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Abstract 33 

Atmospheric concentrations of methane, a powerful greenhouse gas, have strongly increased since 2007. 34 

Measurements of stable carbon isotopes of methane can constrain emissions if the isotopic compositions 35 

are known; however, isotopic compositions of methane emissions from wetlands are poorly constrained 36 

despite their importance. Here, we use a process-based biogeochemistry model to calculate the carbon 37 

isotopic composition of global wetland methane emissions. We estimate a mean global signature of -38 

61.3±0.7‰ and find that tropical wetland emissions are enriched by ~11‰ relative to boreal wetlands. Our 39 

model shows improved resolution of global, latitudinal and regional variations in wetland emission isotopic 40 

composition. Atmospheric simulation scenarios with the improved wetland isotopic composition suggest 41 

that increases in atmospheric methane since 2007 are attributable to rising microbial emissions. Our 42 

findings substantially reduce uncertainty in the stable carbon isotopic composition of methane emissions 43 

from wetlands and improve understanding of the global methane budget. 44 

 45 

Introduction 46 

Methane (CH4) is a powerful greenhouse gas, and its atmospheric abundance (in nmol mol-1, abbreviated 47 

ppb) has increased by about 160% since the 1750s1,2. Unlike the steady increases of atmospheric CO2 and 48 

N2O, atmospheric CH4 nearly stabilized from 1998 to 2006 and then rapidly increased with a growth rate 49 

averaging ~6 ppbyr-1 between 2007-2013 and ~10 ppbyr-1 between 2014-2020. Since 2007, CH4 has 50 

increased while its stable carbon isotopic composition (δ13C-CH4, Eq. 9) has shifted to more negative values, 51 

after increasing for 200 years3,4. Diagnosing the mechanisms behind these changes continues to generate 52 

considerable attention and controversy5–9.  53 

Measurements of atmospheric CH4 abundance and δ13C-CH4, in combination with isotopic signatures of 54 

sources and sinks, allow partitioning of CH4 budgets into different source categories. This is because 55 

isotopic signatures of source categories differ substantially, where the δ13C-CH4 of microbial sources (mean 56 

of −61.7 with variability of 6.2‰) is isotopically more depleted than fossil (mean of −44.8 with variability 57 

of 10.7‰) and biomass burning (mean of −26.2 with variability of 4.8‰) sources8,10. The destruction of 58 

CH4, primarily by reaction with hydroxyl radical (OH), isotopically enriches atmospheric CH4 relative to 59 

the emission-weighted source signature11-13. Due to a wide range of δ13C-CH4 in each source category10, 60 

spatial and temporal distributions must be known to reduce the uncertainty in source partitioning. Wetlands 61 

are the largest single natural CH4 source and strongly influence atmospheric δ13C-CH4 changes12, but the 62 

spatial and temporal information of wetland δ13C-CH4 is limited, and often a single uniform value is 63 

assumed13,14. Studies show that source partitioning in atmospheric modeling is highly sensitive to spatio-64 

temporal understanding of wetland δ13C-CH4
8. 65 
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Observations of global wetland δ13C-CH4 show that CH4 emitted from boreal wetlands is isotopically more 66 

depleted than CH4 emitted from the tropics15–17; proposed causes include the abundance of C4 plants 67 

influencing the δ13C of precursor organic matter (POM) (δ13C-POM), differences in CH4 -producing archaea 68 

(methanogen) communities, and different CH4 transport processes16,18–20. Ganesan et al. (2018)21 produced 69 

a spatially-resolved global wetland δ13C-CH4 distribution, but their study did not simulate temporal 70 

variability and did not represent fractionation processes that change based on meteorology, soil and 71 

vegetation properties. 72 

Here, we incorporate a carbon isotope module into a biogeochemistry model, the Terrestrial Ecosystem 73 

Model (TEM)22,23 to simulate and mechanistically understand the global wetland δ13C-CH4 distribution. 74 

The model is evaluated using site-level and regional observations. We then use this model to understand 75 

the mechanisms behind the spatial and temporal variability of wetland δ13C-CH4, and conduct uncertainty 76 

and sensitivity tests. Finally, we investigate the effect of new wetland isotope maps on atmospheric δ13C-77 

CH4 and global CH4 emissions by using an atmospheric model and observations24,25. 78 

 79 

Results 80 

Modeling wetland δ13C-CH4 dynamics 81 

TEM simulates CH4 production, oxidation, and transport between soils and the atmosphere22,23,26,27. A  82 

carbon isotope-enabled module is incorporated into TEM, referred to as isoTEM, which explicitly considers 83 

carbon isotopic fractionation processes in wetlands (Fig. 1). The isotopic fractionation factor (α) for each 84 

process is defined in Eq. 1018, where α is larger than 1 when the product is isotopically more depleted than 85 

the reactant. 86 

δ13C-POM is determined by the global C3 and C4 plant distribution (Supplementary Fig. 1)28, where C4 87 

vegetation is isotopically enriched due to its photosynthetic pathway29. We incorporated observed long-88 

term trends of atmospheric δ13C-CO2 into soil δ13C-POM (Supplementary Fig. 2)30,31. CH4 is produced from 89 

POM in anaerobic soils by two distinct methanogen communities: hydrogenotrophic methanogens (HMs) 90 

which use H2 and CO2 and acetoclastic methanogens (AMs) which use acetate32. The fractional contribution 91 

of these pathways is important because HMs produce isotopically more depleted CH4 compared to AMs 92 

(αHM and αAM in Eq. 12) 17,33. To quantify the fractional contribution, we used in situ observations from 93 

Holmes et al. (2015)17 and conducted a regression analysis between the fractional contribution and main 94 

environmental factors, including soil pH, nutrients, and latitude (Eq. 11, Supplementary Fig. 3, and 95 

Supplementary Table 1). Total produced δ13C-CH4  is then calculated using a mixing of CH4 pools from the 96 

two methanogen communities (Eq. 13-14). The CH4 produced is partly oxidized by methanotrophs in 97 
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aerobic soil layers with 12CH4 being oxidized preferentially relative to 13CH4 (αMO in Eq. 15)34. Then, the 98 

remaining CH4 is emitted to the atmosphere through three processes: plant-mediated transport, diffusion, 99 

and ebullition, with fractionation factors of αTP, αTD, and αTE, respectively (Eq. 16)18. We calculated oxidized 100 

and emitted δ13C-CH4 using the ratio of oxidation and transport processes and their fractionation factors 101 

(Eq. 17-22) (Method 1).  102 

We optimized four fractionation factors related to CH4 production, oxidation, and plant-mediated transport 103 

(αHM, αAM, αMO, αTP) using field observations in boreal (50-90°N), temperate (30-50°N/S), and tropical 104 

(<30°N/S) wetlands 33,35,36 (Eq. 12, 15-16, Supplementary Table 2-4 and Supplementary Figure 4-5). We 105 

set αTE to 1.000 and αTD to 1.005 based on previous studies18 since ebullition and diffusion are governed by 106 

physical processes. To quantify uncertainties in model simulations, we used 20 ensemble members of 107 

optimization. We simulated global wetland CH4 fluxes and their isotopic signatures during 1984-2016 at a 108 

spatial resolution of 0.5° with a 50-year spin-up to let δ13C-CH4 of carbon pools come to a steady state 109 

(Methods 2-3). 110 

 111 

Simulated wetland δ13C-CH4 and its comparison with observations 112 

We estimated the mean global wetland source signature to be -61.3±0.7‰ during 1984-2016 (Fig. 2a). This 113 

value is more enriched than the mean wetland signature of -62.3 in Ganesan et al. (2018)21 but similar to 114 

the mean value of -61.5‰ reported in Sherwood et al. (2017)10 (Supplementary Fig. 8-9). The latitudinal 115 

distribution of δ13C-CH4 ranges from a mean of -57±3‰ in the tropics to -68±4‰ in boreal regions (Fig. 116 

2b). Our model simulates isotopically depleted global δ13C-CH4 during the summer due to larger emissions 117 

from boreal regions (Supplementary Fig. 10) and a long-term trend of -0.7±0.1‰ during 1984-2016 (blue 118 

line in Fig. 2c) when incorporating the long-term trend in δ13C-POM (Supplementary Fig. 2) 119 

We compared the magnitude and spatial variability of the simulated wetland δ13C-CH4 with site-level 120 

observations (Method 4). We used 70 in situ measurements of global wetland δ13C-CH4 from previous 121 

studies after excluding the measurements applied for optimization (Supplementary Data 1, Supplementary 122 

Fig. 11)10,17. We showed that isoTEM reduced the root mean square error (RMSE) by 40% compared to 123 

Ganesan et al.21 (2.2 vs. 3.6) (Fig. 3a-b). Compared to a static isoTEM map in July, 2016, temporally-124 

varying isoTEM reduced the RMSE slightly (2.2 vs. 2.4) (Supplementary Fig. 12). Ganesan et al.21 125 

prescribed maximum and minimum values as boundary conditions, resulting in unrealistic clusters of 126 

wetland δ13C-CH4 near -65‰ for boreal and -60‰ for tropical sites (Fig. 3a and Supplementary Fig. 9). 127 
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Furthermore, we compared the spatial variability of simulated wetland δ13C-CH4 with estimated signatures 128 

from airborne measurements for three regions in Alaska during 2012-2013 and 2015 using Miller-Tans 129 

plots (Fig. 3c-e) (Method 4)37,38. In situ flux observations collected across Alaskan wetlands show an 130 

average of -65‰, but with a large 9‰ variance38, which could be due to changes in wetland habitat 131 

including soil nutrients, pH, carbon, and vegetation distribution. The estimated signatures from observation 132 

also show that compared with δ13C-CH4 from the North Slope of Alaska (-65±1‰), δ13C-CH4 from interior 133 

Alaska is more depleted (-69±6) and δ13C-CH4 from southwest Alaska is more enriched (-59±4‰) 134 

(Supplementary Fig. 13 and Supplementary Table 5). IsoTEM reproduces the spatial variability (-67±1, -135 

68±1, and -61±2‰ for North Slope, interior, and southwest Alaska, respectively), whereas Ganesan et al.21 136 

simulated no spatial variability around a value of -65‰ (Fig. 3e). IsoTEM simulates the spatial variability 137 

for the Alaska as the model optimized parameters for vegetated and non-vegetated sites separately and 138 

incorporated meteorology and soil inputs that vary spatially and temporally. 139 

 140 

Mechanistic understanding of spatial and temporal variability of wetland δ13C-CH4  141 

We investigated the relative importance of the isotopic fractionation processes that affect the latitudinal 142 

gradient of wetland δ13C-CH4 (Fig. 2b and Supplementary Fig. 14). First, compared to the boreal zone, 143 

δ13C-POM is enriched in the tropics by 5±2‰ as C4 plants are more prevalent (yellow line in Fig. 2b, 144 

Supplementary Fig. 1 and 14a). Second, due to a larger fraction of AM in the tropics (Supplementary Fig. 145 

3), the δ13C-CH4 produced by methanogens is enriched by 12±3‰ (red line in Fig. 2b, Supplementary Fig. 146 

14b). Third, δ13C-CH4 emitted from wetlands is 6±4‰ more depleted in the tropics due to a larger 147 

proportion of plant-mediated transport causing higher effective transport fractionation (αT) (blue line in Fig. 148 

2b, Eq. 19, Supplementary Fig. 14d, 15-16). Thus, in our simulation, δ13C-CH4 emitted from tropical 149 

wetlands is enriched by ~11‰ compared to boreal wetlands. This difference is strengthened due to the 150 

distribution of C4 plants (+5±2‰) and the fractional contribution of differing methanogen communities 151 

(+12±3‰) but weakened due to plant-mediated transport (-6±4‰). 152 

The long-term decrease in wetland δ13C-CH4 simulated by isoTEM is mostly due to the decrease in 153 

atmospheric 13C-CO2 25,31. The decreasing trend is incorporated into 13C-POM (Supplementary Fig. 2) 154 

and causes the long-term decrease in wetland 13C-CH4 of ~0.7‰ from 1984 to 2016 (blue line in Fig. 2c)30. 155 

We conducted a simulation without the decreasing trend in δ13C-POM, which showed that increased 156 

temperature caused plant productivity and plant-mediated transport to increase and δ13C-CH4 to decrease 157 

by ~0.1‰ during 1984-2016 (purple line in Fig. 2c and Supplementary Fig. 15). This implies that wetland 158 
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δ13C-CH4 could further change in the future due to decreases in δ13C-POM and increases in plant-mediated 159 

transport.  160 

There is no continuous long-term measurements of wetland δ13C-CH4 to verify our simulated long-term 161 

trend. Instead, we ran a regression analysis using observations collected from various wetland locations 162 

since the early 1980s (Supplementary Data 1) (Method 5). The results show that the representation of data 163 

increases when adding year as a parameter for the regression analysis (R2 of 0.25 to 0.3, p<0.001) 164 

(Supplementary Table 6), and the observed data show a long-term decreasing trend with year (~-0.1‰ year-165 

1) (Supplementary Fig. 17). More continuous long-term observations of wetland δ13C-CH4 are necessary to 166 

further verify the simulated long-term trends in wetland δ13C-CH4.  167 

 168 

Uncertainty and sensitivity tests 169 

The version of TEM that we use for this study explicitly simulates soil CO2 and CH4 but not soil H2 and 170 

acetate pools26, because the spatial and temporal soil H2 and acetate pools are highly uncertain, and it is 171 

hard to verify the simulated pool changes with limited observations. On the contrary, the CH4 production, 172 

oxidation, and transport processes in TEM have been thoroughly validated for global regions from previous 173 

studies22,23,26,39–42. Therefore, instead of adding another uncertainty from explicitly simulating H2 and acetate 174 

pools that cannot be validated, we applied the observed fraction of different methanogen communities (fHM) 175 

based on regression to the total CH4 production rates simulated by TEM(Supplementary Fig. 3 and 176 

Supplementary Table 1). In our simulation, the fraction of HM and AM (fHM) changes spatially but not 177 

temporally. 178 

To quantify the uncertainty of our regression analysis of fHM, we ran additional sensitivity tests by varying 179 

the fHM based on the uncertainty from Markov Chain Monte Carlo approach (Method 5 and Supplementary 180 

Table 1)43. The results show that varying the parameters do not change the wetland δ13C-CH4 substantially 181 

(< 1%) (Supplementary Table 7). We acknowledge that this simplification would cause uncertainty in our 182 

model results, and future studies should explicitly measure changes in H2 and acetate concentrations in soils 183 

to incorporate the detailed processes into the model.  184 

The simplification of CH4 production processes may also cause uncertainty in the fractionation as we do 185 

not explicitly simulate fractionation processes from POM to CO2/acetate and from CO2/acetate to CH4. 186 

However, studies show that fractionation factors of the fermentation (POM to CO2) and syntrophy (POM 187 

to acetate) processes are minor (α ≈ 1.00)17,44,45. There may be additional CO2 produced by acetoclastic 188 

methanogenesis that have large fractionation (α ≈ 1.05), but the fraction is negligible in wetland systems17. 189 
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Thus, our fractionation factors for HMs and AMs (αHM and αAM, respectively) reasonably represent the 190 

major fractionation process of CH4 production.  191 

Furthermore, to quantify the influence of the uncertainty of our model inputs on simulation results, we 192 

varied temperature, precipitation, net primary productivity (NPP), atmospheric CH4, and applied transient 193 

inundation maps46 (Method 5). The results show that meteorology and substrate inputs alter wetland δ13C-194 

CH4 by ±1‰ (Supplementary Table 7). Our TEM simulations showed that CH4 fluxes are sensitive to these 195 

inputs26. However, δ13C-CH4 shows minimal changes with changing meteorology and substrate because the 196 

fractionation is determined by the fraction of CH4 oxidation and transport processes (Eq. 21-22), that are 197 

calculated as a function of soil CH4 production and the resultant CH4 concentration changes (CM in 198 

Equations 4-8). When CH4 production increases due to input changes, CH4 oxidation and transport increase 199 

simultaneously, causing minor variation in the fraction of oxidation and transport (Supplementary Fig. 16).  200 

Inundation changes also alter wetland δ13C-CH4 by changing the areas where wetland emissions occur 201 

(±2‰) (Supplementary Table 7 and Supplementary Fig. 6-7). 202 

 203 

Implication for atmospheric modeling and global CH4 budget 204 

We constructed four scenarios with different wetland emissions and isotopic signature maps as inputs for 205 

TM5 atmospheric modeling during 1984-2016 to understand the impacts of spatially- and temporally-206 

resolved wetland δ13C-CH4 (Table 1). Scenario A uses a globally uniform value of wetland δ13C-CH4; 207 

Scenario B uses a temporally static but spatially variable wetland isotope map from Ganesan et al.21; and 208 

Scenario C uses spatially- and temporally-resolved maps from isoTEM.  We used the same wetland fluxes26 209 

with a static inundation map47 for Scenarios A-C that applied a step increase in fluxes in 2007 and 2014 by 210 

hypothesizing that microbial wetland emissions are the dominant driver of the post-2006 atmospheric CH4 211 

increase8,24,48 (46 Tgyr-1 increase in total 2016 emissions across the global wetlands compared to the 212 

averaged total emissions in 1999-2006) (Supplementary Fig. 19). However, since other studies have 213 

suggested an increase in fossil emission as a dominant driver for post-2006 CH4 increases12, we created 214 

scenario D that uses isoTEM wetland isotope maps with increases in both microbial and fossil emissions 215 

since 2007 (Table 1).  216 

For Scenarios A-D, we adjusted global mean fossil and ruminant fluxes simultaneously to satisfy the long-217 

term average mass balance of atmospheric CH4 and δ13C-CH4 (Method 6), as done by Lan et al. (2021)24. 218 

These adjustments bring the long-term global average δ13C-CH4 from simulation to the observed 219 

atmospheric levels without changing the post-2006 trends in simulated δ13C-CH4
8,24,49After adjustments, 220 

global mean fossil fluxes in scenarios A-D are between 170-190 Tgyr-1 (Supplementary Fig. 19),within the 221 
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uncertainty range in Schwietzke et al. (2016)8. For all other fluxes, their isotopic signatures, and CH4 sinks 222 

that include OH, Cl, and O(1D)11,50,51, we used the same setup in our model as in Lan et al. (2021)24 223 

(Supplementary Table 8). We compared simulated CH4 and δ13C-CH4  with observations from 224 

NOAA/INSTAAR global flask-air measurements2,25 (Supplementary Table 10). 225 

The atmospheric simulation showed that Scenarios A-C follow the observed δ13C-CH4 trend reasonably 226 

closely (Fig. 4b). However, Scenario D, which hypothesizes a post-2006 increase in microbial and fossil 227 

fluxes, does not follow the decreasing trend in global mean δ13C-CH4. As pointed out earlier7,8,24,48, the 228 

magnitude of the δ13C-CH4 decrease suggests that the increase in microbial emissions dominates fossil 229 

emissions in the post-2006 global CH4 increase. We also confirmed a dominant increase in post-2006 230 

microbial emissions, even though the long-term decrease in wetland δ13C-CH4 of ~0.7‰ allow for a larger 231 

fossil emission increase. An additional simulation of Scenario C without including the long-term decrease 232 

in wetland δ13C-CH4 shows differences of ~0.1‰ in simulated atmospheric δ13C-CH4 in 2016 compared 233 

with model results with long-term wetland δ13C-CH4 trend (Supplementary Fig. 23). This difference can 234 

accommodate more post-2006 emission increases from isotopically enriched fossil sources for Scenario C. 235 

We differentiated Scenarios A-C by comparing their simulated latitudinal gradients of atmospheric δ13C-236 

CH4 with observations (Fig. 4c and Supplementary Fig. 20). The observed mean latitudinal gradient during 237 

1998-2016 shows more negative δ13C-CH4 at northern high latitudes compared to the Southern Hemisphere 238 

by 0.45±0.05‰ (Supplementary Table 9), resulting from the dominance of northern emissions combined 239 

with the subsequent fractionation by reaction with OH during transport to the Southern Hemisphere15. 240 

Scenario C, which uses IsoTEM maps, best reproduces the observed north-south gradient (0.48‰); 241 

Scenarios A and B under- and over-estimate the gradient by ~0.1‰ (0.37‰, and 0.59‰, respectively). The 242 

difference is also clear when comparing simulated atmospheric δ13C-CH4 of Scenarios A-C at 10 243 

measurement sites (Supplementary Fig. 21-22 and Supplementary Table 10). The simulated and observed 244 

atmospheric δ13C-CH4 differ the most at Northern Hemispheric sites, where Scenario C best reproduces the 245 

atmospheric δ13C-CH4 data, but Scenario A and Scenario B simulate more negative and positive δ13C-CH4, 246 

respectively (Fig. 4d) 247 

The difference in north-south gradient of atmospheric δ13C-CH4 between scenarios in Fig. 4c has an 248 

implication on regional partitioning of sources. Our sensitivity test of atmospheric modeling showed that 249 

all scenarios with transient inundation data46 (Scenarios E-G) underestimated the north-south δ13C-CH4 250 

gradient (0.27±0.06‰) compared with observations (0.45±0.05‰) (Method 6, Supplementary Table 11, 251 

Supplementary Fig. 26-30). Thus, we ran an additional scenario H that increased emissions from boreal 252 

wetlands by 2.5 times over the original transient data (Supplementary Fig. 26 and Supplementary Table 11), 253 
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which increased the north-south gradient by ~0.1‰ and improved the match with the observed north-south 254 

δ13C-CH4 gradient (0.39‰) (Supplementary Fig. 29-30). 255 

 256 

Discussion 257 

The atmospheric CH4 burden has grown rapidly since 2007, and the largest annual increase since NOAA 258 

began measurements in 1983 was observed in 2020-202152,53. During 2019-2020, δ13C-CH4 decreased 259 

steeply54, suggesting a further increase in microbial emissions as this and other studies suggest7,8,24,48. The 260 

microbial sources include anthropogenic emissions from ruminants, agriculture, and waste, and natural 261 

emissions from wetlands and other aquatic ecosystems. Our simulation with increase in wetland emissions 262 

can reproduce the observed post-2006 δ13C-CH4 decrease (Fig. 4), and our additional sensitivity test with 263 

increase in anthropogenic microbial emissions also tracks the post-2006 δ13C-CH4 decrease (Supplementary 264 

Fig. 24-25). However, the scenario with emission increase from both microbial (60%) and fossil (40%) 265 

sources did not reproduce the decreasing trend in atmospheric δ13C-CH4 (Scenario D in Fig. 4). Other 266 

atmospheric studies that use atmospheric δ13C-CH4 observations also showed that fossil emission increase 267 

is not a dominant reason of recent CH4 increase24,55. 268 

Atmospheric δ13C-CH4 measurements have not been widely used to inform global methane budget because 269 

of uncertainty and spatiotemporal variation in source signatures, specifically citing limitation in wetland 270 

source signatures56. In this study, we mechanistically explain the spatiotemporal variations of wetland δ13C-271 

CH4 and validate the simulation using site-level and regional measurements, which substantially reduce the 272 

uncertainty in δ13C-CH4 source signatures (Fig. 3). The small decreasing trend in wetland δ13C-CH4 allow 273 

for more fossil emission increase in our estimate, but cannot change the conclusion that fossil emission 274 

increases are not the dominant driver for post-2006 global CH4 increases. 275 

Also, this study considers wetland δ13C-CH4 during the historical period only, but the future changes in 276 

wetland δ13C-CH4 will depend on multiple factors. First, our simulation shows that changes in δ13C-POM 277 

affect wetland δ13C-CH4 as SOC is mostly derived from new carbon from vegetation. The simulated active 278 

layer depth from a previous study57 shows that the active layer depth had a minor change during our 279 

simulation period (mean of < 0.1m) (Supplementary Fig. 18). However, the usage of old stored carbon in 280 

Arctic permafrost may play an important role as a substrate for methanogens in the future58. Also, studies 281 

found the importance of microbial fossil CH4 emissions from Arctic regions in the future59,60. The emissions 282 

are partially included as geologic seep emissions in our atmospheric modeling simulation (Supplementary 283 

Fig. 19 and Supplementary Table 8), and we also considered microbial fossil emissions with depleted δ13C-284 

CH4 in our total fossil emission estimates24. Lastly, our simulation shows that the increase in NPP cause 285 
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more plant-mediated transport. This effect will be more important in the future as plant functional types 286 

and plant growth change due to temperature increase. 287 

Finally, there are several aspects of the model that could be improved. First, our optimization of 288 

fractionation factors was based on limited observations; additional long-term measurements of wetland 289 

δ13C-CH4 would reduce the uncertainty. Second, the fractional contribution of two methanogen 290 

communities (HMs and AMs) changes spatially but not temporally in the model. We need a better 291 

understanding of temporal changes in methanogen communities especially following permafrost thaw and 292 

disturbance33, and explicitly measure changes in H2 and acetate concentrations in soils to incorporate 293 

detailed CH4 production processes into the model. Third, various vertical methanogenic and non-294 

methanogenic processes change 13C of CH4 and CO2, the vertical CO2/CH4 ratios, and thus 13C-CH4 295 

emitted  from wetlands, since CO2 is a substrate for HM61,62. We need to identify detailed vertical subsurface 296 

processes by conducting manipulation experiments using isotopic labeling analysis and inhibitor techniques 297 

to include those fractionation processes in future modeling studies63. Fourth, current wetland models do not 298 

simulate large CH4 emissions and δ13C-CH4 from tropical tree stems and aquatic sources properly64–66.  299 

More measurements from these sources are crucial to improve the estimate of natural CH4 emission and 300 

δ13C-CH4 changes56.  301 

 302 

Conclusion 303 

This study is the first to use a biogeochemistry model to mechanistically explain and reduce the uncertainty 304 

in global wetland δ13C-CH4, to the best of our knowledge. IsoTEM explains the latitudinal gradient of 305 

wetland δ13C-CH4 that is increased by the distribution of C3/C4 plants and methanogen community type but 306 

decreased by plant-mediated transport. The long-term trends of the simulated wetland δ13C-CH4 is 307 

controlled by δ13C-POM and plant-mediated transport. Our results suggest that rising microbial emissions 308 

is the dominant driver for the post-2006 global CH4 increase and the concurrent decrease in atmospheric 309 

δ13C-CH4, and the isoTEM spatial distribution of wetland δ13C-CH4 better reproduces the observed 310 

atmospheric δ13C-CH4 latitudinal gradient. 311 

 312 

  313 
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Figure Captions 342 

Figure 1. Schematic diagram of wetland CH4 dynamics and fractionations for isoTEM.  343 

The model simulates δ13C of precursor organic matter (POM), CH4 production, oxidation, and transport to 344 

the surface. δ13C-POM is determined by global C3/C4 plant distribution and long-term trends of atmospheric 345 

δ13C-CO2. CH4 is produced by two pathways, one using H2 and CO2 and another using acetate, with 346 

fractionation factors (α) for HMs (αHM)≈1.030-1.080 and for AMs (αAM)≈1.000-1.040. Produced CH4 is 347 

partly oxidized by methanotrophs with a fractionation factor αMO≈1.015-1.035. Residual produced CH4 is 348 

emitted to the surface via three processes, plant-mediated transport (TP), diffusion (TD), and ebullition 349 

(TE), with different fractionations, αTP≈1.000-1.030, αTD≈1.000-1.010, αTE≈1.000-1.005, respectively. We 350 

optimized fractionation factors αHM, αAM, αMO, and αTP, but set αTE to 1.000 and αTD to 1.005 since ebullition 351 

and diffusion are governed by physical processes (Supplementary Tables 2-4 and Method 1-2). Bold and 352 

dashed lines in the figure refer to chemical and transport processes, respectively. 353 

 354 

Figure 2. Global distribution of wetland δ13C-CH4 and its latitudinal and long-term gradients 355 

simulated by isoTEM. 356 

(a) Modeled global wetland δ13C-CH4 for wetland grid cells with static inundation data47. (b) Mean 357 

latitudinal distribution of δ13C of POM (yellow), produced CH4 (red), and CH4 emitted to the atmosphere 358 

for all grid cells (blue) and flux-weighted grid cells (purple).  (c) Long-term trends of global mean wetland 359 

δ13C-CH4 with and without incorporating long-term trend in δ13C-POM (blue and purple, respectively). The 360 

shaded area in panel b and c represents one standard deviation determined from 20 ensembles of simulations 361 

where the optimized parameters were varied. 362 

 363 

Figure 3. Site-level and regional model-data comparison of wetland δ13C-CH4. 364 

(a-b) Site-level model-data comparison of observations with (a) Ganesan et al. (2018)21 and (b) temporally-365 

varying isoTEM. (c-e) Regional model-data comparison of simulated wetland δ13C-CH4 in Alaska by (c) 366 

Ganesan et al. (2018)21 and (d) isoTEM, and (e) their comparison with observation-based source signatures 367 

from NOAA aircraft measurements. Source signature is derived using Miller-Tans plots. Error bars in panel 368 

a-b represent one standard deviation of measured wetland δ13C-CH4. All observation data used for site-level 369 

comparison are listed in Supplementary Data 1. Error bars for observations in panel a, b, e represent one 370 

standard deviation of measured/inferred wetland δ13C-CH4. Error bars for isoTEM in panel e represent one 371 

standard deviation determined from 20 ensemble simulations where the optimized parameters were varied. 372 

 373 
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Figure 4. Observed and simulated atmospheric CH4 and δ13C-CH4 from TM5 atmospheric modeling. 374 

(a-b) Model-data comparison of long-term trend of (a) atmospheric CH4 from 1985 to 2016 (in ppb) and 375 

δ13C-CH4 from 1999 to 2016 (in ‰) by observation (grey) and simulations from Scenario A (yellow), B 376 

(red), C (blue), and D (skyblue). (c) Model-data comparison of normalized north-south gradient of 377 

atmospheric δ13C-CH4 for Scenario A (yellow), B (red), and C (blue) in 2012. The north-south δ13C-CH4 378 

was calculated by zonally-averaging the surface δ13C-CH4 and normalized based on the mean δ13C-CH4 at 379 

60-90 °S. The normalized north-south δ13C-CH4 for other years is in /Figure 16 and Supplementary Table 380 

7. (d) Histogram of the difference between simulated and observed δ13C-CH4 for Scenario A (yellow), B 381 

(red), and C (blue) for 6 measurement sites located in the northern hemisphere. The histogram plots for all 382 

measurement sites are in Supplementary Figure 18. Information about Scenarios A-D is in Table 1. 383 

 384 
  385 
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Table 1. Setup of TM5 atmospheric modeling for Scenarios A-D. 386 

*Using a global mass balance model from previous studies8,24, the long-term mean fossil and ruminant 387 

fluxes were adjusted from EDGAR 4.3.2 inventory to match the observed atmospheric growth rate of CH4 388 

during 1984-2016 and the 1998-2016 mean of δ13C-CH4. By conducting the mass balance for all scenarios, 389 

we intended to reduce the spin-up time for atmospheric δ13C-CH4 to be stabilized and compare all scenarios 390 

fairly (Method 6).  391 

 392 

 393 

 394 

  395 

Scenario Wetland isotope map Assumption of post-
2006 CH4 increase 

Global mass balance of 
CH4 and δ13C-CH4

* 

A: Uniform w/ 
Microbial Increase 

One uniform value  

(-62.3‰, a mean 
signature of Ganesan 

et al (2018)21) Wetland emission 
increase 

(46 TgCH4yr-1 increase 
from 1999-2006 to 

2016) 

Yes 

B: Ganesan w/ 
Microbial Increase 

One spatial map from 
Ganesan et al. (2018)21 

(mean of -62.3‰) 

C: isoTEM w/ 
Microbial Increase 

Spatio-temporally 
resolved maps from 
isoTEM (mean of -

61.3‰)  

(this study) 
D: isoTEM w/ 

Microbial + Fossil 
Increase 

 

Wetland (60%) + fossil 
(40%) emission 

increase12 

(28 TgCH4yr-1 increase 
from wetland, 18  

TgCH4yr-1 increase 
from fossil, from 

1999-2006 to 2016) 
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Methods 396 

1. Model development  397 

We incorporated a carbon isotope module of methane (CH4) into an existing process-based biogeochemistry 398 

model, the Terrestrial Ecosystem Model (TEM) (Figure 1). 399 

 400 

Terrestrial Ecosystem Model (TEM) 401 

TEM is a commonly used biogeochemistry model and its CH4, soil, thermal, and hydrological dynamics 402 

have been evaluated in previous studies22,27. The CH4 dynamics module of TEM simulates CH4 production, 403 

oxidation, and three transport processes—diffusion, ebullition, and plant-mediated transport—between soil 404 

and atmosphere. Please refer to the details of TEM in Oh et al. (2020)23 and Liu et al. (2020)26. 405 

In TEM wetland model, changes in CH4 concentrations (CM) at depth z and time t (∂CM(z,t)/∂t) are governed 406 

by Equation 1, where Mp(z,t), Mo(z,t), Rp(z,t), and RE(z,t) are CH4 production, oxidation, plant-mediated 407 

transport, and ebullition rates, respectively, and ∂FD(z,t)/∂z represents flux divergence from gaseous and 408 

aqueous diffusion. CH4 is produced by methanogens in anaerobic soils (MP) and is calculated by multiplying 409 

maximum potential production rate (MGO) and limiting functions of substrate, soil temperature, pH, and 410 

redox potentials (SOM, MST, pH and Rx, respectively) (Equation 2). For this study, we assume that substrates 411 

for methanogens are mainly from soil organic carbon (SOC) derived from vegetation (Net Primary 412 

Productivity, NPP), where NPP(mon) is monthly NPP (gC m-2 month-1), NPPMAX is ecosystem-specific 413 

maximum monthly NPP, and f(CDIS(z)) describes the relative availability of organic carbon substrate at 414 

depth z (Equation 3). The substrate availability changes depending on atmospheric CO2, meteorology, and 415 

soil properties67. 416 

 417 

𝜕𝐶𝑀(𝑧,𝑡)

𝜕𝑡
= 𝑀𝑃(𝑧, 𝑡) − 𝑀𝑂(𝑧, 𝑡) −

𝜕𝐹𝐷(𝑧,𝑡)

𝜕𝑧
− 𝑅𝑃(𝑧, 𝑡) − 𝑅𝐸(𝑧, 𝑡) … Equation 1 418 

𝑀𝑃,𝑇𝐸𝑀(𝑧, 𝑡) = 𝑀𝐺0𝑓(𝑆𝑂𝑀(𝑧, 𝑡))𝑓(𝑀𝑆𝑇(𝑧, 𝑡))𝑓(𝑝𝐻(𝑧, 𝑡))𝑓(𝑅𝑥(𝑧, 𝑡)) … Equation 2 419 

𝑓(𝑆𝑂𝑀(𝑧, 𝑡)) = (1 +
𝑁𝑃𝑃(𝑚𝑜𝑛)

𝑁𝑃𝑃𝑚𝑎𝑥
)𝑓(𝐶𝐷𝐼𝑆(𝑧)) … Equation 3 420 

 421 

The produced CH4 is partly oxidized by methanotrophs and is calculated by the multiplying the maximum 422 

potential oxidation rate (OMAX) and limiting functions of CH4 concentration, soil temperature, soil moisture, 423 

redox potential, nitrogen deposition, diffusion limited by high soil moisture, and oxygen concentration (CM, 424 
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TSOIL, ESM, ROX, NDP, DMS, and CO2 respectively) (Equation 4). We use Michaelis-Menten kinetics with 425 

kCH4,LAM of 5 µM for the CH4 limitation (Equation 5). 426 

𝑀𝑂,𝑇𝐸𝑀(𝑧, 𝑡) =427 

𝑂𝑀𝐴𝑋𝑓(𝐶𝑀(𝑧, 𝑡))𝑓(𝑇𝑆𝑂𝐼𝐿(𝑧, 𝑡))𝑓(𝐸𝑆𝑀(𝑧, 𝑡))𝐹(𝑅𝑂𝑋(𝑧, 𝑡))𝑓 (𝑁𝑑𝑝(𝑧, 𝑡)) 𝑓(𝐷𝑚𝑠(𝑧, 𝑡))𝑓(𝐶𝑂2(𝑧))  428 

… Equation4 429 

𝑓(𝐶𝑀(𝑧, 𝑡)) =
𝐶𝑀(𝑧,𝑡)

𝑘𝐶𝐻4,𝐿𝐴𝑀+𝐶𝑀(𝑧,𝑡)
  … Equation 5 430 

 431 

The remaining CH4 is emitted to the surface with three different transport processes. First, gaseous and 432 

aqueous diffusion (FD) occur due to concentration gradients of CH4 (∂CM(z,t)/∂t) (Equation 6). The 433 

molecular diffusion coefficient (D) in different soil layers depends on soil texture and soil moisture. 434 

Ebullition (RE) occurs when CH4 bubble forms with CM greater than μmol L-1, and is calculated with a 435 

constant rate of Ke (1,0h-1) (Equation 7). Plant-mediated transport (Rp) occurs for plants that function as a 436 

direct conduit for CH4 to the atmosphere, and is functions of rate constant of 0.01 h-1, vegetation type, root 437 

density, vegetation growth, and soil CH4 concentrations (Kp, TRveg, fROOT, fGROW, and CM, respectively) 438 

(Equation 8)68. Rp depends on ecosystem-specific plant functional types and increases in a warmer soil due 439 

to the increase in vegetation growth. In TEM model, the soil profile was divided into 1-cm layers, and soil 440 

temperature, moisture, and CH4 dynamics of TEM were simulated at an hourly time step22. 441 

𝐹𝐷(𝑧, 𝑡) = −𝐷(𝑧)
𝜕𝐶𝑀(𝑧,𝑡)

𝜕𝑡
 … Equation 6 442 

𝑅𝐸(𝑧, 𝑡) = 𝐾𝑒𝑓(𝐶𝑀(𝑧, 𝑡)) … Equation 7 443 

𝑅𝑃(𝑧, 𝑡) = 𝐾𝑃𝑇𝑅𝑣𝑒𝑔𝑓𝑅𝑂𝑂𝑇(𝑧)𝑓𝐺𝑅𝑂𝑊(𝑡)𝐶𝑀(𝑧, 𝑡) … Equation 8 444 

Methane stable carbon isotope module in TEM (isoTEM) 445 

IsoTEM explicitly considers carbon isotopic fractionation processes for precursor organic matter (POM) 446 

and CH4 during production, oxidation, and transport process. The stable carbon isotope in delta notation 447 

() describes the ratio of the heavy isotope to the light isotope in the sample (Rsam=(13C/12C)sam) relative to 448 

a known standard ratio, Rstd, which is Vienna Pee Dee Belemnite (VPDB) for carbon18 (Equation 9). The 449 

deviation of this ratio-of-ratios from one is multiplied by 1000 to express isotope variations in parts per 450 

thousand (‰, permil). To express isotopic fractionation for the reaction A → B, we used a fractionation 451 

factor (α) defined in Equation 1018, where reactant A is in the numerator and product B is in the denominator. 452 
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If α is larger than 1, the 13C of product is isotopically more depleted in the heavy isotope than the 13C of 453 

reactant, and if α is smaller than 1, the 13C of product is more enriched in 13C than the 13C of reactant. 454 

 455 

𝛿13𝐶 = (𝑅𝑠𝑎𝑚/𝑅𝑠𝑡𝑑) − 1 … Equation 9 456 

𝛼 =
𝑅𝐴

𝑅𝐵
= (

𝛿13𝐶𝐴

1000
+ 1)/ (

𝛿13𝐶𝐵

1000
+ 1)   … Equation 10 457 

 458 

The 13C of POM (13C-POM) is determined by the global C3 and C4 vegetation distribution28 and is set to 459 

-27‰ and -13‰ for C3- and C4-only vegetation areas, respectively. The 13C-POM  for areas with mixed 460 

C3 and C4 vegetation is determined by the proportion of each type of photosynthetic pathway 461 

(Supplementary Fig. 1). We also incorporated long-term trends of atmospheric 13C-CO2 into soil 13C-462 

POM changes. Atmospheric 13C-CO2 became depleted in 13C by ≈ 2‰ during 1951-201625,69, and this 463 

signal is transferred to photosynthates and POM for CH4 emissions in wetlands70. We incorporated this 464 

trend with a 6-year carbon residence time between photosynthesis and CH4 emission in wetlands 465 

(Supplementary Fig. 2)30. 466 

The CH4 is then produced in anaerobic soils by two distinct methanogen communities: hydrogenotrophic 467 

methanogens (HMs) use H2 and CO2 and acetoclastic methanogens (AMs) use acetate (CH3COO-) for CH4 468 

production32. Both mechanisms produce equimolar amounts of CO2 and CH4 from cellulose-like substrates. 469 

Using in situ observations from Holmes et al. (2015)17, the fractional contribution of the two methanogen 470 

communities is calculated based on a multiple regression analysis with the main environmental factors 471 

(Equation 11). From the principal component analysis, Holmes et al. (2015) found a combination of 472 

environmental parameters including pH, vegetation type, soil organic carbon (SOC), and latitude are 473 

correlated with the dominant methanogenic pathway. The regression results show that fractional 474 

contribution of HMs (fHM) is positively correlated with latitude with a steep increase at 60°N (slope of 0.11 475 

and 5.19 for latitudes below and above 60°N, respectively), and negatively correlated with pH (slope of -476 

9.23) and SOC (slope of -0.7) (R2 of 0.41, p < 0.001) (Eq. 11, Supplementary Table 1, and Supplementary 477 

Fig. 3). 478 

 479 
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𝑓𝐻𝑀 =  

{
 
 

 
 𝑎1 × 𝑙𝑎𝑡 + 𝑏 × 𝑝𝐻 + 𝑐 × 𝑆𝑂𝐶 + 𝑑  

⋯𝑓𝑜𝑟 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 < 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑠𝑡𝑒𝑝
𝑎1 × 𝑙𝑎𝑡 + 𝑎2 × (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 − 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑠𝑡𝑒𝑝) + 𝑏 × 𝑝𝐻 + 𝑐 × 𝑆𝑂𝐶 + 𝑑 

⋯𝑓𝑜𝑟 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 > 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑠𝑡𝑒𝑝

 … Equation 11 480 

 481 

The 13C-CH4 produced by HMs and AMs more negative than the 13C-POM, with the fractionation factors 482 

for HMs (αHM) ≈1.030-1.080 and for AMs (αAM) ≈1.000-1.040 (Equation 12). The produced 13C-CH4 is 483 

calculated using a binary mixing of CH4 pools from the two methanogen communities (Equations 13-14). 484 

 485 

𝛼𝐻𝑀 =
1000+𝛿13𝐶𝑃𝑂𝑀

1000+𝛿13𝐶𝐻4,𝑝𝑟𝑜𝑑,𝐻𝑀
 , 𝛼𝐴𝑀 =

1000+𝛿13𝐶𝑃𝑂𝑀

1000+𝛿13𝐶𝐻4,𝑝𝑟𝑜𝑑,𝐴𝑀
 … Equation 12 486 

𝛿13𝐶𝐻4,𝑝𝑟𝑜𝑑,𝐻𝑀= 𝛿13𝐶𝑃𝑂𝑀−1000×𝑙𝑛(𝛼𝐻𝑀)

𝛿13𝐶𝐻4,𝑝𝑟𝑜𝑑,𝐴𝑀= 𝛿13𝐶𝑃𝑂𝑀−1000×ln (𝛼𝐴𝑀)
 … Equation 13 487 

𝛿13𝐶𝐻4,𝑝𝑟𝑜𝑑 = fHM × 𝛿
13𝐶𝐻4,𝑝𝑟𝑜𝑑,𝐻𝑀 + (1 − fHM) × 𝛿

13𝐶𝐻4,𝑝𝑟𝑜𝑑,𝐴𝑀 … Equation 14 488 

 489 

The produced CH4 is partly oxidized by methanotrophs in aerobic soils, which prefer 12CH4, thus α for CH4 490 

oxidation (αMO)≈1.015-1.035 (Equation 15)34. Then, the produced CH4 is transported to the atmosphere 491 

through three processes, plant-mediated transport, diffusion, and ebullition, with different fractionation 492 

factors αTP≈1.000-1.030, αTD≈1.000-1.010, αTE≈1.000-1.005, respectively18 (Equation 16). 493 

 494 

𝛼𝑀𝑂 =
1000+𝛿13𝐶𝐻4,𝑝𝑟𝑜𝑑

1000+𝛿13𝐶𝐻4,𝑜𝑥𝑖𝑑
 … Equation 15 495 

𝛼𝑇𝑃 =
1000+𝛿13𝐶𝐻4,𝑝𝑟𝑜𝑑

1000+𝛿13𝐶𝐻4,𝑇𝑃
 , 𝛼𝑇𝐸 =

1000+𝛿13𝐶𝐻4,𝑝𝑟𝑜𝑑

1000+𝛿13𝐶𝐻4,𝑇𝐸
 , 𝛼𝑇𝐷 =

1000+𝛿13𝐶𝐻4,𝑝𝑟𝑜𝑑

1000+𝛿13𝐶𝐻4,𝑇𝐷
  … Equation 16 496 

 497 

We calculated the oxidized and transported 13C-CH4 based on “open system equations” at steady state to 498 

consider residual enriched CH4 after oxidation and transport processes71–74. We assumed that CH4 produced 499 

in the vertical soil column is either oxidized or transported in each hourly time-step (Eq. 17). In Equations 500 

17-18, Mp(z,t), Mo(z,t), Rp(z,t), and RE(z,t) represent CH4 production, oxidation, plant-mediated transport, 501 

and ebullition rates, respectively, and ∂FD(z,t)/∂z represents flux divergence due to gaseous and aqueous 502 
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diffusion for each soil layer z and time t. For simplicity, we defined effective transport fractionation, αT, by 503 

flux-weighting the proportions of fractionation factors of three transport processes in Equation 19. The 504 

isotopic difference between oxidation and transport processes can be described by a fractionation factor, 505 

αT/MO, in Equations 20. Given these conditions, isotopic signatures for oxidation and transport to the 506 

atmosphere (emission) can be written in Equations 21-22. For more details, refer to Hayes (2004)75. 507 

 508 

∑ 𝑀𝑃(𝑧, 𝑡) = ∑ 𝑀𝑜(𝑧, 𝑡) +𝑧𝑧 ∑
𝜕𝐹𝐷(𝑧,𝑡)

𝜕𝑧
+𝑧 ∑ 𝑅𝑃(𝑧, 𝑡) + ∑ 𝑅𝐸(𝑧, 𝑡)𝑧𝑧  … Equation 17 509 

𝑓𝑜𝑥 =
∑ 𝑀𝑂(𝑧,𝑡)𝑧

∑ 𝑀𝑃(𝑧,𝑡)𝑧
 , 𝑓𝑇𝑃 =

∑ 𝑅𝑃(𝑧,𝑡)𝑧

∑ 𝑀𝑃(𝑧,𝑡)𝑧
, 𝑓𝑇𝐸 =

∑ 𝑅𝐸(𝑧,𝑡)𝑧

∑ 𝑀𝑃(𝑧,𝑡)𝑧
, 𝑓𝑇𝐷 =

∑
𝜕𝐹𝐷(𝑧,𝑡)

𝜕𝑧𝑧

∑ 𝑀𝑃(𝑧,𝑡)𝑧
   … Equation 18 510 

𝛼𝑇 =
(𝑓𝑇𝑃𝛼𝑇𝑃+𝑓𝑇𝐸𝛼𝑇𝐸+𝑓𝑇𝐷𝛼𝑇𝐷)

𝑓𝑇𝑃+𝑓𝑇𝐸+𝑓𝑇𝐷
 … Equation 19 511 

𝛼𝑇/𝑀𝑂 = 
𝛼𝑀𝑂

𝛼𝑇
= 𝜖𝑇/𝑀𝑂 + 1  …Equation 20 512 

𝛿13𝐶𝐻4,𝑜𝑥𝑖𝑑 =
𝛿13𝐶𝐻4,𝑝𝑟𝑜𝑑−(1−𝑓𝑜𝑥)𝜖𝑇/𝑀𝑂

𝛼𝑇/𝑀𝑂 (1−𝑓𝑜𝑥)+𝑓𝑜𝑥
   … Equation 21 513 

𝛿13𝐶𝐻4,𝑒𝑚𝑖𝑡𝑡𝑒𝑑 =
𝛼𝑇/𝑀𝑂 𝛿

13𝐶𝐻4,𝑝𝑟𝑜𝑑+𝑓𝑜𝑥 𝜖𝑇/𝑀𝑂

𝛼𝑇/𝑀𝑂 (1−𝑓𝑜𝑥)+𝑓𝑜𝑥
  … Equation 22 514 

 515 

2. Model optimization 516 

We optimized 4 fractionation factors, αHM, αAM, αMO, and αTP, using in situ observations for six wetland 517 

ecosystem types (Equations 12 and 15-16). Since the fractionation factors for ebullition and diffusion are 518 

governed by physical processes, we set them as constants based on literature (αTE=1.000, αTD=1.005)18. The 519 

wetland ecosystems are divided into forested and non-forested wetlands for boreal (50-90°N), temperate 520 

(30-50°N/S), and tropical (<30°N/S) regions. To optimize parameters, we collected observation data from 521 

six sites representing each ecosystem (Supplementary Tables 2-4)33,35,36. For tropical wetlands, we used 522 

observation data from Burke Jr et al., 1988, 199236,76. For tropical forested wetlands, we used data from 523 

‘Willow Marsh Trail’ station, a swamp wetland dominated by hardwoods and Lemnaceae. For tropical non-524 

forested wetlands, we used data from ‘St. Petersburg’ site where Sawgrass is the dominant vegetation. For 525 

temperate wetlands, we used data from Kelly et al., 199235. For temperate forested wetlands, we used data 526 

from ‘S2 Bog’ where is entirely forested with Picea mariana. For temperate non-forested wetlands, we 527 

used data from ‘Junction Fen’ where is treeless and dominated by Carex oligosperma. For Arctic wetlands, 528 

we used data from McCalley et al., 2014. For Arctic forested wetlands, we could not find 13C-CH4 data 529 

from the well-drained ‘Palsa’ occupied by woody plants, mosses, and ericaceous. Thus, we used 13C-CH4 530 
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data from ‘Sphagnum’ site that is in the transition between the Palsa and Eriophorum sites, and showed 531 

similar CH4 fluxes as the ‘Palsa’ site. For Arctic non-forested wetlands, we used data from the ‘Eriophorum’ 532 

site. 533 

Besides the observed meteorology from field sites, we also used CRU time-series version 4.01 to fill 534 

missing meteorological inputs77. We then used the Shuffled Complex Evolution Approach in R language 535 

(SCE-UA-R) to minimize the difference between simulated and observed 13C-CH4
78. For each site, 20 536 

ensembles were run using SCE-UA-R with 10,000 maximum loops per parameter ensemble, and all of them 537 

reached steady state before the end of the loops. Our optimization results show that isoTEM captures the 538 

magnitude and seasonality of observed soil CH4 fluxes and 13C-CH4 (Supplementary Fig. 4). 539 

 540 

3. Simulation setup 541 

To estimate spatially- and temporally-varying 13C-CH4 from global wetlands, we used spatially explicit 542 

data of land cover, soil pH and textures, meteorology and leaf area index (LAI)22. Land cover, soil pH and 543 

textures were used to assign vegetation-specific and texture-specific parameters to a grid cell79–81. 544 

Meteorological inputs were derived from historical air temperature, precipitation, vapor pressure, and 545 

cloudiness from gridded CRU time-series version 4.0177. We used monthly LAI derived from satellite 546 

imagery82 to prescribe LAI for each 0.5°×0.5° grid cell. All other parameters except fractionation factors 547 

were set the same as in Liu et al. (2020)26. We simulated global wetland CH4 fluxes and their isotopic ratios 548 

between 1984 and 2016 at a spatial resolution of 0.5°×0.5° with a 50-year spin-up to let the carbon isotopic 549 

composition of carbon pools come to a steady state.  550 

Because various wetland inundation data exist83, we first assumed that every global land grid cell can 551 

potentially be saturated, thus this product can be used with any wetland inundation data in future studies. 552 

To fill the grid cells without wetland types, we set forested and non-forested wetlands based on global 553 

vegetation types79(Supplementary Fig. 5). In our analyses, simulated ecosystem-specific 13C-CH4 from 554 

wetlands was flux weighted for each grid cell, based on CH4 emissions simulated by TEM defined over the 555 

static inundation data from Matthews and Fung (1987) (Supplementary Fig. 6a)47. 556 

 557 

4. Model data comparison 558 

Site level 559 
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We compared our model results with previously published data from 58 in-situ measurements compiled by 560 

Holmes et al. (2015)17 and 66 in-situ measurements by Sherwood et al. (2017)10. Holmes et al. (2015) 561 

compiled latitude, fraction of HM and AM, pH, vegetation, and 13C-CH4 to understand factors affecting 562 

the methanogenic pathway in global wetlands. The wetland database of Sherwood et al. (2017) includes 563 

literature reference, latitude, wetland types, and measurement methods. After combining overlapped data 564 

of Holmes et al. (2015) and Sherwood et al. (2017) and excluding data that we used for our model 565 

optimization33,35,36, 70 sites remained for site-level validation (Supplementary Fig. 10 and Supplementary 566 

Data 1). Due to a possible mismatch of soil and vegetation properties, and wetland distribution of grid cells 567 

between model and observation, we compared observed 13C-CH4 with simulated 13C-CH4 of the sampling 568 

year within two adjacent grid cells (1°×1°) of the observation. 569 

Regional level 570 

We used aircraft air samples from 3 regions in Alaska from the Carbon in Arctic Reservoirs Vulnerability 571 

Experiment (CARVE)84,85. From 2012 to 2015, CARVE collected airborne measurements of atmospheric 572 

chemical components and relevant land surface parameters in the Alaskan Arctic to provide insights into 573 

Arctic carbon cycling. During the flights, flask-air samples were collected then sent to NOAA GML for 574 

measurements of 50 trace gases including CO2, CH4, CO, OCS, NMHCs, and then sent to INSTAAR for 575 

and the isotopic composition of CO2 and CH4. After excluding airborne data with flags, there are 1,476 576 

measurements during the sampling period.  577 

In situ flux observations collected across Alaskan wetlands show an average of -65‰ but a large 9‰ 578 

variation, due to the complex vegetation and soil properties38. To compare the spatial variability of wetland 579 

13C-CH4, we divided the Alaskan continent into three regions: North Slope, interior, and southwest Alaska 580 

based on latitude (62-68 °N, 52-62 °N and 140-155 °W, and 52-62 °N and 155-170 °W for North Slope, 581 

interior, and southwest Alaska, respectively). We used Miller-Tans plots to identify the source signatures 582 

of 13C-CH4 from wetlands using the airborne measurements37. To identify wetland isotopic signatures, we 583 

removed measurements that may have effects from fossil fuel emission (C3H8 < 300 ppt), biomass burning 584 

(CO < 300 ppb), and transport influence (Altitude < 1500 m), and we set the background altitude to > 5000 585 

m. After plotting the data, 2014 was excluded due to limited data and small R2
 (Supplementary Table 5). 586 

 587 

5. Uncertainty and sensitivity tests 588 

Long-term trends in wetland δ13C-CH4 from observations 589 
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We considered latitude, pH, and soil carbon as key parameters that determine variability of wetland δ13C-590 

CH4 to run a linear regression using the site-level observations collected from global wetlands since the 591 

early 1980s (Supplementary Data 1). We added year as additional parameter for the linear regression and 592 

see if it improves the fit with data. The regression results show that wetland δ13C-CH4 is negatively 593 

correlated with year, latitude, and SOC (slope of -0.11, -0.10, and -0.20, respectively), and positively 594 

correlated with pH (slope of 2.21) (R2 of 0.3, p<0.001) (Eq. 23, Supplementary Fig. 17, and Supplementary 595 

Table 6). The regression without year as a parameter showed smaller coefficient (R2 of 0.25, p<0.001). 596 

𝛿13C − CH4 =  𝑎 × 𝑙𝑎𝑡 + 𝑏 × 𝑝𝐻 + 𝑐 × 𝑆𝑂𝐶 + 𝑑 × 𝑦𝑒𝑎𝑟 + 𝑒  … Equation 23 597 

 598 

Markov Chain Monte Carlo for the fraction of HM (fHM) 599 

We used a Markov Chain Monte Carlo (MCMC) approach for parameter uncertainty estimation for fHM. 600 

MCMC is a method for estimating the posterior probability density function for asset of parameters, given 601 

priors on those parameters and a set of observations43. We used independent, uniform prior probability 602 

density functions for each parameter in Supplementary Table 1. Thirty-nine data points from Holmes et al. 603 

(2015)17 were used to constrain the model. Gaussian errors were assumed. We generated a Markov chain 604 

with 100,000 elements to estimate the joint posterior probability density functions. The chain converged 605 

after about 10,000 elements. We used the posterior probability density function to estimate the uncertainty 606 

of parameter (Supplementary Table 1). 607 

 608 

Sensitivity test with meteorological and substrate inputs, fHM, and inundation 609 

We conducted 8 sensitivity tests of meteorology and substrate inputs. Specifically, we altered air 610 

temperature by ± 3°C, precipitation by ± 30%, and atmospheric CH4 abundance, and NPP by ± 30%, 611 

uniformly for each grid cell, while maintaining all other variables at their default isoTEM values. We also 612 

varied parameters for fHM based on the uncertainty range from MCMC (Supplementary Table 1). We further 613 

varied a wetland distribution using satellite-driven Surface WAter Microwave Product Series- Global Lakes 614 

and Wetlands Database (SWAMPS-GLWD)46. 615 

 616 

 617 

6. Forward modeling using TM5 atmospheric model 618 
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Global mass balance for bottom-up inventory 619 

We adjusted global long-term mean fossil fluxes to match the simulated growth rate of CH4 during 1984-620 

2016 and the 1998-2016 mean of δ13C-CH4
 with observation (Table 1 and Supplementary Table 11)24. Lan 621 

et al. (2021)24 showed that there is an offset of simulated global mean δ13C-CH4 when using EDGAR 4.3.2 622 

inventory as the inventory underestimates fossil fluxes. To remove the offset and compare our scenarios 623 

fairly, we adjusted fossil fluxes between 170-190 TgCH4yr-1 (Supplementary Fig. 19), within the 624 

uncertainty range in Schwietzke et al. (2016)8. To satisfy the global mass balance, we ran one box model 625 

that included CH4 sources of biogenic, fossil and biomass/biofuel emissions, with corresponding isotopic 626 

signatures, and CH4 sinks due to reaction with OH, Cl, and O(1D) and soil bacteria, all with different 627 

fractionation factor. When we increased or decreased fossil fluxes, we accordingly decreased or increased 628 

ruminant flux, respectively, so the total annual CH4 fluxes followed the observed atmospheric CH4 growth 629 

rate, and the long-term mean total emission was set to 536-538 TgCH4yr-1 during 1984-2016. For more 630 

details on the set up and equations for global mass balance, refer to Lan et al. (2021)24. 631 

 632 

Data sources for CH4 emissions and its isotopic source signatures 633 

We used the bottom-up inventory constructed by Lan et al. (2021)24 (Supplementary Table 6). In specific, 634 

for CH4 emissions, we used GFED 4.1s for biomass burning for 1997-201686 and annual emissions from 635 

the Reanalysis of Tropospheric chemical composition project before 1997, and the EDGAR 4.3.2 inventory 636 

for other anthropogenic emissions for 1984-201687. For emissions from geological seeps, we used gridded 637 

emission from Etiope et al. (2019)88. Emission estimates from wild animals and termites were adopted from 638 

Bergamaschi et al. (2007)89. For δ13C-CH4 source signature, fossil fuel source signature data were based on 639 

the global δ13C-CH4 source signature inventory 202090, where the data were categorized by coal gas, 640 

conventional gas, and shale gas. Biomass burning, biofuel burning, ruminant, and wild animal δ13C-CH4 641 

data were based on the global maps of C3/C4 distribution28,91. The geological seeps δ13C-CH4 data were 642 

from Etiope et al. (2019)88. 643 

 644 

TM5 atmospheric modeling of CH4 and δ13C-CH4 645 

Atmospheric CH4 mole fractions and δ13C-CH4 were simulated from 1984 to 2016 by coupling the surface 646 

fluxes and isotope source signatures from the bottom-up inventory with the TM5 tracer transport model 647 

driven by ECMWF ERA Interim meteorology with the 4DVAR branch of the TM5 model92,93. TM5 was 648 

run globally at 6°x4° over 25 vertical sigma-pressure hybrid levels, for total CH4 and 13C-CH4. For each 649 
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source type, 13C-CH4 fluxes were derived from total CH4 fluxes and source-specific isotope source 650 

signatures. We spun up our model during 1984-1999 and selected 2000-2016 to compare with atmospheric 651 

observations to ensure our spin-up period was sufficient for equilibration of atmospheric δ13C-CH4 inter-652 

hemispheric gradient24,94. As per Lan et al (2021)24, we applied tropospheric Cl sink of Hossaini et al. 653 

(2016)50 and the OH field from Spivakovsky et al (2000)11 with a fractionation factor of -3.9‰. The CH4 654 

sinks varied spatially and seasonally but did not change interannually. For more details on set up for TM5 655 

modeling, refer to Lan et al. (2021)24. 656 

 657 

Atmospheric CH4 and δ13C-CH4 measurement 658 

Observational data of atmospheric CH4 and δ13C-CH4 used to evaluate model results are from flask-air 659 

measurements from NOAA’s Global Greenhouse Gas Reference Network24,53. The flask-air samples was 660 

analyzed for δ13C-CH4 at the Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, 661 

Boulder. Gas chromatography-Isotope-ratio mass spectrometry (GC-IRMS) is used for δ13C-CH4 analysis25. 662 

The δ13C-CH4 in air measurements are referenced against the Vienna Pee Dee Belemnite (VPDB) standard 663 

(Eq. 9). A subset of the observation sites predominantly influenced by well-mixed background air is used 664 

to construct a Marine Boundary Layer (MBL) zonally averaged surface using methods developed by 665 

Masarie and Tans (1995)95, to represent the observational-based global long-term trend and north-south 666 

gradient. This includes 31 sites with CH4 measurements during study period of 1984-2016 and 10 of which 667 

with δ13C-CH4 measurements staring in 1998 (Supplementary Fig. 21 and Supplementary Table 10). More 668 

details on the MBL data products and uncertainties can be found at 669 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html. For model-observation comparisons, model results 670 

from the same set of MBL sites are sampled, and the same calculation methods are applied to model results 671 

and observations for global long-term and north-south gradient. The north-south gradient was calculated as 672 

the difference of atmospheric δ13C-CH4 between 60-90 °S and 60-90 °N.  673 

 674 

Atmospheric modeling with transient inundation data for Scenarios E-H. 675 

Since we used static wetland inundation data47 for our default Scenarios A-D, we used transient wetland 676 

inundation data from Poulter et al. (2017)46 and ran TM5 atmospheric model (Supplementary Figures 26-677 

30 and Supplementary Table 11). Same as Scenarios A-C, we constructed Scenarios E-G with different 678 

wetland isotopic signature maps as inputs for TM5 atmospheric modeling in 1984-2016. In specific, the 679 

first uses a globally uniform wetland δ13C-CH4 of −62.3‰, the mean wetland signature from Ganesan et 680 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html
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al.21 (referred to as Scenario E), the other uses a static wetland isotope spatial map from Ganesan et al.21 681 

(referred to as Scenario F), and the last used spatially- and temporally-resolved maps from isoTEM (referred 682 

to as Scenario G).  683 

The wetland fluxes for Scenarios E-G are based on Liu et al. (2020)26 and transient inundation46 but applied 684 

an increase in fluxes after 2006 by hypothesizing that the microbial wetland emission is a dominant driver 685 

of post-2006 atmospheric CH4 increase (Supplementary Fig. 26), same as Scenarios A-C. We also 686 

conducted the global mass balance by adjusting global long-term mean fossil fluxes between 160-180 687 

TgCH4yr-1 for Scenarios E-G to match the simulated growth rate of CH4 during 1984-2016 and the 1998-688 

2016 mean of annual δ13C-CH4
 with observations. 689 

Scenarios E-G reproduced the observed global CH4 growth rate during 1984-2016 and the global long-term 690 

mean δ13C-CH4 with observation during 1998-2016 (Supplementary Fig. 28), as we set the fluxes based on 691 

the mass balance. However, Scenarios E-G with transient inundation data underestimated the north-south 692 

δ13C-CH4 gradient (0.27±0.06‰) compared with observations (0.45±0.05‰) (Supplementary Fig. 29). 693 

Thus, we ran an additional scenario H that increased emissions from boreal wetlands by 2.5 times over the 694 

original transient data (Supplementary Fig. 26 and Supplementary Table 11), which improved the match 695 

with the observed north-south δ13C-CH4 gradient (0.39‰) (Supplementary Fig. 29). The site-level 696 

comparison with atmospheric δ13C-CH4 from 10 observation sites also confirmed that Scenario H more 697 

closely reproduced the observation (Supplementary Fig. 30). This implies that the transient inundation data 698 

from Poulter et al. (2017)46 may need more wetland emissions from boreal regions as found in static 699 

inundation data47 (Supplementary Figure 6) and other satellite-derived inundation data96.  700 

 701 

 702 

  703 
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