

Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase

Youmi Oh^{1,2,3*}, Qianlai Zhuang^{1,4*}, Lisa R. Welp^{1,5}, Licheng Liu^{1,12}, Xin Lan^{2,3}, Sourish Basu^{6,7}, Edward J. Dlugokencky³, Lori Bruhwiler³, John B. Miller³, Sylvia E. Michel⁸, Stefan Schwietzke⁹, Pieter Tans³, Philippe Ciais¹⁰, and Jeffrey P. Chanton¹¹

¹Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA.

10 ²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO,
11 USA.

12 ³Global Monitoring Laboratory, NOAA, Boulder, CO, USA.

13 ⁴Department of Agronomy, Purdue University, West Lafayette, IN, USA.

14 ⁵Purdue Climate Change Research Center.

¹⁵ ⁶Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA.

¹⁶Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.

¹⁷Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA.

¹⁸ Environmental Defense Fund, Berlin, Germany.

¹⁹¹⁰Laboratoire des Sciences du Climat et de l'Environnement, 91191 Gif-sur-Yvette, France.

20 ¹¹Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL
21 32306, USA.

22 ¹²Present address: Department of Bioproducts and Biosystems Engineering, University of Minnesota, St.
23 Paul, MN, USA.

25 *Authors for correspondence:

26 *Qianlai Zhuang*

28 *Youmi Oh*

27 Email: qzhuang@purdue.edu

29 Email: youmi.oh@noaa.gov

30

31 Under review: *Communications Earth & Environment*

32

33 **Abstract**

34 Atmospheric concentrations of methane, a powerful greenhouse gas, have strongly increased since 2007.
35 Measurements of stable carbon isotopes of methane can constrain emissions if the isotopic compositions
36 are known; however, isotopic compositions of methane emissions from wetlands are poorly constrained
37 despite their importance. Here, we use a process-based biogeochemistry model to calculate the carbon
38 isotopic composition of global wetland methane emissions. We estimate a mean global signature of $-61.3 \pm 0.7\text{\textperthousand}$ and find that tropical wetland emissions are enriched by $\sim 11\text{\textperthousand}$ relative to boreal wetlands. Our
39 model shows improved resolution of global, latitudinal and regional variations in wetland emission isotopic
40 composition. Atmospheric simulation scenarios with the improved wetland isotopic composition suggest
41 that increases in atmospheric methane since 2007 are attributable to rising microbial emissions. Our
42 findings substantially reduce uncertainty in the stable carbon isotopic composition of methane emissions
43 from wetlands and improve understanding of the global methane budget.

45

46 **Introduction**

47 Methane (CH_4) is a powerful greenhouse gas, and its atmospheric abundance (in nmol mol^{-1} , abbreviated
48 ppb) has increased by about 160% since the 1750s^{1,2}. Unlike the steady increases of atmospheric CO_2 and
49 N_2O , atmospheric CH_4 nearly stabilized from 1998 to 2006 and then rapidly increased with a growth rate
50 averaging $\sim 6 \text{ ppbyr}^{-1}$ between 2007-2013 and $\sim 10 \text{ ppbyr}^{-1}$ between 2014-2020. Since 2007, CH_4 has
51 increased while its stable carbon isotopic composition ($\delta^{13}\text{C-CH}_4$, Eq. 9) has shifted to more negative values,
52 after increasing for 200 years^{3,4}. Diagnosing the mechanisms behind these changes continues to generate
53 considerable attention and controversy⁵⁻⁹.

54 Measurements of atmospheric CH_4 abundance and $\delta^{13}\text{C-CH}_4$, in combination with isotopic signatures of
55 sources and sinks, allow partitioning of CH_4 budgets into different source categories. This is because
56 isotopic signatures of source categories differ substantially, where the $\delta^{13}\text{C-CH}_4$ of microbial sources (mean
57 of -61.7 with variability of $6.2\text{\textperthousand}$) is isotopically more depleted than fossil (mean of -44.8 with variability
58 of $10.7\text{\textperthousand}$) and biomass burning (mean of -26.2 with variability of $4.8\text{\textperthousand}$) sources^{8,10}. The destruction of
59 CH_4 , primarily by reaction with hydroxyl radical (OH), isotopically enriches atmospheric CH_4 relative to
60 the emission-weighted source signature¹¹⁻¹³. Due to a wide range of $\delta^{13}\text{C-CH}_4$ in each source category¹⁰,
61 spatial and temporal distributions must be known to reduce the uncertainty in source partitioning. Wetlands
62 are the largest single natural CH_4 source and strongly influence atmospheric $\delta^{13}\text{C-CH}_4$ changes¹², but the
63 spatial and temporal information of wetland $\delta^{13}\text{C-CH}_4$ is limited, and often a single uniform value is
64 assumed^{13,14}. Studies show that source partitioning in atmospheric modeling is highly sensitive to spatio-
65 temporal understanding of wetland $\delta^{13}\text{C-CH}_4$ ⁸.

66 Observations of global wetland $\delta^{13}\text{C-CH}_4$ show that CH_4 emitted from boreal wetlands is isotopically more
67 depleted than CH_4 emitted from the tropics¹⁵⁻¹⁷; proposed causes include the abundance of C_4 plants
68 influencing the $\delta^{13}\text{C}$ of precursor organic matter (POM) ($\delta^{13}\text{C-POM}$), differences in CH_4 -producing archaea
69 (methanogen) communities, and different CH_4 transport processes^{16,18-20}. Ganesan *et al.* (2018)²¹ produced
70 a spatially-resolved global wetland $\delta^{13}\text{C-CH}_4$ distribution, but their study did not simulate temporal
71 variability and did not represent fractionation processes that change based on meteorology, soil and
72 vegetation properties.

73 Here, we incorporate a carbon isotope module into a biogeochemistry model, the Terrestrial Ecosystem
74 Model (TEM)^{22,23} to simulate and mechanistically understand the global wetland $\delta^{13}\text{C-CH}_4$ distribution.
75 The model is evaluated using site-level and regional observations. We then use this model to understand
76 the mechanisms behind the spatial and temporal variability of wetland $\delta^{13}\text{C-CH}_4$, and conduct uncertainty
77 and sensitivity tests. Finally, we investigate the effect of new wetland isotope maps on atmospheric $\delta^{13}\text{C-}$
78 CH_4 and global CH_4 emissions by using an atmospheric model and observations^{24,25}.

79

80 **Results**

81 **Modeling wetland $\delta^{13}\text{C-CH}_4$ dynamics**

82 TEM simulates CH_4 production, oxidation, and transport between soils and the atmosphere^{22,23,26,27}. A
83 carbon isotope-enabled module is incorporated into TEM, referred to as isoTEM, which explicitly considers
84 carbon isotopic fractionation processes in wetlands (Fig. 1). The isotopic fractionation factor (α) for each
85 process is defined in Eq. 10¹⁸, where α is larger than 1 when the product is isotopically more depleted than
86 the reactant.

87 $\delta^{13}\text{C-POM}$ is determined by the global C_3 and C_4 plant distribution (Supplementary Fig. 1)²⁸, where C_4
88 vegetation is isotopically enriched due to its photosynthetic pathway²⁹. We incorporated observed long-
89 term trends of atmospheric $\delta^{13}\text{C-CO}_2$ into soil $\delta^{13}\text{C-POM}$ (Supplementary Fig. 2)^{30,31}. CH_4 is produced from
90 POM in anaerobic soils by two distinct methanogen communities: hydrogenotrophic methanogens (HMs)
91 which use H_2 and CO_2 and acetoclastic methanogens (AMs) which use acetate³². The fractional contribution
92 of these pathways is important because HMs produce isotopically more depleted CH_4 compared to AMs
93 (α_{HM} and α_{AM} in Eq. 12)^{17,33}. To quantify the fractional contribution, we used *in situ* observations from
94 Holmes *et al.* (2015)¹⁷ and conducted a regression analysis between the fractional contribution and main
95 environmental factors, including soil pH, nutrients, and latitude (Eq. 11, Supplementary Fig. 3, and
96 Supplementary Table 1). Total produced $\delta^{13}\text{C-CH}_4$ is then calculated using a mixing of CH_4 pools from the
97 two methanogen communities (Eq. 13-14). The CH_4 produced is partly oxidized by methanotrophs in

98 aerobic soil layers with $^{12}\text{CH}_4$ being oxidized preferentially relative to $^{13}\text{CH}_4$ (α_{MO} in Eq. 15)³⁴. Then, the
99 remaining CH_4 is emitted to the atmosphere through three processes: plant-mediated transport, diffusion,
100 and ebullition, with fractionation factors of α_{TP} , α_{TD} , and α_{TE} , respectively (Eq. 16)¹⁸. We calculated oxidized
101 and emitted $\delta^{13}\text{C-CH}_4$ using the ratio of oxidation and transport processes and their fractionation factors
102 (Eq. 17-22) (Method 1).

103 We optimized four fractionation factors related to CH_4 production, oxidation, and plant-mediated transport
104 (α_{HM} , α_{AM} , α_{MO} , α_{TP}) using field observations in boreal (50-90°N), temperate (30-50°N/S), and tropical
105 (<30°N/S) wetlands^{33,35,36} (Eq. 12, 15-16, Supplementary Table 2-4 and Supplementary Figure 4-5). We
106 set α_{TE} to 1.000 and α_{TD} to 1.005 based on previous studies¹⁸ since ebullition and diffusion are governed by
107 physical processes. To quantify uncertainties in model simulations, we used 20 ensemble members of
108 optimization. We simulated global wetland CH_4 fluxes and their isotopic signatures during 1984-2016 at a
109 spatial resolution of 0.5° with a 50-year spin-up to let $\delta^{13}\text{C-CH}_4$ of carbon pools come to a steady state
110 (Methods 2-3).

111

112 Simulated wetland $\delta^{13}\text{C-CH}_4$ and its comparison with observations

113 We estimated the mean global wetland source signature to be $-61.3 \pm 0.7\text{‰}$ during 1984-2016 (Fig. 2a). This
114 value is more enriched than the mean wetland signature of -62.3 in Ganesan *et al.* (2018)²¹ but similar to
115 the mean value of -61.5‰ reported in Sherwood *et al.* (2017)¹⁰ (Supplementary Fig. 8-9). The latitudinal
116 distribution of $\delta^{13}\text{C-CH}_4$ ranges from a mean of $-57 \pm 3\text{‰}$ in the tropics to $-68 \pm 4\text{‰}$ in boreal regions (Fig.
117 2b). Our model simulates isotopically depleted global $\delta^{13}\text{C-CH}_4$ during the summer due to larger emissions
118 from boreal regions (Supplementary Fig. 10) and a long-term trend of $-0.7 \pm 0.1\text{‰}$ during 1984-2016 (blue
119 line in Fig. 2c) when incorporating the long-term trend in $\delta^{13}\text{C-POM}$ (Supplementary Fig. 2)

120 We compared the magnitude and spatial variability of the simulated wetland $\delta^{13}\text{C-CH}_4$ with site-level
121 observations (Method 4). We used 70 *in situ* measurements of global wetland $\delta^{13}\text{C-CH}_4$ from previous
122 studies after excluding the measurements applied for optimization (Supplementary Data 1, Supplementary
123 Fig. 11)^{10,17}. We showed that isoTEM reduced the root mean square error (RMSE) by 40% compared to
124 Ganesan *et al.*²¹ (2.2 vs. 3.6) (Fig. 3a-b). Compared to a static isoTEM map in July, 2016, temporally-
125 varying isoTEM reduced the RMSE slightly (2.2 vs. 2.4) (Supplementary Fig. 12). Ganesan *et al.*²¹
126 prescribed maximum and minimum values as boundary conditions, resulting in unrealistic clusters of
127 wetland $\delta^{13}\text{C-CH}_4$ near -65‰ for boreal and -60‰ for tropical sites (Fig. 3a and Supplementary Fig. 9).

128 Furthermore, we compared the spatial variability of simulated wetland $\delta^{13}\text{C-CH}_4$ with estimated signatures
129 from airborne measurements for three regions in Alaska during 2012-2013 and 2015 using Miller-Tans
130 plots (Fig. 3c-e) (Method 4)^{37,38}. *In situ* flux observations collected across Alaskan wetlands show an
131 average of $-65\text{\textperthousand}$, but with a large 9\textperthousand variance³⁸, which could be due to changes in wetland habitat
132 including soil nutrients, pH, carbon, and vegetation distribution. The estimated signatures from observation
133 also show that compared with $\delta^{13}\text{C-CH}_4$ from the North Slope of Alaska ($-65\pm1\text{\textperthousand}$), $\delta^{13}\text{C-CH}_4$ from interior
134 Alaska is more depleted (-69 ± 6) and $\delta^{13}\text{C-CH}_4$ from southwest Alaska is more enriched ($-59\pm4\text{\textperthousand}$)
135 (Supplementary Fig. 13 and Supplementary Table 5). IsoTEM reproduces the spatial variability (-67 ± 1 , -68 ± 1 , and
136 $-61\pm2\text{\textperthousand}$ for North Slope, interior, and southwest Alaska, respectively), whereas Ganesan *et al.*²¹
137 simulated no spatial variability around a value of $-65\text{\textperthousand}$ (Fig. 3e). IsoTEM simulates the spatial variability
138 for the Alaska as the model optimized parameters for vegetated and non-vegetated sites separately and
139 incorporated meteorology and soil inputs that vary spatially and temporally.

140

141 **Mechanistic understanding of spatial and temporal variability of wetland $\delta^{13}\text{C-CH}_4$**

142 We investigated the relative importance of the isotopic fractionation processes that affect the latitudinal
143 gradient of wetland $\delta^{13}\text{C-CH}_4$ (Fig. 2b and Supplementary Fig. 14). First, compared to the boreal zone,
144 $\delta^{13}\text{C-POM}$ is enriched in the tropics by $5\pm2\text{\textperthousand}$ as C_4 plants are more prevalent (yellow line in Fig. 2b,
145 Supplementary Fig. 1 and 14a). Second, due to a larger fraction of AM in the tropics (Supplementary Fig.
146 3), the $\delta^{13}\text{C-CH}_4$ produced by methanogens is enriched by $12\pm3\text{\textperthousand}$ (red line in Fig. 2b, Supplementary Fig.
147 14b). Third, $\delta^{13}\text{C-CH}_4$ emitted from wetlands is $6\pm4\text{\textperthousand}$ more depleted in the tropics due to a larger
148 proportion of plant-mediated transport causing higher effective transport fractionation (α_T) (blue line in Fig.
149 2b, Eq. 19, Supplementary Fig. 14d, 15-16). Thus, in our simulation, $\delta^{13}\text{C-CH}_4$ emitted from tropical
150 wetlands is enriched by $\sim11\text{\textperthousand}$ compared to boreal wetlands. This difference is strengthened due to the
151 distribution of C_4 plants ($+5\pm2\text{\textperthousand}$) and the fractional contribution of differing methanogen communities
152 ($+12\pm3\text{\textperthousand}$) but weakened due to plant-mediated transport ($-6\pm4\text{\textperthousand}$).

153 The long-term decrease in wetland $\delta^{13}\text{C-CH}_4$ simulated by isoTEM is mostly due to the decrease in
154 atmospheric $\delta^{13}\text{C-CO}_2$ ^{25,31}. The decreasing trend is incorporated into $\delta^{13}\text{C-POM}$ (Supplementary Fig. 2)
155 and causes the long-term decrease in wetland $\delta^{13}\text{C-CH}_4$ of $\sim0.7\text{\textperthousand}$ from 1984 to 2016 (blue line in Fig. 2c)³⁰.
156 We conducted a simulation without the decreasing trend in $\delta^{13}\text{C-POM}$, which showed that increased
157 temperature caused plant productivity and plant-mediated transport to increase and $\delta^{13}\text{C-CH}_4$ to decrease
158 by $\sim0.1\text{\textperthousand}$ during 1984-2016 (purple line in Fig. 2c and Supplementary Fig. 15). This implies that wetland

159 $\delta^{13}\text{C-CH}_4$ could further change in the future due to decreases in $\delta^{13}\text{C-POM}$ and increases in plant-mediated
160 transport.

161 There is no continuous long-term measurements of wetland $\delta^{13}\text{C-CH}_4$ to verify our simulated long-term
162 trend. Instead, we ran a regression analysis using observations collected from various wetland locations
163 since the early 1980s (Supplementary Data 1) (Method 5). The results show that the representation of data
164 increases when adding year as a parameter for the regression analysis (R^2 of 0.25 to 0.3, $p<0.001$)
165 (Supplementary Table 6), and the observed data show a long-term decreasing trend with year ($\sim-0.1\text{‰ year}^{-1}$)
166 (Supplementary Fig. 17). More continuous long-term observations of wetland $\delta^{13}\text{C-CH}_4$ are necessary to
167 further verify the simulated long-term trends in wetland $\delta^{13}\text{C-CH}_4$.

168

169 **Uncertainty and sensitivity tests**

170 The version of TEM that we use for this study explicitly simulates soil CO_2 and CH_4 but not soil H_2 and
171 acetate pools²⁶, because the spatial and temporal soil H_2 and acetate pools are highly uncertain, and it is
172 hard to verify the simulated pool changes with limited observations. On the contrary, the CH_4 production,
173 oxidation, and transport processes in TEM have been thoroughly validated for global regions from previous
174 studies^{22,23,26,39-42}. Therefore, instead of adding another uncertainty from explicitly simulating H_2 and acetate
175 pools that cannot be validated, we applied the observed fraction of different methanogen communities (f_{HM})
176 based on regression to the total CH_4 production rates simulated by TEM (Supplementary Fig. 3 and
177 Supplementary Table 1). In our simulation, the fraction of HM and AM (f_{HM}) changes spatially but not
178 temporally.

179 To quantify the uncertainty of our regression analysis of f_{HM} , we ran additional sensitivity tests by varying
180 the f_{HM} based on the uncertainty from Markov Chain Monte Carlo approach (Method 5 and Supplementary
181 Table 1)⁴³. The results show that varying the parameters do not change the wetland $\delta^{13}\text{C-CH}_4$ substantially
182 ($< 1\text{‰}$) (Supplementary Table 7). We acknowledge that this simplification would cause uncertainty in our
183 model results, and future studies should explicitly measure changes in H_2 and acetate concentrations in soils
184 to incorporate the detailed processes into the model.

185 The simplification of CH_4 production processes may also cause uncertainty in the fractionation as we do
186 not explicitly simulate fractionation processes from POM to CO_2 /acetate and from CO_2 /acetate to CH_4 .
187 However, studies show that fractionation factors of the fermentation (POM to CO_2) and syntrophy (POM
188 to acetate) processes are minor ($\alpha \approx 1.00$)^{17,44,45}. There may be additional CO_2 produced by acetoclastic
189 methanogenesis that have large fractionation ($\alpha \approx 1.05$), but the fraction is negligible in wetland systems¹⁷.

190 Thus, our fractionation factors for HMs and AMs (α_{HM} and α_{AM} , respectively) reasonably represent the
191 major fractionation process of CH_4 production.

192 Furthermore, to quantify the influence of the uncertainty of our model inputs on simulation results, we
193 varied temperature, precipitation, net primary productivity (NPP), atmospheric CH_4 , and applied transient
194 inundation maps⁴⁶ (Method 5). The results show that meteorology and substrate inputs alter wetland $\delta^{13}\text{C}$ -
195 CH_4 by $\pm 1\text{\textperthousand}$ (Supplementary Table 7). Our TEM simulations showed that CH_4 fluxes are sensitive to these
196 inputs²⁶. However, $\delta^{13}\text{C-CH}_4$ shows minimal changes with changing meteorology and substrate because the
197 fractionation is determined by the fraction of CH_4 oxidation and transport processes (Eq. 21-22), that are
198 calculated as a function of soil CH_4 production and the resultant CH_4 concentration changes (C_{M} in
199 Equations 4-8). When CH_4 production increases due to input changes, CH_4 oxidation and transport increase
200 simultaneously, causing minor variation in the fraction of oxidation and transport (Supplementary Fig. 16).
201 Inundation changes also alter wetland $\delta^{13}\text{C-CH}_4$ by changing the areas where wetland emissions occur
202 ($\pm 2\text{\textperthousand}$) (Supplementary Table 7 and Supplementary Fig. 6-7).

203

204 **Implication for atmospheric modeling and global CH_4 budget**

205 We constructed four scenarios with different wetland emissions and isotopic signature maps as inputs for
206 TM5 atmospheric modeling during 1984-2016 to understand the impacts of spatially- and temporally-
207 resolved wetland $\delta^{13}\text{C-CH}_4$ (Table 1). Scenario A uses a globally uniform value of wetland $\delta^{13}\text{C-CH}_4$;
208 Scenario B uses a temporally static but spatially variable wetland isotope map from Ganesan *et al.*²¹; and
209 Scenario C uses spatially- and temporally-resolved maps from isoTEM. We used the same wetland fluxes²⁶
210 with a static inundation map⁴⁷ for Scenarios A-C that applied a step increase in fluxes in 2007 and 2014 by
211 hypothesizing that microbial wetland emissions are the dominant driver of the post-2006 atmospheric CH_4
212 increase^{8,24,48} (46 Tgyr^{-1} increase in total 2016 emissions across the global wetlands compared to the
213 averaged total emissions in 1999-2006) (Supplementary Fig. 19). However, since other studies have
214 suggested an increase in fossil emission as a dominant driver for post-2006 CH_4 increases¹², we created
215 scenario D that uses isoTEM wetland isotope maps with increases in both microbial and fossil emissions
216 since 2007 (Table 1).

217 For Scenarios A-D, we adjusted global mean fossil and ruminant fluxes simultaneously to satisfy the long-
218 term average mass balance of atmospheric CH_4 and $\delta^{13}\text{C-CH}_4$ (Method 6), as done by Lan *et al.* (2021)²⁴.
219 These adjustments bring the long-term global average $\delta^{13}\text{C-CH}_4$ from simulation to the observed
220 atmospheric levels without changing the post-2006 trends in simulated $\delta^{13}\text{C-CH}_4$ ^{8,24,49}. After adjustments,
221 global mean fossil fluxes in scenarios A-D are between 170-190 Tgyr^{-1} (Supplementary Fig. 19), within the

222 uncertainty range in Schwietzke et al. (2016)⁸. For all other fluxes, their isotopic signatures, and CH₄ sinks
223 that include OH, Cl, and O(¹D)^{11,50,51}, we used the same setup in our model as in Lan et al. (2021)²⁴
224 (Supplementary Table 8). We compared simulated CH₄ and $\delta^{13}\text{C-CH}_4$ with observations from
225 NOAA/INSTAAR global flask-air measurements^{2,25} (Supplementary Table 10).

226 The atmospheric simulation showed that Scenarios A-C follow the observed $\delta^{13}\text{C-CH}_4$ trend reasonably
227 closely (Fig. 4b). However, Scenario D, which hypothesizes a post-2006 increase in microbial and fossil
228 fluxes, does not follow the decreasing trend in global mean $\delta^{13}\text{C-CH}_4$. As pointed out earlier^{7,8,24,48}, the
229 magnitude of the $\delta^{13}\text{C-CH}_4$ decrease suggests that the increase in microbial emissions dominates fossil
230 emissions in the post-2006 global CH₄ increase. We also confirmed a dominant increase in post-2006
231 microbial emissions, even though the long-term decrease in wetland $\delta^{13}\text{C-CH}_4$ of $\sim 0.7\text{\textperthousand}$ allow for a larger
232 fossil emission increase. An additional simulation of Scenario C without including the long-term decrease
233 in wetland $\delta^{13}\text{C-CH}_4$ shows differences of $\sim 0.1\text{\textperthousand}$ in simulated atmospheric $\delta^{13}\text{C-CH}_4$ in 2016 compared
234 with model results with long-term wetland $\delta^{13}\text{C-CH}_4$ trend (Supplementary Fig. 23). This difference can
235 accommodate more post-2006 emission increases from isotopically enriched fossil sources for Scenario C.

236 We differentiated Scenarios A-C by comparing their simulated latitudinal gradients of atmospheric $\delta^{13}\text{C-CH}_4$
237 with observations (Fig. 4c and Supplementary Fig. 20). The observed mean latitudinal gradient during
238 1998-2016 shows more negative $\delta^{13}\text{C-CH}_4$ at northern high latitudes compared to the Southern Hemisphere
239 by $0.45 \pm 0.05\text{\textperthousand}$ (Supplementary Table 9), resulting from the dominance of northern emissions combined
240 with the subsequent fractionation by reaction with OH during transport to the Southern Hemisphere¹⁵.
241 Scenario C, which uses IsoTEM maps, best reproduces the observed north-south gradient ($0.48\text{\textperthousand}$);
242 Scenarios A and B under- and over-estimate the gradient by $\sim 0.1\text{\textperthousand}$ ($0.37\text{\textperthousand}$, and $0.59\text{\textperthousand}$, respectively). The
243 difference is also clear when comparing simulated atmospheric $\delta^{13}\text{C-CH}_4$ of Scenarios A-C at 10
244 measurement sites (Supplementary Fig. 21-22 and Supplementary Table 10). The simulated and observed
245 atmospheric $\delta^{13}\text{C-CH}_4$ differ the most at Northern Hemispheric sites, where Scenario C best reproduces the
246 atmospheric $\delta^{13}\text{C-CH}_4$ data, but Scenario A and Scenario B simulate more negative and positive $\delta^{13}\text{C-CH}_4$,
247 respectively (Fig. 4d)

248 The difference in north-south gradient of atmospheric $\delta^{13}\text{C-CH}_4$ between scenarios in Fig. 4c has an
249 implication on regional partitioning of sources. Our sensitivity test of atmospheric modeling showed that
250 all scenarios with transient inundation data⁴⁶ (Scenarios E-G) underestimated the north-south $\delta^{13}\text{C-CH}_4$
251 gradient ($0.27 \pm 0.06\text{\textperthousand}$) compared with observations ($0.45 \pm 0.05\text{\textperthousand}$) (Method 6, Supplementary Table 11,
252 Supplementary Fig. 26-30). Thus, we ran an additional scenario H that increased emissions from boreal
253 wetlands by 2.5 times over the original transient data (Supplementary Fig. 26 and Supplementary Table 11),

254 which increased the north-south gradient by ~0.1‰ and improved the match with the observed north-south
255 $\delta^{13}\text{C-CH}_4$ gradient (0.39‰) (Supplementary Fig. 29-30).

256

257 **Discussion**

258 The atmospheric CH_4 burden has grown rapidly since 2007, and the largest annual increase since NOAA
259 began measurements in 1983 was observed in 2020-2021^{52,53}. During 2019-2020, $\delta^{13}\text{C-CH}_4$ decreased
260 steeply⁵⁴, suggesting a further increase in microbial emissions as this and other studies suggest^{7,8,24,48}. The
261 microbial sources include anthropogenic emissions from ruminants, agriculture, and waste, and natural
262 emissions from wetlands and other aquatic ecosystems. Our simulation with increase in wetland emissions
263 can reproduce the observed post-2006 $\delta^{13}\text{C-CH}_4$ decrease (Fig. 4), and our additional sensitivity test with
264 increase in anthropogenic microbial emissions also tracks the post-2006 $\delta^{13}\text{C-CH}_4$ decrease (Supplementary
265 Fig. 24-25). However, the scenario with emission increase from both microbial (60%) and fossil (40%)
266 sources did not reproduce the decreasing trend in atmospheric $\delta^{13}\text{C-CH}_4$ (Scenario D in Fig. 4). Other
267 atmospheric studies that use atmospheric $\delta^{13}\text{C-CH}_4$ observations also showed that fossil emission increase
268 is not a dominant reason of recent CH_4 increase^{24,55}.

269 Atmospheric $\delta^{13}\text{C-CH}_4$ measurements have not been widely used to inform global methane budget because
270 of uncertainty and spatiotemporal variation in source signatures, specifically citing limitation in wetland
271 source signatures⁵⁶. In this study, we mechanistically explain the spatiotemporal variations of wetland $\delta^{13}\text{C-CH}_4$
272 and validate the simulation using site-level and regional measurements, which substantially reduce the
273 uncertainty in $\delta^{13}\text{C-CH}_4$ source signatures (Fig. 3). The small decreasing trend in wetland $\delta^{13}\text{C-CH}_4$ allow
274 for more fossil emission increase in our estimate, but cannot change the conclusion that fossil emission
275 increases are not the dominant driver for post-2006 global CH_4 increases.

276 Also, this study considers wetland $\delta^{13}\text{C-CH}_4$ during the historical period only, but the future changes in
277 wetland $\delta^{13}\text{C-CH}_4$ will depend on multiple factors. First, our simulation shows that changes in $\delta^{13}\text{C-POM}$
278 affect wetland $\delta^{13}\text{C-CH}_4$ as SOC is mostly derived from new carbon from vegetation. The simulated active
279 layer depth from a previous study⁵⁷ shows that the active layer depth had a minor change during our
280 simulation period (mean of < 0.1m) (Supplementary Fig. 18). However, the usage of old stored carbon in
281 Arctic permafrost may play an important role as a substrate for methanogens in the future⁵⁸. Also, studies
282 found the importance of microbial fossil CH_4 emissions from Arctic regions in the future^{59,60}. The emissions
283 are partially included as geologic seep emissions in our atmospheric modeling simulation (Supplementary
284 Fig. 19 and Supplementary Table 8), and we also considered microbial fossil emissions with depleted $\delta^{13}\text{C-CH}_4$
285 in our total fossil emission estimates²⁴. Lastly, our simulation shows that the increase in NPP cause

286 more plant-mediated transport. This effect will be more important in the future as plant functional types
287 and plant growth change due to temperature increase.

288 Finally, there are several aspects of the model that could be improved. First, our optimization of
289 fractionation factors was based on limited observations; additional long-term measurements of wetland
290 $\delta^{13}\text{C-CH}_4$ would reduce the uncertainty. Second, the fractional contribution of two methanogen
291 communities (HMs and AMs) changes spatially but not temporally in the model. We need a better
292 understanding of temporal changes in methanogen communities especially following permafrost thaw and
293 disturbance³³, and explicitly measure changes in H_2 and acetate concentrations in soils to incorporate
294 detailed CH_4 production processes into the model. Third, various vertical methanogenic and non-
295 methanogenic processes change $\delta^{13}\text{C}$ of CH_4 and CO_2 , the vertical CO_2/CH_4 ratios, and thus $\delta^{13}\text{C-CH}_4$
296 emitted from wetlands, since CO_2 is a substrate for HM^{61,62}. We need to identify detailed vertical subsurface
297 processes by conducting manipulation experiments using isotopic labeling analysis and inhibitor techniques
298 to include those fractionation processes in future modeling studies⁶³. Fourth, current wetland models do not
299 simulate large CH_4 emissions and $\delta^{13}\text{C-CH}_4$ from tropical tree stems and aquatic sources properly^{64–66}.
300 More measurements from these sources are crucial to improve the estimate of natural CH_4 emission and
301 $\delta^{13}\text{C-CH}_4$ changes⁵⁶.

302

303 Conclusion

304 This study is the first to use a biogeochemistry model to mechanistically explain and reduce the uncertainty
305 in global wetland $\delta^{13}\text{C-CH}_4$, to the best of our knowledge. IsoTEM explains the latitudinal gradient of
306 wetland $\delta^{13}\text{C-CH}_4$ that is increased by the distribution of C_3/C_4 plants and methanogen community type but
307 decreased by plant-mediated transport. The long-term trends of the simulated wetland $\delta^{13}\text{C-CH}_4$ is
308 controlled by $\delta^{13}\text{C-POM}$ and plant-mediated transport. Our results suggest that rising microbial emissions
309 is the dominant driver for the post-2006 global CH_4 increase and the concurrent decrease in atmospheric
310 $\delta^{13}\text{C-CH}_4$, and the isoTEM spatial distribution of wetland $\delta^{13}\text{C-CH}_4$ better reproduces the observed
311 atmospheric $\delta^{13}\text{C-CH}_4$ latitudinal gradient.

312

313

314 **Additional information**

315 **Supplementary information** includes methods 1 to 6, supplementary figures 1 to 30, supplementary

316 tables 1 to 11, supplementary data 1, and supplementary references

317 **Correspondence and requests for materials** should be addressed to Y.O. and Q.Z.

318

319 **Data availability**

320 Supplementary Data 1 is available at:

321 https://figshare.com/articles/dataset/Supplementary_Data_1_of_Oh_et_al_2022_/19929965.

322 The stable carbon isotopic signature of wetland emissions is available at: <https://doi.org/10.25925/9s6n-g811>

324

325 **Code availability**

326 The code is also archived and available at: <https://doi.org/10.25925/9s6n-g811>

327

328 **Acknowledgements**

329 This work was supported by NASA Earth and Space Science Fellowship Program (#80NSSC17K0368

330 P00001) and Interdisciplinary Research in Earth Science (#NNX17AK20G). We thank Carmody K.

331 McCalley for providing data.

332

333 **Author contributions**

334 Y.O., Q.Z., and X.L. conceived the study. Y.O., Q.Z., L.L., and L.R.W. built the model. E.J.D., S.E.M.,

335 J.B.M., S.S., and P.C. provided unpublished or raw data. Y.O. conducted model runs. S.B., L.B., P.T.,

336 and J.P.C., and all other authors contributed to data interpretation and preparation of manuscript text.

337

338 **Competing interests**

339 The authors declare no competing interests.

340

341

342 **Figure Captions**

343 **Figure 1. Schematic diagram of wetland CH₄ dynamics and fractionations for isoTEM.**

344 The model simulates $\delta^{13}\text{C}$ of precursor organic matter (POM), CH₄ production, oxidation, and transport to
345 the surface. $\delta^{13}\text{C}$ -POM is determined by global C₃/C₄ plant distribution and long-term trends of atmospheric
346 $\delta^{13}\text{C}$ -CO₂. CH₄ is produced by two pathways, one using H₂ and CO₂ and another using acetate, with
347 fractionation factors (α) for HMs ($\alpha_{\text{HM}} \approx 1.030-1.080$) and for AMs ($\alpha_{\text{AM}} \approx 1.000-1.040$). Produced CH₄ is
348 partly oxidized by methanotrophs with a fractionation factor $\alpha_{\text{MO}} \approx 1.015-1.035$. Residual produced CH₄ is
349 emitted to the surface via three processes, plant-mediated transport (TP), diffusion (TD), and ebullition
350 (TE), with different fractionations, $\alpha_{\text{TP}} \approx 1.000-1.030$, $\alpha_{\text{TD}} \approx 1.000-1.010$, $\alpha_{\text{TE}} \approx 1.000-1.005$, respectively. We
351 optimized fractionation factors α_{HM} , α_{AM} , α_{MO} , and α_{TP} , but set α_{TE} to 1.000 and α_{TD} to 1.005 since ebullition
352 and diffusion are governed by physical processes (Supplementary Tables 2-4 and Method 1-2). Bold and
353 dashed lines in the figure refer to chemical and transport processes, respectively.

354

355 **Figure 2. Global distribution of wetland $\delta^{13}\text{C}$ -CH₄ and its latitudinal and long-term gradients**
356 **simulated by isoTEM.**

357 (a) Modeled global wetland $\delta^{13}\text{C}$ -CH₄ for wetland grid cells with static inundation data⁴⁷. (b) Mean
358 latitudinal distribution of $\delta^{13}\text{C}$ of POM (yellow), produced CH₄ (red), and CH₄ emitted to the atmosphere
359 for all grid cells (blue) and flux-weighted grid cells (purple). (c) Long-term trends of global mean wetland
360 $\delta^{13}\text{C}$ -CH₄ with and without incorporating long-term trend in $\delta^{13}\text{C}$ -POM (blue and purple, respectively). The
361 shaded area in panel b and c represents one standard deviation determined from 20 ensembles of simulations
362 where the optimized parameters were varied.

363

364 **Figure 3. Site-level and regional model-data comparison of wetland $\delta^{13}\text{C}$ -CH₄.**

365 (a-b) Site-level model-data comparison of observations with (a) Ganeshan et al. (2018)²¹ and (b) temporally-
366 varying isoTEM. (c-e) Regional model-data comparison of simulated wetland $\delta^{13}\text{C}$ -CH₄ in Alaska by (c)
367 Ganeshan et al. (2018)²¹ and (d) isoTEM, and (e) their comparison with observation-based source signatures
368 from NOAA aircraft measurements. Source signature is derived using Miller-Tans plots. Error bars in panel
369 a-b represent one standard deviation of measured wetland $\delta^{13}\text{C}$ -CH₄. All observation data used for site-level
370 comparison are listed in Supplementary Data 1. Error bars for observations in panel a, b, e represent one
371 standard deviation of measured/inferred wetland $\delta^{13}\text{C}$ -CH₄. Error bars for isoTEM in panel e represent one
372 standard deviation determined from 20 ensemble simulations where the optimized parameters were varied.

373

374 **Figure 4. Observed and simulated atmospheric CH₄ and δ¹³C-CH₄ from TM5 atmospheric modeling.**
375 (a-b) Model-data comparison of long-term trend of (a) atmospheric CH₄ from 1985 to 2016 (in ppb) and
376 δ¹³C-CH₄ from 1999 to 2016 (in ‰) by observation (grey) and simulations from Scenario A (yellow), B
377 (red), C (blue), and D (skyblue). (c) Model-data comparison of normalized north-south gradient of
378 atmospheric δ¹³C-CH₄ for Scenario A (yellow), B (red), and C (blue) in 2012. The north-south δ¹³C-CH₄
379 was calculated by zonally-averaging the surface δ¹³C-CH₄ and normalized based on the mean δ¹³C-CH₄ at
380 60-90 °S. The normalized north-south δ¹³C-CH₄ for other years is in /Figure 16 and Supplementary Table
381 7. (d) Histogram of the difference between simulated and observed δ¹³C-CH₄ for Scenario A (yellow), B
382 (red), and C (blue) for 6 measurement sites located in the northern hemisphere. The histogram plots for all
383 measurement sites are in Supplementary Figure 18. Information about Scenarios A-D is in Table 1.

384
385

386 **Table 1. Setup of TM5 atmospheric modeling for Scenarios A-D.**

387 *Using a global mass balance model from previous studies^{8,24}, the long-term mean fossil and ruminant
 388 fluxes were adjusted from EDGAR 4.3.2 inventory to match the observed atmospheric growth rate of CH₄
 389 during 1984-2016 and the 1998-2016 mean of $\delta^{13}\text{C-CH}_4$. By conducting the mass balance for all scenarios,
 390 we intended to reduce the spin-up time for atmospheric $\delta^{13}\text{C-CH}_4$ to be stabilized and compare all scenarios
 391 fairly (Method 6).

Scenario	Wetland isotope map	Assumption of post-2006 CH ₄ increase	Global mass balance of CH ₄ and $\delta^{13}\text{C-CH}_4$ *
A: Uniform w/ Microbial Increase	One uniform value (-62.3‰, a mean signature of Ganesan et al (2018) ²¹)	Wetland emission increase (46 TgCH ₄ yr ⁻¹ increase from 1999-2006 to 2016)	
B: Ganesan w/ Microbial Increase	One spatial map from Ganesan et al. (2018) ²¹ (mean of -62.3‰)		Yes
C: isoTEM w/ Microbial Increase			
D: isoTEM w/ Microbial + Fossil Increase	Spatio-temporally resolved maps from isoTEM (mean of - 61.3‰) (this study)	Wetland (60%) + fossil (40%) emission increase ¹² (28 TgCH ₄ yr ⁻¹ increase from wetland, 18 TgCH ₄ yr ⁻¹ increase from fossil, from 1999-2006 to 2016)	

392

393

394

395

396 **Methods**397 **1. Model development**

398 We incorporated a carbon isotope module of methane (CH_4) into an existing process-based biogeochemistry
 399 model, the Terrestrial Ecosystem Model (TEM) (Figure 1).

400

401 **Terrestrial Ecosystem Model (TEM)**

402 TEM is a commonly used biogeochemistry model and its CH_4 , soil, thermal, and hydrological dynamics
 403 have been evaluated in previous studies^{22,27}. The CH_4 dynamics module of TEM simulates CH_4 production,
 404 oxidation, and three transport processes—diffusion, ebullition, and plant-mediated transport—between soil
 405 and atmosphere. Please refer to the details of TEM in Oh et al. (2020)²³ and Liu et al. (2020)²⁶.

406 In TEM wetland model, changes in CH_4 concentrations (C_M) at depth z and time t ($\partial C_M(z,t)/\partial t$) are governed
 407 by Equation 1, where $M_p(z,t)$, $M_o(z,t)$, $R_p(z,t)$, and $R_E(z,t)$ are CH_4 production, oxidation, plant-mediated
 408 transport, and ebullition rates, respectively, and $\partial F_D(z,t)/\partial z$ represents flux divergence from gaseous and
 409 aqueous diffusion. CH_4 is produced by methanogens in anaerobic soils (M_p) and is calculated by multiplying
 410 maximum potential production rate (M_{G0}) and limiting functions of substrate, soil temperature, pH, and
 411 redox potentials (S_{OM} , M_{ST} , pH and Rx , respectively) (Equation 2). For this study, we assume that substrates
 412 for methanogens are mainly from soil organic carbon (SOC) derived from vegetation (Net Primary
 413 Productivity, NPP), where $NPP(\text{mon})$ is monthly NPP ($\text{gC m}^{-2} \text{ month}^{-1}$), NPP_{MAX} is ecosystem-specific
 414 maximum monthly NPP, and $f(C_{DIS}(z))$ describes the relative availability of organic carbon substrate at
 415 depth z (Equation 3). The substrate availability changes depending on atmospheric CO_2 , meteorology, and
 416 soil properties⁶⁷.

417

418
$$\frac{\partial C_M(z,t)}{\partial t} = M_p(z,t) - M_o(z,t) - \frac{\partial F_D(z,t)}{\partial z} - R_p(z,t) - R_E(z,t) \dots \text{Equation 1}$$

419
$$M_{P,TEM}(z,t) = M_{G0} f(S_{OM}(z,t)) f(M_{ST}(z,t)) f(pH(z,t)) f(R_x(z,t)) \dots \text{Equation 2}$$

420
$$f(S_{OM}(z,t)) = \left(1 + \frac{NPP(\text{mon})}{NPP_{MAX}}\right) f(C_{DIS}(z)) \dots \text{Equation 3}$$

421

422 The produced CH_4 is partly oxidized by methanotrophs and is calculated by the multiplying the maximum
 423 potential oxidation rate (O_{MAX}) and limiting functions of CH_4 concentration, soil temperature, soil moisture,
 424 redox potential, nitrogen deposition, diffusion limited by high soil moisture, and oxygen concentration (C_M ,

425 T_{SOIL} , E_{SM} , R_{OX} , N_{DP} , D_{MS} , and C_{O_2} respectively) (Equation 4). We use Michaelis-Menten kinetics with
 426 $k_{CH_4,LAM}$ of 5 μM for the CH_4 limitation (Equation 5).

427 $M_{O,TEM}(z, t) =$

428 $O_{MAX}f(C_M(z, t))f(T_{SOIL}(z, t))f(E_{SM}(z, t))f(R_{OX}(z, t))f(N_{dp}(z, t))f(D_{ms}(z, t))f(C_{O_2}(z))$

429 ... Equation4

430 $f(C_M(z, t)) = \frac{C_M(z, t)}{k_{CH_4,LAM} + C_M(z, t)}$... Equation 5

431

432 The remaining CH_4 is emitted to the surface with three different transport processes. First, gaseous and
 433 aqueous diffusion (F_D) occur due to concentration gradients of CH_4 ($\partial C_M(z, t) / \partial t$) (Equation 6). The
 434 molecular diffusion coefficient (D) in different soil layers depends on soil texture and soil moisture.
 435 Ebullition (R_E) occurs when CH_4 bubble forms with C_M greater than $\mu\text{mol L}^{-1}$, and is calculated with a
 436 constant rate of K_e (1.0h^{-1}) (Equation 7). Plant-mediated transport (R_p) occurs for plants that function as a
 437 direct conduit for CH_4 to the atmosphere, and is functions of rate constant of 0.01 h^{-1} , vegetation type, root
 438 density, vegetation growth, and soil CH_4 concentrations (K_p , TR_{veg} , f_{ROOT} , f_{GROW} , and C_M , respectively)
 439 (Equation 8)⁶⁸. R_p depends on ecosystem-specific plant functional types and increases in a warmer soil due
 440 to the increase in vegetation growth. In TEM model, the soil profile was divided into 1-cm layers, and soil
 441 temperature, moisture, and CH_4 dynamics of TEM were simulated at an hourly time step²².

442 $F_D(z, t) = -D(z) \frac{\partial C_M(z, t)}{\partial t}$... Equation 6

443 $R_E(z, t) = K_e f(C_M(z, t))$... Equation 7

444 $R_p(z, t) = K_p TR_{veg} f_{ROOT}(z) f_{GROW}(t) C_M(z, t)$... Equation 8

445 **Methane stable carbon isotope module in TEM (isoTEM)**

446 IsoTEM explicitly considers carbon isotopic fractionation processes for precursor organic matter (POM)
 447 and CH_4 during production, oxidation, and transport process. The stable carbon isotope in delta notation
 448 (δ) describes the ratio of the heavy isotope to the light isotope in the sample ($R_{\text{sam}} = ({}^{13}\text{C} / {}^{12}\text{C})_{\text{sam}}$) relative to
 449 a known standard ratio, R_{std} , which is Vienna Pee Dee Belemnite (VPDB) for carbon¹⁸ (Equation 9). The
 450 deviation of this ratio-of-ratios from one is multiplied by 1000 to express isotope variations in parts per
 451 thousand (‰, permil). To express isotopic fractionation for the reaction $\text{A} \rightarrow \text{B}$, we used a fractionation
 452 factor (α) defined in Equation 10¹⁸, where reactant A is in the numerator and product B is in the denominator.

453 If α is larger than 1, the $\delta^{13}\text{C}$ of product is isotopically more depleted in the heavy isotope than the $\delta^{13}\text{C}$ of
454 reactant, and if α is smaller than 1, the $\delta^{13}\text{C}$ of product is more enriched in ^{13}C than the $\delta^{13}\text{C}$ of reactant.

455

456 $\delta^{13}\text{C} = (R_{\text{sam}}/R_{\text{std}}) - 1 \dots \text{Equation 9}$

457 $\alpha = \frac{R_A}{R_B} = \left(\frac{\delta^{13}\text{C}_A}{1000} + 1 \right) / \left(\frac{\delta^{13}\text{C}_B}{1000} + 1 \right) \dots \text{Equation 10}$

458

459 The $\delta^{13}\text{C}$ of POM ($\delta^{13}\text{C}$ -POM) is determined by the global C_3 and C_4 vegetation distribution²⁸ and is set to
460 -27‰ and -13‰ for C_3 - and C_4 -only vegetation areas, respectively. The $\delta^{13}\text{C}$ -POM for areas with mixed
461 C_3 and C_4 vegetation is determined by the proportion of each type of photosynthetic pathway
462 (Supplementary Fig. 1). We also incorporated long-term trends of atmospheric $\delta^{13}\text{C}$ - CO_2 into soil $\delta^{13}\text{C}$ -
463 POM changes. Atmospheric $\delta^{13}\text{C}$ - CO_2 became depleted in ^{13}C by $\approx 2\text{‰}$ during 1951-2016^{25,69}, and this
464 signal is transferred to photosynthates and POM for CH_4 emissions in wetlands⁷⁰. We incorporated this
465 trend with a 6-year carbon residence time between photosynthesis and CH_4 emission in wetlands
466 (Supplementary Fig. 2)³⁰.

467 The CH_4 is then produced in anaerobic soils by two distinct methanogen communities: hydrogenotrophic
468 methanogens (HMs) use H_2 and CO_2 and acetoclastic methanogens (AMs) use acetate (CH_3COO^-) for CH_4
469 production³². Both mechanisms produce equimolar amounts of CO_2 and CH_4 from cellulose-like substrates.
470 Using *in situ* observations from Holmes *et al.* (2015)¹⁷, the fractional contribution of the two methanogen
471 communities is calculated based on a multiple regression analysis with the main environmental factors
472 (Equation 11). From the principal component analysis, Holmes *et al.* (2015) found a combination of
473 environmental parameters including pH, vegetation type, soil organic carbon (SOC), and latitude are
474 correlated with the dominant methanogenic pathway. The regression results show that fractional
475 contribution of HMs (f_{HM}) is positively correlated with latitude with a steep increase at 60°N (slope of 0.11
476 and 5.19 for latitudes below and above 60°N, respectively), and negatively correlated with pH (slope of -
477 9.23) and SOC (slope of -0.7) (R^2 of 0.41, $p < 0.001$) (Eq. 11, Supplementary Table 1, and Supplementary
478 Fig. 3).

479

480
$$f_{HM} = \begin{cases} a_1 \times lat + b \times pH + c \times SOC + d \\ \dots \text{for latitude} < \text{latitude}_{step} \\ a_1 \times lat + a_2 \times (\text{latitude} - \text{latitude}_{step}) + b \times pH + c \times SOC + d \dots \text{Equation 11} \\ \dots \text{for latitude} > \text{latitude}_{step} \end{cases}$$

481

482 The $\delta^{13}\text{C-CH}_4$ produced by HMs and AMs more negative than the $\delta^{13}\text{C-POM}$, with the fractionation factors
 483 for HMs (α_{HM}) ≈ 1.030 - 1.080 and for AMs (α_{AM}) ≈ 1.000 - 1.040 (Equation 12). The produced $\delta^{13}\text{C-CH}_4$ is
 484 calculated using a binary mixing of CH_4 pools from the two methanogen communities (Equations 13-14).

485

486
$$\alpha_{HM} = \frac{1000 + \delta^{13}\text{C}_{POM}}{1000 + \delta^{13}\text{CH}_{4,prod,HM}}, \alpha_{AM} = \frac{1000 + \delta^{13}\text{C}_{POM}}{1000 + \delta^{13}\text{CH}_{4,prod,AM}} \dots \text{Equation 12}$$

487
$$\begin{aligned} \delta^{13}\text{CH}_{4,prod,HM} &= \delta^{13}\text{C}_{POM} - 1000 \times \ln(\alpha_{HM}) \\ \delta^{13}\text{CH}_{4,prod,AM} &= \delta^{13}\text{C}_{POM} - 1000 \times \ln(\alpha_{AM}) \end{aligned} \dots \text{Equation 13}$$

488
$$\delta^{13}\text{CH}_{4,prod} = f_{HM} \times \delta^{13}\text{CH}_{4,prod,HM} + (1 - f_{HM}) \times \delta^{13}\text{CH}_{4,prod,AM} \dots \text{Equation 14}$$

489

490 The produced CH_4 is partly oxidized by methanotrophs in aerobic soils, which prefer $^{12}\text{CH}_4$, thus α for CH_4
 491 oxidation (α_{MO}) ≈ 1.015 - 1.035 (Equation 15)³⁴. Then, the produced CH_4 is transported to the atmosphere
 492 through three processes, plant-mediated transport, diffusion, and ebullition, with different fractionation
 493 factors $\alpha_{TP} \approx 1.000$ - 1.030 , $\alpha_{TD} \approx 1.000$ - 1.010 , $\alpha_{TE} \approx 1.000$ - 1.005 , respectively¹⁸ (Equation 16).

494

495
$$\alpha_{MO} = \frac{1000 + \delta^{13}\text{CH}_{4,prod}}{1000 + \delta^{13}\text{CH}_{4,oxid}} \dots \text{Equation 15}$$

496
$$\alpha_{TP} = \frac{1000 + \delta^{13}\text{CH}_{4,prod}}{1000 + \delta^{13}\text{CH}_{4,TP}}, \alpha_{TE} = \frac{1000 + \delta^{13}\text{CH}_{4,prod}}{1000 + \delta^{13}\text{CH}_{4,TE}}, \alpha_{TD} = \frac{1000 + \delta^{13}\text{CH}_{4,prod}}{1000 + \delta^{13}\text{CH}_{4,TD}} \dots \text{Equation 16}$$

497

498 We calculated the oxidized and transported $\delta^{13}\text{C-CH}_4$ based on “open system equations” at steady state to
 499 consider residual enriched CH_4 after oxidation and transport processes⁷¹⁻⁷⁴. We assumed that CH_4 produced
 500 in the vertical soil column is either oxidized or transported in each hourly time-step (Eq. 17). In Equations
 501 17-18, $M_p(z,t)$, $M_o(z,t)$, $R_p(z,t)$, and $R_E(z,t)$ represent CH_4 production, oxidation, plant-mediated transport,
 502 and ebullition rates, respectively, and $\partial F_D(z,t)/\partial z$ represents flux divergence due to gaseous and aqueous

503 diffusion for each soil layer z and time t . For simplicity, we defined effective transport fractionation, α_T , by
 504 flux-weighting the proportions of fractionation factors of three transport processes in Equation 19. The
 505 isotopic difference between oxidation and transport processes can be described by a fractionation factor,
 506 $\alpha_{T/MO}$, in Equations 20. Given these conditions, isotopic signatures for oxidation and transport to the
 507 atmosphere (emission) can be written in Equations 21-22. For more details, refer to Hayes (2004)⁷⁵.

508

509 $\sum_z M_P(z, t) = \sum_z M_o(z, t) + \sum_z \frac{\partial F_D(z, t)}{\partial z} + \sum_z R_P(z, t) + \sum_z R_E(z, t) \dots \text{Equation 17}$

510 $f_{ox} = \frac{\sum_z M_o(z, t)}{\sum_z M_P(z, t)}, f_{TP} = \frac{\sum_z R_P(z, t)}{\sum_z M_P(z, t)}, f_{TE} = \frac{\sum_z R_E(z, t)}{\sum_z M_P(z, t)}, f_{TD} = \frac{\sum_z \frac{\partial F_D(z, t)}{\partial z}}{\sum_z M_P(z, t)} \dots \text{Equation 18}$

511 $\alpha_T = \frac{(f_{TP}\alpha_{TP} + f_{TE}\alpha_{TE} + f_{TD}\alpha_{TD})}{f_{TP} + f_{TE} + f_{TD}} \dots \text{Equation 19}$

512 $\alpha_{T/MO} = \frac{\alpha_{MO}}{\alpha_T} = \epsilon_{T/MO} + 1 \dots \text{Equation 20}$

513 $\delta^{13}\text{CH}_4,_{oxid} = \frac{\delta^{13}\text{CH}_4,_{prod} - (1 - f_{ox})\epsilon_{T/MO}}{\alpha_{T/MO} (1 - f_{ox}) + f_{ox}} \dots \text{Equation 21}$

514 $\delta^{13}\text{CH}_4,_{emitted} = \frac{\alpha_{T/MO} \delta^{13}\text{CH}_4,_{prod} + f_{ox} \epsilon_{T/MO}}{\alpha_{T/MO} (1 - f_{ox}) + f_{ox}} \dots \text{Equation 22}$

515

516 2. Model optimization

517 We optimized 4 fractionation factors, α_{HM} , α_{AM} , α_{MO} , and α_{TP} , using *in situ* observations for six wetland
 518 ecosystem types (Equations 12 and 15-16). Since the fractionation factors for ebullition and diffusion are
 519 governed by physical processes, we set them as constants based on literature ($\alpha_{TE}=1.000$, $\alpha_{TD}=1.005$)¹⁸. The
 520 wetland ecosystems are divided into forested and non-forested wetlands for boreal (50-90°N), temperate
 521 (30-50°N/S), and tropical (<30°N/S) regions. To optimize parameters, we collected observation data from
 522 six sites representing each ecosystem (Supplementary Tables 2-4)^{33,35,36}. For tropical wetlands, we used
 523 observation data from Burke Jr *et al.*, 1988, 1992^{36,76}. For tropical forested wetlands, we used data from
 524 ‘Willow Marsh Trail’ station, a swamp wetland dominated by hardwoods and *Lemnaceae*. For tropical non-
 525 forested wetlands, we used data from ‘St. Petersburg’ site where Sawgrass is the dominant vegetation. For
 526 temperate wetlands, we used data from Kelly *et al.*, 1992³⁵. For temperate forested wetlands, we used data
 527 from ‘S2 Bog’ where is entirely forested with *Picea mariana*. For temperate non-forested wetlands, we
 528 used data from ‘Junction Fen’ where is treeless and dominated by *Carex oligosperma*. For Arctic wetlands,
 529 we used data from McCalley *et al.*, 2014. For Arctic forested wetlands, we could not find $\delta^{13}\text{C-CH}_4$ data
 530 from the well-drained ‘Palsa’ occupied by woody plants, mosses, and ericaceous. Thus, we used $\delta^{13}\text{C-CH}_4$

531 data from ‘Sphagnum’ site that is in the transition between the Palsa and Eriophorum sites, and showed
532 similar CH₄ fluxes as the ‘Palsa’ site. For Arctic non-forested wetlands, we used data from the ‘Eriophorum’
533 site.

534 Besides the observed meteorology from field sites, we also used CRU time-series version 4.01 to fill
535 missing meteorological inputs⁷⁷. We then used the Shuffled Complex Evolution Approach in R language
536 (SCE-UA-R) to minimize the difference between simulated and observed $\delta^{13}\text{C-CH}_4$ ⁷⁸. For each site, 20
537 ensembles were run using SCE-UA-R with 10,000 maximum loops per parameter ensemble, and all of them
538 reached steady state before the end of the loops. Our optimization results show that isoTEM captures the
539 magnitude and seasonality of observed soil CH₄ fluxes and $\delta^{13}\text{C-CH}_4$ (Supplementary Fig. 4).

540

541 **3. Simulation setup**

542 To estimate spatially- and temporally-varying $\delta^{13}\text{C-CH}_4$ from global wetlands, we used spatially explicit
543 data of land cover, soil pH and textures, meteorology and leaf area index (LAI)²². Land cover, soil pH and
544 textures were used to assign vegetation-specific and texture-specific parameters to a grid cell^{79–81}.
545 Meteorological inputs were derived from historical air temperature, precipitation, vapor pressure, and
546 cloudiness from gridded CRU time-series version 4.01⁷⁷. We used monthly LAI derived from satellite
547 imagery⁸² to prescribe LAI for each 0.5°×0.5° grid cell. All other parameters except fractionation factors
548 were set the same as in Liu et al. (2020)²⁶. We simulated global wetland CH₄ fluxes and their isotopic ratios
549 between 1984 and 2016 at a spatial resolution of 0.5°×0.5° with a 50-year spin-up to let the carbon isotopic
550 composition of carbon pools come to a steady state.

551 Because various wetland inundation data exist⁸³, we first assumed that every global land grid cell can
552 potentially be saturated, thus this product can be used with any wetland inundation data in future studies.
553 To fill the grid cells without wetland types, we set forested and non-forested wetlands based on global
554 vegetation types⁷⁹ (Supplementary Fig. 5). In our analyses, simulated ecosystem-specific $\delta^{13}\text{C-CH}_4$ from
555 wetlands was flux weighted for each grid cell, based on CH₄ emissions simulated by TEM defined over the
556 static inundation data from Matthews and Fung (1987) (Supplementary Fig. 6a)⁴⁷.

557

558 **4. Model data comparison**

559 Site level

560 We compared our model results with previously published data from 58 in-situ measurements compiled by
561 Holmes et al. (2015)¹⁷ and 66 in-situ measurements by Sherwood et al. (2017)¹⁰. Holmes et al. (2015)
562 compiled latitude, fraction of HM and AM, pH, vegetation, and $\delta^{13}\text{C-CH}_4$ to understand factors affecting
563 the methanogenic pathway in global wetlands. The wetland database of Sherwood et al. (2017) includes
564 literature reference, latitude, wetland types, and measurement methods. After combining overlapped data
565 of Holmes et al. (2015) and Sherwood et al. (2017) and excluding data that we used for our model
566 optimization^{33,35,36}, 70 sites remained for site-level validation (Supplementary Fig. 10 and Supplementary
567 Data 1). Due to a possible mismatch of soil and vegetation properties, and wetland distribution of grid cells
568 between model and observation, we compared observed $\delta^{13}\text{C-CH}_4$ with simulated $\delta^{13}\text{C-CH}_4$ of the sampling
569 year within two adjacent grid cells ($1^\circ \times 1^\circ$) of the observation.

570 **Regional level**

571 We used aircraft air samples from 3 regions in Alaska from the Carbon in Arctic Reservoirs Vulnerability
572 Experiment (CARVE)^{84,85}. From 2012 to 2015, CARVE collected airborne measurements of atmospheric
573 chemical components and relevant land surface parameters in the Alaskan Arctic to provide insights into
574 Arctic carbon cycling. During the flights, flask-air samples were collected then sent to NOAA GML for
575 measurements of 50 trace gases including CO₂, CH₄, CO, OCS, NMHCs, and then sent to INSTAAR for
576 and the isotopic composition of CO₂ and CH₄. After excluding airborne data with flags, there are 1,476
577 measurements during the sampling period.

578 *In situ* flux observations collected across Alaskan wetlands show an average of -65‰ but a large 9‰
579 variation, due to the complex vegetation and soil properties³⁸. To compare the spatial variability of wetland
580 $\delta^{13}\text{C-CH}_4$, we divided the Alaskan continent into three regions: North Slope, interior, and southwest Alaska
581 based on latitude (62–68 °N, 52–62 °N and 140–155 °W, and 52–62 °N and 155–170 °W for North Slope,
582 interior, and southwest Alaska, respectively). We used Miller-Tans plots to identify the source signatures
583 of $\delta^{13}\text{C-CH}_4$ from wetlands using the airborne measurements³⁷. To identify wetland isotopic signatures, we
584 removed measurements that may have effects from fossil fuel emission (C₃H₈ < 300 ppt), biomass burning
585 (CO < 300 ppb), and transport influence (Altitude < 1500 m), and we set the background altitude to > 5000
586 m. After plotting the data, 2014 was excluded due to limited data and small R² (Supplementary Table 5).

587

588 **5. Uncertainty and sensitivity tests**

589 **Long-term trends in wetland $\delta^{13}\text{C-CH}_4$ from observations**

590 We considered latitude, pH, and soil carbon as key parameters that determine variability of wetland $\delta^{13}\text{C}$ -
591 CH_4 to run a linear regression using the site-level observations collected from global wetlands since the
592 early 1980s (Supplementary Data 1). We added year as additional parameter for the linear regression and
593 see if it improves the fit with data. The regression results show that wetland $\delta^{13}\text{C-CH}_4$ is negatively
594 correlated with year, latitude, and SOC (slope of -0.11, -0.10, and -0.20, respectively), and positively
595 correlated with pH (slope of 2.21) (R^2 of 0.3, $p < 0.001$) (Eq. 23, Supplementary Fig. 17, and Supplementary
596 Table 6). The regression without year as a parameter showed smaller coefficient (R^2 of 0.25, $p < 0.001$).

597
$$\delta^{13}\text{C} - \text{CH}_4 = a \times \text{lat} + b \times \text{pH} + c \times \text{SOC} + d \times \text{year} + e \dots \text{Equation 23}$$

598

599 **Markov Chain Monte Carlo for the fraction of HM (f_{HM})**

600 We used a Markov Chain Monte Carlo (MCMC) approach for parameter uncertainty estimation for f_{HM} .
601 MCMC is a method for estimating the posterior probability density function for asset of parameters, given
602 priors on those parameters and a set of observations⁴³. We used independent, uniform prior probability
603 density functions for each parameter in Supplementary Table 1. Thirty-nine data points from Holmes et al.
604 (2015)¹⁷ were used to constrain the model. Gaussian errors were assumed. We generated a Markov chain
605 with 100,000 elements to estimate the joint posterior probability density functions. The chain converged
606 after about 10,000 elements. We used the posterior probability density function to estimate the uncertainty
607 of parameter (Supplementary Table 1).

608

609 **Sensitivity test with meteorological and substrate inputs, f_{HM} , and inundation**

610 We conducted 8 sensitivity tests of meteorology and substrate inputs. Specifically, we altered air
611 temperature by $\pm 3^\circ\text{C}$, precipitation by $\pm 30\%$, and atmospheric CH_4 abundance, and NPP by $\pm 30\%$,
612 uniformly for each grid cell, while maintaining all other variables at their default isoTEM values. We also
613 varied parameters for f_{HM} based on the uncertainty range from MCMC (Supplementary Table 1). We further
614 varied a wetland distribution using satellite-driven Surface WAtter Microwave Product Series- Global Lakes
615 and Wetlands Database (SWAMPS-GLWD)⁴⁶.

616

617

618 **6. Forward modeling using TM5 atmospheric model**

619 **Global mass balance for bottom-up inventory**

620 We adjusted global long-term mean fossil fluxes to match the simulated growth rate of CH₄ during 1984-
621 2016 and the 1998-2016 mean of $\delta^{13}\text{C-CH}_4$ with observation (Table 1 and Supplementary Table 11)²⁴. Lan
622 et al. (2021)²⁴ showed that there is an offset of simulated global mean $\delta^{13}\text{C-CH}_4$ when using EDGAR 4.3.2
623 inventory as the inventory underestimates fossil fluxes. To remove the offset and compare our scenarios
624 fairly, we adjusted fossil fluxes between 170-190 TgCH₄yr⁻¹ (Supplementary Fig. 19), within the
625 uncertainty range in Schwietzke et al. (2016)⁸. To satisfy the global mass balance, we ran one box model
626 that included CH₄ sources of biogenic, fossil and biomass/biofuel emissions, with corresponding isotopic
627 signatures, and CH₄ sinks due to reaction with OH, Cl, and O(¹D) and soil bacteria, all with different
628 fractionation factor. When we increased or decreased fossil fluxes, we accordingly decreased or increased
629 ruminant flux, respectively, so the total annual CH₄ fluxes followed the observed atmospheric CH₄ growth
630 rate, and the long-term mean total emission was set to 536-538 TgCH₄yr⁻¹ during 1984-2016. For more
631 details on the set up and equations for global mass balance, refer to Lan et al. (2021)²⁴.

632

633 **Data sources for CH₄ emissions and its isotopic source signatures**

634 We used the bottom-up inventory constructed by Lan et al. (2021)²⁴ (Supplementary Table 6). In specific,
635 for CH₄ emissions, we used GFED 4.1s for biomass burning for 1997-2016⁸⁶ and annual emissions from
636 the Reanalysis of Tropospheric chemical composition project before 1997, and the EDGAR 4.3.2 inventory
637 for other anthropogenic emissions for 1984-2016⁸⁷. For emissions from geological seeps, we used gridded
638 emission from Etiope et al. (2019)⁸⁸. Emission estimates from wild animals and termites were adopted from
639 Bergamaschi et al. (2007)⁸⁹. For $\delta^{13}\text{C-CH}_4$ source signature, fossil fuel source signature data were based on
640 the global $\delta^{13}\text{C-CH}_4$ source signature inventory 2020⁹⁰, where the data were categorized by coal gas,
641 conventional gas, and shale gas. Biomass burning, biofuel burning, ruminant, and wild animal $\delta^{13}\text{C-CH}_4$
642 data were based on the global maps of C₃/C₄ distribution^{28,91}. The geological seeps $\delta^{13}\text{C-CH}_4$ data were
643 from Etiope et al. (2019)⁸⁸.

644

645 **TM5 atmospheric modeling of CH₄ and $\delta^{13}\text{C-CH}_4$**

646 Atmospheric CH₄ mole fractions and $\delta^{13}\text{C-CH}_4$ were simulated from 1984 to 2016 by coupling the surface
647 fluxes and isotope source signatures from the bottom-up inventory with the TM5 tracer transport model
648 driven by ECMWF ERA Interim meteorology with the 4DVAR branch of the TM5 model^{92,93}. TM5 was
649 run globally at 6°x4° over 25 vertical sigma-pressure hybrid levels, for total CH₄ and ¹³C-CH₄. For each

650 source type, $^{13}\text{C-CH}_4$ fluxes were derived from total CH_4 fluxes and source-specific isotope source
651 signatures. We spun up our model during 1984-1999 and selected 2000-2016 to compare with atmospheric
652 observations to ensure our spin-up period was sufficient for equilibration of atmospheric $\delta^{13}\text{C-CH}_4$ inter-
653 hemispheric gradient^{24,94}. As per Lan et al (2021)²⁴, we applied tropospheric Cl sink of Hossaini et al.
654 (2016)⁵⁰ and the OH field from Spivakovsky et al (2000)¹¹ with a fractionation factor of -3.9‰. The CH_4
655 sinks varied spatially and seasonally but did not change interannually. For more details on set up for TM5
656 modeling, refer to Lan et al. (2021)²⁴.

657

658 **Atmospheric CH_4 and $\delta^{13}\text{C-CH}_4$ measurement**

659 Observational data of atmospheric CH_4 and $\delta^{13}\text{C-CH}_4$ used to evaluate model results are from flask-air
660 measurements from NOAA's Global Greenhouse Gas Reference Network^{24,53}. The flask-air samples was
661 analyzed for $\delta^{13}\text{C-CH}_4$ at the Institute of Arctic and Alpine Research (INSTAAR), University of Colorado,
662 Boulder. Gas chromatography-Isotope-ratio mass spectrometry (GC-IRMS) is used for $\delta^{13}\text{C-CH}_4$ analysis²⁵.
663 The $\delta^{13}\text{C-CH}_4$ in air measurements are referenced against the Vienna Pee Dee Belemnite (VPDB) standard
664 (Eq. 9). A subset of the observation sites predominantly influenced by well-mixed background air is used
665 to construct a Marine Boundary Layer (MBL) zonally averaged surface using methods developed by
666 Masarie and Tans (1995)⁹⁵, to represent the observational-based global long-term trend and north-south
667 gradient. This includes 31 sites with CH_4 measurements during study period of 1984-2016 and 10 of which
668 with $\delta^{13}\text{C-CH}_4$ measurements staring in 1998 (Supplementary Fig. 21 and Supplementary Table 10). More
669 details on the MBL data products and uncertainties can be found at
670 <https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html>. For model-observation comparisons, model results
671 from the same set of MBL sites are sampled, and the same calculation methods are applied to model results
672 and observations for global long-term and north-south gradient. The north-south gradient was calculated as
673 the difference of atmospheric $\delta^{13}\text{C-CH}_4$ between 60-90 °S and 60-90 °N.

674

675 **Atmospheric modeling with transient inundation data for Scenarios E-H.**

676 Since we used static wetland inundation data⁴⁷ for our default Scenarios A-D, we used transient wetland
677 inundation data from Poulter *et al.* (2017)⁴⁶ and ran TM5 atmospheric model (Supplementary Figures 26-
678 30 and Supplementary Table 11). Same as Scenarios A-C, we constructed Scenarios E-G with different
679 wetland isotopic signature maps as inputs for TM5 atmospheric modeling in 1984-2016. In specific, the
680 first uses a globally uniform wetland $\delta^{13}\text{C-CH}_4$ of -62.3‰, the mean wetland signature from Ganesan *et*

681 *al.*²¹ (referred to as Scenario E), the other uses a static wetland isotope spatial map from Ganesan *et al.*²¹
682 (referred to as Scenario F), and the last used spatially- and temporally-resolved maps from isoTEM (referred
683 to as Scenario G).

684 The wetland fluxes for Scenarios E-G are based on Liu *et al.* (2020)²⁶ and transient inundation⁴⁶ but applied
685 an increase in fluxes after 2006 by hypothesizing that the microbial wetland emission is a dominant driver
686 of post-2006 atmospheric CH₄ increase (Supplementary Fig. 26), same as Scenarios A-C. We also
687 conducted the global mass balance by adjusting global long-term mean fossil fluxes between 160-180
688 TgCH₄yr⁻¹ for Scenarios E-G to match the simulated growth rate of CH₄ during 1984-2016 and the 1998-
689 2016 mean of annual $\delta^{13}\text{C-CH}_4$ with observations.

690 Scenarios E-G reproduced the observed global CH₄ growth rate during 1984-2016 and the global long-term
691 mean $\delta^{13}\text{C-CH}_4$ with observation during 1998-2016 (Supplementary Fig. 28), as we set the fluxes based on
692 the mass balance. However, Scenarios E-G with transient inundation data underestimated the north-south
693 $\delta^{13}\text{C-CH}_4$ gradient ($0.27\pm0.06\text{\textperthousand}$) compared with observations ($0.45\pm0.05\text{\textperthousand}$) (Supplementary Fig. 29).
694 Thus, we ran an additional scenario H that increased emissions from boreal wetlands by 2.5 times over the
695 original transient data (Supplementary Fig. 26 and Supplementary Table 11), which improved the match
696 with the observed north-south $\delta^{13}\text{C-CH}_4$ gradient ($0.39\text{\textperthousand}$) (Supplementary Fig. 29). The site-level
697 comparison with atmospheric $\delta^{13}\text{C-CH}_4$ from 10 observation sites also confirmed that Scenario H more
698 closely reproduced the observation (Supplementary Fig. 30). This implies that the transient inundation data
699 from Poulter *et al.* (2017)⁴⁶ may need more wetland emissions from boreal regions as found in static
700 inundation data⁴⁷ (Supplementary Figure 6) and other satellite-derived inundation data⁹⁶.

701

702

703

704 **References**

- 705 1. Etheridge, D. M., Steele, L., Francey, R. J. & Langenfelds, R. L. Atmospheric methane between
706 1000 AD and present: Evidence of anthropogenic emissions and climatic variability. *J. Geophys.*
707 *Res. Atmos.* **103**, 15979–15993 (1998).
- 708 2. The, A. M. D. A. M. F. from, NOAA GML Carbon Cycle Cooperative Global Air Sampling
709 Network, 1983-2019 & 2020-07, V. 2020-07. Dlugokencky, E.J., A.M. Crotwell, J.W. Mund, M.J.
710 Crotwell, and K.W. Thoning. <https://doi.org/10.15138/VNCZ-M766> (2020).
- 711 3. Dlugokencky, E. J., Nisbet, E. G., Fisher, R. & Lowry, D. Global atmospheric methane: budget,
712 changes and dangers. *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.* **369**, 2058–2072 (2011).
- 713 4. Ferretti, D. F. *et al.* Atmospheric science: Unexpected changes to the global methane budget over
714 the past 2000 years. *Science (80-.)* **309**, 1714–1717 (2005).
- 715 5. Hausmann, P., Sussmann, R. & Smale, D. Contribution of oil and natural gas production to
716 renewed increase in atmospheric methane (2007–2014): top–down estimate from ethane and
717 methane column observations. *Atmos. Chem. Phys.* **16**, 3227–3244 (2016).
- 718 6. Naus, S. *et al.* Constraints and biases in a tropospheric two-box model of OH. *Atmos. Chem. Phys.*
719 **19**, 407–424 (2019).
- 720 7. Schaefer, H. *et al.* A 21st-century shift from fossil-fuel to biogenic methane emissions indicated
721 by $^{13}\text{CH}_4$. *Science (80-.)* **352**, 80–84 (2016).
- 722 8. Schwietzke, S. *et al.* Upward revision of global fossil fuel methane emissions based on isotope
723 database. *Nature* **538**, 88–91 (2016).
- 724 9. Worden, J. R. *et al.* Reduced biomass burning emissions reconcile conflicting estimates of the
725 post-2006 atmospheric methane budget. *Nat. Commun.* **8**, 1–11 (2017).
- 726 10. Sherwood, O. A., Schwietzke, S., Arling, V. A. & Etiope, G. Global inventory of gas
727 geochemistry data from fossil fuel, microbial and burning sources, version 2017. *Earth Syst. Sci.*
728 *Data* **9**, 639–656 (2017).
- 729 11. Spivakovsky, C. M. *et al.* Three-dimensional climatological distribution of tropospheric OH:
730 Update and evaluation. *J. Geophys. Res. Atmos.* **105**, 8931–8980 (2000).
- 731 12. Saunois, M. *et al.* The Global Methane Budget 2000 – 2017. 1561–1623 (2020).
- 732 13. Strode, S. A., Wang, J. S., Manyin, M., Duncan, B. N. & Keller, C. Sensitivity of the
733 isotopicStrode, S. A. et al. (2018) ‘Sensitivity of the isotopic composition of atmospheric methane
734 to oxidant fields in the GEOS model’, in AGU Fall Meeting Abstracts. composition of
735 atmospheric methane to oxidant fields in the GEOS mo. in *AGU Fall Meeting Abstracts* (2018).
- 736 14. Rice, A. L. *et al.* Atmospheric methane isotopic record favors fossil sources flat in 1980s and
737 1990s with recent increase. *Proc. Natl. Acad. Sci.* **113**, 10791–10796 (2016).
- 738 15. Feinberg, A. I., Coulon, A., Stenke, A., Schwietzke, S. & Peter, T. Isotopic source signatures:
739 Impact of regional variability on the $\Delta^{13}\text{CH}_4$ trend and spatial distribution. *Atmos. Environ.* **174**,
740 99–111 (2018).
- 741 16. Brownlow, R. *et al.* Isotopic Ratios of Tropical Methane Emissions by Atmospheric Measurement.
742 *Global Biogeochem. Cycles* **31**, 1408–1419 (2017).
- 743 17. Holmes, M. E., Chanton, J. P., Tfaily, M. M. & Ogram, A. CO₂ and CH₄ isotope compositions

- 744 and production pathways in a tropical peatland. *Global Biogeochem. Cycles* **29**, 1–18 (2015).
- 745 18. Chanton, J. P. The effect of gas transport on the isotope signature of methane in wetlands. *Org.*
746 *Geochem.* **36**, 753–768 (2005).
- 747 19. Fisher, R. E. *et al.* Measurement of the 13C isotopic signature of methane emissions from northern
748 European wetlands. *Global Biogeochem. Cycles* **31**, 605–623 (2017).
- 749 20. Nakagawa, F., Yoshida, N., Nojiri, Y. & Makarov, V. Production of methane from alasses in
750 eastern Siberia: Implications from its 14 C and stable isotopic compositions . *Global Biogeochem.*
751 *Cycles* **16**, 14-1-14–15 (2002).
- 752 21. Ganesan, A. L. *et al.* Spatially Resolved Isotopic Source Signatures of Wetland Methane
753 Emissions. *Geophys. Res. Lett.* **45**, 3737–3745 (2018).
- 754 22. Zhuang, Q. *et al.* Methane fluxes between terrestrial ecosystems and the atmosphere at northern
755 high latitudes during the past century: A retrospective analysis with a process-based
756 biogeochemistry model. *Global Biogeochem. Cycles* **18**, (2004).
- 757 23. Oh, Y. *et al.* Reduced net methane emissions due to microbial methane oxidation in a warmer
758 Arctic. *Nat. Clim. Chang.* **10**, 317–321 (2020).
- 759 24. Lan, X. *et al.* Improved Constraints on Global Methane Emissions and Sinks using δ 13 C-CH₄ .
760 *Global Biogeochem. Cycles* (2021) doi:10.1029/2021gb007000.
- 761 25. White, J.W.C., B.H. Vaughn, and S. E. M. University of Colorado, Institute of Arctic and Alpine
762 Research (INSTAAR), Stable Isotopic Composition of Atmospheric Methane (13C) from the
763 NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1998-2017, Version:
764 2018-09-24. ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4c13/flask/ (2018).
- 765 26. Liu, L. *et al.* Uncertainty Quantification of Global Net Methane Emissions from Terrestrial
766 Ecosystems Using a Mechanistically-based Biogeochemistry Model. *J. Geophys. Res.*
767 *Biogeosciences* **125**(6), p.e2019JG005428. (2020).
- 768 27. Zhuang, Q. *et al.* Response of global soil consumption of atmospheric methane to changes in
769 atmospheric climate and nitrogen deposition. *Global Biogeochem. Cycles* **27**, 650–663 (2013).
- 770 28. Still, C. J., Berry, J. A., Collatz, G. J. & DeFries, R. S. Global distribution of C 3 and C 4
771 vegetation: Carbon cycle implications . *Global Biogeochem. Cycles* **17**, 6-1-6–14 (2003).
- 772 29. Holmes, M. E., Chanton, J. P., Bae, H. S. & Ogram, A. Effect of nutrient enrichment on δ 13CH₄
773 and the methane production pathway in the Florida Everglades. *J. Geophys. Res. Biogeosciences*
774 **119**, 1267–1280 (2014).
- 775 30. Lassey, K. R., Etheridge, D. M., Lowe, D. C., Smith, A. M. & Ferretti, D. F. Centennial evolution
776 of the atmospheric methane budget: What do the carbon isotopes tell us? *Atmos. Chem. Phys.* **7**,
777 2119–2139 (2007).
- 778 31. Keeling, R. F. *et al.* Atmospheric evidence for a global secular increase in carbon isotopic
779 discrimination of land photosynthesis. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 10361–10366 (2017).
- 780 32. Horn, M. A., Matthies, C., Küsel, K., Schramm, A. & Drake, H. L. Hydrogenotrophic
781 methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. *Appl.*
782 *Environ. Microbiol.* **69**, 74–83 (2003).
- 783 33. McCalley, C. K. *et al.* Methane dynamics regulated by microbial community response to
784 permafrost thaw. *Nature* **514**, 478–481 (2014).

- 785 34. Le Mer, J. & Roger, P. Production, oxidation, emission and consumption of methane by soils: a
786 review. *Eur. J. Soil Biol.* **37**, 25–50 (2001).
- 787 35. Kelly, C. a, Carolina, N., Hill, C., Dise, B. & Martens, C. S. Temporal variations in the stable
788 carbon isotopic composition of methane emitted from Minnesota peatlands. *Global Biogeochem.*
789 *Cycles* **6**, 263–269 (1992).
- 790 36. Burke, R. A., Barber, T. R. & Sackett, W. M. Methane flux and stable hydrogen and carbon
791 isotope composition of sedimentary methane from the Florida Everglades. *Global Biogeochem.*
792 *Cycles* **2**, 329–340 (1988).
- 793 37. Miller, J. B. & Tans, P. P. Calculating isotopic fractionation from atmospheric measurements at
794 various scales. *Tellus, Ser. B Chem. Phys. Meteorol.* **55**, 207–214 (2003).
- 795 38. Chanton, J. P., Fields, D. & Hines, M. E. Controls on the hydrogen isotopic composition of
796 biogenic methane from high-latitude terrestrial wetlands. *J. Geophys. Res. Biogeosciences* **111**, 1–
797 9 (2006).
- 798 39. Tang, J., Zhuang, Q., Shannon, R. D. & White, J. R. Quantifying wetland methane emissions with
799 process-based models of different complexities. *Biogeosciences* **7**, 3817–3837 (2010).
- 800 40. Zhu, X. *et al.* Rising methane emissions in response to climate change in Northern Eurasia during
801 the 21st century. *Environ. Res. Lett.* **6**, 45211 (2011).
- 802 41. Lu, X. & Zhuang, Q. Modeling methane emissions from the Alaskan Yukon River basin, 1986–
803 2005, by coupling a large-scale hydrological model and a process-based methane model. *J.*
804 *Geophys. Res. Biogeosciences* **117**, (2012).
- 805 42. Jin, Z., Zhuang, Q., He, J.-S., Zhu, X. & Song, W. Net exchanges of methane and carbon dioxide
806 on the Qinghai-Tibetan Plateau from 1979 to 2100. *Environ. Res. Lett.* **10**, 85007 (2015).
- 807 43. Gilks, W. R., Richardson, S. & Spiegelhalter, D. *Markov chain Monte Carlo in practice*. (CRC
808 press, 1995).
- 809 44. Conrad, R. Quantification of methanogenic pathways using stable carbon isotopic signatures: A
810 review and a proposal. *Org. Geochem.* **36**, 739–752 (2005).
- 811 45. Blaser, M. & Conrad, R. Stable carbon isotope fractionation as tracer of carbon cycling in anoxic
812 soil ecosystems. *Curr. Opin. Biotechnol.* **41**, 122–129 (2016).
- 813 46. Poulter, B. *et al.* Global wetland contribution to 2000 – 2012 atmospheric methane growth rate
814 dynamics. *Environ. Res. Lett.* **12**, (2017).
- 815 47. Matthews, E., and Fung, I. Methane emission from natural wetlands: Global distribution, area, and
816 environmental characteristics of sources. *Global Biogeochem. Cycles* **1**, 61–86 (1987).
- 817 48. Nisbet, E. G., Dlugokencky, E. J. & Bousquet, P. Methane on the rise—again. *Science (80-.).* **343**,
818 493–495 (2014).
- 819 49. Alvarez, R. A. *et al.* Assessment of methane emissions from the US oil and gas supply chain.
820 *Science (80-.).* **361**, 186–188 (2018).
- 821 50. Hossaini, R. *et al.* A global model of tropospheric chlorine chemistry: Organic versus inorganic
822 sources and impact on methane oxidation. *J. Geophys. Res. Atmos.* **121**, 14–271 (2016).
- 823 51. Saueressig, G. *et al.* Carbon 13 and D kinetic isotope effects in the reactions of CH₄ with O (1 D)
824 and OH: new laboratory measurements and their implications for the isotopic composition of

- 825 stratospheric methane. *J. Geophys. Res. Atmos.* **106**, 23127–23138 (2001).
- 826 52. Stein, T. Increase in atmospheric methane set another record during 2021. *NOAA Res. News*
827 (2022).
- 828 53. Dlugokencky, E. Trends in atmospheric methane. *NOAA/ESRL*,
829 https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/ (2020).
- 830 54. Stein, T. New analysis shows microbial sources fueling rise of atmospheric methane. *NOAA*
831 *Research News* <https://research.noaa.gov/article/ArtMID/587/ArticleID/2769/New-analysis-shows-microbial-sources-fueling-rise-of-atmospheric-methane> (2021).
- 833 55. Nisbet, E. G. *et al.* Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement. *Global Biogeochem. Cycles* **33**, 318–342 (2019).
- 835 56. Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. *Proc. Natl. Acad. Sci.* **116**, 2805–2813 (2019).
- 837 57. Qiu, C. *et al.* A strong mitigation scenario maintains climate neutrality of northern peatlands. *One Earth* (2022).
- 839 58. Schuur, E. A. G. *et al.* The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. *Nature* **459**, 556–559 (2009).
- 841 59. Sullivan, T. D. *et al.* Influence of permafrost thaw on an extreme geologic methane seep. *Permafrost. Periglac. Process.* **32**, 484–502 (2021).
- 843 60. Walter Anthony, K. M., Anthony, P., Grosse, G. & Chanton, J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. *Nat. Geosci.* **5**, 419–426 (2012).
- 845 61. Corbett, J. E. *et al.* Partitioning pathways of CO₂ production in peatlands with stable carbon isotopes. *Biogeochemistry* **114**, 327–340 (2013).
- 847 62. Deng, J. *et al.* Adding stable carbon isotopes improves model representation of the role of microbial communities in peatland methane cycling. *J. Adv. Model. Earth Syst.* **9**, 1412–1430 (2017).
- 850 63. Hodgkins, S. B. *et al.* Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 5819–5824 (2014).
- 852 64. Pangala, S. R. *et al.* Large emissions from floodplain trees close the Amazon methane budget. *Nature* **552**, 230–234 (2017).
- 854 65. Barba, J. *et al.* Methane emissions from tree stems: a new frontier in the global carbon cycle. *New Phytol.* **222**, 18–28 (2019).
- 856 66. Rosentreter, J. A. *et al.* Half of global methane emissions come from highly variable aquatic ecosystem sources. *Nat. Geosci.* **14**, 225–230 (2021).
- 858 67. Zhuang, Q. *et al.* Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. *J. Geophys. Res. D Atmos.* **108**, (2003).
- 860 68. Walter, B. P. & Heimann, M. A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate. *Global Biogeochem. Cycles* **14**, 745–765 (2000).
- 863 69. Graven, H. *et al.* Compiled records of carbon isotopes in atmospheric CO₂ for historical

- 864 simulations in CMIP6. *Geosci. Model Dev.* **10**, 4405–4417 (2017).
- 865 70. Wingate, L. *et al.* Photosynthetic carbon isotope discrimination and its relationship to the carbon
866 isotope signals of stem, soil and ecosystem respiration. *New Phytol.* **188**, 576–589 (2010).
- 867 71. Monson, K. D. & Hayes, J. M. Biosynthetic control of the natural abundance of carbon 13 at
868 specific positions within fatty acids in *Escherichia coli*. Evidence regarding the coupling of fatty
869 acid and phospholipid synthesis. *J. Biol. Chem.* **255**, 11435–11441 (1980).
- 870 72. Mahieu, K., De Visscher, A., Vanrolleghem, P. A. & Van Cleemput, O. Modelling of stable
871 isotope fractionation by methane oxidation and diffusion in landfill cover soils. *Waste Manag.* **28**,
872 1535–1542 (2008).
- 873 73. Preuss, I., Knoblauch, C., Gebert, J. & Pfeiffer, E. M. Improved quantification of microbial CH₄
874 oxidation efficiency in arctic wetland soils using carbon isotope fractionation. *Biogeosciences* **10**,
875 2539–2552 (2013).
- 876 74. Throckmorton, H. M. *et al.* Global Biogeochemical Cycles of stable isotopes. *Global Biogeochem.*
877 *Cycles* **29**, 1893–1910 (2015).
- 878 75. Hayes, J. M. An introduction to isotopic calculations. *Woods Hole Oceanogr. Inst.* 1–10 (2004).
- 879 76. Burke Jr, R. A., Barber, T. R. & Sackett, W. M. Seasonal variations of stable hydrogen and carbon
880 isotope ratios of methane in subtropical freshwater sediments. *Global Biogeochem. Cycles* **6**, 125–
881 138 (1992).
- 882 77. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly
883 climatic observations - the CRU TS3.10 Dataset. *Int. J. Climatol.* **34**, 623–642 (2014).
- 884 78. Duan, Q. Y., Gupta, V. K. & Sorooshian, S. Shuffled complex evolution approach for effective
885 and efficient global minimization. *J. Optim. Theory Appl.* **76**, 501–521 (1993).
- 886 79. Melillo, J. M. *et al.* Global climate change and terrestrial net primary production. *Nature* **363**, 234
887 (1993).
- 888 80. Carter, A. J. & Scholes, R. J. Spatial global database of soil properties. *IGBP Glob. Soil Data Task*
889 *CD-ROM. Int. Geosphere-biosph. Program. Data Inf. Syst. Toulouse, Fr.* (2000).
- 890 81. Zhuang, Q. *et al.* Carbon cycling in extratropical terrestrial ecosystems of the Northern
891 Hemisphere during the 20th century: A modeling analysis of the influences of soil thermal
892 dynamics. *Tellus, Ser. B Chem. Phys. Meteorol.* **55**, 751–776 (2003).
- 893 82. Myneni, R. B. *et al.* Global products of vegetation leaf area and fraction absorbed PAR from year
894 one of MODIS data. *Remote Sens. Environ.* **83**, 214–231 (2002).
- 895 83. Melton, J. R. *et al.* Present state of global wetland extent and wetland methane modelling:
896 Conclusions from a model inter-comparison project (WETCHIMP). *Biogeosciences* **10**, 753–788
897 (2013).
- 898 84. Miller, S. M. *et al.* A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric
899 observations. *Global Biogeochem. Cycles* **30**, 1441–1453 (2016).
- 900 85. Chang, R. Y. W. *et al.* Methane emissions from Alaska in 2012 from CARVE airborne
901 observations. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 16694–16699 (2014).
- 902 86. Werf, G. R. *et al.* Global fire emissions estimates during 1997–2016. *Earth Syst. Sci. Data* **9**, 697–
903 720 (2017).

- 904 87. Janssens-Maenhout, G. *et al.* EDGAR v4. 3.2 Global Atlas of the three major Greenhouse Gas
905 Emissions for the period 1970–2012. *Earth Syst. Sci. Data* **11**, 959–1002 (2019).
- 906 88. Etiope, G. & Schwietzke, S. Global geological methane emissions: an update of top-down and
907 bottom-up estimates. *Elem Sci Anth* **7**, (2019).
- 908 89. Bergamaschi, P. *et al.* Satellite chartography of atmospheric methane from SCIAMACHY on
909 board ENVISAT: 2. Evaluation based on inverse model simulations. *J. Geophys. Res. Atmos.* **112**,
910 (2007).
- 911 90. Sherwood, Owen A. Schwietzke, S., Lan, X. Global δ 13 C-CH₄ Source Signature Inventory
912 2020. <https://doi.org/10.15138/qn55-e011>.
- 913 91. Randerson, J. T., Van der Werf, G. R., Giglio, L., Collatz, G. J. & Kasibhatla, P. S. Global fire
914 emissions database, version 2 (GFEDv2. 1). *Data set. Available on-line* [<http://daac.ornl.gov/>]
915 from *Oak Ridge Natl. Lab. Distrib. Act. Arch. Center, Oak Ridge, Tennessee, USA* doi **10**, (2007).
- 916 92. Basu, S. *et al.* Global CO₂ fluxes estimated from GOSAT retrievals of total column CO₂. *Atmos.*
917 *Chem. Phys. Discuss.* **13**, (2013).
- 918 93. Meirink, J. F., Bergamaschi, P. & Krol, M. C. Four-dimensional variational data assimilation for
919 inverse modelling of atmospheric methane emissions: method and comparison with synthesis
920 inversion. *Atmos. Chem. Phys.* **8**, 6341–6353 (2008).
- 921 94. Tans, P. P. A note on isotopic ratios and the global atmospheric methane budget. *Global*
922 *Biogeochem. Cycles* **11**, 77–81 (1997).
- 923 95. Masarie, K. A. & Tans, P. P. Extension and integration of atmospheric carbon dioxide data into a
924 globally consistent measurement record. *J. Geophys. Res. Atmos.* **100**, 11593–11610 (1995).
- 925 96. Prigent, C., Jimenez, C. & Bousquet, P. Satellite-derived global surface water extent and dynamics
926 over the last 25 years (GIEMS-2). *J. Geophys. Res. Atmos.* **125**, e2019JD030711 (2020).

927