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ABSTRACT

Neutron stars in astrophysical binary systems represent exciting sources for multimessenger astrophysics. A potential source of
electromagnetic transients from compact binary systems is the neutron star ocean, the external fluid layer encasing a neutron star.
We present a groundwork study into tidal waves in neutron star oceans and their consequences. Specifically, we investigate how
oscillation modes in neutron star oceans can be tidally excited during compact binary inspirals and parabolic encounters. We
find that neutron star oceans can sustain tidal waves with frequencies between 0.01 and 20 Hz. Our results suggest that tidally
resonant neutron star ocean waves may serve as a never-before studied source of precursor electromagnetic emission prior to
neutron star—black hole and binary neutron star mergers. If accompanied by electromagnetic flares, tidally resonant neutron star
ocean waves, whose energy budget can reach 10* erg, may serve as early warning signs (=1 min before merger) for compact
binary mergers. Similarly, excited ocean tidal waves will coincide with neutron star parabolic encounters. Depending on the
neutron star ocean model and a flare emission scenario, tidally resonant ocean flares may be detectable by Fermi and Nuclear
Spectroscopic Telescope Array (NuSTAR) out to 100 Mpc with detection rates as high as ~7 yr~! for binary neutron stars
and ~0.6 yr~! for neutron star—black hole binaries. Observations of emission from neutron star ocean tidal waves along with
gravitational waves will provide insight into the equation of state at the neutron star surface, the composition of neutron star
oceans and crusts, and neutron star geophysics.

Key words: gravitational waves — stars: oscillations — X-rays: bursts —black hole - neutron star mergers — neutron star mergers.

1 INTRODUCTION

With the recent detections of gravitational waves (GWs) from
compact binary systems by GW detectors such as Laser Interferom-
eter Gravitational Wave Observatory (LIGO), Virgo, and KAGRA
(Acernese et al. 2015; LIGO Scientific Collaboration 2015; LIGO
Scientific Collaboration & Virgo Collaboration 2017, 2021; Akutsu
et al. 2019; LIGO Scientific Collaboration, Virgo Collaboration &
Kamioka Gravitational Wave Detector (KAGRA) Collaboration
2021), binary systems that include neutron stars have come to
the forefront of high-energy astrophysics. Neutron stars represent
a unique class of stellar objects in that, though very dense, they emit
light, making them a candidate for combined GW-electromagnetic
multimessenger astrophysical searches (Rosswog 2015; Abbott et al.
2018). Neutron stars are thought to consist of three distinct layers:
a very dense fluid core, a solid crust, and an external fluid ocean
(Lattimer & Prakash 2001). The respective properties of each
of these layers largely depend on the neutron star equation of
state (Lattimer & Prakash 2001), whose details remain an active
problem in nuclear physics and astrophysics. Detections of X-ray
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bursts (Bildsten & Cutler 1995; Strohmayer & Mahmoodifar 2014;
Chambers & Watts 2020), gamma-ray bursts (Tsang et al. 2012;
Tsang 2013; Suvorov & Kokkotas 2020), ejecta from compact
binary inspirals (Metzger et al. 2010; Metzger & Ferndndez 2014;
Chornock et al. 2017; Cowperthwaite et al. 2017; Geroyannis,
Tzelati & Karageorgopoulos 2017; Metzger 2017; Nicholl et al.
2017; Soares-Santos et al. 2017; Radice et al. 2018; Bartos & Marka
2019; Metzger 2019), and GWs (Andersson & Kokkotas 1998;
Ferrari 2010; Suvorov 2018; Chatziioannou 2020) may probe this
structure.

In recent years, GW astrophysics has become a unique observa-
tional tool to study neutron star physics. The answers to a number
of open questions concerning the properties of neutron stars may
lie in the rich capabilities of multimessenger astrophysics with
GWs. Works have investigated the possibility of mountains on
the surfaces of spinning neutron stars, whose asymmetries could
generate detectable continuous GWs (Ushomirsky, Cutler & Bildsten
2000; Osborne & Jones 2020; Gittins & Andersson 2021; Gittins,
Andersson & Jones 2021). Searches for continuous GWs poten-
tially originating from spinning neutron stars have been undertaken
(Aasi et al. 2015; Papa et al. 2020; LIGO Scientific Collaboration,
Virgo Collaboration & KAGRA Collaboration 2022a, 2022b; Abbott
et al. 2022), and may study neutron star geophysical structure
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and seismology (Geroyannis et al. 2017; Suvorov 2018; Yang
et al. 2018; Andersson 2021). Neutron stars exhibit a variety of
pulsational modes (McDermott, van Horn & Hansen 1988; Lai 1994;
Reisenegger & Goldreich 1994; Passamonti et al. 2006; Samuelsson,
Andersson & Maniopoulou 2007; Passamonti & Andersson 2012).
These oscillation modes are associated with the restoring forces
and structure of the star. Modes include the fundamental mode
or f mode (Lau, Leung & Lin 2010; LIGO Scientific Collabora-
tion & Virgo Collaboration 2017; Wen et al. 2019; LIGO Scien-
tific Collaboration, Virgo Collaboration & KAGRA Collaboration
2021), pressure modes or p modes (Bandari 2014), gravity modes
or g modes (McDermott et al. 1988; Bildsten & Cutler 1995;
Bildsten, Ushomirsky & Cutler 1996; Deibel 2016; Andersson &
Pnigouras 2020; Kuan, Suvorov & Kokkotas 2021a; Passamonti,
Andersson & Pnigouras 2021), r modes in rotating neutron stars
(Haskell 2015; Mitidis 2015; Chambers & Watts 2020; Ma, Yu &
Chen 2021), and interface modes or i modes (McDermott et al.
1988; Passamonti & Andersson 2012). Oscillation modes may be
excited during accretion (Reisenegger & Goldreich 1994; Deibel
2016) or by tides (Lai 1994; Ho & Lai 1999; Gittins et al.
2021).

Neutron star oscillations have been studied in connection with
emission of electromagnetic radiation. The prospect of observing
neutron star ocean oscillations induced by accretion, in particular,
has been considered in many previous works (Bildsten & Cut-
ler 1995; Bildsten et al. 1996; Heyl 2004; Deibel 2016; Cham-
bers & Watts 2020; van Baal, Chambers & Watts 2020). Ther-
monuclear burning on neutron star surfaces during accretion can
excite oscillation modes, which could represent the oscillations
in type I X-ray burst light curves (Hansen & van Horn 1975;
Woosley & Taam 1976; Maraschi & Cavaliere 1977; Bildsten &
Cutler 1995; Spitkovsky, Levin & Ushomirsky 2002; Lee 2004;
Piro & Bildsten 2005b; Chambers et al. 2018; Chambers &
Watts 2020). Observed thermonuclear X-ray bursts on neutron
stars show signs of ocean mode oscillation (Galloway et al. 2008;
Bilous & Watts 2019; Bult et al. 2021; Roy, Beri & Bhattacharyya
2021).

Because neutron stars can exist in binaries, tidal deformations
play a role in neutron star physics as well. A neutron star’s response
to tidal forces largely depends on its internal properties, including
its oscillation modes (Lai 1994). Observations of tidally excited
oscillation modes would probe the composition of neutron stars.

In this work, we analyse neutron star ocean oscillations generated
by the dynamical tide during interactions with other compact
objects. We principally consider ocean tidal waves in compact
binary inspirals, where tidal forces become resonant with neutron
star oceans. We also investigate tidal waves from unbound neutron
star encounters. We present models for neutron star oceans and
investigate the size of tidal waves sustainable in these oceans.
Ultimately, we consider astrophysical emission that tidally excited
neutron star oceans might produce, including electromagnetic flares
and GWs. We perform all of our analysis using Newtonian the-
ory due to the exploratory and phenomenological nature of this
study.

We divide the paper into the following sections. In Section
2, we present the background neutron star model used, as well
as introduce the three neutron star ocean models investigated.
In Section 3, we discuss the equations of motion for neutron
star oscillations and determine the neutron star ocean oscillation
modes for our models. In Section 4, we discuss the tidal inter-
action and compute tidal wave properties for each of the oceans
and orbital configurations considered. In Section 5, we discuss
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our results and their consequences, including potential emission
produced by neutron star ocean tidal waves. In Section 6, we
conclude.

2 BACKGROUND NEUTRON STAR AND OCEAN
MODEL

To focus on the properties of the neutron star ocean, we use a simple
background neutron star model with a rigid crust. We will later
extrapolate our results with this model to the case where the neutron
star crust is elastic rather than rigid.

To solve for the star’s background density p and pressure p, we
use the classical equilibrium equations for a spherically symmetric
fluid:

dp

- _ _ 1
ar P8, (la)
dM

—— =4 Grip, (1b)
dr

where M(r) is the mass enclosed at a given radius, G is Newton’s
gravitational constant, and g = % (Chandrasekhar 1957). Given
an equation of state, these equations can be solved and provide
the star’s background pressure and density. In this work, we use
a polytropic equation of state (Ferrari, Rossi & Malheiro 2010):

p=Kp", 2)

where K is a proportionality constant. Choosing I' = 2 yields an
analytic solution for the mass density when r < R,.
4nG

Sin W}"

p(r) = pe——"F——, 3)
4G,
K
where p. is the density at the centre of the star and R, is the radius
of the neutron star (Chandrasekhar 1957). When r > R,, we have
p(r) = 0. Note that the radius of the star is completely specified by
the constant K.

For this study, we assume that our neutron star is non-rotating
and has no magnetic field. The effects of rotation and magnetization,
if small enough, will serve as perturbations to the oscillation mode
structures and frequencies without changing the physics (Kriiger
et al. 2021; Kuan, Suvorov & Kokkotas 2021b, ). Because we are
interested in early inspirals, the effects of general relativity should
not play a role in spinning up the rotation of neutron stars. While we
expect effects such as tidal locking to also spin up neutron stars, we
do not consider them in our study. We leave consideration of rotating
and magnetized neutron stars to future work.

2.1 Neutron star ocean depth

The depth of the neutron star ocean depends on the density at
which the neutron star crust melts. The top of the crust is typically
considered to be a body-centred cubic Coulomb crystal (Bildsten &
Cutler 1995; Haensel, Potekhin & Yakovlev 2007; Horowitz & Kadau
2009; Baiko & Chugunov 2018; Gittins, Andersson & Pereira 2020).
In a Coulomb crystal, the ions that compose the lattice interact
exclusively by the Coulomb interaction (Chambers et al. 2018)
because the electron screening in the outer crust is weak (Chamel &
Haensel 2008). The Coulomb crystal undergoes a phase transition
when the thermal energy exceeds the electric binding energy of the
material by some critical factor y (Farouki & Hamaguchi 1993). The
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crust melts when the following condition is met:
11 Zz%2
T ydmey d

“

where kg is Boltzmann constant, 7 is the temperature, €, is the
permittivity of free space, Z is the proton number of atomic nuclei in
the lattice, e is electron charge, and d is the mean spacing between
nuclei. Molecular dynamics studies have found y ~ 173 (Farouki &
Hamaguchi 1993). Assuming that the ion number density is n; =
( %nd =1, the mass density at which the crust melts and the ocean
forms is

3 dmegksg T 3
Po = Amnni = EAmn ()/ T;)

A S\ / T \?
~ 2.705 x 10'° Y (i Iy — 5
wreem {16 ) \z) Lk ) )

where A is the atomic mass of the nuclei in the lattice, m, is nucleon
mass, and we have used the condition in equation (4) for d at the
transition between the neutron star crust and ocean. Equation (5)
shows the melting density’s strong dependence on temperature and
ion atomic number. More proton-rich nuclei will reduce the density
at which the ocean begins.

By plugging equation (5) into the left-hand side of equation (3),
we determine the radius at which the ocean begins and by extension
the depth of the ocean as a function of A, Z, and T when I' = 2.
Since the ocean is very shallow compared to the neutron star radius
(Bildsten & Cutler 1995; Bildsten et al. 1996; Urpin 2004; Deibel
2016; van Baal et al. 2020), we approximate r in the denominator of

2K w . 3
4G 5 - The radius at which

the neutron star ocean begins for a I' = 2 polytropic equation of state

is
3Am, [ 4meksT\\ 7
arccos (8 . <y22762> > + 2} . 6)

equation (3) as the stellar radius R, =

[ 2K
ro =
4G

We also obtain an approximate ocean depth h, for a general
polytropic equation of state in terms of p,. Differentiating equation
(2) gives

dp r—dp

— =TK —. 7
dr P dr M
Combining equations (1a) and (7) provides a differential equation for

pand r:

dp 8 or
— = . 8
ar ~ K" ®
Integrating equation (8) from the ocean floor to the surface assuming
constant g = %4 gives
'K pI‘fl

hoy=R,—r1o= ———2>—. 9

o O ©)

Any choice of K and I" in the ocean can therefore give an approximate
hy.

In this work, we consider three model crusts, respectively, made
up of three elements thought to be found in neutron star surfaces
due to their production by r-processes (Meisel et al. 2018): carbon
with Z = 6 and A = 12, oxygen with Z = 8 and A = 16, and iron
with Z = 26 and A = 56. For referential convenience, we refer
to the three oceans corresponding to these differently composed
crusts as carbon, oxygen, and iron oceans, respectively. Neutron
star crust temperatures are typically 7 ~ 107 K when the crust is
in thermal equilibrium with the core (Brown, Bildsten & Rutledge
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1998; Brown & Cumming 2009). Accretion can raise the temperature
of the neutron star ocean floor to 7 ~ 10% K (Fujimoto et al. 1984;
Haensel & Zdunik 1990, 2003, 2008). The temperature decreases
through the ocean to 10° K at the surface (Miralda-Escude, Haensel &
Paczynski 1990; Chamel & Haensel 2008). In our study, we neglect
effects of the ocean temperature gradient. We discuss our choice for
crust temperature in Section 3.4.1.

3 NEUTRON STAR OCEAN OSCILLATION
MODES

We solve for the dynamical response of the neutron star ocean. To
do this, we use the formalism of Lagrangian perturbation theory for
fluids (Friedman & Schutz 1978). Using the Newtonian formalism
typically used, we solve for the oscillation modes of the neutron star
ocean (Dziembowski 1971; Ledoux 1974; McDermott et al. 1988;
Passamonti & Andersson 2012), so that we may study the dynamical
response to tidal forces (Lai 1994; Reisenegger & Goldreich 1994;
Tsang et al. 2012; Tsang 2013; Passamonti et al. 2021).

3.1 Equations of motion

The equation of motion for Lagrangian perturbative displacements
is the perturbed Euler equation

Vep 8 1
a,2§+7p—p—§vp+vs¢—;v-a=—vx, (10)

where & is the Lagrangian displacement vector, p is the background
fluid density, p is the background fluid pressure, §p is the Eulerian
perturbation of the density, dp is the Eulerian perturbation of the
pressure, 6¢ is the Eulerian perturbation of the gravitational potential,
o = oj; is the elastic stress tensor, and x is an unspecified (for now)
external potential that drives the system. The elastic stress tensor is
defined as

2
oij = [t (Vi€ + V,&) — 348 (V- 8), (11)

where i is the shear modulus and §; is the Kronecker delta. In a
fluid, 2t = 0.
The Lagrangian perturbation for density can be written as

Ap=35p+§-Vp=—pV-§, (12)

where the first equality is the definition of the Lagrangian perturba-
tion in terms of the Eulerian perturbation and the second equality
arises from conservation of mass (Friedman & Schutz 1978). If the
oscillations are adiabatic, the Lagrangian perturbations for pressure
and density are related by
Ap 1 Ap
p Tip’

where ['; is the adiabatic index. We note that I"; does not necessarily
equal I'. When I'| # I, the neutron star is stratified and can sustain
internal g modes (McDermott et al. 1988; Bildsten & Cutler 1995;
Bildsten et al. 1996; Andersson & Pnigouras 2020; Passamonti et al.
2021).

The final equation of motion that governs this system is the
perturbative form of the Poisson equation

V25¢ = 4w Gép. (14)

(13)

Since the ocean is the uppermost layer of the star and typically very
shallow, the perturbation of the gravitational potential ¢ and its
gradient V3¢ must be very small compared to the background grav-
itational potential ¢ and the background gravitational acceleration
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g. As such, we employ the Cowling approximation (Cowling 1941),
which approximates §¢ =~ 0 and V¢ =~ 0. Consequently, we neglect
the appearance of 6¢ in equation (10).

In this section, we set y = 0 and study the homogeneous solutions
to equation (10). First, we define a perturbation to the chemical
potential per nucleon mass §/i, which, in a barotropic fluid where
I' = I'y, is related to the perturbation of pressure by

dp =nNép = pdfi, (15)

where 6 is the normal chemical potential, and ny is the nucleon
number density. Inserting equation (15) for dp into equation (10),
explicitly writing out the derivative of the stress tensor, and applying
the Cowling approximation gives

0 =07+ Vsji

1 /dp
- (—“(Vrs + VE)+ [ (V(V - &)+ V3E)
o \ dr

2
—gv(ﬂv-é)) (16)

We use equations (12) and (13) to obtain the other equation we need to
solve this system. From the definition of the Lagrangian perturbation
(Friedman & Schutz 1978), we have

. dp
Ap=8p+§~Vp=p8u+$ra, 17)

where &, is the radial component of & and the second equality
comes from equation (15) and spherical symmetry (i.e. Vp = i—f_’).
Substituting equations (17) and (12) into equation (13), we obtain

1
Vof=—— (p8ﬂ+sr—p>. (18)
P r

Equations (16) and (18) are a system of partial differential equa-
tions, which can be solved using a clever ansatz for &. We decompose
& into normal modes (Dziembowski 1971; Ledoux 1974; McDermott
et al. 1988; Passamonti & Andersson 2012):

E=) g, (19)

where w, is the angular frequency of a resonant mode and &, is the
eigenfunction that solves the equation

(L — pw;)é, =0, (20)

where £ is an operator defined such that L& = pVSi—V -0
(Press & Teukolsky 1977; Passamonti et al. 2021). The index
n denotes the mode. The orthogonality of these modes requires
(Press & Teukolsky 1977; Lai 1994; Passamonti et al. 2021)

<§n|§m) = /:OE;: . gmdv = Aismm (21)

where the integral is over the volume of the star, & is the complex
conjugate of &,, and A2 is the normalization factor. The spherical
symmetry of the problem allows us to write &, as (Dziembowski
1971; Ledoux 1974; McDermott et al. 1988; Passamonti & Anders-
son 2012)

V(r)
£, = (U(r)Yzm(G, #), V()06 Y (0, @), maﬂzm(@, d))) . (22)
where Y},,(6, ¢) are the spherical harmonic functions (Jackson 1962),
0, is the partial derivative with respect to the variable x, and U(r)
and V(r) are functions of the radial coordinate that must be solved
for. The spherical symmetry also allows us to write /i as 8/t =

S(r)Yin (6, p)e*.
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3.1.1 Fluid ocean

In the fluid components of the neutron star where (i = 0, equation
(16) simplifies considerably. With spherical symmetry and ;i = 0,
equations (16) and (18) become first-order ordinary differential
equations in the radial coordinate r

’ d
— U+ —8a =0, (23a)
dr
2 S
— W’V + = =0, (23b)
r
du 2 Il +1 1 d
w2y xby, U sa i udr) (23¢)
dr r r I'ip dr

These equations are valid in the fluid neutron star ocean. Rearranging
equations (23a) and (23c) and using the relationship in equation
(23b), this system reduces to two ordinary differential equations:

d
—8ii = w’U, (24a)
dr

dU 2 1 dp P Ia+1Y\ .
o (2 PV (L BT sn 4
dr (r+F1p dr) +< F1p+ rlw? ) A (240)

We write these equations in terms of the dimensionless variables

V= % and y, = %, where g is the background gravitational field
as a function of radius. We obtain

dy, 3 1 dp P I+1)

— == -4+ —— - , (25
dr (r + Cypdr nt Cp + r2er )87 (252)
d o’ 1 1d

2 =Zy - (f - f—g> ». (25b)
dr g r gdr

In the single fluid limit and the Cowling approximation, the equa-
tions in section Al of Passamonti & Andersson (2012) reduce
to equation (25). Given boundary conditions at the ocean—crust
interface and ocean surface, a value for I'; (which is not constant in
general), and a value of /, we may solve these equations as a boundary
value problem.

3.1.2 Elastic crust

If the crust is elastic, the ocean oscillation modes may penetrate into
the crust, requiring one to solve equation (16) when i # 0 (Piro &
Bildsten 2005a). In this work, rather than solving equations (16)
and (18) in the elastic crust, we will solve for modes in the ocean
assuming a rigid crust and extrapolate our results from the rigid to
the elastic case, focusing particularly on the consequences for the
neutron star tide.

3.2 Boundary conditions

In this work, we solve equation (23) assuming that the mode is
entirely confined to the ocean. For this simple case, oscillations do
not penetrate into the crust. At the ocean floor, we apply the condition

yi(ro) =0. (26)

This is the same condition applied by Bildsten & Cutler (1995) to
solve for deep ocean g modes. At the surface of the ocean, we apply
the condition Ap = 0 (McDermott et al. 1988; Lai 1994). In our
variables, this becomes

0 = y1(R.) — »2(R,). 27

Additionally, so that we can find the functional form of the oscillation
modes, we apply a normalization condition at the surface of the
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ocean,
yi(R) = 1. (28)

With these three boundary conditions, our system is closed and
solvable. We note that equation (26) only preserves continuity
of the radial displacement if there is no radial displacement in
the crust. This is not necessarily a suitable boundary condition
for an elastic crust as the true ocean—crust junction condition is
the continuity of the radial displacement and traction variables
(McDermott et al. 1988; Passamonti & Andersson 2012; Passa-
monti et al. 2021). For a more detailed treatment including the
mode’s penetration into the crust, one must impose these condi-
tions.

3.3 Semi-analytic ocean modes and tidal resonance

We now provide a simple analytic argument to demonstrate the ex-
istence of ocean modes and estimate how the ocean mode frequency
scales with model parameters in both the rigid crust and elastic crust
cases. This will also give the time of tidal resonance as a function of
model parameters.

3.3.1 Shallow ocean surface wave model

Treating the neutron star ocean as an incompressible shallow ocean,
we analytically estimate the neutron star ocean mode frequencies.
For waves in a shallow ocean, one solves for the height of the
wave above the ocean surface 1. In an incompressible fluid, the
density p is not a function of the pressure, so the pressure is often
taken to be p = pg(hy — z), where Ay is the total height of the
ocean. When the height is perturbed by surface waves, we have
hy = hy + n, where h, is the equilibrium depth of the ocean. For
waves with << h,, the perturbed Euler equation and the continuity
equation become

Vyé
vy = — 2P (292)
P

PO + phoVy - vy =0, (29b)

where vy = (v, v,) is the fluid velocity in the horizontal direction,
the gradient Vi = (0., 0,) is the gradient in the horizontal direction,
and §p is the perturbation to the pressure due to the wave (Randall
2006).

Because hy = h, + n for a perturbed ocean, we have p + dp =
pg(hy +1n — z). p = pg(h, — z) is the background pressure, so the
perturbation to the pressure is 6p = pgn. Equation (29a) becomes

0,vy = —g V. (30)
Taking the divergence of equation (30) gives
0:(Vu - vi) = —gVin. 31)

Dividing out the mass density and taking the time derivative of
equation (29b) gives

07n + hod, (Vi - vi) = 0. (32)

Combining equations (31) and (32) gives the wave equation for the
height of the wave n:

02y — ghoVin =0. (33)

At this point, we reintroduce the spherical nature of this problem by
assuming 1 = n()Y},,. In spherical coordinates, this problem becomes
that of an incompressible fluid shell surrounding a sphere of radius
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R,, similar to a neutron star ocean. While we have previously been
working in Cartesian coordinates, the wave equation for n holds in
spherical coordinates if 1 is not a function of r. Expanding 71 in
spherical harmonics, equation (33) becomes

I(I+1)
R2

*

on+ ghon = 0. (34)

We arrive at ocean mode frequencies in an incompressible fluid ocean
surrounding a spherical body of radius R, as

1 GM, h,
wi = —/I( + Dgho = 4 [1( + 1) -o

, 35
R, R} R, 33)

where the subscript i refers to incompressibility. To obtain intuition
about the functional dependence of the real ocean mode frequencies
on our model parameters, we substitute equation (9) for A, in equation
(35) and obtain

Lo+ K g (36)
@R, r—if >

where we have replaced the equal sign with a tilde for more realistic
neutron star oceans. We now substitute in the expression for p, from
equation (5) to obtain

3r-3
1[I+ DKT 3\ 3 dreoks )
o~ —\————— |y |—mn) ——
R, r—1 47 e?
x AT 23T (37)

Equation (37) estimates the mode frequency when the crust is taken
to be rigid. One can see that the mode frequency increases as a
function of 7 and A and decreases as a function of Z for I' > 1.

Piro & Bildsten (2005a) showed that if the pressure at the crust—
ocean interface p, exceeds the shear modulus i, one cannot treat
this mode as purely a shallow ocean surface wave, but rather as an
interface mode with a non-zero & in the crust. The interface mode

frequency will be the shallow ocean mode frequency scaled by 4 / ;Iaio:

3r-3
i\? 1 [Ild+ DKL 3\ 7 dreoks
o~ —) —\—=1|7|—m
Po/) R, r—1 4 e?

x AT 23T (38)

Consequently, when the ocean has an elastic crust, equation (38)
approximates the ocean mode frequency.

These expressions show the functional dependence of the mode
on parameters of the model. Such modes have been shown to
exist in non-homogenous atmospheres as well (Taylor 1936). This
analysis demonstrates the capacity of oceans to sustain modes with
lower frequencies than the neutron star f mode (McDermott et al.
1988; Passamonti et al. 2021, for example) regardless of ocean
stratification.

3.3.2 Tidal resonance estimates

Since we are interested in tidal resonances during compact binary
inspirals, we estimate the time before compact binary merger of an
ocean tidal resonance. Tidal resonances should occur when

b="2 (39)
m
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where @ is the orbital frequency of the compact binary and m is the
spherical harmonic index. For circular binaries, we have

. G(M + M,)
b = ’/T’ (40)

where M, is the mass of the companion object and D is orbital
separation. The time to merger for a given orbital separation D is
(Peters 1964)

D4
ty = —, 41
15 (41)
where  is
64 G’ MM (M + M.,)
=5 42)

where ¢ is the speed of light. Combining equations (37), (39),
(40), and (41) gives an expression for the time before merger when
resonance occurs (hereafter resonance time) in the rigid crust case
as

1 <R3m2G(M + M) — 1))3

fy ~ —
48 0+ DKT
1 4-41
w [y (om,) Freoks ASE ZSrS AT (43
4 e?

Combining equations (38), (39), (40), and (41) gives an expression
for the resonance time in the elastic crust case

1 <<&) R2m2G(M + M) — 1))g

tr ~ —
ap \\ i I+ DKT
3\ dmeks )
3 —
g (V (E’”) - B) AT @

These analytical estimates for the mode frequency and resonance
time will allow for parameter extraction, should tidal resonances
from these modes be observed.

3.4 Ocean mode results

We now discuss the numerical values we choose for model parame-
ters and present the computed mode results.

3.4.1 Neutron star model parameters

Our neutron star model has a central density p. = 10" gcm™,.

We choose I' = 2 as was done by Passamonti et al. (2021). The
value of K that we use is K = 6.67 x 10* cm® g~!s2. These
choices yield a neutron star that has radius R, = 12.5 km and a
mass M = 1.25 Mg. This is just smaller than the peak mass of
the Galactic neutron star population 1.39 Mg (Antoniadis et al.
2016; Alsing, Silva & Berti 2018). For our computations, we
fix the temperature 7 = 10% K at the crust—ocean interface, so
that #, < 100 yr for all scenarios considered. A longer resonance
time would be practically too long for the coincident detection
of tidal resonances with compact binary mergers. We note that to
get temperatures as hot as 7 = 10® K in the crust, one typically
needs heating due to accretion (Fujimoto et al. 1984; Haensel &
Zdunik 1990, 2003, 2008). For this simple study, we do not
account for accretion when computing the tidal wave amplitudes
or energies.

The ratio of the ocean floor depth to the neutron star radius is
independent of the choice of K in the equation of state. From equation
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(6), we find that the ocean floor depths of the three oceans are A, . =
1.14 x 107*R,, ho o = 2.71 x 107°R,, and h, ; = 8.03 x 1078R, for
carbon, oxygen, and iron, respectively.

The carbon and oxygen oceans form below the electron capture
density of those elements, so the bottoms of these oceans would be
a dense plasma of ions and electrons (Bildsten & Cutler 1995). For
simplicity, we neglect the effect of the ocean having distinct layers
and leave this to future work.

3.4.2 Neutron star ocean modes

We solve equation (25) using a four-stage Runge—Kutta scheme. We
use a shooting method (Press et al. 1986) to obtain the frequencies of
each mode. The unphysical nature of our neutron star model at the
surface (i.e. that both p = 0 and p = 0 at R,) causes a divergence in
equation (25). To avoid this divergence, we must choose a coordinate
r just below R, at which to impose the surface boundary condition
equation (27). This ensures that our neutron star ocean model is well
behaved throughout the region in which we solve the hydrodynamic
equations. Bildsten & Cutler (1995) and Piro & Bildsten (2005a)
each address this, with Bildsten & Cutler (1995) choosing to apply
the boundary condition at density p = 107 g cm ™ and Piro & Bildsten
(2005a) choosing to apply the boundary conditions at column depth
107 gcm™2. In this work, we apply the surface boundary condition
at the radial coordinate corresponding to p = 0.05p,. Our mode
frequency calculations are robust in the following sense: applying the
surface boundary condition for five different cut-offs (p = 0.05p,,
p = 0.01p,, p = 0.005p,, p = 0.001p,, and p = 0.0001p,), we find
that the computed mode frequencies change by order unity. Present
limitations in the theory of neutron star oceans and atmospheres
prevent achieving mode frequency calculations more accurate than
within an order of magnitude.

Because tidal forces correspond to / > 2 spherical harmonics, [ =
0 and / = 1 modes remain practically unaffected by tidal forces, so
we do not solve for them. We only solve for / = 2 modes as those are
the modes most likely to be excited tidally. As previously mentioned,
we assume that the neutron star is barotropic so that 'y = " = 2.
As such, our ocean is unstratified and cannot sustain g modes in the
traditional sense (i.e. where the equation of state of the perturbed
fluid differs from the background equation of state).

For each ocean model, we find that the ocean can sustain one [ =
2 mode with a frequency below the orbital frequency at which two
neutron stars merge (=103 Hz; Abbott et al. 2019). As previously
mentioned, the modes we find are not the surface g modes found
by McDermott et al. (1988) and Passamonti et al. (2021). Instead
these modes are interface modes or i modes associated with the
crust—ocean interface and ocean surface. These modes resemble
shallow ocean surface waves due to the fixed crust—ocean boundary
and free ocean surface (Piro & Bildsten 2005a). We note that
stratified models can produce g modes with frequencies of order
~1 Hz (Bildsten & Cutler 1995). Table 1 shows the densities
at the ocean floor, the depths, and the mode frequencies of the
neutron star ocean models, as well as integrals computed later in
the paper.

The mode frequency increases with the square root of ocean depth
as predicted by equation (35). Carbon oceans have the highest mode
frequency at 16.7 Hz, while iron oceans have a mode frequency
of 0.44 Hz. We note that the fully computed mode frequencies are
each a factor of 2 smaller than the rough estimates obtained from
equation (37). To determine the elastic crust i-mode frequencies, we
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Table 1. The properties of the three neutron star oceans we consider in this work. We show the atomic number and mass of
each element that we consider as the dominant substance in a 7= 10® K neutron star crust as well as the densities at the ocean
floors calculated from equation (5), the ocean depths from equation (6), the analytic angular mode frequency from equation
(35), the numerically computed angular frequencies and mode frequencies of each ocean, the numerically computed angular
frequencies and mode frequencies scaled by \/g = 0.1 to estimate the crust-penetrating mode frequencies, the dimensionless
overlap integrals discussed in Section 4, as well as the integral H,, defined in Section 5.3, which is related to the quadrupole
moment of the mode. The ocean depths, mode frequencies, and integrals are all specific to this choice of equation of state and
neutron star core density.
Ocean make-up Carbon Oxygen Iron
z 6 8 26
A 12 16 56
Melting density at T = 10% K (gcm™3) 1.10 x 10" 271 x 1010 8.03 x 107
Ocean depth &, (R,) 1.14 x 1074 271 x 1073 8.03 x 1078
Ocean depth h, when R, = 12.5 km (cm) 143 339 1.01 x 107!
Analytic angular frequency ; (s~") 241 117 6.40
Numerical angular frequency o (s~ ') 104.7 50.98 2.778
Mode frequency f (Hz) 16.66 8.114 0.4422
Crust-penetrating angular frequency sh 10.47 5.098 0.2778
Crust-penetrating mode frequency f (Hz) 1.666 0.8114 0.04422
0, 1.2897 x 10~* 3.0604 x 1073 9.0901 x 10~3
H, (gcm?) 2738 x 10%! 6.494 x 10 1.929 x 1078
scale our numerically computed frequencies by ; ~ 0.1 (Piro & Section 3.1 with /i = 0, equation (47) becomes
Bildsten 2005a), and report these in Table 1 below the rigid crust (paf + L) =—pVy. (49)
mode frequencies. Substituting our ansatz for & gives
Fig. 1 plots the radial and tangential components of the Lagrangian & &
displacement for the three ocean modes. Each mode exhibits similar —pVyx = Z Piin(DEy + an(t)LE, = Z(ﬁn(f) + wla, (1)) pk,,
structure. The radial component U(r) for each ocean has no nodes ,, B
and peaks near the middle of the ocean. The tangential component (50)

V(r) varies little throughout the three oceans, but well exceeds the
radial component throughout.

4 TIDAL INTERACTION

We now reintroduce the potential x to equation (10), making x the
tidal potential from a nearby companion object. The tidal potential
for a companion point mass orbiting in the plane of the neutron star
equator takes the form (Press & Teukolsky 1977; Lai 1994)

GM,
Z Z D(,)Iil

1=2 m=—I

ne " 0Y,,(6, ¢), (45)

where M, is the mass of the companion, D(¢) is the separation
between the two stars as a function of time, ®(?) is the true anomaly,
and W), is the numerical coefficient (Press & Teukolsky 1977).

o (GZ =)0+ m))?
25!

Wim = ( 1) B (46)

where [ + m must be even.
Adding the external potential x to equation (16) and setting ;i = 0
gives

d7E + Véji = —Vy. (47)

Having obtained normal mode solutions to the homogenous equa-
tion &,, we make an ansatz to solve equation (47) (Lai 1994):

=) a0k, (48)

where a(7) is an amplitude that scales the eigenfunction and encodes
all time dependence of &. Using the operator L& = p V4§ defined in

where the last equality follows from equation (20). We use the
orthogonality condition in equation (21) to isolate an equation for
a,(t). Applying orthogonality yields

1
(1) + wla,(t) = - P& - VxdV. (51)
n
Inputting the tidal potential from equation (45), equation (51)

becomes

M, Q” e—imq)(l), (52)

.. 2 _
dy(t) + wya,(t) = W Im A2

where Q, is the overlap integral defined by (Press & Teukolsky 1977,
Lai 1994; Tsang et al. 2012; Tsang 2013; Andersson & Pnigouras
2020; Passamonti et al. 2021)

0, = [ o1+ 96" Tin@. 000V =1 [ o0 + v+ 1,
(53)

where we have used equation (22) to obtain the last equality. Note that
the overlap integral is entirely a property of the mode and quantifies
how strongly the mode gets excited by tidal forces. We define a
normalized overlap integral, dimensionless for the / = 2 modes, as

On="5" (54)

In Table 1, we report the normalized overlap integrals for each of the
three ocean modes. We must also estimate the overlap integrals for
modes that penetrate into the elastic crust. Piro & Bildsten (2005a)
determined that the mode energy is principally confined to the ocean,
even when the mode penetrates into the crust. Furthermore, while
the radial displacement has a node in the ocean with an elastic crust
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Figure 1. The shallow ocean surface mode for the three neutron star ocean models we study in this paper: (a) the carbon ocean, (b) the oxygen ocean, and (c)
the iron ocean. The left-hand plots show the dimensionless function @ as a function of distance from the ocean floor, while the right-hand plots show the
dimensionless function Vf’) as a function of distance from the ocean floor. Note that horizontal axis in (c) is in mm because the iron ocean is only 1 mm deep.

The mode frequency of each ocean model is shown in the legend of the right-hand plot.

and not with a rigid crust, the tangential displacement of Piro & radial displacement. Because our computed rigid crust modes have
Bildsten (2005a) is multiple orders of magnitude larger than the this same property, the large tangential displacement in the ocean
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Multimessenger emission: neutron star oceans

will dominate the overlap integral in both cases. Consequently, we
use our computed rigid crust overlap integrals to estimate the overlap
integrals of i modes that penetrate into the crust.

Following the analysis of Lai (1994), we perform a change of
variables to solve equation (52) where

a(t) = GM, 0, Win,b(1)e ™, (55)
and b(¢) is the new function to solve for. In terms of b(¢), equation
(52) becomes

b —2imdb + (* — m*d* —imd)b = (56)

D([)I+l )
If we decompose b into a real part b and an imaginary part b',
equation (56) becomes the following two equations:

b+ 2mdb + mPb + (0> — m*P?)b" = POLL (57a)

b —2mdb" — mPb" + (w* — m*dHb' = 0. (57b)

Given an orbital trajectory for a companion celestial body, equations
(57a) and (57b) can be solved. By plugging solutions to equations
(57a) and (57b) back into equation (55), the tidal wave amplitude
a(t) in the neutron star ocean can be found.

4.1 Tidal interaction scenarios

We consider three tidal interaction scenarios: a binary neutron star
(BNS) inspiral in a circular orbit, a neutron star—black hole (NSBH)
binary inspiral in a circular orbit, and an unbound parabolic encounter
between two neutron stars (NSPE). While NSPEs are expected to be
fairly rare (Tsang 2013) due to the low presence of neutron stars
predicted in stellar clusters (Bae, Kim & Lee 2014; Belczynski
et al. 2018; Ye et al. 2020; Mandel & Broekgaarden 2022), tidal
interactions from these events remain relatively unexplored beyond
Tsang (2013), so we consider them in this work. In the following
sections, we enumerate the initial conditions and orbital parameters
in each of these scenarios.

4.1.1 Neutron star binary and neutron star—black hole binary

The initial conditions and orbital motion of BNSs and NSBHs
are largely the same when the orbital separation well exceeds
the diameter of stellar-mass black holes. Due to the lower mode
frequencies of the three neutron star oceans, resonance will occur
earlier in the inspiral than f-mode resonances. As such, we consider
both BNSs and NSBHs at earlier times.

For an inspiraling circular binary, the time derivative of the true
anomaly & is just the orbital frequency

. |GM +M,)
N T (58)

where G is the gravitational constant, M is the mass of the neutron
star that is tidally perturbed, M, is the mass of the companion object,
and D(z) is the orbital separation as a function of time. The second
derivative of the true anomaly is

PP (59)

2 D’

where D is the time derivative of D. Due to the emission of GWs,
the binary loses energy and D(¢) decreases over time. The separation

6181

as a function of time D(¢) for an inspiraling circular binary is given
by (Peters 1964)

256 G3MM,(M + M,) \"*
56 G (M + )t> ’ -

D(t) = (Dg - 3
where Dy is the orbital separation at time ¢ = 0, and c is the
speed of light. We have neglected the effects of energy transfer
to the neutron star ocean on the orbital motion because, as will be
discussed in Section 4.2.3, the orbital energy will far exceed the
energy transmitted to the ocean mode.

To numerically solve equations (57a) and (57b), we must choose
initial values for b, b', b', and b'. We use the same initial conditions
for circular binary inspirals used by Lai (1994) and start our
integration at a time when the binary is very far from merging.
These conditions are

b'(0) = m (61a)

b'(0) = |—( + 1)2 + M b'(0), (61b)
D ! —md

b'(0) = m(zmébrw) + m$b'(0)), (61c)

b'(0) ~ 0. (61d)

We compute b for the / = 2, m = 2 cases, since m =2 and m = —2

modes will be equally excited (Lai 1994). The m = 0 binary inspiral
cases will be small compared to the m = 2 resonant case. The m =
0 case corresponds to static deformations of the neutron star, rather
than the larger amplitude resonant oscillations. Resonance of the
ocean mode with the tidal force is likely to occur in any isolated
binary system containing a neutron star because the system’s orbital
frequency continuously evolves. We do not compute the m = +£1
case since Y5+ = 0.

4.1.2 Neutron star parabolic encounter

We consider close encounters of neutron stars whose minimum
distance of approach is a distance s. Since parabolic orbits correspond
to those with an orbital eccentricity of e = 1, the orbital separation
as a function of radius is

2s

b0 =170 (1)

(62)
where ®(7) here is the true anomaly for a parabolic orbit. Using con-
servation of angular momentum, we obtain a differential equation for
the true anomaly as a function of time:

. 1 M+ M.
b1 = ; \/@(1 + cos @(1))’. (63)

We also obtain the second derivative of the true anomaly & by taking
the derivative of ®:

(1) = —%, / %:FM*)G + cos ®(1)) sin D(1)D (7). (64)

Solving equation (63) gives the true anomaly as a function of time
for a parabolic orbit.

Again, we must choose appropriate initial conditions for b, b',
b', and b' to solve equations (57a) and (57b). For a parabolic orbit,
the two bodies begin infinitely far away from one another with no
speed. Thus, when the companion object is far away from the neutron
star, we have ®(r) ~ 0 and &(¢) ~ 0. When this is the case, D(¢) is

MNRAS 520, 6173-6189 (2023)

€202 8unp /0 uo Jasn saleiqi Alisiaaiun eiquiniod Aq G§S6520./S /21 9/y/0ZS/3101e/Seluw/wod dno olwapeoe)/:sdny WwoJl papeojumoq



6182 A. G. Sullivan et al.
approximately constant, so we obtain a first approximation to b at
large distances:

1
b~ DO (65)

The time derivative b becomes

) D(1)

b~ —(+1)——=b, 66
+1 D() (66)

where D(t) is the time derivative of orbital separation. Taking the
time derivative of equation (66) gives

b D\’
b~ (—(l +Do+U+20+D <5> ) b, (67)

where D is the second time derivative of orbital separation. We
may plug equations (66) and (67) into equation (56) and obtain an
expression for b containing initial conditions for both 4" and b':

1 o —m*® +imd —2m( + HdL)

~ DI+l o (68)

where we have kept only the largest terms. Separating equation (68)
into areal and an imaginary part, we get initial conditions valid when
D(t) >> s

T ) 1
b'(0) = 2D’ (69a)
. D
b'0) = —(l + 1)5bf(0), (69b)
b'(0) = iz(zmdn‘f(O) + m®b'(0)), (69¢)
[
b'(0) ~ 0. (69d)

We solve for b in the cases where / = 2 and m = 0. The m = 2
NSPE tidal amplitude will be significantly weaker than the m = 0
amplitude as resonant oscillations during NSPEs require very specific
initial conditions on the neutron star trajectories, making them less
likely to be found in nature.

4.2 Tidal results

We report our results for the BNS, NSBH, and NSPE cases. a(?) is
computed by numerically solving equations (57a) and (57b) for b(r)
and substituting b(?) into equation (55). The companion mass used
in the BNS and NSPE is 1.25 Mg and the companion mass used in
the NSBH is 20 M. We show results for the NSPE when m = 0 and
the binary inspirals when m = 2. We report one tidal response for
each possible combination of ocean and companion orbit. Table 2
contains the main quantitative results of this paper.

4.2.1 Resonant tidal waves in binary inspirals

Both BNS and NSBH inspirals will resonantly excite the ocean
modes of their component neutron stars. It is when resonance occurs
that the tidal wave achieves its maximum amplitude.

In Fig. 2, we show the magnitude of the tidal wave amplitudes for
both BNSs and NSBHs in the times surrounding resonance.

The general evolution of the tidal amplitudes of all three oceans is
similar between both BNSs and NSBHs. In the minutes leading up to
resonance, the amplitudes of the tidal waves increase by a full order
of magnitude. We have not considered any damping mechanisms,
although possible mechanisms that can decrease the tidal wave

MNRAS 520, 6173-6189 (2023)

amplitudes include diffusion (Dommes & Gusakov 2021; Kraav,
Gusakov & Kantor 2021), heating (Beloborodov & Li 2016), and
GW emission (Lioutas & Stergioulas 2018). Without damping, the
tidal wave continues to pulsate with the same amplitude following
the resonance time. Carbon and oxygen oceans possess tidal wave
amplitudes of similar size. The overlap integrals and mode frequen-
cies of these modes are less than an order of magnitude different, with
carbon oceans having larger amplitudes. In contrast, the amplitudes
in the iron ocean are about a factor of 100 less than those in the
oxygen ocean. These differences result from the different overlap
integrals calculated for each ocean.

Slight differences between the BNS and the NSBH cases are
apparent. The BNS cases generate higher amplitudes than the NSBH
cases because resonance during a BNS occurs when the two bodies
are roughly twice as close as during an NSBH. Additionally, the
evolution of the tidal wave amplitude and frequency is noticeably
slower in the BNS cases. This is a direct consequence of the slower
frequency evolution in BNSs.

We determine how long before merger these resonances occur
from equation (60). We make Dy the separation at resonance time, set
D(r) =0, and solve for 7. In BNSs with rigid crusts, the carbon ocean
reaches resonance with the tidal force ~5 min before merger, the
oxygen ocean reaches resonance ~40 min before merger, and the iron
ocean reaches resonance ~60 d before merger. When scaling these
results for elastic crusts, the carbon ocean reaches resonance ~40 h
before merger, the oxygen ocean reaches resonance ~10 d before
merger, and the iron ocean reaches resonance ~70 yr before merger.
In NSBHs with rigid crusts, the carbon ocean reaches resonance ~1
min before merger, the oxygen ocean reaches resonance ~5 min
before merger, and the iron ocean reaches resonance ~7 d before
merger. Scaling these results for elastic crusts gives resonance times
~5 h before merger in carbon oceans, ~30 h before merger in oxygen
oceans, and ~10 yr before merger in iron oceans. Thus, any emission
from the tidally resonant oceans would well precede corresponding
compact binary mergers.

4.2.2 Tidal waves excited by parabolic encounters

NSPEs will excite tidal waves in neutron star oceans at periastron.
When this occurs, the tidal force of the companion star provides an
impulse to the ocean, causing it to pulsate. In this paper, we quote
results when the closest distance of approach is s = 3.4 x 10° cm.
This is the distance of closest approach where the carbon ocean tidal
wave amplitude a(#) in an NSPE is approximately equal to that of
a BNS. For different values of s, the amplitudes of the excited tidal
waves will scale our results by a factor of (s/3.4 x 10° cm)~>. Fig.
3 shows the tidal wave amplitudes during an NSPE for the three
oceans.

After the NSPE occurs, the tidal waves will oscillate with the mode
frequency of the ocean mode. The amplitudes are approximately the
same order for each of the three oceans we consider. As in the
binary inspiral cases, the iron ocean has the smallest amplitude.
The distance of closest approach in this NSPE is about an order of
magnitude smaller than the resonance distance in the binary inspiral
case. NSPEs require closer encounters than NSBHs and BNSs to
produce sizable ocean tidal waves.

We estimate the event rate for NSPEs within this nominal en-
counter distance inside a globular cluster. NSPE event rates have
been computed in previous works (Kocsis, Gdspar & Marka 2006;
Tsang 2013), but not for these very small encounter distances. We
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Table 2. The main quantitative results of this paper for the three neutron star oceans and three tidal scenarios considered. This table includes the energy
deposited into each ocean due to the tide and the time at which this energy is deposited. The energy reported for the NSPE corresponds to s = 3.4 x 10°
cm.

Ocean Carbon (rigid) Oxygen (rigid) Iron (rigid) Carbon (elastic) Oxygen (elastic)  Iron (elastic)
Energy deposited (erg) 8.6 x 10% 3.8 x 10% 1.3 x 10% 8.6 x 10* 3.8 x 10% 1.3 x 1038
Time before BNS merger (min) 5.33 35.33 8.3 x 10* 2.5 % 10° 1.6 x 10* 3.9 x 107
Energy deposited in NSBH (erg) 3.9 x 10% 1.7 x 10% 5.8 x 10% 3.9 x 10% 1.7 x 10% 5.8 x 10%7
Time before NSBH merger (min) 0.67 4.5 1.1 x 10* 310 2.1 x 103 4.9 x 10°
Energy deposited in NSPE (erg) 4.3 x 10% 2.5 x 10% 2.3 x 10% 43 x 10% 2.5 x 108 23 x 1078
Time before NSPE (s) 0 0 0 0 0 0
|a(t)] in Carbon Ocean during BNS |a(t)] in Oxygen Ocean during BNS |a(t)| in Iron Ocean during BNS
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Figure 2. The magnitudes of the dimensionless resonant ocean tidal wave amplitude |a(f)| during compact binary inspirals as a function of time without
damping. The horizontal axis shows the time from resonance in hours and the vertical axis shows |a(#)|. The top row shows tidal wave amplitudes during a BNS
(a) in a carbon ocean, (b) in an oxygen ocean, and (c) in an iron ocean. The bottom row shows tidal wave amplitudes during an NSBH (d) in a carbon ocean, (e)
in an oxygen ocean, and (f) in an iron ocean.
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Figure 3. The real part of the dimensionless ocean tidal wave amplitude a(¢) during an NSPE as a function of time without damping. The horizontal axis shows
the time from resonance in seconds and the vertical axis shows a(#). The sharp increase in the tidal wave height at time 7 = 0 is due to the impulse from the
neutron stars reaching their smallest orbital separation. (a) shows tidal wave amplitudes in a carbon ocean, (b) shows the tidal wave amplitude in an oxygen
ocean, and (c) shows the tidal wave amplitude in an iron ocean.

estimate the event rate of NSPEs in a globular cluster as where N is the number of neutron stars in a globular cluster, n,
is the number density of neutron stars in a globular cluster, vy =

1 \/ EMEM) i the relati d of neutron stars i NSPE at peri-
Vg = ENn*UOO‘PE, (70) B 1S the relative speed of neutron stars 1n an at pert

MNRAS 520, 6173-6189 (2023)

€202 8unp /0 uo Jasn saleiqi Alisiaaiun eiquiniod Aq G§S6520./S /21 9/y/0ZS/3101e/Seluw/wod dno olwapeoe)/:sdny WwoJl papeojumoq


art/stad389_f2.eps
art/stad389_f3.eps

6184 A. G. Sullivan et al.

astron, and o pg; is the cross-section of NSPEs. Note that in this expres-
sion for event rate, we use the relative velocity between neutron stars
at periastron, while Kocsis et al. (2006) use the relative velocity at in-
finite separation v,. We use the velocity at periastron because we are
considering parabolic orbits where v, = 0. The cross-section will be

opg = 7s%, (71)

for the encounter distance s. The event rate for NSPEs within a
distance s becomes

L VG(M + M,)s? (72)
VPE = 37 53 )87,

2 %n Réc
where we have assumed that the number density of neutron stars in
a globular cluster is uniform such that n, = TR N with Rgc being

the radius of the globular cluster. Using N = 500 Rge = 1 pc as
was done by Kocsis et al. (2006), and M = M, = 1.25 Mg, we find
vpg= 5.5 x 1072! yr~!. Close NSPEs are therefore extremely rare.

Despite the rarity of these events, their tidal waves are generated
in exact coincidence with the time of the closest passage of the
neutron stars, so observation of emission from such tides can exactly
demarcate the time of periastron.

4.2.3 Energetics of ocean tidal waves

The energy of an oscillation mode is divided into potential energy
and kinetic energy. The kinetic energy and potential energy are (Lai
1994)

Bo= L [0 %, | (OPA2 (732)
= . R a
K Y az "

1
Ey=3 / park - §dV = 5wﬁla<r>|2A3- (73b)

After tidal resonance in binary inspirals, the maximum kinetic and
potential energies should be equal. Additionally, both the m = 2 and
m = —2 modes contribute to the energy equally. Therefore, the tidal
interaction will deposit a total energy into each mode (Lai 1994):

E = 0|y max|* A2, (74)

where |a, max| 15 the maximum amplitude of the tidal wave. For the
NSPE m = 0 case, only one mode contributes to the deposited energy.
The NSPE total energy will be half of the energy of a binary inspiral
of the same amplitude (Lai 1994).

We compute the energy deposited into the shallow ocean surface
mode after tidal resonance during a BNS inspiral to be ~8.6 x 10%
erg in a carbon ocean, ~3.8 x 10% erg in an oxygen ocean, and
~1.3 x 10* erg in an iron ocean. Similarly, we compute the energy
deposited into the ocean after tidal resonance during an NSBH
inspiral to be ~3.9 x 10* erg in a carbon ocean, ~1.7 x 10%
erg in an oxygen ocean, and 5.8 x 10* erg in an iron ocean. The
orbital energy at the time of resonance is >10°° erg, justifying our
assumption that the orbital motion remains unaffected.

After an NSPE whose distance of closest approach is s = 3.4 x 10°
cm, we compute the energy deposited into the shallow ocean surface
mode to be 4.3 x 10% erg for carbon oceans, 2.5 x 10* erg for
oxygen oceans, and 2.3 x 10* erg for iron oceans. For different
values of s, these energy results will scale by (s/3.4 x 10° cm)~.

The mode energy has dependence E o w? Q2. Because the mode

frequency in the elastic case is the shallow ocean surface mode fre-
quency scaled by \/% , the energy deposited into the crust-penetrating

i modes should be the energy deposited into the corresponding
shallow ocean surface modes scaled by a factor of % ~ 0.01 (Piro &
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Bildsten 2005a). Consequently, our energy results for the elastic crust
cases are the energies reported above, reduced by a factor of 100. We
also report these values in Table 1.

5 DISCUSSION

We have determined that tidal waves in neutron star oceans can
be generated during BNS inspirals, NSBH inspirals, and NSPEs,
and quantitatively estimated their amplitudes, energies, and timing.
The tidal waves in each of these systems have unique properties.
In binary inspirals, the neutron star ocean mode becomes resonant
with the tidal force of the companion minutes to days before
coalescence if the crust is rigid, and hours to years if the crust
is elastic. Conversely, the impulsive tidal force during an NSPE
excites the ocean mode at the moment of closest approach. The
impulse generates simple continuous oscillatory tidal waves with
the frequency of the neutron star ocean mode. The implications of
these results extend to multimessenger astronomy and neutron star
geophysics.

5.1 Ocean tidal waves as compact binary merger precursor
flares and parabolic encounter multimessenger sources

Dynamical activity in neutron star oceans may emit neutrino and elec-
tromagnetic radiation (Reisenegger & Goldreich 1994; Heyl 2004;
Deibel 2016; Wang et al. 2021). Additionally, mode oscillations
have been observed during electromagnetic bursts (Strohmayer &
Mahmoodifar 2014). Therefore, the tidal waves in neutron star
oceans during a binary inspiral might correspond to multimessenger
emission. We hypothesize that tidally resonant ocean waves in
neutron stars may be a new source of compact binary merger
precursor emission.

The energies deposited into the ocean modes after resonance
(computed in Section 4.2.3) represent estimates of the energy
available for these flares. Thus, ~1037—10% erg are available to
source tidally resonant ocean flares. The energy deposited into the
carbon and oxygen oceans during NSBHs and BNSs is comparable to
the breaking energy of neutron star crusts, which ranges from 10* to
10% erg (Tsang et al. 2012; Baiko & Chugunov 2018). Consequently,
the energy imparted to the ocean may affect the neutron star crust. If
the deposited energy exceeds the breaking energy, the crust may
either crack or melt. Past work on crust breaking by resonant i
modes has mostly focused on the crust—core i mode (Tsang et al.
2012; Passamonti et al. 2021). Our results show that the crust-ocean
i mode may have the ability to break the crust from the top, leading
to interesting physics within the ocean. Additionally, while we have
neglected the presence of magnetic fields, the interaction between
the excited ocean and the surface magnetic field could generate
electromagnetic emission. Particularly, if the neutron star crust
breaks, subsequent magnetic reconnection of the surface magnetic
field may cause large electromagnetic flares (Lander et al. 2015;
Kaspi & Beloborodov 2017, for example). Because neutron star
surfaces also emit thermal neutrinos (Yakovlev & Pethick 2004, for
example), it is possible that this emission is manifested in neutrinos.
In the remainder of this paper, we will limit our discussion to
accompanying electromagnetic emission.

Pre-existing mechanisms for producing compact binary merger
precursor flares include interactions of neutron star magnetospheres
in BNSs (Ascenzi et al. 2021), orbital motion of a weakly magnetized
companion and a highly magnetized neutron star in either BNSs or
NSBHs (Vietri 1996; Hansen & Lyutikov 2001; McWilliams & Levin
2011; Lai 2012; Piro 2012; Sridhar et al. 2021), and tidally induced
cracking of a neutron star crust during high-frequency mode tidal
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resonances in either BNSs or NSBHs (Gittins et al. 2020; Suvorov &
Kokkotas 2020; Kuan, Suvorov & Kokkotas 2021a; Passamonti et al.
2021). Precursor flares from previously considered channels are only
expected just before a merger (<10 s; Mathews & Wilson 1997;
Passamonti et al. 2021; Sridhar et al. 2021).

In contrast to these other mechanisms, precursor flares associated
with tidally resonant neutron star ocean waves could be excited
minutes to even years before the merger. Tidally resonant ocean
flares can therefore be early warning signs of compact binary mergers
involving neutron stars. Notably, NSBHs should have less trouble
emitting early flares since the black hole will be farther from the
neutron star than in other scenarios and should not absorb all the
emission.

Early warning precursor flares can be additional messengers for
studying neutron stars and compact binary systems. The time before
merger will provide information about both the types of merger and
the material in neutron star oceans. In fact, the delay between flare
and merger can distinguish these qualities. Simply observing a flare
within 100 yr of a corresponding merger significantly constrains
the parameter space and provides limits on the crust temperature.
Because a crust temperature of 7~ 108 K is needed to ensure that all
our considered scenarios have resonance times of less than 100 yr, a
successful flare observation could suggest a higher crust temperature
and consequently provide information about surface heating and
accretion during compact binary inspirals.

Observing these flares in practice will likely require retroactive
searches for electromagnetic data coincident in sky localization with
compact binary mergers observed by GW detectors. The use of
space-based GW detectors such as LISA (Amaro-Seoane et al. 2017)
may assist in identifying flares in advance of mergers, as space-
based detectors will detect GWs from compact binary inspirals well
before mergers at galactic distances [Laser Interferometer Space
Antenna (LISA) Study Team 2000; Robson, Cornish & Liu 2019].
Observations of tidally resonant ocean flares during compact binary
inspirals would complement multimessenger efforts to study these
exotic systems and their oceans.

NSPEs could generate flares as well. The ignition of the tidal
wave would precisely coincide with the NSPE. As such, coincident
detections of the broad-band GW bursts generated by the orbital
motion (Turner 1977a; Kovacs & Thorne 1978; Kocsis et al. 2006;
De Vittori, Jetzer & Klein 2012) and tidally induced electromagnetic
flares can allow for the multimessenger study of NSPEs and their
constituent neutron stars.

5.2 Detection of electromagnetic flares from neutron star ocean
tidal waves

We posit two possible scenarios for electromagnetic flares originating
from neutron star ocean tidal waves and qualitatively discuss their
detection. Since the mode frequencies of the oceans studied are
~1—100 Hz, the electromagnetic radiation from neutron star ocean
tides may be ultra-low frequency. As of this paper’s writing, detection
of ultra-low-frequency electromagnetic radiation on geophysical
scales has been considered (Grimm 2002; Grimm et al. 2009;
Kozakiewicz et al. 2016), but no astronomical electromagnetic
instrument capable of tapping frequencies below ~0.001 MHz has
been proposed (Bergman et al. 2009; Saks et al. 2010; Blott et al.
2013; Boonstra et al. 2016; Rajan et al. 2016; Belov et al. 2018;
Cecconi et al. 2018; Prinsloo et al. 2018; Bentum et al. 2020).
Therefore, it would be extremely difficult to detect <100 Hz radiation
from neutron star ocean tidal waves.

6185

However, due to complicated microphysics, the large amount of
energy deposited into the neutron star ocean, and the potential for
magnetic reconnection, we propose that neutron star ocean tides
may produce high-energy electromagnetic radiation in the gamma-
ray or X-ray regime with spectra and time-scales similar to that
of soft-gamma repeaters or type I X-ray bursts, perhaps through
interactions between the surface magnetic field and the ocean.
The hot temperatures of neutron star surfaces make thermal X-
rays a particularly compelling manifestation of this emission. Since
we have considered neutron stars with 7 = 10® K at the crust,
these neutron stars may already be accreting and emitting X-rays
thermally. The tidal resonance will impart additional energy into
the ocean, which we suppose may increase the flux of photons on
time-scales comparable to the period of the computed ocean mode.
We note that accretion often requires a non-compact companion to
supply material. We have neglected the effects of such additional
companions for simplicity.

Taking our high-energy flare conjecture at face-value and as-
suming that the energy deposited into the ocean from the tide is
isotropically expelled as either gamma-rays or X-rays, we estimate
how far away a resonant neutron star ocean tidal flare can be detected
by the gamma-ray detector Fermi (Atwood et al. 2009) and X-ray
telescopic array NuSTAR (Harrison et al. 2013).

We estimate the photon flux from such a flare by assuming that all
energy deposited into the mode is radiated away as either X-rays or
gamma-rays. Taking R to be the distance between a detector and the
source, we approximate the photon flux at the detector as

NEa)

N, 75
" E, 47 R? 5

where E is the energy of the ocean tidal wave, E, is the energy of
a photon, and w is the mode frequency. We have assumed that all
energy is radiated on a time-scale comparable to the inverse of the
mode frequency w as it is the only short time-scale we have.

For Fermi, we estimate the furthest distance at which such a flare
could be observed as

E o
R~ [ ——r, (76)
E, 4 F;

where F, is the photon flux threshold for Fermi. The photon flux
threshold of Fermi is 0.74 photons cm™2s~! in the range of 8 keV—
40 MeV (Atwood et al. 2009).

For short-duration X-ray sources, NuSTAR’s sensitivity is limited
by photon statistics. The signal-to-noise ratio (SNR) for a short-
duration flare assuming that all photons are at the same energy is

K =\/F,TA, (77)

where T is the duration of the flare and A is the effective area of
NuSTAR. Substituting our estimate for F,, and taking T~ w~! gives

|E A
K~,|— . 78
E, 4w R? 7%)

We estimate the furthest distance at which a flare can be observed by
NuSTAR as

1 | E
R~ — —A (79)
K\ E, 4rn

for some SNR threshold K. Notice that @ has dropped out of equation
(79), so this estimate is independent of the precise time-scale of
the flare as long as it is of short duration (Harrison et al. 2013).
The effective area of NuSTAR is approximately 800 cm? for photon
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energies of 6—10keV and 300 cm? for photon energies of 10—30keV
(Harrison et al. 2013). We set a putative SNR threshold of K = 5.
We compute the distances for each ocean and binary inspiral case
under four detection scenarios: tidally resonant ocean flare photons
are (1) gamma-rays with E,, =40 MeV detected by Fermi, (2) X-rays
with E, = 8 keV detected by Fermi, (3) higher energy X-rays with
E, =20keV detected by NuSTAR, and (4) lower energy X-rays with

E, =8keV detected by NuSTAR. Note that R < E 3 for both Fermi
and NuSTAR detections. Since the elastic crust energy estimates are

the rigid crust energy scaled by £ o e scale the distances from

their rigid crust values by a factor of (ﬁ)% ~ 0.1 to extrapolate
the distance results for elastic crust case. We quote our results in
Table 3.

We find that if the emission from tidally resonant ocean flares
is in the gamma-ray spectrum or if crusts are composed of iron,
Fermi and NuSTAR will have almost no capability to detect flares
of extragalactic compact binaries, the main sources of interest
for ground-based GW detectors. Excitingly, however, if tidally
resonant ocean flares are emitted in the X-ray spectrum in carbon
or oxygen oceans, both NuSTAR and Fermi will have the ability
to detect them out to distances of the orders of ~10—1000 Mpc
for rigid crusts and even ~1—100 Mpc for elastic crusts. These
distances coincide with the BNS ranges of currently operational GW
detectors (LIGO Scientific Collaboration, Virgo Collaboration &
KAGRA Collaboration 2021a). In fact, BNS and NSBH inspirals
have been observed out to a few 100 Mpc (LIGO Scientific
Collaboration & Virgo Collaboration 2019, 2021; LIGO Scien-
tific Collaboration, Virgo Collaboration & KAGRA Collaboration
2021a).

We estimate an optimistic event rate for these flares using the
merger rates of BNSs and NSBHs from LIGO-Virgo-KAGRA'’s
third GW catalogue (LIGO Scientific Collaboration, Virgo Collab-
oration & KAGRA Collaboration 2021b). The 90 per cent credible
interval for the merger rates is reported as 10—1700 Gpc—3 yr~!
for BNSs and 7.8—140 Gpc 2 yr~! for NSBHs (LIGO Scientific
Collaboration, Virgo Collaboration & KAGRA Collaboration 2021b;
Mandel & Broekgaarden 2022). Assuming a flare detectable out to
~1—100 Mpc, we estimate the event rates for detectable tidally
resonant ocean flares by multiplying spherical volumes with radii 1
and 100 Mpc by the lower and upper limits on the quoted merger
rates, respectively. The event rates would be ~4 x 1078—7 yr~!
for BNSs and ~3 x 1078—0.6 yr~! for NSBHs. Depending on the
details of the crust, ocean, and flare, precursor flares associated with
tidally resonant ocean waves in compact binary inspirals may be
detectable.

5.3 Gravitational waves from neutron star ocean tidal waves

The time-dependent mass density perturbations of tidal pulsations in
compact stars should also generate GWs (Turner 1977b). We now
investigate the GWs produced by neutron star ocean tidal waves. The
GW metric h,-TjT (not to be confused with the ocean depth £,) can be
written as a multipole expansion (Turner 1977b):

b ~ R ZBI'" ( - *) "0, ), (80)

where G is the gravitational constant, c¢ is the speed of light,
By, (t — §) is a time-dependent amplitude evaluated at the retarded
time with dimensions of the second time derivative of the mass
quadrupole moment, and Tilj”’ are transverse—traceless tensor spher-
ical harmonics (Turner 1977a, b). As we have done throughout this
work, we restrict ourselves to the [ = 2 harmonic. For an oscillation
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mode that generates small perturbations in the mass density, B, is
(Turner 1977b)

167 d2 L,
- / spY;, AV, @81)

where §p is the Eulerian perturbation to the mass density. Rear-
ranging equation (12), we obtain an expression for the Eulerian
perturbation to the mass density:

8p ==V - (p§) = —a(1)

BZm (t)

X (Ui—p-f— ((:TU-I-Z—U—Z(I-FI) ))Ylm (82)
Substituting equation (82) into equation (81) gives
By (1) = 167715(01’1% (83)
5V3

where we have defined an integral H, as

Hy = — /(uj£+ (‘1‘1—“+2—U—l(l+1> ))r“dr, (84)

which quantifies an oscillation mode’s ability to generate GWs. Note
that the only time dependence in equation (83) arises from d. We
obtain results for the integral H, for each of our three ocean models.
These are displayed in Table 1 in units of g cm?. Like other integrals
computed, H, is largest in carbon oceans because the carbon ocean
is the largest.

We approximate the GW strain /() from neutron star ocean tidal
waves as

h(1) ~ %%a(l) - (85)
We determine at what distance R there would be GW signals with
amplitudes /2 ~ 1072°, This is approximately the smallest amplitude
detectable with current space-based GW detector technology (LISA
Study Team 2000; Robson et al. 2019). We find that GWs from none
of the configurations considered will be able to escape the immediate
vicinity of the neutron star. The values we report are for the rigid
crust models. The configuration that generates the largest GWs is a
carbon ocean during a BNS inspiral. The distance from the ocean at
which the GWs have an amplitude of ~1072° is ~10 au. In contrast,
the smallest GWs are generated in an iron ocean during an NSBH
inspiral. In this case, the GW amplitude is ~1072° only ~9 km away.
This makes detecting GWs from neutron star ocean tides virtually
impossible. While these GWs will serve as a source of extremely
weak damping, we find that the damping time-scales are >107 yr
and will not impact neutron star ocean tides on relevant time-scales.

While ocean tidal wave GWs may be undetectable, the orbital
motion of these binary systems generates sizable GWs. During the
early inspirals of BNSs and NSBHs, GWs will be detectable by LISA
(LISA Study Team 2000; Robson et al. 2019). GWs from BNS and
NSBH mergers are already detected by ground-based GW detec-
tors (LIGO Scientific Collaboration & Virgo Collaboration 2017;
LIGO Scientific Collaboration, Virgo Collaboration & KAGRA
Collaboration 2021). Consequently, joint detection of GWs with
tidally resonant ocean flares remains a possibility for multimessenger
astrophysics.

6 CONCLUSION

Neutron star oceans can sustain resonant tides. Though rather small
in size, the tidal waves excited in compact binary inspirals and in
parabolic encounters possess large amounts of energy, ranging from
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Table 3. The estimated distances (in Mpc) out to which flares from neutron star oceans could be detected with Fermi or NuSTAR assuming isotropic
emission. For Fermi, X-ray distances are computed assuming E,, = 8 keV, while gamma-ray distances are computed assuming E,, =40 MeV. For NuSTAR,
the lower energy X-ray distances are computed assuming E,, = 8 keV, while the higher energy X-ray distances are computed assuming £, = 20 keV. The
distances for oceans with elastic crusts are computed by scaling the distances for oceans with rigid crusts by a factor of 0.1.

Ocean Carbon (rigid) Oxygen (rigid) Iron (rigid) Carbon (elastic) Oxygen (elastic) Tron (elastic)
BNS gamma-ray with Fermi (Mpc) 39 0.82 0.0015 0.39 0.082 0.000 15
BNS X-ray with Fermi (Mpc) 280 0.11 28 5.8 0.011
BNS higher energy X-ray with NuSTAR (Mpc) 520 0.20 52 11 0.020
BNS lower energy X-ray with NuSTAR (Mpc) 1300 0.52 130 28 0.052
NSBH gamma-ray with Fermi (Mpc) 2.6 0.55 0.0010 0.26 0.055 0.000 10
NSBH X-ray with Fermi (Mpc) 190 0.0071 19 39 0.00071
NSBH higher energy X-ray with NuSTAR (Mpc) 350 0.13 35 74 0.013
NSBH lower energy X-ray with NuSTAR (Mpc) 900 0.34 90 19 0.034

107 to 10* erg, depending on the properties of the neutron star crust.
This energy, coupled with the rotational and magnetic energy of a real
neutron star, has the potential to break neutron star crusts and fuel
electromagnetic flares. Such electromagnetic flares could become
early warning signs of merging NSBHs and BNS systems, preceding
mergers by =1 min if neutron star crusts are rigid and 21 h if the
neutron star crusts are elastic. Observations of these flares could shed
light on neutron star ocean and crust properties. Their timing relative
to compact binary mergers, as well as their duration and oscillation
periods may serve as distinct signatures of these flares. Nevertheless,
more work is needed to understand the physical mechanisms that
can release the energy for flares as well as the effects of rotation and
magnetization.

We find that tidally resonant neutron star ocean flares, if in the X-
ray band, may be detected at distances of 1—1000 Mpc with Fermi
and NuSTAR in most cases, comparable to the distances of observed
BNS and NSBH mergers. We find that X-ray emission could have
detection rates as high as ~7 yr~! for BNSs and ~0.6 yr~' for
NSBHSs. Neutron star ocean tides are consequently a possible source
of emission, which can accompany observable GWs. Subsequent
work may involve reviewing past NuSTAR and Fermi data for X-ray
bursts in coincident angular locations of observed BNS and NSBH
mergers.

Neutron star ocean tides and oscillations may contribute to
future multimessenger observations of astrophysical compact binary
mergers and neutron stars. Future studies into ocean tidal waves on
top of crustal mountains (Gittins & Andersson 2021; Gittins et al.
2021) and resultant neutron star ocean tsunamis may yield interesting
results. More exotic systems including collisions between neutron
stars and planets may also produce ocean activity that results in
multimessenger emission. Multimessenger emission from neutron
stars, including emission from ocean tidal waves, will provide new
knowledge about the enigmatic but rich physics of neutron stars.
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