) correspond to Areal image 1 and 2, respectively, in panel

967  (b).
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Figure 2. Heterogeneity in carbon (C) budget within the Kaamanen boreal
landscape during 2005-2018. (a) Net C budgets combining carbon dioxide (CO>) and
methane (CH4) among land cover types (LCTs) and their area-weighted landscape
mean; (b) CO> budgets (net ecosystem CO; exchange, NEE); (c) Gross primary
productivity (GPP); (d) Ecosystem respiration (ER); (¢) CH4 budgets; (f) Ratio between
the Sum of Squared Deviations (SSD) from the arithmetic mean C budget among
peatland LCTs (SSDp.LcT) and that among all landscape LCTs (SSDr-rcT); (g) Ratio
between the SSD from the area-weighted landscape mean among peatland LCTs (SSDp.
Area) and that among all landscape LCTs (SSDv-area). In panels (a)-(e), a positive value
means output from the ecosystem being a C output. The diamond symbol in panels (a)-
(e) and the bar and number in panels (f)-(g) indicate the mean annual value, and the

error bar in all panels denotes the 95% confidence interval.
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Figure 3. Heterogeneity in radiative effect (RE) of present carbon (C) budget
within the Kaamanen boreal landscape. (a) Total RE due to carbon dioxide (CO2)
and methane (CH4) exchange of different land cover types (LCTs) and their area-
weighted landscape mean; (b) RE due to CO; exchange; (c¢) RE due to CH4 exchange;
(d) Ratio between the Sum of Squared Deviations (SSD) from the arithmetic mean RE
among peatland LCTs (SSDp.Lct) and that among all landscape LCTs (SSDv-Lct); (€)
Ratio between the SSD from the area-weighted landscape mean among peatland LCTs
(SSDp-area) and that among all landscape LCTs (SSDr-area). The RE represents the
cumulative RE due to an annual emission or uptake pulse over time horizons of 25 and
100 yr, calculated based on C flux densities (g m™? yr'!, i.e., flux per m? of each LCT)
during 2005-2018 and assuming the RCP4.5 scenario. The diamond symbol in panels
(a)-(c) and the bar and number in panels (d)-(e) indicate the mean annual value, and the

error bar in all panels denotes the 95% confidence interval. 1fW = 107> W,
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Figure 4. Uncertainty in radiative effect (RE) of landscape-scale carbon (C) budget
due to aggregation or misclassification of peatlands. RE is calculated based on the
C budget during 2005-2018 assuming the RCP4.5 scenario. (a-b) Total RE calculated
based on landscape-scale total C budget with 100-yr and 25-yr time horizons; (c)

Landscape-scale total C budget during 2005-2018; (d-e) RE calculated based on
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1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

landscape-scale CO> and CH4 budgets with 100-yr and 25-yr time horizons; (f)
Landscape-scale CO> and CH4 budgets. RCP4.5 scenario is assumed for RE. Scenario
1 is based on the observed land cover type (LCT) data described in Table 2. In scenario
2, peatlands are not distinguished but assumed to consist of a single type (in 2a-2e, pine
bog, string top, string margin, tall sedge fen, and flark fen, respectively). In scenario 2f,
all dry peatlands are allocated to string top and all water-logged peatlands are classified
as tall sedge fen. In scenario 3, peatlands are mis-classified as non-peatland LCTs: (3a)
forested peatlands (pine bog and birch swamp) as corresponding forests (pine and birch
forest, respectively), (3b) the open water-logged peatland with low vegetation cover
(flark fen) as lake, and (3¢) the simultaneous occurrence of scenarios 3a and 3b and a
misclassification of all other open peatlands (string top, string margin, and tall sedge
fen) as open dry peatland (represented by string top). The bar and error bar in the plot
represent the mean value and its 95% confidence interval, respectively, and the letters

denote the statistical difference among different scenarios. 1fW = 101> W.
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Figure 5. Potential trajectory of heterogeneity in radiative effect (RE) among

different land cover types (LCTs) under future warming scenarios (RCP4.5 and

RCP8.5). RE represents the cumulative RE due to an annual emission or uptake pulse

over the 100-yr time horizon, calculated based on flux densities (g m? yr'!, i.e., flux per

m? of each LCT) of CO2 and methane CH4 during 2005-2099. (a)-(b) Sum of Squared

Deviations (SSD) from the mean total RE among peatland LCTs (SSDp.LcT) and that

among all landscape LCTs (SSDr-Lct); (¢)-(d) SSDp-rct of the CO»- and CHs-induced
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RE; (e)-(f) Relative importance of CO; and CH4 in explaining the trend in total RE
heterogeneity among peatlands. *** denotes p < 0.001. In all panels, » denotes the
correlation coefficient between SSD and temperature. To reflect warming effects,

biogeochemical models were driven with variable temperature while other input data

were kept constant (2005-2018 averages). 1fW = 10> W.
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Figure 6. Land cover of the Kaamanen boreal landscape classified by global (a-g),
continental (h), and national (i) land cover products and this study (j). (a) GLCC;
(b) MODIS.LCT; (c) GLC2000; (d) GlobCover2009; (¢) FROM-GLC10; (f) GLWD;
(g) PEATMAP; (h) CLC2018EU.25ha; (i) CLC2018FL.20m; (j) Peatland types
revealed by this study. For GLCC, ENF = Evergreen Needleleaf Forest and CS =
Closed Shrublands, respectively; for MODIS.LCT, ENF = Evergreen Needleleaf
Forests, WS = Woody Savannas, and S = Savannas, respectively; for GLC2000, TC =
Tree Cover (needle-leaved, evergreen), M = Mosaic (Tree cover / Other natural
vegetation), SC = Shrub Cover (closed-open, deciduous (with or without sparse tree
layer)), and RFSHC = Regularly flooded shrub and/or herbaceous cover, respectively;
for GlobCover2009, ONDEF = Open (15-40%) needleleaved deciduous or evergreen
forest (>5m), MFSG = Mosaic forest or shrubland (50-70%) / grassland (20-50%),
MGFS = Mosaic grassland (50-70%) / forest or shrubland (20-50%), SV = Sparse

(<15%) vegetation, GWRFWS = Closed to open (>15%) grassland or woody
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1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

vegetation on regularly flooded or waterlogged soil - Fresh, brackish or saline water,
and WB = Water bodies, respectively; for FROM-GLCI10, IS = Impervious surface; for
CLC2018EU.25ha, there are three classes within the Kaamanen landscape (Coniferous
forest, Peatbog, Water body) and only Peatbog is shown here; for CLC2018FI1.20m,
AS = Artificial surface, BFMS = Broad-leaved forest on mineral soil, BFPL = Broad-
leaved forest on peatland, CFMS = Coniferous forest on mineral soil, CFPL =
Coniferous forest on peatland, MFMS = Mixed forest on mineral soil, MFPL = Mixed
forest on peatland, TWMS = Transitional woodland/shrub on mineral soil, TWPL =
Transitional woodland/shrub on peatland, BDS = Beach, dune, and sand plain, TIM =
Terrestrial inland marsh, AIM = Aquatic inland marsh, WC = Water course, and WB
= Water body, respectively; for our classification, only peatland classes are shown here.

More information about the land cover products is presented in Table 3.
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