
MNRAS 520, 6173–6189 (2023) https://doi.org/10.1093/mnras/stad389 
Advance Access publication 2023 February 3 

Multimessenger emission from tidal waves in neutron star oceans 

Andrew G. Sullivan , 1 ‹ Lucas M. B. Alves , 1 Georgina O. Spence, 2 Isabella P. Leite , 3 

Do ̆ga Veske , 1 Imre Bartos , 4 Zsuzsa M ́arka 

5 and Szabolcs M ́arka 

1 

1 Department of Physics, Columbia University in the City of New York, New York, NY 10027, USA 
2 Department of Mathematics, Barnard College of Columbia University in the City of New York, New York, NY 10027, USA 
3 Department of Biomedical Engineering, Columbia University in the City of New York, New York, NY 10027, USA 
4 Department of Physics, University of Florida, Gainesville, FL 32611-8440, USA 
5 Columbia Astrophysics Laboratory, Columbia University in the City of New York, New York, NY 10027, USA 

Accepted 2023 January 31. Received 2023 January 9; in original form 2022 June 3 

A B S T R A C T 

Neutron stars in astrophysical binary systems represent exciting sources for multimessenger astrophysics. A potential source of 
electromagnetic transients from compact binary systems is the neutron star ocean, the external fluid layer encasing a neutron star. 
We present a groundwork study into tidal waves in neutron star oceans and their consequences. Specifically, we investigate how 

oscillation modes in neutron star oceans can be tidally excited during compact binary inspirals and parabolic encounters. We 
find that neutron star oceans can sustain tidal waves with frequencies between 0.01 and 20 Hz. Our results suggest that tidally 

resonant neutron star ocean waves may serve as a never-before studied source of precursor electromagnetic emission prior to 

neutron star–black hole and binary neutron star mergers. If accompanied by electromagnetic flares, tidally resonant neutron star 
ocean waves, whose energy budget can reach 10 

46 erg, may serve as early warning signs ( � 1 min before merger) for compact 
binary mergers. Similarly, excited ocean tidal waves will coincide with neutron star parabolic encounters. Depending on the 
neutron star ocean model and a flare emission scenario, tidally resonant ocean flares may be detectable by Fermi and Nuclear 
Spectroscopic Telescope Array ( NuSTAR ) out to � 100 Mpc with detection rates as high as ∼7 yr −1 for binary neutron stars 
and ∼0.6 yr −1 for neutron star–black hole binaries. Observations of emission from neutron star ocean tidal waves along with 

gra vitational wa v es will pro vide insight into the equation of state at the neutron star surface, the composition of neutron star 
oceans and crusts, and neutron star geophysics. 

Key w ords: gravitational w aves – stars: oscillations – X-rays: bursts – black hole - neutron star mergers – neutron star mergers. 
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 INTRODUCTION  

ith the recent detections of gravitational waves (GWs) from 

ompact binary systems by GW detectors such as Laser Interferom- 
ter Gravitational Wave Observatory (LIGO), Virgo, and KAGRA 

Acernese et al. 2015 ; LIGO Scientific Collaboration 2015 ; LIGO 

cientific Collaboration & Virgo Collaboration 2017 , 2021 ; Akutsu 
t al. 2019 ; LIGO Scientific Collaboration, Virgo Collaboration & 

amioka Gra vitational Wa ve Detector (KAGRA) Collaboration 
021 ), binary systems that include neutron stars have come to 
he forefront of high-energy astrophysics. Neutron stars represent 
 unique class of stellar objects in that, though very dense, they emit
ight, making them a candidate for combined GW–electromagnetic 
ultimessenger astrophysical searches (Rosswog 2015 ; Abbott et al. 

018 ). Neutron stars are thought to consist of three distinct layers:
 very dense fluid core, a solid crust, and an external fluid ocean
Lattimer & Prakash 2001 ). The respective properties of each 
f these layers largely depend on the neutron star equation of
tate (Lattimer & Prakash 2001 ), whose details remain an active 
roblem in nuclear physics and astrophysics. Detections of X-ray 
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ursts (Bildsten & Cutler 1995 ; Strohmayer & Mahmoodifar 2014 ;
hambers & Watts 2020 ), gamma-ray bursts (Tsang et al. 2012 ;
sang 2013 ; Suvorov & Kokkotas 2020 ), ejecta from compact
inary inspirals (Metzger et al. 2010 ; Metzger & Fern ́andez 2014 ;
hornock et al. 2017 ; Cowperthwaite et al. 2017 ; Geroyannis,
zelati & Karageorgopoulos 2017 ; Metzger 2017 ; Nicholl et al.
017 ; Soares-Santos et al. 2017 ; Radice et al. 2018 ; Bartos & Marka
019 ; Metzger 2019 ), and GWs (Andersson & Kokkotas 1998 ;
errari 2010 ; Suvorov 2018 ; Chatziioannou 2020 ) may probe this
tructure. 

In recent years, GW astrophysics has become a unique observa- 
ional tool to study neutron star physics. The answers to a number
f open questions concerning the properties of neutron stars may 
ie in the rich capabilities of multimessenger astrophysics with 
Ws. Works have investigated the possibility of mountains on 

he surfaces of spinning neutron stars, whose asymmetries could 
enerate detectable continuous GWs (Ushomirsky, Cutler & Bildsten 
000 ; Osborne & Jones 2020 ; Gittins & Andersson 2021 ; Gittins,
ndersson & Jones 2021 ). Searches for continuous GWs poten- 

ially originating from spinning neutron stars have been undertaken 
Aasi et al. 2015 ; Papa et al. 2020 ; LIGO Scientific Collaboration,
irgo Collaboration & KAGRA Collaboration 2022a , 2022 b; Abbott 
t al. 2022 ), and may study neutron star geophysical structure
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nd seismology (Geroyannis et al. 2017 ; Suvorov 2018 ; Yang
t al. 2018 ; Andersson 2021 ). Neutron stars exhibit a variety of
ulsational modes (McDermott, van Horn & Hansen 1988 ; Lai 1994 ;
eisenegger & Goldreich 1994 ; Passamonti et al. 2006 ; Samuelsson,
ndersson & Maniopoulou 2007 ; Passamonti & Andersson 2012 ).
hese oscillation modes are associated with the restoring forces
nd structure of the star. Modes include the fundamental mode
r f mode (Lau, Leung & Lin 2010 ; LIGO Scientific Collabora-
ion & Virgo Collaboration 2017 ; Wen et al. 2019 ; LIGO Scien-
ific Collaboration, Virgo Collaboration & KAGRA Collaboration
021 ), pressure modes or p modes (Bandari 2014 ), gravity modes
r g modes (McDermott et al. 1988 ; Bildsten & Cutler 1995 ;
ildsten, Ushomirsky & Cutler 1996 ; Deibel 2016 ; Andersson &
nigouras 2020 ; K uan, Suvoro v & Kokkotas 2021a ; P assamonti,
ndersson & Pnigouras 2021 ), r modes in rotating neutron stars

Haskell 2015 ; Mitidis 2015 ; Chambers & Watts 2020 ; Ma, Yu &
hen 2021 ), and interface modes or i modes (McDermott et al.
988 ; Passamonti & Andersson 2012 ). Oscillation modes may be
xcited during accretion (Reisenegger & Goldreich 1994 ; Deibel
016 ) or by tides (Lai 1994 ; Ho & Lai 1999 ; Gittins et al.
021 ). 
Neutron star oscillations have been studied in connection with

mission of electromagnetic radiation. The prospect of observing
eutron star ocean oscillations induced by accretion, in particular,
as been considered in many previous works (Bildsten & Cut-
er 1995 ; Bildsten et al. 1996 ; Heyl 2004 ; Deibel 2016 ; Cham-
ers & Watts 2020 ; van Baal, Chambers & Watts 2020 ). Ther-
onuclear burning on neutron star surfaces during accretion can

xcite oscillation modes, which could represent the oscillations
n type I X-ray burst light curves (Hansen & van Horn 1975 ;

oosley & Taam 1976 ; Maraschi & Cavaliere 1977 ; Bildsten &
utler 1995 ; Spitko vsk y, Levin & Ushomirsk y 2002 ; Lee 2004 ;
iro & Bildsten 2005b ; Chambers et al. 2018 ; Chambers &
atts 2020 ). Observed thermonuclear X-ray bursts on neutron

tars show signs of ocean mode oscillation (Galloway et al. 2008 ;
ilous & Watts 2019 ; Bult et al. 2021 ; Roy, Beri & Bhattacharyya
021 ). 
Because neutron stars can exist in binaries, tidal deformations

lay a role in neutron star physics as well. A neutron star’s response
o tidal forces largely depends on its internal properties, including
ts oscillation modes (Lai 1994 ). Observations of tidally excited
scillation modes would probe the composition of neutron stars. 
In this work, we analyse neutron star ocean oscillations generated

y the dynamical tide during interactions with other compact
bjects. We principally consider ocean tidal waves in compact
inary inspirals, where tidal forces become resonant with neutron
tar oceans. We also investigate tidal waves from unbound neutron
tar encounters. We present models for neutron star oceans and
nvestigate the size of tidal waves sustainable in these oceans.
ltimately, we consider astrophysical emission that tidally excited
eutron star oceans might produce, including electromagnetic flares
nd GWs. We perform all of our analysis using Newtonian the-
ry due to the exploratory and phenomenological nature of this
tudy. 

We divide the paper into the following sections. In Section
 , we present the background neutron star model used, as well
s introduce the three neutron star ocean models investigated.
n Section 3 , we discuss the equations of motion for neutron
tar oscillations and determine the neutron star ocean oscillation
odes for our models. In Section 4 , we discuss the tidal inter-

ction and compute tidal wave properties for each of the oceans
nd orbital configurations considered. In Section 5 , we discuss
NRAS 520, 6173–6189 (2023) 
ur results and their consequences, including potential emission
roduced by neutron star ocean tidal waves. In Section 6 , we
onclude. 

 B  ACKGR  OUND  NEUTR  ON  STAR  AND  OCEAN  

ODEL  

o focus on the properties of the neutron star ocean, we use a simple
ackground neutron star model with a rigid crust. We will later
xtrapolate our results with this model to the case where the neutron
tar crust is elastic rather than rigid. 

To solve for the star’s background density ρ and pressure p , we
se the classical equilibrium equations for a spherically symmetric
uid: 

d p 

d r 
= −ρg, (1a) 

d M 

d r 
= 4 πGr 2 ρ, (1b) 

here M ( r ) is the mass enclosed at a given radius, G is Newton’s
ravitational constant, and g = 

GM ( r ) 
r 2 

(Chandrasekhar 1957 ). Given
n equation of state, these equations can be solved and provide
he star’s background pressure and density. In this work, we use
 polytropic equation of state (Ferrari, Rossi & Malheiro 2010 ): 

 = Kρ� , (2) 

here K is a proportionality constant. Choosing � = 2 yields an
nalytic solution for the mass density when r < R � . 

( r) = ρc 

sin 
√ 

4 πG 

2 K 
r √ 

4 πG 

2 K 
r 

, (3) 

here ρc is the density at the centre of the star and R � is the radius
f the neutron star (Chandrasekhar 1957 ). When r > R � , we have
( r ) = 0. Note that the radius of the star is completely specified by

he constant K . 
For this study, we assume that our neutron star is non-rotating

nd has no magnetic field. The effects of rotation and magnetization,
f small enough, will serve as perturbations to the oscillation mode
tructures and frequencies without changing the physics (Kr ̈uger
t al. 2021 ; K uan, Suvoro v & Kokkotas 2021b , ). Because we are
nterested in early inspirals, the effects of general relativity should
ot play a role in spinning up the rotation of neutron stars. While we
xpect effects such as tidal locking to also spin up neutron stars, we
o not consider them in our study. We leave consideration of rotating
nd magnetized neutron stars to future work. 

.1 Neutron star ocean depth 

he depth of the neutron star ocean depends on the density at
hich the neutron star crust melts. The top of the crust is typically

onsidered to be a body-centred cubic Coulomb crystal (Bildsten &
utler 1995 ; Haensel, Potekhin & Yakovlev 2007 ; Horowitz & Kadau
009 ; Baiko & Chugunov 2018 ; Gittins, Andersson & Pereira 2020 ).
n a Coulomb crystal, the ions that compose the lattice interact
 xclusiv ely by the Coulomb interaction (Chambers et al. 2018 )
ecause the electron screening in the outer crust is weak (Chamel &
aensel 2008 ). The Coulomb crystal undergoes a phase transition
hen the thermal energy exceeds the electric binding energy of the
aterial by some critical factor γ (Farouki & Hamaguchi 1993 ). The
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rust melts when the following condition is met: 

 B T ≥ 1 

γ

1 

4 πε0 

Z 
2 e 2 

d 
, (4) 

here k B is Boltzmann constant, T is the temperature, ε0 is the 
ermittivity of free space, Z is the proton number of atomic nuclei in
he lattice, e is electron charge, and d is the mean spacing between
uclei. Molecular dynamics studies have found γ ≈ 173 (Farouki & 

amaguchi 1993 ). Assuming that the ion number density is n i =
 
4 
3 πd 3 ) −1 , the mass density at which the crust melts and the ocean
orms is 

o = Am n n i = 

3 

4 π
Am n 

(
γ

4 πε0 k B T 

Z 
2 e 2 

)3 

≈ 2 . 705 × 10 10 g cm 
−3 

(
A 

16 

)(
8 

Z 

)6 (
T 

10 8 K 

)3 

, (5) 

here A is the atomic mass of the nuclei in the lattice, m n is nucleon
ass, and we have used the condition in equation ( 4 ) for d at the

ransition between the neutron star crust and ocean. Equation ( 5 )
hows the melting density’s strong dependence on temperature and 
on atomic number. More proton-rich nuclei will reduce the density 
t which the ocean begins. 

By plugging equation ( 5 ) into the left-hand side of equation ( 3 ),
e determine the radius at which the ocean begins and by extension

he depth of the ocean as a function of A , Z , and T when � = 2.
ince the ocean is very shallow compared to the neutron star radius
Bildsten & Cutler 1995 ; Bildsten et al. 1996 ; Urpin 2004 ; Deibel
016 ; van Baal et al. 2020 ), we approximate r in the denominator of

quation ( 3 ) as the stellar radius R � = 

√ 

2 K 

4 πG 

π
2 . The radius at which

he neutron star ocean begins for a � = 2 polytropic equation of state
s 

 o = 

√ 

2 K 

4 πG 

[ 

arccos 

( 

3 

8 

Am n 

ρc 

(
γ

4 πε0 k B T 

Z 
2 e 2 

)3 
) 

+ 

π

2 

] 

. (6) 

e also obtain an approximate ocean depth h o for a general 
olytropic equation of state in terms of ρo . Differentiating equation 
 2 ) gives 

d p 

d r 
= �Kρ�−1 d ρ

d r 
. (7) 

ombining equations ( 1a ) and ( 7 ) provides a differential equation for
and r : 

d ρ

d r 
= − g 

�K 

ρ2 −� . (8) 

ntegrating equation ( 8 ) from the ocean floor to the surface assuming
onstant g = 

GM 

R 2 � 
gives 

 o = R � − r o = 

�K 

� − 1 

ρ�−1 
o 

g 
. (9) 

ny choice of K and � in the ocean can therefore give an approximate
 o . 
In this work, we consider three model crusts, respectively, made 

p of three elements thought to be found in neutron star surfaces
ue to their production by r-processes (Meisel et al. 2018 ): carbon
ith Z = 6 and A = 12, oxygen with Z = 8 and A = 16, and iron
ith Z = 26 and A = 56. For referential convenience, we refer

o the three oceans corresponding to these differently composed 
rusts as carbon, oxygen, and iron oceans, respectively. Neutron 
tar crust temperatures are typically T ∼ 10 7 K when the crust is
n thermal equilibrium with the core (Brown, Bildsten & Rutledge 
998 ; Brown & Cumming 2009 ). Accretion can raise the temperature
f the neutron star ocean floor to T ∼ 10 8 K (Fujimoto et al. 1984 ;
aensel & Zdunik 1990 , 2003 , 2008 ). The temperature decreases

hrough the ocean to 10 6 K at the surface (Miralda-Escude, Haensel &
aczynski 1990 ; Chamel & Haensel 2008 ). In our study, we neglect
ffects of the ocean temperature gradient. We discuss our choice for
rust temperature in Section 3.4.1 . 

 NEUTRON  STAR  OCEAN  OSCILLATION  

ODES  

e solve for the dynamical response of the neutron star ocean. To
o this, we use the formalism of Lagrangian perturbation theory for
uids (Friedman & Schutz 1978 ). Using the Newtonian formalism 

ypically used, we solve for the oscillation modes of the neutron star
cean (Dziembowski 1971 ; Ledoux 1974 ; McDermott et al. 1988 ;
assamonti & Andersson 2012 ), so that we may study the dynamical
esponse to tidal forces (Lai 1994 ; Reisenegger & Goldreich 1994 ;
sang et al. 2012 ; Tsang 2013 ; Passamonti et al. 2021 ). 

.1 Equations of motion 

he equation of motion for Lagrangian perturbative displacements 
s the perturbed Euler equation 

 
2 
t ξ + 

∇δp 

ρ
− δρ

ρ2 
∇ p + ∇ δφ − 1 

ρ
∇ · σ = −∇ χ, (10) 

here ξ is the Lagrangian displacement vector, ρ is the background 
uid density, p is the background fluid pressure, δρ is the Eulerian
erturbation of the density, δp is the Eulerian perturbation of the
ressure, δφ is the Eulerian perturbation of the gravitational potential, 
= σij is the elastic stress tensor, and χ is an unspecified (for now)

xternal potential that drives the system. The elastic stress tensor is
efined as 

ij = μ̆
(∇ i ξj + ∇ j ξi 

) − 2 

3 
μ̆δij ( ∇ · ξ ) , (11) 

here μ̆ is the shear modulus and δij is the Kronecker delta. In a
uid, μ̆ = 0. 
The Lagrangian perturbation for density can be written as 

ρ = δρ + ξ · ∇ρ = −ρ∇ · ξ , (12) 

here the first equality is the definition of the Lagrangian perturba-
ion in terms of the Eulerian perturbation and the second equality
rises from conservation of mass (Friedman & Schutz 1978 ). If the
scillations are adiabatic, the Lagrangian perturbations for pressure 
nd density are related by 


ρ

ρ
= 

1 

� 1 


p 

p 

, (13) 

here � 1 is the adiabatic index. We note that � 1 does not necessarily
qual �. When � 1 �= �, the neutron star is stratified and can sustain
nternal g modes (McDermott et al. 1988 ; Bildsten & Cutler 1995 ;
ildsten et al. 1996 ; Andersson & Pnigouras 2020 ; Passamonti et al.
021 ). 
The final equation of motion that go v erns this system is the

erturbative form of the Poisson equation 

 
2 δφ = 4 πGδρ. (14) 

ince the ocean is the uppermost layer of the star and typically very
hallow, the perturbation of the gravitational potential δφ and its 
radient ∇δφ must be very small compared to the background grav- 
tational potential φ and the background gravitational acceleration 
MNRAS 520, 6173–6189 (2023) 
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 . As such, we employ the Cowling approximation (Cowling 1941 ),
hich approximates δφ ≈ 0 and ∇δφ ≈ 0. Consequently, we neglect

he appearance of δφ in equation ( 10 ). 
In this section, we set χ = 0 and study the homogeneous solutions

o equation ( 10 ). First, we define a perturbation to the chemical
otential per nucleon mass δ ˜ μ, which, in a barotropic fluid where
 = � 1 , is related to the perturbation of pressure by 

p = n N δμ = ρδ ˜ μ, (15) 

here δμ is the normal chemical potential, and n N is the nucleon
umber density. Inserting equation ( 15 ) for δp into equation ( 10 ),
xplicitly writing out the deri v ati ve of the stress tensor, and applying
he Cowling approximation gives 

 = ∂ 2 t ξ + ∇δ ˜ μ

− 1 

ρ

(
d ̆μ

d r 
( ∇ r ξ + ∇ξr ) + μ̆

(∇ ( ∇ · ξ ) + ∇ 
2 ξ
)

− 2 

3 
∇ ( ̆μ∇ · ξ ) 

)
. (16) 

e use equations ( 12 ) and ( 13 ) to obtain the other equation we need to
olve this system. From the definition of the Lagrangian perturbation
Friedman & Schutz 1978 ), we have 

p = δp + ξ · ∇p = ρδ ˜ μ + ξr 

d p 

d r 
, (17) 

here ξ r is the radial component of ξ and the second equality
omes from equation ( 15 ) and spherical symmetry (i.e. ∇p = 

d p 
d r ).

ubstituting equations ( 17 ) and ( 12 ) into equation ( 13 ), we obtain 

 · ξ = − 1 

� 1 p 

(
ρδ ˜ μ + ξr 

d p 

d r 

)
. (18) 

Equations ( 16 ) and ( 18 ) are a system of partial differential equa-
ions, which can be solved using a clever ansatz for ξ . We decompose
into normal modes (Dziembowski 1971 ; Ledoux 1974 ; McDermott

t al. 1988 ; Passamonti & Andersson 2012 ): 

= 

∑ 

n 

e i ω n t ξn , (19) 

here ω n is the angular frequency of a resonant mode and ξn is the
igenfunction that solves the equation 

 L − ρω 
2 
n ) ξn = 0 , (20) 

here L is an operator defined such that L ξ = ρ∇δ ˜ μ − ∇ · σ

Press & Teukolsky 1977 ; Passamonti et al. 2021 ). The index
 denotes the mode. The orthogonality of these modes requires
Press & Teukolsky 1977 ; Lai 1994 ; Passamonti et al. 2021 ) 

 ξn | ξm 〉 = 

∫ 
ρξ ∗

n · ξm d V = A 
2 
n δnm , (21) 

here the integral is over the volume of the star, ξ ∗
n is the complex

onjugate of ξn , and A 
2 
n is the normalization factor. The spherical

ymmetry of the problem allows us to write ξn as (Dziembowski
971 ; Ledoux 1974 ; McDermott et al. 1988 ; Passamonti & Anders-
on 2012 ) 

n = 

(
U ( r) Y lm ( θ, φ) , V ( r) ∂ θY lm ( θ, φ) , 

V ( r) 

sin θ
∂ φY lm ( θ, φ) 

)
, (22) 

here Y lm ( θ , φ) are the spherical harmonic functions (Jackson 1962 ),
 x is the partial deri v ati ve with respect to the variable x , and U ( r )
nd V ( r ) are functions of the radial coordinate that must be solved
or. The spherical symmetry also allows us to write δ ˜ μ as δ ˜ μ =
˜ μ( r) Y lm ( θ, φ)e i ωt . 
NRAS 520, 6173–6189 (2023) 
.1.1 Fluid ocean 

n the fluid components of the neutron star where μ̆ = 0, equation
 16 ) simplifies considerably. With spherical symmetry and μ̆ = 0,
quations ( 16 ) and ( 18 ) become first-order ordinary differential
quations in the radial coordinate r 

: 

− ω 
2 U + 

d 

d r 
δ ˜ μ = 0 , (23a) 

− ω 
2 V + 

δ ˜ μ

r 
= 0 , (23b) 

d U 

d r 
+ 

2 

r 
U − l( l + 1) 

r 
V = − 1 

� 1 p 

(
ρδ ˜ μ + U 

d p 

d r 

)
. (23c) 

hese equations are valid in the fluid neutron star ocean. Rearranging
quations ( 23a ) and ( 23c ) and using the relationship in equation
 23b ), this system reduces to two ordinary differential equations: 

d 

d r 
δ ˜ μ = ω 

2 U, (24a) 

d U 

d r 
= −

(
2 

r 
+ 

1 

� 1 p 

d p 

d r 

)
U + 

(
− ρ

� 1 p 

+ 

l( l + 1) 

r 2 ω 
2 

)
δ ˜ μ. (24b) 

e write these equations in terms of the dimensionless variables
 1 = 

U 
r 

and y 2 = 
δ ˜ μ
rg 

, where g is the background gravitational field
s a function of radius. We obtain 

d y 1 
d r 

= −
(

3 

r 
+ 

1 

� 1 p 

d p 

d r 

)
y 1 + 

(
− ρ

� 1 p 

+ 

l( l + 1) 

r 2 ω 
2 

)
gy 2 , (25a) 

d y 2 
d r 

= 

ω 
2 

g 
y 1 −

(
1 

r 
+ 

1 

g 

d g 

d r 

)
y 2 . (25b) 

n the single fluid limit and the Cowling approximation, the equa-
ions in section A1 of Passamonti & Andersson ( 2012 ) reduce
o equation ( 25 ). Given boundary conditions at the ocean–crust
nterface and ocean surface, a value for � 1 (which is not constant in
eneral), and a value of l , we may solve these equations as a boundary
alue problem. 

.1.2 Elastic crust 

f the crust is elastic, the ocean oscillation modes may penetrate into
he crust, requiring one to solve equation ( 16 ) when μ̆ �= 0 (Piro &
ildsten 2005a ). In this work, rather than solving equations ( 16 )
nd ( 18 ) in the elastic crust, we will solve for modes in the ocean
ssuming a rigid crust and extrapolate our results from the rigid to
he elastic case, focusing particularly on the consequences for the
eutron star tide. 

.2 Boundary conditions 

n this work, we solve equation ( 23 ) assuming that the mode is
ntirely confined to the ocean. For this simple case, oscillations do
ot penetrate into the crust. At the ocean floor, we apply the condition 

 1 ( r o ) = 0 . (26) 

his is the same condition applied by Bildsten & Cutler ( 1995 ) to
olve for deep ocean g modes. At the surface of the ocean, we apply
he condition 
 p = 0 (McDermott et al. 1988 ; Lai 1994 ). In our
ariables, this becomes 

 = y 1 ( R � ) − y 2 ( R � ) . (27) 

dditionally, so that we can find the functional form of the oscillation
odes, we apply a normalization condition at the surface of the
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cean, 

 1 ( R � ) = 1 . (28) 

ith these three boundary conditions, our system is closed and 
olvable. We note that equation ( 26 ) only preserves continuity 
f the radial displacement if there is no radial displacement in 
he crust. This is not necessarily a suitable boundary condition 
or an elastic crust as the true ocean–crust junction condition is
he continuity of the radial displacement and traction variables 
McDermott et al. 1988 ; Passamonti & Andersson 2012 ; Passa-
onti et al. 2021 ). For a more detailed treatment including the
ode’s penetration into the crust, one must impose these condi- 

ions. 

.3 Semi-analytic ocean modes and tidal resonance 

e now provide a simple analytic argument to demonstrate the ex- 
stence of ocean modes and estimate how the ocean mode frequency 
cales with model parameters in both the rigid crust and elastic crust
ases. This will also give the time of tidal resonance as a function of
odel parameters. 

.3.1 Shallow ocean surface wave model 

reating the neutron star ocean as an incompressible shallow ocean, 
e analytically estimate the neutron star ocean mode frequencies. 
 or wav es in a shallow ocean, one solv es for the height of the
av e abo v e the ocean surface η. In an incompressible fluid, the
ensity ρ is not a function of the pressure, so the pressure is often
aken to be p = ρg ( h f − z ), where h f is the total height of the
cean. When the height is perturbed by surface waves, we have 
 f = h o + η, where h o is the equilibrium depth of the ocean. For
aves with η << h o , the perturbed Euler equation and the continuity

quation become 

 t v H = −∇ H δp 

ρ
, (29a) 

∂ t η + ρh o ∇ H · v H = 0 , (29b) 

here v H = ( v x , v y ) is the fluid velocity in the horizontal direction,
he gradient ∇ H = ( ∂ x , ∂ y ) is the gradient in the horizontal direction,
nd δp is the perturbation to the pressure due to the wave (Randall
006 ). 
Because h f = h o + η for a perturbed ocean, we have p + δp =
g ( h o + η − z ). p = ρg ( h o − z ) is the background pressure, so the
erturbation to the pressure is δp = ρg η. Equation ( 29a ) becomes 

 t v H = −g∇ H η. (30) 

aking the divergence of equation ( 30 ) gives 

 t ( ∇ H · v H ) = −g∇ 
2 
H η. (31) 

ividing out the mass density and taking the time deri v ati ve of
quation ( 29b ) gives 

 
2 
t η + h o ∂ t ( ∇ H · v H ) = 0 . (32) 

ombining equations ( 31 ) and ( 32 ) gives the wave equation for the
eight of the wave η: 

 
2 
t η − gh o ∇ 

2 
H η = 0 . (33) 

t this point, we reintroduce the spherical nature of this problem by
ssuming η = η( t ) Y lm . In spherical coordinates, this problem becomes
hat of an incompressible fluid shell surrounding a sphere of radius
 � , similar to a neutron star ocean. While we have previously been
orking in Cartesian coordinates, the wave equation for η holds in 

pherical coordinates if η is not a function of r . Expanding η in
pherical harmonics, equation ( 33 ) becomes 

 
2 
t η + 

l( l + 1) 

R 
2 
� 

gh o η = 0 . (34) 

e arrive at ocean mode frequencies in an incompressible fluid ocean
urrounding a spherical body of radius R � as 

 i = 

1 

R � 

√ 

l( l + 1) gh o = 

√ 

l( l + 1) 
GM � 

R 
3 
� 

h o 

R � 

, (35) 

here the subscript i refers to incompressibility. To obtain intuition 
bout the functional dependence of the real ocean mode frequencies 
n our model parameters, we substitute equation ( 9 ) for h o in equation
 35 ) and obtain 

 ∼ 1 

R � 

√ 

l( l + 1) 
K� 

� − 1 
ρ�−1 

o , (36) 

here we have replaced the equal sign with a tilde for more realistic
eutron star oceans. We now substitute in the expression for ρo from
quation ( 5 ) to obtain 

 ∼ 1 

R � 

√ 

l( l + 1) K� 

� − 1 

( 

γ

(
3 

4 π
m n 

) 1 
3 4 πε0 k B 

e 2 

) 3 �−3 
2 

×A 

�−1 
2 Z 

3 −3 � T 
3 �−3 

2 . (37) 

Equation ( 37 ) estimates the mode frequency when the crust is taken
o be rigid. One can see that the mode frequency increases as a
unction of T and A and decreases as a function of Z for � > 1. 

Piro & Bildsten ( 2005a ) showed that if the pressure at the crust–
cean interface p o exceeds the shear modulus μ̆, one cannot treat
his mode as purely a shallow ocean surface wa ve, b ut rather as an
nterface mode with a non-zero ξ in the crust. The interface mode

requency will be the shallow ocean mode frequency scaled by 
√ 

μ̆

p o 
: 

 ∼
(

μ̆

p o 

) 1 
2 1 

R � 

√ 

l( l + 1) K� 

� − 1 

( 

γ

(
3 

4 π
m n 

) 1 
3 4 πε0 k B 

e 2 

) 3 �−3 
2 

×A 

�−1 
2 Z 

3 −3 � T 
3 �−3 

2 . (38) 

onsequently, when the ocean has an elastic crust, equation ( 38 )
pproximates the ocean mode frequency. 

These expressions show the functional dependence of the mode 
n parameters of the model. Such modes have been shown to
xist in non-homogenous atmospheres as well (Taylor 1936 ). This 
nalysis demonstrates the capacity of oceans to sustain modes with 
ower frequencies than the neutron star f mode (McDermott et al.
988 ; Passamonti et al. 2021 , for example) regardless of ocean
tratification. 

.3.2 Tidal resonance estimates 

ince we are interested in tidal resonances during compact binary 
nspirals, we estimate the time before compact binary merger of an
cean tidal resonance. Tidal resonances should occur when 

˙
 = 

ω 

m 

, (39) 
MNRAS 520, 6173–6189 (2023) 
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here �̇ is the orbital frequency of the compact binary and m is the
pherical harmonic index. For circular binaries, we have 

˙
 = 

√ 

G ( M + M ∗) 

D 
3 

, (40) 

here M ∗ is the mass of the companion object and D is orbital
eparation. The time to merger for a given orbital separation D is
Peters 1964 ) 

 m = 

D 
4 

4 β
, (41) 

here β is 

= 

64 

5 

G 
3 MM ∗( M + M ∗) 

c 5 
, (42) 

here c is the speed of light. Combining equations ( 37 ), ( 39 ),
 40 ), and ( 41 ) gives an expression for the time before merger when
esonance occurs (hereafter resonance time) in the rigid crust case
s 

 r ∼ 1 

4 β

(
R 

2 
� m 

2 G ( M + M ∗)( � − 1) 

l( l + 1) K� 

) 4 
3 

×
( 

γ

(
3 

4 π
m n 

) 1 
3 4 πε0 k B 

e 2 

) 4 −4 � 

A 

4 −4 � 
3 Z 

8 �−8 T 4 −4 � . (43) 

ombining equations ( 38 ), ( 39 ), ( 40 ), and ( 41 ) giv es an e xpression
or the resonance time in the elastic crust case 

 r ∼ 1 

4 β

((
p o 

μ̆

)
R 

2 
� m 

2 G ( M + M ∗)( � − 1) 

l( l + 1) K� 

) 4 
3 

×
( 

γ

(
3 

4 π
m n 

) 1 
3 4 πε0 k B 

e 2 

) 4 −4 � 

A 

4 −4 � 
3 Z 

8 �−8 T 4 −4 � . (44) 

hese analytical estimates for the mode frequency and resonance
ime will allow for parameter extraction, should tidal resonances
rom these modes be observed. 

.4 Ocean mode results 

e now discuss the numerical values we choose for model parame-
ers and present the computed mode results. 

.4.1 Neutron star model parameters 

ur neutron star model has a central density ρc = 10 15 g cm 
−3 .

e choose � = 2 as was done by Passamonti et al. ( 2021 ). The
alue of K that we use is K = 6.67 × 10 4 cm 

5 g −1 s −2 . These
hoices yield a neutron star that has radius R � = 12.5 km and a
ass M = 1.25 M 
. This is just smaller than the peak mass of

he Galactic neutron star population 1.39 M 
 (Antoniadis et al.
016 ; Alsing, Silva & Berti 2018 ). For our computations, we
x the temperature T = 10 8 K at the crust–ocean interface, so

hat t r < 100 yr for all scenarios considered. A longer resonance
ime would be practically too long for the coincident detection
f tidal resonances with compact binary mergers. We note that to
et temperatures as hot as T = 10 8 K in the crust, one typically
eeds heating due to accretion (Fujimoto et al. 1984 ; Haensel &
dunik 1990 , 2003 , 2008 ). For this simple study, we do not
ccount for accretion when computing the tidal wave amplitudes
r energies. 
The ratio of the ocean floor depth to the neutron star radius is

ndependent of the choice of K in the equation of state. From equation
NRAS 520, 6173–6189 (2023) 
 6 ), we find that the ocean floor depths of the three oceans are h o, c =
.14 × 10 −4 R � , h o, o = 2.71 × 10 −5 R � , and h o, i = 8.03 × 10 −8 R � for
arbon, oxygen, and iron, respectively. 

The carbon and oxygen oceans form below the electron capture
ensity of those elements, so the bottoms of these oceans would be
 dense plasma of ions and electrons (Bildsten & Cutler 1995 ). For
implicity, we neglect the effect of the ocean having distinct layers
nd leave this to future work. 

.4.2 Neutron star ocean modes 

e solve equation ( 25 ) using a four-stage Runge–Kutta scheme. We
se a shooting method (Press et al. 1986 ) to obtain the frequencies of
ach mode. The unphysical nature of our neutron star model at the
urface (i.e. that both p = 0 and ρ = 0 at R � ) causes a divergence in
quation ( 25 ). To a v oid this divergence, we must choose a coordinate
 just below R � at which to impose the surface boundary condition
quation ( 27 ). This ensures that our neutron star ocean model is well
ehaved throughout the region in which we solve the hydrodynamic
quations. Bildsten & Cutler ( 1995 ) and Piro & Bildsten ( 2005a )
ach address this, with Bildsten & Cutler ( 1995 ) choosing to apply
he boundary condition at density ρ = 10 7 g cm 

−3 and Piro & Bildsten
 2005a ) choosing to apply the boundary conditions at column depth
0 7 g cm 

−2 . In this work, we apply the surface boundary condition
t the radial coordinate corresponding to p = 0.05 p o . Our mode
requency calculations are robust in the following sense: applying the
urface boundary condition for five different cut-offs ( p = 0.05 p o ,
 = 0.01 p o , p = 0.005 p o , p = 0.001 p o , and p = 0.0001 p o ), we find
hat the computed mode frequencies change by order unity. Present
imitations in the theory of neutron star oceans and atmospheres
re vent achie ving mode frequency calculations more accurate than
ithin an order of magnitude. 
Because tidal forces correspond to l ≥ 2 spherical harmonics, l =

 and l = 1 modes remain practically unaffected by tidal forces, so
e do not solve for them. We only solve for l = 2 modes as those are

he modes most likely to be excited tidally. As previously mentioned,
e assume that the neutron star is barotropic so that � 1 = � = 2.
s such, our ocean is unstratified and cannot sustain g modes in the

raditional sense (i.e. where the equation of state of the perturbed
uid differs from the background equation of state). 
For each ocean model, we find that the ocean can sustain one l =

 mode with a frequency below the orbital frequency at which two
eutron stars merge ( � 10 3 Hz; Abbott et al. 2019 ). As previously
entioned, the modes we find are not the surface g modes found

y McDermott et al. ( 1988 ) and Passamonti et al. ( 2021 ). Instead
hese modes are interface modes or i modes associated with the
rust–ocean interface and ocean surface. These modes resemble
hallow ocean surface waves due to the fixed crust–ocean boundary
nd free ocean surface (Piro & Bildsten 2005a ). We note that
tratified models can produce g modes with frequencies of order
1 Hz (Bildsten & Cutler 1995 ). Table 1 shows the densities

t the ocean floor, the depths, and the mode frequencies of the
eutron star ocean models, as well as integrals computed later in
he paper. 

The mode frequency increases with the square root of ocean depth
s predicted by equation ( 35 ). Carbon oceans have the highest mode
requency at 16.7 Hz, while iron oceans have a mode frequency
f 0.44 Hz. We note that the fully computed mode frequencies are
ach a factor of 2 smaller than the rough estimates obtained from
quation ( 37 ). To determine the elastic crust i-mode frequencies, we
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Table 1. The properties of the three neutron star oceans we consider in this work. We show the atomic number and mass of 
each element that we consider as the dominant substance in a T = 10 8 K neutron star crust as well as the densities at the ocean 
floors calculated from equation ( 5 ), the ocean depths from equation ( 6 ), the analytic angular mode frequency from equation 
( 35 ), the numerically computed angular frequencies and mode frequencies of each ocean, the numerically computed angular 

frequencies and mode frequencies scaled by 
√ 

μ̆
p 

= 0 . 1 to estimate the crust-penetrating mode frequencies, the dimensionless 

o v erlap inte grals discussed in Section 4 , as well as the integral H n , defined in Section 5.3 , which is related to the quadrupole 
moment of the mode. The ocean depths, mode frequencies, and integrals are all specific to this choice of equation of state and 
neutron star core density. 

Ocean make-up Carbon Oxygen Iron 

Z 6 8 26 
A 12 16 56 
Melting density at T = 10 8 K (g cm 

−3 ) 1.10 × 10 11 2.71 × 10 10 8.03 × 10 7 

Ocean depth h o ( R � ) 1.14 × 10 −4 2.71 × 10 −5 8.03 × 10 −8 

Ocean depth h o when R � = 12.5 km (cm) 143 33.9 1.01 × 10 −1 

Analytic angular frequency ω i (s −1 ) 241 117 6.40 
Numerical angular frequency ω (s −1 ) 104.7 50.98 2.778 
Mode frequency f (Hz) 16.66 8.114 0.4422 
Crust-penetrating angular frequency ω (s −1 ) 10.47 5.098 0.2778 
Crust-penetrating mode frequency f (Hz) 1.666 0.8114 0.044 22 
˜ Q n 1.2897 × 10 −4 3.0604 × 10 −5 9.0901 × 10 −8 

H n (g cm 
2 ) 2.738 × 10 41 6.494 × 10 40 1.929 × 10 38 
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cale our numerically computed frequencies by 
√ 

μ̆

p 0 
∼ 0 . 1 (Piro & 

ildsten 2005a ), and report these in Table 1 below the rigid crust
ode frequencies. 
Fig. 1 plots the radial and tangential components of the Lagrangian 

isplacement for the three ocean modes. Each mode exhibits similar 
tructure. The radial component U ( r ) for each ocean has no nodes
nd peaks near the middle of the ocean. The tangential component 
 ( r ) varies little throughout the three oceans, but well exceeds the

adial component throughout. 

 TIDAL  INTERACTION  

e now reintroduce the potential χ to equation ( 10 ), making χ the
idal potential from a nearby companion object. The tidal potential 
or a companion point mass orbiting in the plane of the neutron star
quator takes the form (Press & Teukolsky 1977 ; Lai 1994 ) 

= −
∞ ∑ 

l= 2 

l ∑ 

m =−l 

GM ∗r l 

D( t) l+ 1 
W lm e 

−i m� ( t) Y lm ( θ, φ) , (45) 

here M ∗ is the mass of the companion, D ( t ) is the separation
etween the two stars as a function of time, � ( t ) is the true anomaly,
nd W lm is the numerical coefficient (Press & Teukolsky 1977 ). 

 lm = ( −1) 
l+ m 

2 

(
( 4 π

2 l+ 1 )( l − m )!( l + m )! 
) 1 

2 

2 l ( l−m 

2 )!( l+ m 

2 )! 
, (46) 

here l + m must be even. 
Adding the external potential χ to equation ( 16 ) and setting μ̆ = 0

ives 

 
2 
t ξ + ∇ δ ˜ μ = −∇ χ. (47) 

aving obtained normal mode solutions to the homogenous equa- 
ion ξn , we make an ansatz to solve equation ( 47 ) (Lai 1994 ): 

= 

∑ 

n 

a n ( t) ξn , (48) 

here a ( t ) is an amplitude that scales the eigenfunction and encodes
ll time dependence of ξ . Using the operator L ξ = ρ∇δ ˜ μ defined in
ection 3.1 with μ̆ = 0, equation ( 47 ) becomes 

 ρ∂ 2 t + L ) ξ = −ρ∇χ. (49) 

ubstituting our ansatz for ξ gives 

− ρ∇χ = 

∑ 

n 

ρä n ( t ) ξn + a n ( t ) L ξn = 

∑ 

n 

( ̈a n ( t ) + ω 
2 
n a n ( t)) ρξn , 

(50) 

here the last equality follows from equation ( 20 ). We use the
rthogonality condition in equation ( 21 ) to isolate an equation for
 n ( t ). Applying orthogonality yields 

¨ n ( t) + ω 
2 
n a n ( t) = − 1 

A 
2 
n 

∫ 
ρξ ∗

n · ∇χd V . (51) 

nputting the tidal potential from equation ( 45 ), equation ( 51 )
ecomes 

¨ n ( t) + ω 
2 
n a n ( t) = 

GM ∗
D( t) l+ 1 

W lm 

Q n 

A 
2 
n 

e −i m� ( t) , (52) 

here Q n is the o v erlap inte gral defined by (Press & Teukolsk y 1977 ;
ai 1994 ; Tsang et al. 2012 ; Tsang 2013 ; Andersson & Pnigouras
020 ; Passamonti et al. 2021 ) 

 n = 

∫ 
ρξ ∗

n · ∇( r l Y lm ( θ, φ))d V = l 

∫ 
ρ( U + V ( l + 1)) r l+ 1 d r, 

(53) 

here we have used equation ( 22 ) to obtain the last equality. Note that
he o v erlap inte gral is entirely a property of the mode and quantifies
ow strongly the mode gets excited by tidal forces. We define a
ormalized o v erlap inte gral, dimensionless for the l = 2 modes, as 

˜ 
 n = 

Q n 

A 
2 
n 

. (54) 

n Table 1 , we report the normalized o v erlap inte grals for each of the
hree ocean modes. We must also estimate the o v erlap inte grals for
odes that penetrate into the elastic crust. Piro & Bildsten ( 2005a )

etermined that the mode energy is principally confined to the ocean,
ven when the mode penetrates into the crust. Furthermore, while 
he radial displacement has a node in the ocean with an elastic crust
MNRAS 520, 6173–6189 (2023) 
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M

Figure 1. The shallow ocean surface mode for the three neutron star ocean models we study in this paper: (a) the carbon ocean, (b) the oxygen ocean, and (c) 
the iron ocean. The left-hand plots show the dimensionless function U ( r) 

r 
as a function of distance from the ocean floor, while the right-hand plots show the 

dimensionless function V ( r) 
r 

as a function of distance from the ocean floor. Note that horizontal axis in (c) is in mm because the iron ocean is only 1 mm deep. 
The mode frequency of each ocean model is shown in the legend of the right-hand plot. 
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nd not with a rigid crust, the tangential displacement of Piro &
ildsten ( 2005a ) is multiple orders of magnitude larger than the
NRAS 520, 6173–6189 (2023) 
adial displacement. Because our computed rigid crust modes have
his same property, the large tangential displacement in the ocean
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ill dominate the o v erlap inte gral in both cases. Consequently, we
se our computed rigid crust o v erlap inte grals to estimate the o v erlap
ntegrals of i modes that penetrate into the crust. 

Following the analysis of Lai ( 1994 ), we perform a change of
ariables to solve equation ( 52 ) where 

( t) = GM ∗ ˜ Q n W lm b( t)e −i m� ( t) , (55) 

nd b ( t ) is the new function to solve for. In terms of b ( t ), equation
 52 ) becomes 

¨
 − 2i m ̇� ̇b + ( ω 

2 − m 
2 �̇ 

2 − i m ̈� ) b = 

1 

D( t) l+ 1 
. (56) 

f we decompose b into a real part b r and an imaginary part b i ,
quation ( 56 ) becomes the following two equations: 

¨
 
r + 2 m ̇� ̇b i + m ̈� b i + ( ω 

2 − m 
2 �̇ 

2 ) b r = 

1 

D( t) l+ 1 
, (57a) 

¨
 
i − 2 m ̇� ̇b r − m ̈� b r + ( ω 

2 − m 
2 �̇ 

2 ) b i = 0 . (57b) 

iven an orbital trajectory for a companion celestial body, equations 
 57a ) and ( 57b ) can be solved. By plugging solutions to equations
 57a ) and ( 57b ) back into equation ( 55 ), the tidal wave amplitude
 ( t ) in the neutron star ocean can be found. 

.1 Tidal interaction scenarios 

e consider three tidal interaction scenarios: a binary neutron star 
BNS) inspiral in a circular orbit, a neutron star–black hole (NSBH)
inary inspiral in a circular orbit, and an unbound parabolic encounter 
etween two neutron stars (NSPE). While NSPEs are expected to be 
airly rare (Tsang 2013 ) due to the low presence of neutron stars
redicted in stellar clusters (Bae, Kim & Lee 2014 ; Belczynski 
t al. 2018 ; Ye et al. 2020 ; Mandel & Broekgaarden 2022 ), tidal
nteractions from these events remain relativ ely une xplored be yond 
sang ( 2013 ), so we consider them in this work. In the following
ections, we enumerate the initial conditions and orbital parameters 
n each of these scenarios. 

.1.1 Neutron star binary and neutron star–black hole binary 

he initial conditions and orbital motion of BNSs and NSBHs 
re largely the same when the orbital separation well exceeds 
he diameter of stellar-mass black holes. Due to the lower mode 
requencies of the three neutron star oceans, resonance will occur 
arlier in the inspiral than f-mode resonances. As such, we consider 
oth BNSs and NSBHs at earlier times. 
For an inspiraling circular binary, the time deri v ati ve of the true

nomaly �̇ is just the orbital frequency 

˙
 = 

√ 

G ( M + M ∗) 

D( t) 3 
, (58) 

here G is the gravitational constant, M is the mass of the neutron
tar that is tidally perturbed, M ∗ is the mass of the companion object,
nd D ( t ) is the orbital separation as a function of time. The second
eri v ati ve of the true anomaly is 

¨
 = −3 

2 
�̇ 

Ḋ 

D 

, (59) 

here Ḋ is the time deri v ati ve of D . Due to the emission of GWs,
he binary loses energy and D ( t ) decreases o v er time. The separation
s a function of time D ( t ) for an inspiraling circular binary is given
y (Peters 1964 ) 

( t) = 

(
D 

4 
0 −

256 

5 

G 
3 MM ∗( M + M ∗) 

c 5 
t 

)1 / 4 

, (60) 

here D 0 is the orbital separation at time t = 0, and c is the
peed of light. We have neglected the effects of energy transfer
o the neutron star ocean on the orbital motion because, as will be
iscussed in Section 4.2.3 , the orbital energy will far exceed the
nergy transmitted to the ocean mode. 

To numerically solve equations ( 57a ) and ( 57b ), we must choose
nitial values for b r , b i , ḃ r , and ḃ i . We use the same initial conditions
or circular binary inspirals used by Lai ( 1994 ) and start our
ntegration at a time when the binary is very far from merging.
hese conditions are 

 
r (0) = 

1 

D 
l+ 1 ( ω 

2 − m 
2 ̇� 

2 ) 
, (61a) 

˙
 
r (0) = 

[
−( l + 1) 

Ḋ 

D 

+ 

2 m 
2 ̇� ̈� 

ω 
2 − m 

2 ̇� 

]
b r (0) , (61b) 

 
i (0) = 

1 

( ω 
2 − m 

2 ̇� ) 
(2 m ̇� ̇b r (0) + m ̈� b r (0)) , (61c) 

˙
 
i (0) ≈ 0 . (61d) 

e compute b for the l = 2, m = 2 cases, since m = 2 and m = −2
odes will be equally excited (Lai 1994 ). The m = 0 binary inspiral

ases will be small compared to the m = 2 resonant case. The m =
 case corresponds to static deformations of the neutron star, rather
han the larger amplitude resonant oscillations. Resonance of the 
cean mode with the tidal force is likely to occur in any isolated
inary system containing a neutron star because the system’s orbital 
requenc y continuously evolv es. We do not compute the m = ±1
ase since Y 2 ± 1 = 0. 

.1.2 Neutron star parabolic encounter 

e consider close encounters of neutron stars whose minimum 

istance of approach is a distance s . Since parabolic orbits correspond
o those with an orbital eccentricity of e = 1, the orbital separation
s a function of radius is 

( t) = 

2 s 

1 + cos � ( t) 
, (62) 

here � ( t ) here is the true anomaly for a parabolic orbit. Using con-
ervation of angular momentum, we obtain a differential equation for 
he true anomaly as a function of time: 

˙
 ( t) = 

1 

4 

√ 

G ( M + M ∗) 

s 3 
(1 + cos � ( t) ) 2 . (63) 

e also obtain the second deri v ati ve of the true anomaly �̈ by taking
he deri v ati ve of �̇ : 

¨
 ( t) = −1 

2 

√ 

G ( M + M ∗) 

s 3 
(1 + cos � ( t) ) sin � ( t) ̇� ( t) . (64) 

olving equation ( 63 ) gives the true anomaly as a function of time
or a parabolic orbit. 

Again, we must choose appropriate initial conditions for b r , b i ,
˙
 
r , and ḃ i to solve equations ( 57a ) and ( 57b ). For a parabolic orbit,
he two bodies begin infinitely f ar aw ay from one another with no
peed. Thus, when the companion object is far away from the neutron
tar, we have �̇ ( t) ≈ 0 and �̈ ( t) ≈ 0. When this is the case, D ( t ) is
MNRAS 520, 6173–6189 (2023) 
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pproximately constant, so we obtain a first approximation to b at
arge distances: 

 ≈ 1 

ω 
2 D( t) l+ 1 

. (65) 

he time deri v ati ve ḃ becomes 

˙
 ≈ −( l + 1) 

Ḋ ( t) 

D( t) 
b, (66) 

here Ḋ ( t) is the time deri v ati ve of orbital separation. Taking the
ime deri v ati ve of equation ( 66 ) gi ves 

¨
 ≈

( 

−( l + 1) 
D̈ 

D 

+ ( l + 2)( l + 1) 

(
Ḋ 

D 

)2 
) 

b, (67) 

here D̈ is the second time deri v ati ve of orbital separation. We
ay plug equations ( 66 ) and ( 67 ) into equation ( 56 ) and obtain an

xpression for b containing initial conditions for both b r and b i : 

 ≈ 1 

D 
l+ 1 

ω 
2 − m 

2 ̇� 
2 + i( m ̈� − 2 m ( l + 1) ̇� 

Ḋ 

D 
) 

ω 
4 

, (68) 

here we have kept only the largest terms. Separating equation ( 68 )
nto a real and an imaginary part, we get initial conditions valid when
 ( t ) >> s 
: 

 
r (0) = 

1 

ω 
2 D 

l+ 1 
, (69a) 

˙
 
r (0) = −( l + 1) 

Ḋ 

D 

b r (0) , (69b) 

 
i (0) = 

1 

ω 
2 

(2 m ̇� ̇b r (0) + m ̈� b r (0)) , (69c) 

˙
 
i (0) ≈ 0 . (69d) 

e solve for b in the cases where l = 2 and m = 0. The m = 2
SPE tidal amplitude will be significantly weaker than the m = 0

mplitude as resonant oscillations during NSPEs require very specific
nitial conditions on the neutron star trajectories, making them less
ikely to be found in nature. 

.2 T idal r esults 

e report our results for the BNS, NSBH, and NSPE cases. a ( t ) is
omputed by numerically solving equations ( 57a ) and ( 57b ) for b ( t )
nd substituting b ( t ) into equation ( 55 ). The companion mass used
n the BNS and NSPE is 1.25 M 
 and the companion mass used in
he NSBH is 20 M 
. We show results for the NSPE when m = 0 and
he binary inspirals when m = 2. We report one tidal response for
ach possible combination of ocean and companion orbit. Table 2
ontains the main quantitative results of this paper. 

.2.1 Resonant tidal waves in binary inspirals 

oth BNS and NSBH inspirals will resonantly excite the ocean
odes of their component neutron stars. It is when resonance occurs

hat the tidal wave achieves its maximum amplitude. 
In Fig. 2 , we show the magnitude of the tidal wave amplitudes for

oth BNSs and NSBHs in the times surrounding resonance. 
The general evolution of the tidal amplitudes of all three oceans is

imilar between both BNSs and NSBHs. In the minutes leading up to
esonance, the amplitudes of the tidal waves increase by a full order
f magnitude. We have not considered any damping mechanisms,
lthough possible mechanisms that can decrease the tidal wave
NRAS 520, 6173–6189 (2023) 
mplitudes include diffusion (Dommes & Gusakov 2021 ; Kraav,
usakov & Kantor 2021 ), heating (Beloborodov & Li 2016 ), and
W emission (Lioutas & Stergioulas 2018 ). Without damping, the

idal wave continues to pulsate with the same amplitude following
he resonance time. Carbon and oxygen oceans possess tidal wave
mplitudes of similar size. The o v erlap inte grals and mode frequen-
ies of these modes are less than an order of magnitude different, with
arbon oceans having larger amplitudes. In contrast, the amplitudes
n the iron ocean are about a factor of 100 less than those in the
xygen ocean. These differences result from the different o v erlap
ntegrals calculated for each ocean. 

Slight differences between the BNS and the NSBH cases are
pparent. The BNS cases generate higher amplitudes than the NSBH
ases because resonance during a BNS occurs when the two bodies
re roughly twice as close as during an NSBH. Additionally, the
volution of the tidal wave amplitude and frequency is noticeably
lower in the BNS cases. This is a direct consequence of the slower
requency evolution in BNSs. 

We determine how long before merger these resonances occur
rom equation ( 60 ). We make D 0 the separation at resonance time, set
 ( t ) = 0, and solve for t . In BNSs with rigid crusts, the carbon ocean

eaches resonance with the tidal force ∼5 min before merger, the
xygen ocean reaches resonance ∼40 min before merger, and the iron
cean reaches resonance ∼60 d before merger. When scaling these
esults for elastic crusts, the carbon ocean reaches resonance ∼40 h
efore merger, the oxygen ocean reaches resonance ∼10 d before
erger, and the iron ocean reaches resonance ∼70 yr before merger.

n NSBHs with rigid crusts, the carbon ocean reaches resonance ∼1
in before merger, the oxygen ocean reaches resonance ∼5 min

efore merger, and the iron ocean reaches resonance ∼7 d before
erger. Scaling these results for elastic crusts gives resonance times
5 h before merger in carbon oceans, ∼30 h before merger in oxygen

ceans, and ∼10 yr before merger in iron oceans. Thus, any emission
rom the tidally resonant oceans would well precede corresponding
ompact binary mergers. 

.2.2 Tidal waves excited by parabolic encounters 

SPEs will excite tidal waves in neutron star oceans at periastron.
hen this occurs, the tidal force of the companion star provides an

mpulse to the ocean, causing it to pulsate. In this paper, we quote
esults when the closest distance of approach is s = 3.4 × 10 6 cm.
his is the distance of closest approach where the carbon ocean tidal
ave amplitude a ( t ) in an NSPE is approximately equal to that of
 BNS. For different values of s , the amplitudes of the excited tidal
aves will scale our results by a factor of ( s /3.4 × 10 6 cm) −3 . Fig.
 shows the tidal wave amplitudes during an NSPE for the three
ceans. 
After the NSPE occurs, the tidal waves will oscillate with the mode

requency of the ocean mode. The amplitudes are approximately the
ame order for each of the three oceans we consider. As in the
inary inspiral cases, the iron ocean has the smallest amplitude.
he distance of closest approach in this NSPE is about an order of
agnitude smaller than the resonance distance in the binary inspiral

ase. NSPEs require closer encounters than NSBHs and BNSs to
roduce sizable ocean tidal waves. 
We estimate the event rate for NSPEs within this nominal en-

ounter distance inside a globular cluster. NSPE event rates have
een computed in previous works (Kocsis, G ́asp ́ar & M ́arka 2006 ;
sang 2013 ), but not for these very small encounter distances. We
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Table 2. The main quantitative results of this paper for the three neutron star oceans and three tidal scenarios considered. This table includes the energy 
deposited into each ocean due to the tide and the time at which this energy is deposited. The energy reported for the NSPE corresponds to s = 3.4 × 10 6 

cm. 

Ocean Carbon (rigid) Oxygen (rigid) Iron (rigid) Carbon (elastic) Oxygen (elastic) Iron (elastic) 

Energy deposited (erg) 8.6 × 10 46 3.8 × 10 45 1.3 × 10 40 8.6 × 10 44 3.8 × 10 43 1.3 × 10 38 

Time before BNS merger (min) 5.33 35.33 8.3 × 10 4 2.5 × 10 3 1.6 × 10 4 3.9 × 10 7 

Energy deposited in NSBH (erg) 3.9 × 10 46 1.7 × 10 45 5.8 × 10 39 3.9 × 10 44 1.7 × 10 43 5.8 × 10 37 

Time before NSBH merger (min) 0.67 4.5 1.1 × 10 4 310 2.1 × 10 3 4.9 × 10 6 

Energy deposited in NSPE (erg) 4.3 × 10 46 2.5 × 10 45 2.3 × 10 40 4.3 × 10 44 2.5 × 10 43 2.3 × 10 38 

Time before NSPE (s) 0 0 0 0 0 0 

Figure 2. The magnitudes of the dimensionless resonant ocean tidal wave amplitude | a ( t ) | during compact binary inspirals as a function of time without 
damping. The horizontal axis shows the time from resonance in hours and the vertical axis shows | a ( t ) | . The top row shows tidal wave amplitudes during a BNS 
(a) in a carbon ocean, (b) in an oxygen ocean, and (c) in an iron ocean. The bottom ro w sho ws tidal wave amplitudes during an NSBH (d) in a carbon ocean, (e) 
in an oxygen ocean, and (f) in an iron ocean. 

Figure 3. The real part of the dimensionless ocean tidal wave amplitude a ( t ) during an NSPE as a function of time without damping. The horizontal axis shows 
the time from resonance in seconds and the vertical axis shows a ( t ). The sharp increase in the tidal wave height at time t = 0 is due to the impulse from the 
neutron stars reaching their smallest orbital separation. (a) shows tidal wave amplitudes in a carbon ocean, (b) shows the tidal wave amplitude in an oxygen 
ocean, and (c) shows the tidal wave amplitude in an iron ocean. 
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stimate the event rate of NSPEs in a globular cluster as 

PE = 

1 

2 
Nn � v 0 σPE , (70) 
here N is the number of neutron stars in a globular cluster, n � 
s the number density of neutron stars in a globular cluster, v 0 =

 

G ( M+ M ∗) 
s 

is the relative speed of neutron stars in an NSPE at peri-
MNRAS 520, 6173–6189 (2023) 
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stron, and σ PE is the cross-section of NSPEs. Note that in this expres-
ion for event rate, we use the relativ e v elocity between neutron stars
t periastron, while Kocsis et al. ( 2006 ) use the relative velocity at in-
nite separation v ∞ . We use the velocity at periastron because we are
onsidering parabolic orbits where v ∞ = 0. The cross-section will be 

PE = πs 2 , (71) 

or the encounter distance s . The event rate for NSPEs within a
istance s becomes 

PE = 

1 

2 

N 
2 

4 
3 πR 

3 
GC 

√ 

G ( M + M ∗) s 3 , (72) 

here we have assumed that the number density of neutron stars in
 globular cluster is uniform such that n � = 

N 
4 
3 πR 3 GC 

with R GC being

he radius of the globular cluster. Using N = 500, R GC = 1 pc as
as done by Kocsis et al. ( 2006 ), and M = M ∗ = 1.25 M 
, we find

PE = 5.5 × 10 −21 yr −1 . Close NSPEs are therefore extremely rare. 
Despite the rarity of these events, their tidal waves are generated

n exact coincidence with the time of the closest passage of the
eutron stars, so observation of emission from such tides can exactly
emarcate the time of periastron. 

.2.3 Energetics of ocean tidal waves 

he energy of an oscillation mode is divided into potential energy
nd kinetic energy. The kinetic energy and potential energy are (Lai
994 ) 

 k = 

1 

2 

∫ 
ρ
∂ ξ

∂ t 
· ∂ ξ

∗

∂ t 
d V = 

1 

2 
| ̇a ( t) | 2 A 

2 
n , (73a) 

 p = 

1 

2 

∫ 
ρω 

2 
n ξ · ξ ∗d V = 

1 

2 
ω 

2 
n | a( t) | 2 A 

2 
n . (73b) 

fter tidal resonance in binary inspirals, the maximum kinetic and
otential energies should be equal. Additionally, both the m = 2 and
 = −2 modes contribute to the energy equally. Therefore, the tidal

nteraction will deposit a total energy into each mode (Lai 1994 ): 

 = ω 
2 
n | a n, max | 2 A 

2 
n , (74) 

here | a n ,max | is the maximum amplitude of the tidal wav e. F or the
SPE m = 0 case, only one mode contributes to the deposited energy.
he NSPE total energy will be half of the energy of a binary inspiral
f the same amplitude (Lai 1994 ). 
We compute the energy deposited into the shallow ocean surface
ode after tidal resonance during a BNS inspiral to be ∼8.6 × 10 46 

rg in a carbon ocean, ∼3.8 × 10 45 erg in an oxygen ocean, and
1.3 × 10 40 erg in an iron ocean. Similarly, we compute the energy

eposited into the ocean after tidal resonance during an NSBH
nspiral to be ∼3.9 × 10 46 erg in a carbon ocean, ∼1.7 × 10 45 

rg in an oxygen ocean, and 5.8 × 10 39 erg in an iron ocean. The
rbital energy at the time of resonance is � 10 50 erg, justifying our
ssumption that the orbital motion remains unaffected. 

After an NSPE whose distance of closest approach is s = 3.4 × 10 6 

m, we compute the energy deposited into the shallow ocean surface
ode to be 4.3 × 10 46 erg for carbon oceans, 2.5 × 10 45 erg for

xygen oceans, and 2.3 × 10 40 erg for iron oceans. For different
alues of s , these energy results will scale by ( s /3.4 × 10 6 cm) −6 . 

The mode energy has dependence E ∝ ω 
2 
n Q 

2 
n . Because the mode

requency in the elastic case is the shallow ocean surface mode fre-

uency scaled by 
√ 

μ̆

p 
, the energy deposited into the crust-penetrating

 modes should be the energy deposited into the corresponding
hallow ocean surface modes scaled by a factor of μ̆

p 
∼ 0 . 01 (Piro &
NRAS 520, 6173–6189 (2023) 
ildsten 2005a ). Consequently, our energy results for the elastic crust
ases are the energies reported abo v e, reduced by a factor of 100. We
lso report these values in Table 1 . 

 DISCUSSION  

e have determined that tidal waves in neutron star oceans can
e generated during BNS inspirals, NSBH inspirals, and NSPEs,
nd quantitatively estimated their amplitudes, energies, and timing.
he tidal waves in each of these systems have unique properties.

n binary inspirals, the neutron star ocean mode becomes resonant
ith the tidal force of the companion minutes to days before

oalescence if the crust is rigid, and hours to years if the crust
s elastic. Conversely, the impulsive tidal force during an NSPE
xcites the ocean mode at the moment of closest approach. The
mpulse generates simple continuous oscillatory tidal waves with
he frequency of the neutron star ocean mode. The implications of
hese results extend to multimessenger astronomy and neutron star
eophysics. 

.1 Ocean tidal waves as compact binary merger precursor 
ares and parabolic encounter multimessenger sources 

ynamical activity in neutron star oceans may emit neutrino and elec-
romagnetic radiation (Reisenegger & Goldreich 1994 ; Heyl 2004 ;
eibel 2016 ; Wang et al. 2021 ). Additionally, mode oscillations
av e been observ ed during electromagnetic bursts (Strohmayer &
ahmoodifar 2014 ). Therefore, the tidal waves in neutron star

ceans during a binary inspiral might correspond to multimessenger
mission. We hypothesize that tidally resonant ocean waves in
eutron stars may be a new source of compact binary merger
recursor emission. 
The energies deposited into the ocean modes after resonance

computed in Section 4.2.3 ) represent estimates of the energy
vailable for these flares. Thus, ∼10 37 −10 46 erg are available to
ource tidally resonant ocean flares. The energy deposited into the
arbon and oxygen oceans during NSBHs and BNSs is comparable to
he breaking energy of neutron star crusts, which ranges from 10 44 to
0 46 erg (Tsang et al. 2012 ; Baiko & Chugunov 2018 ). Consequently,
he energy imparted to the ocean may affect the neutron star crust. If
he deposited energy exceeds the breaking energy, the crust may
ither crack or melt. Past work on crust breaking by resonant i
odes has mostly focused on the crust–core i mode (Tsang et al.

012 ; Passamonti et al. 2021 ). Our results show that the crust–ocean
 mode may have the ability to break the crust from the top, leading
o interesting physics within the ocean. Additionally, while we have
eglected the presence of magnetic fields, the interaction between
he excited ocean and the surface magnetic field could generate
lectromagnetic emission. Particularly, if the neutron star crust
reaks, subsequent magnetic reconnection of the surface magnetic
eld may cause large electromagnetic flares (Lander et al. 2015 ;
aspi & Beloborodov 2017 , for example). Because neutron star

urfaces also emit thermal neutrinos (Yakovlev & Pethick 2004 , for
xample), it is possible that this emission is manifested in neutrinos.
n the remainder of this paper, we will limit our discussion to
ccompanying electromagnetic emission. 

Pre-existing mechanisms for producing compact binary merger
recursor flares include interactions of neutron star magnetospheres
n BNSs (Ascenzi et al. 2021 ), orbital motion of a weakly magnetized
ompanion and a highly magnetized neutron star in either BNSs or
SBHs (Vietri 1996 ; Hansen & Lyutikov 2001 ; McWilliams & Levin
011 ; Lai 2012 ; Piro 2012 ; Sridhar et al. 2021 ), and tidally induced
racking of a neutron star crust during high-frequency mode tidal
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esonances in either BNSs or NSBHs (Gittins et al. 2020 ; Suvorov &
okkotas 2020 ; K uan, Suvoro v & Kokkotas 2021a; Passamonti et al.
021 ). Precursor flares from previously considered channels are only 
xpected just before a merger ( � 10 s; Mathews & Wilson 1997 ;
assamonti et al. 2021 ; Sridhar et al. 2021 ). 
In contrast to these other mechanisms, precursor flares associated 

ith tidally resonant neutron star ocean waves could be excited 
inutes to even years before the merger. Tidally resonant ocean 
ares can therefore be early warning signs of compact binary mergers 

nvolving neutron stars. Notably, NSBHs should have less trouble 
mitting early flares since the black hole will be farther from the
eutron star than in other scenarios and should not absorb all the
mission. 

Early warning precursor flares can be additional messengers for 
tudying neutron stars and compact binary systems. The time before 
erger will provide information about both the types of merger and 

he material in neutron star oceans. In fact, the delay between flare
nd merger can distinguish these qualities. Simply observing a flare 
ithin 100 yr of a corresponding merger significantly constrains 

he parameter space and provides limits on the crust temperature. 
ecause a crust temperature of T ∼ 10 8 K is needed to ensure that all
ur considered scenarios have resonance times of less than 100 yr, a
uccessful flare observation could suggest a higher crust temperature 
nd consequently provide information about surface heating and 
ccretion during compact binary inspirals. 

Observing these flares in practice will likely require retroactive 
earches for electromagnetic data coincident in sky localization with 
ompact binary mergers observed by GW detectors. The use of 
pace-based GW detectors such as LISA (Amaro-Seoane et al. 2017 ) 
ay assist in identifying flares in advance of mergers, as space- 

ased detectors will detect GWs from compact binary inspirals well 
efore mergers at galactic distances [Laser Interferometer Space 
ntenna (LISA) Study Team 2000 ; Robson, Cornish & Liu 2019 ].
bservations of tidally resonant ocean flares during compact binary 

nspirals would complement multimessenger efforts to study these 
xotic systems and their oceans. 

NSPEs could generate flares as well. The ignition of the tidal 
 ave w ould precisely coincide with the NSPE. As such, coincident
etections of the broad-band GW bursts generated by the orbital 
otion (Turner 1977a ; Kovacs & Thorne 1978 ; Kocsis et al. 2006 ;
e Vittori, Jetzer & Klein 2012 ) and tidally induced electromagnetic 
ares can allow for the multimessenger study of NSPEs and their 
onstituent neutron stars. 

.2 Detection of electromagnetic flares from neutron star ocean 
idal waves 

e posit two possible scenarios for electromagnetic flares originating 
rom neutron star ocean tidal waves and qualitatively discuss their 
etection. Since the mode frequencies of the oceans studied are 
1 −100 Hz, the electromagnetic radiation from neutron star ocean 

ides may be ultra-low frequency. As of this paper’s writing, detection 
f ultra-low-frequency electromagnetic radiation on geophysical 
cales has been considered (Grimm 2002 ; Grimm et al. 2009 ;
ozakiewicz et al. 2016 ), but no astronomical electromagnetic 

nstrument capable of tapping frequencies below ∼0.001 MHz has 
een proposed (Bergman et al. 2009 ; Saks et al. 2010 ; Blott et al.
013 ; Boonstra et al. 2016 ; Rajan et al. 2016 ; Belov et al. 2018 ;
ecconi et al. 2018 ; Prinsloo et al. 2018 ; Bentum et al. 2020 ).
herefore, it would be extremely difficult to detect � 100 Hz radiation 

rom neutron star ocean tidal waves. 
Ho we ver, due to complicated microphysics, the large amount of
nergy deposited into the neutron star ocean, and the potential for
agnetic reconnection, we propose that neutron star ocean tides 
ay produce high-energy electromagnetic radiation in the gamma- 

ay or X-ray regime with spectra and time-scales similar to that
f soft-gamma repeaters or type I X-ray bursts, perhaps through 
nteractions between the surface magnetic field and the ocean. 
he hot temperatures of neutron star surfaces make thermal X- 

ays a particularly compelling manifestation of this emission. Since 
e have considered neutron stars with T = 10 8 K at the crust,

hese neutron stars may already be accreting and emitting X-rays 
hermally. The tidal resonance will impart additional energy into 
he ocean, which we suppose may increase the flux of photons on
ime-scales comparable to the period of the computed ocean mode. 

e note that accretion often requires a non-compact companion to 
upply material. We have neglected the effects of such additional 
ompanions for simplicity. 

Taking our high-energy flare conjecture at face-value and as- 
uming that the energy deposited into the ocean from the tide is
sotropically expelled as either gamma-rays or X-rays, we estimate 
ow f ar aw ay a resonant neutron star ocean tidal flare can be detected
y the gamma-ray detector Fermi (Atwood et al. 2009 ) and X-ray
elescopic array NuSTAR (Harrison et al. 2013 ). 

We estimate the photon flux from such a flare by assuming that all
nergy deposited into the mode is radiated away as either X-rays or
amma-rays. Taking R to be the distance between a detector and the
ource, we approximate the photon flux at the detector as 

 γ ≈ E 

E γ

ω 

4 πR 
2 
, (75) 

here E is the energy of the ocean tidal wave, E γ is the energy of
 photon, and ω is the mode frequency. We have assumed that all
nergy is radiated on a time-scale comparable to the inverse of the
ode frequency ω as it is the only short time-scale we have. 
For Fermi , we estimate the furthest distance at which such a flare

ould be observed as 

 ≈
√ 

E 

E γ

ω 

4 πF t 

, (76) 

here F t is the photon flux threshold for Fermi . The photon flux
hreshold of Fermi is 0.74 photons cm 

−2 s −1 in the range of 8 keV–
0 MeV (Atwood et al. 2009 ). 
For short-duration X-ray sources, NuSTAR ’s sensitivity is limited 

y photon statistics. The signal-to-noise ratio (SNR) for a short- 
uration flare assuming that all photons are at the same energy is 

 = 

√ 

F γ T A , (77) 

here T is the duration of the flare and A is the ef fecti ve area of
uSTAR . Substituting our estimate for F γ and taking T ≈ ω 

−1 gives 

 ≈
√ 

E 

E γ

A 

4 πR 
2 
. (78) 

e estimate the furthest distance at which a flare can be observed by
uSTAR as 

 ≈ 1 

K 

√ 

E 

E γ

A 

4 π
, (79) 

or some SNR threshold K . Notice that ω has dropped out of equation
 79 ), so this estimate is independent of the precise time-scale of
he flare as long as it is of short duration (Harrison et al. 2013 ).
he ef fecti ve area of NuSTAR is approximately 800 cm 

2 for photon
MNRAS 520, 6173–6189 (2023) 
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nergies of 6 −10 keV and 300 cm 
2 for photon energies of 10 −30 keV

Harrison et al. 2013 ). We set a putative SNR threshold of K = 5. 
We compute the distances for each ocean and binary inspiral case

nder four detection scenarios: tidally resonant ocean flare photons
re (1) gamma-rays with E γ = 40 MeV detected by Fermi , (2) X-rays
ith E γ = 8 keV detected by Fermi , (3) higher energy X-rays with
 γ = 20 keV detected by NuSTAR , and (4) lower energy X-rays with

 γ = 8 keV detected by NuSTAR . Note that R ∝ E 

1 
2 for both Fermi

nd NuSTAR detections. Since the elastic crust energy estimates are
he rigid crust energy scaled by μ

p o 
, we scale the distances from

heir rigid crust values by a factor of ( μ
p o 

) 
1 
2 ∼ 0 . 1 to extrapolate

he distance results for elastic crust case. We quote our results in
able 3 . 
We find that if the emission from tidally resonant ocean flares

s in the gamma-ray spectrum or if crusts are composed of iron,
ermi and NuSTAR will have almost no capability to detect flares
f extragalactic compact binaries, the main sources of interest
or ground-based GW detectors. Excitingly, ho we ver, if tidally
esonant ocean flares are emitted in the X-ray spectrum in carbon
r oxygen oceans, both NuSTAR and Fermi will have the ability
o detect them out to distances of the orders of ∼10 −1000 Mpc
or rigid crusts and even ∼1 −100 Mpc for elastic crusts. These
istances coincide with the BNS ranges of currently operational GW
etectors (LIGO Scientific Collaboration, Virgo Collaboration &
AGRA Collaboration 2021a ). In fact, BNS and NSBH inspirals
av e been observ ed out to a few 100 Mpc (LIGO Scientific
ollaboration & Virgo Collaboration 2019 , 2021 ; LIGO Scien-

ific Collaboration, Virgo Collaboration & KAGRA Collaboration
021a ). 
We estimate an optimistic event rate for these flares using the
erger rates of BNSs and NSBHs from LIGO–Virgo–KAGRA’s

hird GW catalogue (LIGO Scientific Collaboration, Virgo Collab-
ration & KAGRA Collaboration 2021b ). The 90 per cent credible
nterval for the merger rates is reported as 10 −1700 Gpc −3 yr −1 

or BNSs and 7.8 −140 Gpc −3 yr −1 for NSBHs (LIGO Scientific
ollaboration, Virgo Collaboration & KAGRA Collaboration 2021b ;
andel & Broekgaarden 2022 ). Assuming a flare detectable out to
1 −100 Mpc, we estimate the event rates for detectable tidally

esonant ocean flares by multiplying spherical volumes with radii 1
nd 100 Mpc by the lower and upper limits on the quoted merger
ates, respecti vely. The e vent rates would be ∼4 × 10 −8 −7 yr −1 

or BNSs and ∼3 × 10 −8 −0.6 yr −1 for NSBHs. Depending on the
etails of the crust, ocean, and flare, precursor flares associated with
idally resonant ocean waves in compact binary inspirals may be
etectable. 

.3 Gra vitational wa ves fr om neutr on star ocean tidal waves 

he time-dependent mass density perturbations of tidal pulsations in
ompact stars should also generate GWs (Turner 1977b ). We now
nvestigate the GWs produced by neutron star ocean tidal waves. The
W metric h 

TT 
ij (not to be confused with the ocean depth h o ) can be

ritten as a multipole expansion (Turner 1977b ): 

 
TT 
ij = 

G 

Rc 4 

∑ 

l,m 

B lm 

(
t − R 

c 

)
T lm 

ij ( θ, φ) , (80) 

here G is the gravitational constant, c is the speed of light,
 lm ( t − R 

c 
) is a time-dependent amplitude e v aluated at the retarded

ime with dimensions of the second time deri v ati ve of the mass
uadrupole moment, and T lm 

ij are transverse–traceless tensor spher-
cal harmonics (Turner 1977a , b ). As we have done throughout this
ork, we restrict ourselves to the l = 2 harmonic. For an oscillation
NRAS 520, 6173–6189 (2023) 
ode that generates small perturbations in the mass density, B 2 m is
Turner 1977b ) 

 2 m ( t ) = 

16 π

5 
√ 

3 

d 2 

d t 2 

∫ 
δρY 

∗
2 m 

r 2 d V , (81) 

here δρ is the Eulerian perturbation to the mass density. Rear-
anging equation ( 12 ), we obtain an expression for the Eulerian
erturbation to the mass density: 

ρ = −∇ · ( ρξ ) = −a( t) 

×
(

U 

d ρ

d r 
+ ρ

(
d U 

d r 
+ 

2 U 

r 
− l( l + 1) 

V 

r 

))
Y lm . (82) 

ubstituting equation ( 82 ) into equation ( 81 ) gives 

 2 m ( t ) = 

16 π

5 
√ 

3 
ä ( t ) H n , (83) 

here we have defined an integral H n as 

 n = −
∫ (

U 

d ρ

d r 
+ ρ

(
d U 

d r 
+ 

2 U 

r 
− l( l + 1) 

V 

r 

))
r 4 d r, (84) 

hich quantifies an oscillation mode’s ability to generate GWs. Note
hat the only time dependence in equation ( 83 ) arises from ä . We
btain results for the integral H n for each of our three ocean models.
hese are displayed in Table 1 in units of g cm 

2 . Like other integrals
omputed, H n is largest in carbon oceans because the carbon ocean
s the largest. 

We approximate the GW strain h ( t ) from neutron star ocean tidal
aves as 

 ( t ) ≈ G 

Rc 4 

16 π

5 
√ 

3 
ä ( t ) H n . (85) 

e determine at what distance R there would be GW signals with
mplitudes h ∼ 10 −20 . This is approximately the smallest amplitude
etectable with current space-based GW detector technology (LISA
tudy Team 2000 ; Robson et al. 2019 ). We find that GWs from none
f the configurations considered will be able to escape the immediate
icinity of the neutron star. The values we report are for the rigid
rust models. The configuration that generates the largest GWs is a
arbon ocean during a BNS inspiral. The distance from the ocean at
hich the GWs have an amplitude of ∼10 −20 is ∼10 au. In contrast,

he smallest GWs are generated in an iron ocean during an NSBH
nspiral. In this case, the GW amplitude is ∼10 −20 only ∼9 km away.
his makes detecting GWs from neutron star ocean tides virtually

mpossible. While these GWs will serve as a source of extremely
eak damping, we find that the damping time-scales are � 10 7 yr

nd will not impact neutron star ocean tides on rele v ant time-scales.
While ocean tidal wave GWs may be undetectable, the orbital
otion of these binary systems generates sizable GWs. During the

arly inspirals of BNSs and NSBHs, GWs will be detectable by LISA
LISA Study Team 2000 ; Robson et al. 2019 ). GWs from BNS and
SBH mergers are already detected by ground-based GW detec-

ors (LIGO Scientific Collaboration & Virgo Collaboration 2017 ;
IGO Scientific Collaboration, Virgo Collaboration & KAGRA
ollaboration 2021 ). Consequently, joint detection of GWs with

idally resonant ocean flares remains a possibility for multimessenger
strophysics. 

 CONCLUSION  

eutron star oceans can sustain resonant tides. Though rather small
n size, the tidal waves excited in compact binary inspirals and in
arabolic encounters possess large amounts of energy, ranging from
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Table 3. The estimated distances (in Mpc) out to which flares from neutron star oceans could be detected with Fermi or NuSTAR assuming isotropic 
emission. For Fermi , X-ray distances are computed assuming E γ = 8 keV, while gamma-ray distances are computed assuming E γ = 40 MeV. For NuSTAR , 
the lower energy X-ray distances are computed assuming E γ = 8 keV, while the higher energy X-ray distances are computed assuming E γ = 20 keV. The 
distances for oceans with elastic crusts are computed by scaling the distances for oceans with rigid crusts by a factor of 0.1. 

Ocean Carbon (rigid) Oxygen (rigid) Iron (rigid) Carbon (elastic) Oxygen (elastic) Iron (elastic) 

BNS gamma-ray with Fermi (Mpc) 3.9 0.82 0.0015 0.39 0.082 0.000 15 

BNS X-ray with Fermi (Mpc) 280 58 0.11 28 5.8 0.011 

BNS higher energy X-ray with NuSTAR (Mpc) 520 110 0.20 52 11 0.020 

BNS lower energy X-ray with NuSTAR (Mpc) 1300 280 0.52 130 28 0.052 

NSBH gamma-ray with Fermi (Mpc) 2.6 0.55 0.0010 0.26 0.055 0.000 10 

NSBH X-ray with Fermi (Mpc) 190 39 0.0071 19 3.9 0.000 71 

NSBH higher energy X-ray with NuSTAR (Mpc) 350 74 0.13 35 7.4 0.013 

NSBH lower energy X-ray with NuSTAR (Mpc) 900 190 0.34 90 19 0.034 
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0 37 to 10 46 erg, depending on the properties of the neutron star crust.
his energy, coupled with the rotational and magnetic energy of a real
eutron star, has the potential to break neutron star crusts and fuel
lectromagnetic flares. Such electromagnetic flares could become 
arly warning signs of merging NSBHs and BNS systems, preceding 
ergers by � 1 min if neutron star crusts are rigid and � 1 h if the

eutron star crusts are elastic. Observations of these flares could shed 
ight on neutron star ocean and crust properties. Their timing relative 
o compact binary mergers, as well as their duration and oscillation 
eriods may serve as distinct signatures of these flares. Nevertheless, 
ore work is needed to understand the physical mechanisms that 

an release the energy for flares as well as the effects of rotation and
agnetization. 
We find that tidally resonant neutron star ocean flares, if in the X-

ay band, may be detected at distances of 1 −1000 Mpc with Fermi
nd NuSTAR in most cases, comparable to the distances of observed 
NS and NSBH mergers. We find that X-ray emission could have 
etection rates as high as ∼7 yr −1 for BNSs and ∼0.6 yr −1 for
SBHs. Neutron star ocean tides are consequently a possible source 
f emission, which can accompany observable GWs. Subsequent 
ork may involve re vie wing past NuSTAR and Fermi data for X-ray
ursts in coincident angular locations of observed BNS and NSBH 

ergers. 
Neutron star ocean tides and oscillations may contribute to 

uture multimessenger observations of astrophysical compact binary 
ergers and neutron stars. Future studies into ocean tidal waves on 

op of crustal mountains (Gittins & Andersson 2021 ; Gittins et al.
021 ) and resultant neutron star ocean tsunamis may yield interesting 
esults. More exotic systems including collisions between neutron 
tars and planets may also produce ocean activity that results in 
ultimessenger emission. Multimessenger emission from neutron 

tars, including emission from ocean tidal waves, will provide new 

nowledge about the enigmatic but rich physics of neutron stars. 
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