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Abstract

Cryo-electron tomography directly visualizes heterogeneous macromolecular structures in their na-

tive and complex cellular environments. However, existing computer-assisted structure sorting ap-

proaches are low-throughput or inherently limited due to their dependency on available templates

and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning ap-

proach, DISCA, that automatically discovers subsets of homogeneous structures by learning and

modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET

datasets shows that, for the first time, an unsupervised deep learning based method can detect di-

verse structures with a wide range of molecular sizes. This unsupervised detection paves the way for

systematic unbiased recognition of macromolecular complexes in situ.

Keywords: Cryo-Electron Tomography, Macromolecular Complexes, Unsupervised Learning,

Structural Pattern Mining
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1 Introduction

In recent years, cryo-Electron Tomography (cryo-ET) has made it possible to image densities of dif-

ferent molecules and their spatial distributions inside intact cells or viruses in a near-native, “frozen-

hydrated” state to a resolution of a few nanometers in three dimensions [1,2]. This molecular-

resolution visualization of how macromolecular complexes work together inside cells has allowed

researchers to obtain mechanistic insights into particular cellular processes and distinguish com-

peting models from one another [3]. However, a major challenge remains to precisely and com-

prehensively identify densities of different molecules in complex cellular tomograms. A popular

method to perform this task is “template matching” [4], which uses available structures obtained in

vitro from X-ray crystallography or single-particle cryo-electron microscopy as template references

to search for similar shapes in the tomograms. While useful, its dependency on available struc-

tural templates may introduce reference-dependent bias [5]. An alternative popular practice is to

manually pick target structures and then average them to obtain the initial template, which is also

biased by subjective preferences [6]. More importantly, as evidenced by genome sequencing and

mass spectrometry, there may exist a large number of proteins with unknown structure and functions

[7-10]. Macromolecular complexes that lack available structural information cannot be identified in

cryo-ET cellular tomograms using existing structural templates.

With that in mind, we and others have previously proposed a structural pattern mining approach

[11,12], as an important step towards template-free visual proteomics [13]. This approach con-

sists of (1) template-free particle picking steps that detect potential structures in a tomogram and (2)

recognition steps that classify each particle as a particular type of structure. However, the throughput

of these methods is limited because they involve a tremendous number of geometric transformation

operations for subtomogram averaging, classification, and refinement. Additional membrane seg-

mentation pre-processing procedure may also be required [11]. With the recent advance of cryo-ET

data collection methods [14,15], large numbers of tomograms can now be produced daily (more than

100 tomograms of size ∼4,000×6,000×1,000 voxels, containing up to a million particles in total),

allowing the effective imaging of many samples with different treatments and experimental controls
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for comparative analyses. The computationally expensive structural pattern mining approaches are

impractical for handling such large-scale datasets. A new type of high-throughput analysis method

is therefore needed to allow systematic and comprehensive investigation of the fast-growing size of

in situ cryo-ET data.

Recently, deep learning methods have been gaining momentum both for cryo-EM particle picking

[16], image enhancement [17-19], structural variability reconstruction [20,21], and protein structure

modeling [22-24], as well as for cryo-ET image segmentation [21,25], classification [26,27], and de-

noising [28,29]. By automatically learning better heuristics from accumulating data, their accuracy

can improve over time, and they have been shown to perform more efficiently and accurately than the

aforementioned traditional geometric approaches [30,31]. Due to their significantly faster recogni-

tion speed, they also promise better scalability to large-scale datasets with a large number of classes

encompassing heterogeneous structures. However, existing deep learning based cryo-ET subtomo-

gram classification methods are based on supervised learning [32]. Supervised methods pose an

additional major challenge: creating valid training data. In these supervised deep learning methods,

training a neural network requires a substantial amount of pre-labeled data. For cryo-ET, training

data has conventionally been produced either by using template matching as mentioned above or via

laborious manual labeling of target structural patterns in tomograms [33]. Both unavoidably produce

biases by reference or subjective preference that limit the analysis. Unfortunately, this difficulty can-

not be circumvented by using an annotated tomogram database consisting of multiple independent

sources as a less-biased universal training set. This difficulty is because training from separated

cryo-ET data sources, collected under different imaging conditions, was shown to result in lower

recognition accuracy due to the variable image intensity distribution among data sources [34,35].

Moreover, these supervised methods remain unable to discover structures that are not annotated in

the training dataset, posing a similar limitation to template matching. Therefore, a more natural and

effective approach could be training the neural network in an unbiased template-and-label-free way

by using comprehensive intrinsic structural features in the data themselves.
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DISCA is mainly inspired by unsupervised image clustering methods recently proposed in the com-

puter vision domain [38,39]. These methods integrate deep neural networks with feature clustering

algorithms and self-supervised strategies to learn discriminative feature representation of images

from large-scale 2D image datasets without the need of pre-specified image labels. Similarly, we

incorporated a feature clustering algorithm and self-supervision into DISCA. Furthermore, consid-

ering the specific properties of cryo-ET data, such as the low SNR and unknown cluster number, we

designed a novel neural network architecture and training strategies to improve the structure sorting

performance on cryo-ET data. In supervised learning, a CNN is trained to maximize the expected

prediction performance on a set of labeled training data. As we aim to learn only from unlabeled

data, we develop a strategy to iteratively estimate both the number of structurally homogeneous sub-

sets and the structural class labels of input subtomograms. The proposed iterative dynamic labeling

strategy updates two models in an alternating fashion via a generalized Expectation-Maximization

(EM) algorithm [40]. Fig. 2 illustrates the YOPO (You Only Pool Once) model for feature extrac-

tion and the Gaussian distributions for the statistical modeling of structurally homogeneous subsets

in the feature space R
P. In the E-step, the number of structurally homogeneous subsets and the labels

are estimated given the current learned features. In the M-step, YOPO parameters are updated by

back-propagation training to minimize the loss function of computing the labels estimated from the

E-step. We show the workflow of DISCA in SI Appendix Fig. S1. In detail, YOPO is randomly

initialized to extract feature vectors xn ∈ R
P from input subtomograms sn ∈ S. Then, the feature

vectors are fitted in the feature space by the mixed multivariate Gaussian distributions across a set

of candidate K number of structurally homogeneous subsets. Only the mixture distribution with the

lowest Bayesian information criterion is kept. We stabilize the optimization of the statistical model

fitting by inheriting the parameters from the previous iteration. In each iteration after the first one,

the parameter priors of the Gaussian mixture model, including the prior weights, means, and co-

variance matrix of each cluster, are initialized by the clustering solution from the previous iteration.

Moreover, because errors can accumulate when initializing the statistical model fitting using param-

eters from the previous iteration, to avoid getting stuck at a local optimum, a de novo model fitting
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with randomly initialized parameters was also performed in each iteration and its parameters were

adopted if this model increased the likelihood function of the statistical model. The underlying idea

of this design is similar to the Epsilon-greedy algorithm [41] in reinforcement learning in which the

best solution from the previous observation is chosen with a probability of being replaced by a new

solution. In our design, in each iteration, two clustering solutions are calculated: (1) finetuning the

clustering solution from the previous iteration by inheriting the clustering model parameters, and

(2) running the clustering algorithm from scratch with randomly initialized parameters. The second

solution will be chosen only if it improves the statistical likelihood of the model over the first so-

lution. Otherwise, the first solution will be chosen. Using this strategy, a local optimum from the

first clustering solution will be avoided. Then, the current estimated label of a subtomogram is given

by a hard cluster assignment that corresponds to the component multivariate Gaussian distribution

with the highest probability. In the next iteration, the current estimated labels are used for train-

ing YOPO by minimizing the categorical hinge loss function to learn better feature representations.

After YOPO training, the mixture distributions are updated on the newly extracted feature vectors.

This process continues iteratively until the stopping criteria (SI Appendix), consistency of labels or

maximum number of iterations, have been met.

2.1.1 Neural network architecture design

We now describe the architecture design of YOPO and how we achieve rotation and transla-

tion invariant feature extraction. A tomogram is a grayscale 3D volume of very large size (e.g.,

4000×6000×1000 voxels). Even binned 4 times across each axis, a tomogram is still large (e.g.,

1000×1500×250 voxels). Feeding such a large 3D volume into a CNN will inevitably exceed

the memory of the system. One previous CNN method [33] dealt with this problem by slicing

the tomogram into 2D images along the z-axis for cost-effective processing. However, taking 2D

slices resulted in losing relevant structural information in 3D. In contrast, our objective is to cluster

the heterogeneous densities of molecules (the majority being macromolecular complexes) enclosed

in subtomograms into structurally homogeneous subsets. Because subtomograms extracted from
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binned tomograms are significantly smaller (e.g. 243 voxels) than tomograms [42], they can be

efficiently processed by 3D CNN without information loss.

Convolutional Neural Networks (CNNs) have been shown to outperform traditional hand-crafted

feature extraction methods for the task of extracting discriminative features from images for various

biomedical image analysis tasks [43,44]. In order to leverage the superior performance of CNNs,

we designed a CNN named YOPO (SI Appendix, Fig. S2) specifically for subtomogram data that

considers its distinct characteristics: (1) the structural details are essential to determine the iden-

tity of a macromolecule enclosed in a subtomogram; (2) the enclosed macromolecule is of random

orientation and displacement; and (3) the Signal-to-Noise Ratio (SNR) is extremely low. Because

of the novel architecture design, YOPO achieves properties including structural detail preservation,

transformation invariance, and robustness to noise. Such properties were also described as desired

in traditional subtomogram classification methods [45].

Structural detail preservation: The standard pooling operation (max-pooling or average pooling) in

CNN feature extraction is a problem for processing small 3D subvolumes. Indeed, even pooling by

the smallest factor, 2, will dramatically reduce the subvolume size (for example, 243 to 123) and

result in losing 87.5% of the information capacity. As structural details predominantly determine a

macromolecular complex’s identity, the standard pooling operation may not be ideal for extracting

features that preserve detailed structural information. In the Classification in Cryo-Electron To-

mograms SHape REtrieval Contest (SHREC) 2020 [30] and 2021 [46], most of the participating

semantic segmentation neural networks employ a U-Net like architecture. Similarly, in a U-Net ar-

chitecture, the low-level feature maps in the contracting path are concatenated to the expansive path

as a way to preserve high-resolution structural details. Therefore, as an alternative to conventional

neural network architectures in processing cryo-ET data, we equipped YOPO with a sequence of

convolutional layers without any pooling operations in between for processing an input subtomo-

gram into feature maps with both low-level and high-level structural information. Following the

convolutional layers, rather than using the basic step of flattening the 3D feature maps into a 1D
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feature vector, we incorporated a global max-pooling layer to keep only the maximum of each of

the feature maps. The global max-pooling operation also achieved translation invariance. As proved

later, YOPO will output the same feature values for a subtomogram and its displaced copy because

of the translation invariance.

Robustness to noise: Another challenge is the extremely low SNR of cryo-ET data. Often, raw to-

mograms are so noisy that even human eyes barely recognize the structure. While the convolutional

layers in YOPO perform filter-like operations, we further boosted YOPO’s robustness to noise. We

use a dropout strategy by adding a dropout layer after the input layer to corrupt the input subtomo-

grams. This is inspired by denoising autoencoders [47] to regularize the network and reduce the

variance of model prediction from noisy samples. Here, we use a Gaussian dropout layer, which

randomly silences 50% of the nodes and injects multiplicative 1-centered Gaussian noise with stan-

dard deviation 1 during training. The Gaussian dropout layer has similar regularization performance

as the conventional dropout layer, but it exhibits faster convergence properties [48]. By randomly

silencing a subset of nodes and injecting Gaussian noise, the Gaussian dropout layer can be viewed

as a computationally efficient way to approximate multiple CNNs with slightly different parame-

ters during CNN training. When multiple CNN models are aggregated by inactivating the Gaussian

dropout layer during the prediction, the output variance is reduced, thus achieving robustness to

noise. Finally, we added one fully connected layer after the global max-pooling layer to output the

feature vectors of length 1024. In order to train YOPO, we equipped the final classification layer with

softmax activation to output class labels. The Gaussian dropout layer, self-supervision for rotation

invariance, and label smoothing described below have all been shown theoretically and empirically

to be effective in preventing overfitting to increase the optimization robustness [49].

As a feature extraction model, YOPO preserves detailed structural information and extracts rotation-

(through self-supervised training) and translation-invariant (through architecture design) features

from subtomogram data. The translation invariance of YOPO is independent from the input data

or the network weights. Such translation-invariance usually cannot be achieved by standard CNN
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architecture designs. As independently evaluated by the SHape REtrieval Contest (SHREC) 2020

[30] in a supervised learning task, YOPO achieved the third-best accuracy and outperformed the

template matching baselines. Most importantly, YOPO only requires localized coordinates of target

macromolecules for training, in which, a whole subtomogram only needs a single label. In compar-

ison, all the other participating methods require labeled segmentation maps for training, in which

every voxel needs to be labeled. The segmentation maps (dense labels) for an experimental cryo-ET

dataset are extremely time-consuming to prepare as every single voxel of part of a tomogram needs

to be labeled by experts. Therefore, YOPO was deemed ‘significantly more accessible for cryo-ET

researchers’ given that a minimal amount of training supervision was needed [30]. We note that, in

DISCA, the training of YOPO is fully unsupervised and further automated to be free from all exter-

nal domain knowledge, including existing structural templates, manual labeling, or manual selection

of densities in the tomograms.

Table 1: Performance of three methods on simulated datasets. In each cell, the first row denotes the estimated
K for unsupervised methods. The second row denotes the homogeneity score compared to the ground truth.
The third row denotes prediction accuracy.

Dataset
Simulated ±60◦ Simulated ±40◦

SNR 0.1 0.03 0.01 0.003 0.001 SNR 0.1 0.03 0.01 0.003 0.001

Template Matching
-

0.7013
83.95 %

-
0.4709

69.75 %

-
0.1496

45.35 %

-
0.0136

25.25 %

-
0.0032

20.95 %

-
0.5543

76.25 %

-
0.3336

61.15 %

-
0.0655

36.60 %

-
0.0062

23.80 %

-
0.0012

21.20 %

Autoencoder
K = 5
0.3843

56.75 %

K = 4
0.4539

-

K = 5
0.3613

53.45 %

K = 5
0.4915

64.80 %

K = 3
0.3881

-

K = 6
0.5227

-

K = 5
0.3470

53.35 %

K = 3
0.3735

-

K = 3
0.3878

-

K = 3
0.3874

-

DISCA
K = 5
0.9878

99.70 %

K = 5
0.9373

97.80 %

K = 5
0.8746

94.80 %

K = 5
0.8712

94.25 %

K = 5
0.8719

94.50 %

K = 5
0.9568

98.70 %

K = 5
0.8020

90.35 %

K = 5
0.8344

91.80 %

K = 6
0.8366

-

K = 6
0.8323

-

2.2 Validation of the feature learning and modeling ability

The design of DISCA enables transformation-invariant feature extraction, automatic estimation of

the number of clusters, and progressively improved performance with larger sample sizes. To val-

idate DISCA’s ability to learn to extract and model 3D transformation-invariant features, we con-

ducted several experiments on realistically simulated datasets of various imaging parameters. These

simulated datasets have pre-specified ground truth labels to quantitatively assess the performance of

DISCA and existing methods.
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To test the accuracy of DISCA in simultaneously estimating the number of clusters K and structural

class labels, we simulated subtomogram datasets of various SNR and tilt-angle ranges (examples

shown in SI Appendix Fig. S3 and S4 for each dataset). We used a standard subtomogram simula-

tion procedure [50,51] and took into account the tomographic reconstruction process with missing

wedges and a contrast transfer function. The simulated imaging condition is similar to real exper-

imental settings [52] with voltage 300 KeV, defocus -5 µm, and spherical aberration 2.7 mm. We

chose five representative macromolecular structures (molecular weights range from 0.3 to 2.3 MDa):

RNA polymerase (PDB ID: 1I6V), rotary motor in ATP synthase (1QO1), proteasome (3DY4), ribo-

some (4V4A), spliceosome (5LQW). Experimental cryo-ET data typically have an SNR below 0.1

[53] and a tilt-angle range around −60◦ to 60◦. For each macromolecular structure, we simulated

400 subtomograms with random orientations and displacements at each SNR (0.1, 0.03, 0.01, 0.003,

and 0.001) and tilt-angle range (±60◦ and ±40◦) to demonstrate the robustness of DISCA to the

image noise and the missing wedge effect.

We performed DISCA on each of the simulated datasets. We evaluated the results by three criteria:

(1) the estimated K with candidate K ranging from 2 to 20; (2) the homogeneity score [54] measuring

how homogeneous each cluster is according to the ground truth labels. We note that the homogeneity

score does not require an equal number of clusters to the ground truth; (3) the prediction accuracy

measuring the percentage of correctly labeled subtomograms. The prediction accuracy can only

be calculated when K is estimated correctly. The results from Table 1 show that DISCA correctly

estimated the true K for eight of the ten datasets except at SNR 0.003 and 0.001 of tilt-angle range

±40◦. As expected, the homogeneity scores gradually decreased with lower SNR and smaller tilt-

angle ranges. However, in all settings, we achieved good results with homogeneity scores higher

than 0.8, which means that the resulting clusters are generally homogeneous. We have conducted

the experiments using randomly initialized models multiple times. The results were similar with

±5% margin, which ensured the reproducibility of our method.

We additionally performed template matching and autoencoder clustering for comparison. As we
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directly simulated the subtomograms, we used a subtomogram alignment method [55] (implemented

in AITom [56]) to align each candidate template to each simulated subtomogram. The template with

the highest alignment score was chosen. For template matching, even though we incorporated prior

domain knowledge of known structural templates and thus K, the results are still worse than DISCA

because template matching is not robust to noise. Under SNR lower than 0.01, template matching

failed with accuracy close to random guess (20%). We previously proposed the first unsupervised

deep learning model to cryo-ET data [57], a convolutional autoencoder that coarsely groups and

filters raw subtomograms. In that paper, we proposed a pose normalization step to normalize the

orientation and displacement of structure inside a subtomogram for better structural grouping. Com-

pared with DISCA, the convolutional autoencoder can only perform coarse grouping with a homo-

geneity score lower than 0.55. This is mainly because DISCA is a significantly more sophisticated

method that involves iterative feature learning and modeling in order to recognize the fine structure

differences between different types of macromolecules.

We further conducted several experiments and demonstrations using simulated dataset SNR 0.01 and

tilt-angle range ±60◦, which is closest to the image condition of experimental datasets as measured

on the Synechocystis cell [36] and Rattus neuron [52] tomograms. In Fig. 3, K was estimated at

4 for early iterations, where some clusters were not separated well. Extracted features gradually

separated out through the iterative learning process. Here, we provided a summary index, Distortion-

based Davies-Bouldin Index (DDBI), modified from the Davies-Bouldin Index [58], as an indicator

measuring the cluster tightness relative to cluster separation. Rather than using Euclidean distance in

the feature space, we used a distorted measure of the distance which takes each cluster’s covariance

into account. The lowest DDBI is achieved at iteration 15, which was kept as the final result.

To verify that the trained YOPO model extracts 3D features that are transformation-invariant to a

large extent, we simulated five subtomograms for each of the five structural classes and then gener-

ated 200 randomly rotated and translated new copies for each subtomograms. The extracted features
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neous particle inputs. The main objective of DISCA is to efficiently sort representative structures

into relatively structurally homogeneous subsets in large-scale datasets to complement these tools.

Therefore, DISCA aims to recognize representative structures in a high-throughput way rather than

to improve the subtomogram average resolution. We tested DISCA on five experimental cryo-ET

datasets from distinct cell types: Rattus neuron [52], Synechocystis [36], Cercopithecus aethiops

kidney [57], Mycoplasma pneumoniae [65], and Murinae embryonic fibroblast [66]. Three of the

datasets were obtained from public repository EMDB [67] and ETDB [66]. Unlike simulated data

of which the ground truth clustering labels can be pre-specified according to the structures enclosed,

the clustering ground truth of subtomograms extracted from experimental cellular tomograms is not

known in most experiments. There are two major commonly accepted ways to validate cryo-ET

structure detection results. One is to align and average each detected structure subsets to recover the

structures and compare them with existing known structures. The other is to compare with structural

biologists’ manual annotations. For all the five experimental datasets, we have done subtomogram

averaging and calculated the gold-standard Fourier shell correlation resolution. Three of the ex-

perimental datasets [36,52,65] have available human experts’ annotations, which require a heavy

amount of manual selection and annotation. The Cercopithecus aethiops kidney dataset has auto-

mated annotation from our previous coarse representation learning method [57]. We have compared

the automated annotation results of DISCA on these annotated datasets in order to validate their re-

sults. The YOPO neural networks on the experimental datasets were all randomly initialized without

any pre-training process to demonstrate the robustness and generalization ability of DISCA.

As shown below, DISCA detected diverse representative structural patterns including macromolec-

ular complexes: ribosome, TRiC, capped proteasome, phycobilisome array, and other cellular struc-

tures: thylakoid membrane, mitochondrial membrane, and calcium phosphate precipitates. The

discovered macromolecular complexes have a wide range of sizes from 1.2 MDa to 4.5 MDa in

molecular weights. The original manuscripts describing these datasets used manual density selec-

tion, template matching, and subtomogram classification to recover the structures. Our unsupervised

structural pattern mining results from DISCA not only covered the previously identified spatial lo-
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calization of various macromolecules well but also validated their results in a highly automatic and

unbiased way. Subtomogram alignment and averaging following DISCA resulted in maps with 14-38

Å resolution range, confirming that template-and-label-free approaches are suited for in situ struc-

tural analyses. We describe the detailed results on these datasets in the following paragraphs.

First, we quantitatively assessed the accuracy of DISCA on the Mycoplasma pneumoniae dataset.

For this dataset of 65 tomograms, obtaining the clean ribosome particles for comparison required

two months of time and heavy computation for traditional 3D template matching, manual curation,

and computational sorting multiple times. The template was obtained by classifying and averaging

some manually picked ribosomes. Then, template matching was performed on tomograms low-pass

filtered to 60 Å resolution and the top 400 hits on each tomogram were selected, resulting in 26,000

total candidate ribosomes. We manually filtered out obvious false positives, such as ones on or out-

side of the bacterial cellular membrane, and checked the rest of them. 18,987 true positives were

left. Although no picking methods can guarantee 100% accuracy for experimental data, here we

denote the precision of the “template matching & manual curation” approach as 100% because ribo-

somes are relatively easy to be identified by human eyes and they have been manually checked. This

follows the common practice of manual detection of target structures in cryo-ET [25]. Nevertheless,

this template matching and manual curation approach still has missing ribosomes as false negatives,

as evidenced by some true ribosomes uniquely detected by DISCA. As shown below, there are about

20% unique true ribosomes detected by DISCA that were missing from template matching detec-

tion. Therefore, we use the total number of true ribosomes detected by both approaches, 23,592, to

calculate the metrics in Table 2. In addition, we would like to note that it is common that experts

estimate that their miss rate is between 10 and 20% on detecting ribosomes by template matching.

This estimation is consistent with our experimental results.

We compared the template matching and manual curation results as well as the raw template match-

ing results with the results from DISCA. In summary, DISCA achieved a high F1 score of 0.893

(Table 2). Furthermore, DISCA detected about 20% of the ribosomes missed by the template match-
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ing and manual curation approach and detected more true ribosomes overall. Fig. 4 compares an ex-

ample raw tomogram slice and the corresponding re-embedding annotations of discovered patterns.

The voxel size of this tomogram is 6.802 Å and the resolution measured on the ribosome average is

14.17 Å. For comparison, we applied template matching, manual curation, subtomogram averaging

and classification by Relion [60] to recover the ribosome structure, which is referred to hereafter

as the template matching approach. We consider two detections as overlapping if their Euclidean

distance is smaller than 8 nm. Under this criterion, 96.9% of the 18,987 ribosomes detected by

template matching are included in the 198,715 subtomograms extracted by template-free particle

picking.
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We further investigate the 6,768 ribosomes uniquely detected by DISCA. To assess how many of

them are truly ribosomes, we used Relion subtomogram classification function to classify them into

4 classes. As shown in Fig. 4 B, class 1, 2, and 3 clearly correspond to the ribosome structure,

whereas class 4 cannot be identified. Therefore, the 4,645 subtomograms in class 1, 2, and 3 are

likely to be true positives missed by the template matching approach. For comparison, there are

2,843 ribosomes uniquely detected by the template matching approach. Since this number is about

half of the 6,768 ribosomes uniquely detected by DISCA, we classified them into 2 classes using

the same Relion procedure. The results shown in Fig. 4 B confirmed that they are truly ribosomes.

Therefore, we empirically determined that DISCA has a false-positive rate of 9.3% and a false-

negative rate of 12.1% (3.1% due to the particle picking preprocessing step). Moreover, DISCA

detected about 20% of ribosomes missed by the template matching approach. There are 23,592

true ribosomes detected by DISCA and template matching in total, which corresponds to our esti-

mated number of all ribosomes in these 65 Mycoplasma pneumoniae cellular tomograms. Overall,

DISCA detected more true ribosomes than template matching (20,749 vs 18,987). We note that here

we used Relion for averaging the subtomograms into multiple classes only for validation purposes.

The subtomogram averaging results shown in all figures correspond to averaging each cluster into

only one class using Relion 3.0. Figure 4B is the only exception in which we needed to perform

subtomogram classification and averaging by Relion to inspect the ribosomes uniquely detected by

DISCA.

Table 2: Quantitative comparison of ribosome detection by two approaches on the Mycoplasma pneumoniae

dataset.

DISCA Raw template matching
Template matching &

manual curation
Total picked 22,875 26,000 18,987
Unique 6,768 - 2,843
True in unique 4,645 - 2,843
True positives 20,749 18,987 18,987
False negatives 2,843 4,605 4,605
Precision 90.7% 73.0% 100%
Recall 87.9% 80.5% 80.5%
F1 score 0.893 0.766 0.892
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Then, we visualize the unsupervised structural pattern mining example results on the other four

datasets in Fig. 5. Overall, the results obtained from DISCA validated the results reported in the

original articles of these datasets: (1) On the Rattus neuron tomograms, based on their prior knowl-

edge, the authors applied manual subtomogram picking, subtomogram classification and averaging,

and iterative template matching to recover three macromolecular complexes: ribosome, proteasome,

and TRiC (Figure 2 in [52]). DISCA produced similar macromolecular complexes detection results

(Fig. 5 A) as well as detection of obvious subcellular structural patterns including mitochondrial

membrane and calcium phosphate precipitate. We obtained the template matching with selection by

Relion classification results on three tomograms of this dataset from the authors [52] and performed

a quantitative comparison (Table 3. Cluster size: the number of subtomograms in the corresponding

DISCA cluster; overlap: number of overlapping subtomograms with template matching detection;

template matching: number of detected particles by template matching; F1 score is calculated based

on the overlapping results by the two approaches). Similar to the Mycoplasma pneumoniae dataset,

the result on ribosome detection is promising (∼ 0.85 F1 score). The results on proteasome and

TRiC detection are not as good but satisfactory (∼ 0.5 F1 score). The potential reason is that de-

tecting smaller macromolecules is still very challenging for both template matching and DISCA.

(2) On the Synechocystis cell tomograms, the authors applied manual picking and several rounds

of subtomogram averaging and template matching to detect and annotate the membrane-associated

phycobilisome array and ribosome structures. We note that the subtomogram averages in the original

article were produced from 20 tomograms whereas we only have two public available tomograms

with no expert annotation to quantitatively compare with. The subtomogram averaging on the sorting

results of DISCA is not ideal but the automated annotation results of DISCA (Fig. 5 B) are similar

to the annotation results in the original article (Figure 1 in [36]). (3) On the Cercopithecus aethiops

kidney cell tomograms, the authors reported coarse discovery of globular and surface patterns us-

ing an autoencoder clustering model. However, the ribosome-like globular pattern is of very low

resolution, which is probably due to the impurity of the resulting clusters. DISCA showed notable

improvement of ribosome-like globular pattern and membrane pattern (Fig. 5 D) on this dataset as
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compared to Figure 11 and S5 of the original article. (4) The Murinae embryonic fibroblast tomo-

grams are obtained from ETDB [66] but there is no existing research publication on this dataset.

We discovered biologically meaningful structural patterns including single and double membranes

and ribosomes (Fig. 5 C) on this dataset. For all the macromolecular structures, we plot the gold-

standard Fourier Shell Correlation (FSC) curve of the subtomogram averages and visual comparison

with existing solved structures from the Protein Databank in (SI Appendix, Fig. S9-S16).

Table 3: Quantitative comparison of the three macromolecular complexes detection on the Rattus neuron
dataset. Numbers in parenthesis denote quantity and statistic with respect to particles picked by the DoG
methods.

Cluster size Overlap Template matching F1
Ribosome 1,127 884 1,015 (968) 0.845 (0.864)
Proteasome 77 40 98 (81) 0.462 (0.512)
TRiC 188 75 143 (117) 0.453 (0.492)

We note that the preprocessing step Difference of Gaussians (a variant of the Laplacian of Gaussian)

is a conventional used particle picking method in cryo-ET. Because structures in cryo-ET data are

very complex with very low SNR, DoG picks all possible particles, which tends to have many false

positives such as pure noises. That is the rationale behind the proposed framework: to efficiently

sort the large number of heterogeneous particles into relatively homogeneous subsets. In our exper-

iments, we defined the recognition of a structure to be (1) with averaging resolution better than 40

Å and (2) the average can be visually identified as a certain type of structure. Based on the averages

we show that met these two criteria, about 30% of particles can be recognized.

In terms of time cost, DISCA is a very efficient method for processing a large amount of data both

theoretically (overall time complexity O(N), where N is the number of samples, SI Appendix) and

practically: on the Mycoplasma pneumoniae cell dataset of 65 tomograms, DISCA took less than a

day to sort 198,715 template-free picked subtomograms (binned to 243 voxels of 13.33 Å spacing).

With trained DISCA models, the prediction on new data is very fast and can process millions of

such sized subtomograms in less than an hour. Moreover, since the resulting clusters sorted by

DISCA consist of relatively homogeneous structures, the post-processing subtomogram averaging

step also becomes more efficient. This is because we only need to average each cluster into a single
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map instead of performing subtomogram classification and averaging into multiple class averages.

On the Mycoplasma pneumoniae cell dataset, the subtomogram averaging only took one day to

finish.
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3 Discussion

We describe a high-throughput unsupervised structural pattern mining framework for cryo-ET data.

DISCA can efficiently produce meaningful structures from large-scale datasets that encompass very

heterogeneous structures without any prior knowledge, which constitutes the first major step for

unsupervised structure determination in situ. The noteworthy missing wedge effect in cryo-ET is

addressed by the robust network architecture design and the self-supervision step in DISCA, which

is discussed in detail in the Methods section. We demonstrate the performance of DISCA on five

cryo-ET datasets of different cell types. We find that the structures discovered by DISCA were

similar to previously reported ones recovered with highly intensive computational and manual pro-

cessing.

A major limitation of DISCA comes from its operation on picked subtomograms. Ideally, subto-

mograms at every voxel should be analyzed. However, this requires the processing of billions of

particles which is computationally infeasible. Although the particle picking step introduces some

false positives and negatives, we deem that its trade-off for efficiency is acceptable. Moreover, the

vast majority of particles at every single voxel contains background noise or structures that are too

small to unambiguously identify in cellular cryo-tomograms. Including them into the sorting process

will bias the model towards distinguishing structures from background instead of the difference be-

tween structures. As different macromolecular structures have different sizes, in our experiments, we

used a fixed subtomogram box size that could enclose most macromolecular structures. To avoid the

issue of structures being clipped, we note that it is possible to (1) extract larger-sized subtomograms

for DISCA or (2) use the same subtomogram size for DISCA and extract larger-sized subtomograms

for post-processing averaging.

Another limitation of subtomogram operation is the analysis of large continuous structures such

as membranes. The embedding of subtomogram averages will appear broken into small pieces as

in Fig. 5. Since the DISCA detection of membrane subtomograms is sufficiently accurate, this

limitation can be easily addressed by performing membrane segmentation on the subtomograms
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rather than averaging them, which will produce a realistic continuous annotation of the membrane

structure such as the one in Supplementary Fig. S8.

A major concern with unsupervised methods is their training stability. From our experience, the

training in DISCA is generally stable due to the initializers used: orthogonal kernel initializer

and zero bias initializer were used for YOPO. The training stability ensures the reproducibility of

DISCA. In practice, to obtain the optimal sorting performance, the users could either run DISCA

multiple times and keep the results with the lowest DDBI metric or keep a DISCA model success-

fully pre-trained on existing datasets and fine-tune on new datasets.

In terms of methodological parsimony, DISCA requires no manual intervention or selection of exist-

ing structural templates for matching. The template-and-label-free nature of DISCA offers maximal

automation and objectivity. Overall, the performance demonstrates that DISCA is a reasonable al-

ternative for cryo-ET structure discovery when manual annotation or prior knowledge of a dataset

is lacking, as well as a robust tool to validate existing template-based results. By quickly detecting

representative homogeneous structural subsets in a cryo-ET dataset, DISCA can also serve as a pre-

processing step to complement the standard template matching and subtomogram average pipeline.

Although DISCA automatically detects abundant and representative cryo-ET particles, researchers

are sometimes interested in rare macromolecules or certain types of target protein. The ability of

DISCA in detecting relatively rare structures has been quantitatively demonstrated on the TRiC and

proteasome structures in Table 3. Additionally, the users could (1) combine DISCA and template

matching to search for certain target proteins; or (2) extend DISCA to multi-stages in which abundant

particles are first detected and excluded and apply DISCA again to sort the remaining particles. In

conclusion, DISCA shows the promise of high-throughput cryo-ET structural pattern mining for dis-

covering abundant and representative structures systematically. The proposed framework will allow

researchers to fully leverage state-of-the-art cryo-ET imaging infrastructure and workflows.
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Implementation details

The implementation details, including those of the pre-processing particle picking step and the

post-processing subtomogram averaging and embedding alignment steps, are described in SI Ap-

pendix.

Data source

The Rattus neuron dataset is obtained from [52]. The Synechocystis dataset is obtained from EMDB

[67] EMD-4603 and EMD-4604 [36]. The Cercopithecus aethiops kidney dataset is obtained from

[57]. The Murinae embryonic fibroblast is obtained from ETDB [66] with MefB cell line from O.

Loson in Chan Lab. The Mycoplasma pneumoniae dataset was acquired as described previously

[65]. Tomograms were reconstructed and denoised using Warp [68]. The original tilt-series data

is available via EMPIAR-10499. The Rattus neuron, Synechocystis, and Mycoplasma pneumoniae

datasets were collected with Volta phase plates.

Code availability

To directly benefit the cryo-ET research community, all the code is available in our open-source

cryo-ET data analysis software AITom [56]. User-friendly tutorials is provided on how to apply

our models to users’ own datasets. Currently, we have disseminated most of our existing published

algorithms into AITom. There are more than 20 tutorials provided in AITom for different cryo-ET

analysis tasks with more than 30,000 lines of codes mainly written in python and C++. AITom is

also being integrated with the software Scipion [? ] as a plugin.

Data availability

The subtomogram average of macromolecular complexes from the Rattus neuron dataset and the

Mycoplasma pneumoniae dataset have been deposited in the EM Data Bank with accession numbers

EMD-40043, -40087, -40089, and -40090. The raw datasets can be obtained according to Data

source. The trained models, demo data, and other generated data are available in AITom [56].
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4 Methods

4.1 Rotation and translation invariant feature extraction

One important characteristic of subtomogram data is that the structure enclosed is randomly oriented

and exhibits small random displacement. To cluster multiple copies of the same structure in different

orientations and displacements together into the same subset, YOPO must be able to extract features

invariant to both translation and rotation.

The rotation invariance was achieved by self-supervised learning for enforcing a CNN to be invariant

to certain geometric transformations of the input and improving its generalization ability. In each

iteration, alongside the original input subtomogram, a randomly rotated copy of the subtomogram

is also fed into YOPO for training. The label of the randomly rotated copy stays the same. By

doing so, the rotation invariance of YOPO is enforced through back-propagating the loss gradient.

Although having a full range of exhaustive sampling of rotation angles for data augmentation would

force the network to learn the highest level of rotational invariance but there is a trade-off with

the amount of computation. We do not have a pre-set range of rotation angles used. Instead, a

3D rotation is randomly sampled from all possible 3D rotation angles. Then, in each iteration, the
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randomly sampled 3D rotation is applied for each subtomogram input to generate a rotated copy.

Our current design already achieves a satisfactory level of rotational invariance as demonstrated in

our experiments in Fig. 3B. In addition, because an input subtomogram is a 3D cubic volume, there

will be empty regions in the corner of rotated subtomogram copies with sharp edges along the border

of the empty regions. These artifacts, creating features with no structural meaning, will negatively

affect the training of the neural network. During the self-supervision step, the empty region of the

rotated subtomogram is filled with Gaussian white noise to avoid sharp edge artifacts. The Gaussian

white noise has a mean zero and standard deviation one, same as the normalized image intensity

distribution of the input subtomogram data.

The translation invariance is already achieved in the architecture design of YOPO by the global max-

pooling layer. The convolution operations yc are translation equivariant: the extracted feature maps

of an input subtomogram sn translated by tθ will be the same as translating the extracted feature maps

from the original subtomogram by tθ : yc(tθ (sn)) = tθ (yc(sn)). Then, because the global max-pooling

layer yg computes the global maximum from a feature map, which is translation invariant, the output

from the global max-pooling layer is translation invariant to the input subtomograms: yg(tθ (sn)) =

yg(sn). Denoting YOPO feature extraction from a subtomogram as: y(sn) = y f ◦ yg ◦ yc(sn), where

yc denotes the sequence of convolutional layers, yg the global max-pooling layer, and y f the fully

connected layer, we have:

y(tθ (sn)) = y f ◦ yg ◦ yc(tθ (sn)) = y f ◦ yg(tθ (yc(sn))) = y f ◦ yg(yc(sn)) = y(sn). (1)

As a result, the final extracted feature vectors are translation invariant to the input subtomograms.

This property, y(tθ (sn)) = y(sn), holds for all input data sn and all network weights of y. In other

words, this translation invariance is independent from the network weights and input data.

Transformation invariance is desired because if the feature vector changes when the orientation and
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displacement of a subtomogram structure change, it is not easy to cluster the same type of structures

together. For neighbor structures in a subtomogram, first, due to the small size of a subtomogram, it

is likely that only a small part of a neighbor structure exists in a subtomogram. Therefore, their in-

fluence on the extracted feature vectors is limited. Second, in the data augmentation self-supervision

step, the subtomogram is randomly rotated, which helps to ignore the influence of neighbor struc-

tures located at the corner of the subtomogram.

When designing YOPO, we have tested alternative architectures such as 3D InceptionNet and ResNet

as feature extractors, and incorporated other layers including max-pooling, average pooling, global

average pooling, flatten, and conventional dropout layers into the network design. The final YOPO

design was based on empirically comparing alternative architectures.

4.2 Statistical modeling of structurally homogeneous subsets in feature

space

Recent works [69,70] have shown that second-order statistics in CNNs—for instance, the covariance

between features—are vital for differentiating between different visual patterns. Accordingly, simple

clustering algorithms such as K-means or hierarchical clustering which do not consider second-order

statistics are not suitable. Another notable class of clustering algorithm is density-based clustering

such as DBSCAN [71]. DBSCAN has the advantage of automatically determining the number of

clusters and filtering out noisy samples. However, it has two disadvantages for our task: (1) same as

K-means, it does not consider second-order statistics; and (2) it needs to calculate pair-wise distances

between all samples, resulting in time complexity of O(nlog n), which is not scalable to large-scale

datasets.

To fully capture the feature covariance information, after extracting the translation and rotation

invariant features from the input subtomograms by YOPO, we model the learned feature vec-

tors for each representative structural pattern as a multivariate Gaussian distribution in the feature

space.
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In greater detail, given a set of N subtomograms sn ∈ S extracted from a dataset of tomograms V , the

YOPO network y extracts feature vectors xn = y(sn), xn ∈ R
P from each subtomogram, where P is

the dimensionality of the feature space. We model the distribution of the data point xn as a mixture

of K multivariate Gaussian distributions. The mixture distribution’s probability density fg is defined

as:

fg(xn;φ ,µ,Σ,K) =
K

∑
k=1

φkg(xn; µk,Σk). (2)

In Eq. 2, φk is the prior probability of sampling xn from the kth component. The prior probability for

each component is initialized randomly and optimized along with other model parameters. The kth

component is a multivariate Gaussian distribution g with mean µk and covariance matrix Σk. Hence,

the posterior probability of sampling xn from the kth component is ρk(xn) =
φkg(xn;µk,Σk)

∑
K
i=1 φig(xn;µi,Σi)

. Solving

the model in Eq. 2 provides the probability ρk(xn) of feature vector xn being sampled from each

component distribution g(xn; µk,Σk). g(xn; µk,Σk) has its own covariance matrix Σk to distinguish

between different structural patterns. The component k̂ = argmax
k∈1,...,K

ρk(xn) is the highest posterior

probability among all components. k̂ will be used as the class label for subtomogram sn in the

clustering solution.

4.3 Iterative dynamic labeling

A potential issue is that, unlike in supervised learning, where training data labels are fixed, the

YOPO training data labels are dynamic. In other words, there will inevitably be mislabeled data

when training YOPO, especially in the early iterations. To address this issue, we adapt the label

smoothing regularization technique [72] to make the YOPO training less prone to mislabeled data.

The smoothed one-hot encoding of training labels is: lls = (1−α)∗ lhot +
α
K

, where K is the number

of clusters, lhot is the original one-hot encoding of training labels, and α is the smoothing factor. The

larger the label smoothing factor α , the less certain the model prediction.

Moreover, the estimated K is also dynamic in different iterations. We need to enable YOPO to
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output different class numbers during the training. When the estimated K differs from the previous

iteration, we replace the last layer, the classification layer, with a new one with the current estimated

K number of nodes. Because the new classification layer has randomized initial weights, we train its

weights with the fixed current extracted features as input to reach consistency between its prediction

and current estimated labels.

Further details and discussion of Distortion-based Davies-Bouldin index (DDBI), automatic esti-

mation of the number of structurally homogeneous subsets, matching clustering solutions, missing

wedge effect, and time cost and complexity analysis can be found in the SI Appendix.
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