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THE WEIERSTRASS-DURAND-KERNER ROOT FINDER IS NOT GENERALLY
CONVERGENT

BERNHARD REINKE, DIERK SCHLEICHER, AND MICHAEL STOLL

ABSTRACT. Finding roots of univariate polynomials is one of the fundamental tasks
of numerics, and there is still a wide gap between root finders that are well under-
stood in theory and those that perform well in practice. We investigate the root-
finding method of Weierstrass, also known as the Durand-Kerner-method: this is a
root finder that tries to approximate all roots of a given polynomial in parallel. This
method has been introduced 130 years ago and has since then a good reputation
for finding all roots in practice except in obvious cases of symmetry. Nonetheless,
very little is known about its global dynamics and convergence properties.

We show that the Weierstrass method, like the well-known Newton method, is
not generally convergent: there are open sets of polynomials p of every degree d >
3 such that the dynamics of the Weierstrass method applied to p exhibits attracting
periodic orbits. Specifically, all polynomials sufficiently close to Z3 + Z + 175 have
attracting cycles of period 4. Here, period 4 is minimal: we show that for cubic
polynomials, there are no periodic orbits of length 2 or 3 that attract open sets of
starting points.

We also establish another convergence problem for the Weierstrass method: for
almost every polynomial of degree d > 3 there are orbits that are defined for all
iterates but converge to oo; this is a problem that does not occur for Newton’s
method.

Our results are obtained by first interpreting the original problem coming from
numerical mathematics in terms of higher-dimensional complex dynamics, then
phrasing the question in algebraic terms in such a way that we could finally answer
it by applying methods from computer algebra. The main innovation here is the
translation into an algebraic question, which is amenable to (exact) computational
methods close to the limits of current computer algebra systems.

1. INTRODUCTION

Finding roots of polynomials is one of the fundamental tasks in mathematics that
is highly relevant for the theory of many fields, as well as for numerous practical
applications. Since the work of Ruffini-Abel, it is clear that in general the roots
cannot be found by finite radical extensions, so numerical approximation methods
are required. One may find it surprising that, despite age and relevance of this
problem, no clear algorithm is known that has a well-developed theory and works
well in practice.
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There are “algorithms” (in the sense of heuristics) that seem to work in practice
fast and reliably, among them the methods by Weierstrass (also known as Durand-
Kerner) and Ehrlich-Aberth. These are both iterations in as many variables as the
number of roots to be found, and are supposed to converge to a vector of roots
under iteration. They are known to converge quadratically resp. cubically near the
roots (at least when all roots are simple), but have essentially no known global the-
ory. Then there are algorithms such as Pan’s [Pan02] that have excellent theoretical
complexity (optimal up to log-factors), but they cannot be used in practice because
of their lack of stability.

An interesting method is Newton’s, which may well be the best-known method;
it approximates one root at a time. This is a simple method that is stable and
converges quadratically near simple roots, so it is often used to polish approximate
roots. However, it is an iterated rational map, so it is “chaotic” on its Julia set, and
its global dynamics is hard to describe. In particular, it is well known to be not
generally convergent: there are open sets of polynomials and open sets of starting
points on which the Newton dynamics does not converge to any root, but rather to
an attracting periodic orbit (“an attracting cycle”) of period 2 or higher. Its use has
thus often been discouraged. However, in recent years quite some theory has been
developed about its global dynamics and its expected (rather efficient) speed of
convergence. At the same time, it has been used in practice successfully to find all
roots of polynomials of degree exceeding 10° in remarkable speed. Some of these
results are described in Section 2. Therefore, Newton’s method stands out as one
that at the same time has good theory and performs well in practice.

The focus of our work is on the Weierstrass iteration method [Wei91, Dur60,
Ker66]. For this method, we are not aware of any global theory of its dynamics, but
it is well known that in practice it usually finds all roots of a complex polynomial
(except in the presence of obvious symmetries: for instance, when the polynomial
is real but some of its roots are not, then any purely real vector of starting points
cannot converge to the roots because the method respects complex conjugation).

Our first result stands in contrast to the positive experience.

Theorem A (The Weierstrass method is not generally convergent).

(1) There is an open set of polynomials p of every degree d > 3 such that the
(partially defined) Weierstrass iteration W,,: C* — C? associated to p has
attracting cycles of period 4. In particular, the Weierstrass method is not
generally convergent for polynomials of degree at least 3.

(2) Period 4 is minimal with this property: for every cubic polynomial p the Weier-
strass iteration W,: C3 — C3 associated to p cannot have an attracting cycle
of period 2 or 3.

Quite specifically, for all polynomials close to Z3 + Z 4+ 175 there is an open set
of starting vectors that converges to a 4-cycle, rather than to the roots. We provide
an explicit proof in Corollary 5.7.

Theorem A answers in the affirmative a question asked by Steve Smale: he ex-
pected the existence of attracting cycles in the 1990’s, if not earlier, in analogy to
the Newton dynamics (Victor Pan, personal communication).

Following McMullen [McM87], we say that a root-finding method in one variable
is generally convergent if, for an open dense set of polynomials of fixed degree, there
is an open dense set of starting points in C that converge to one of the roots. To
our knowledge, the only known way to establish failure of general convergence is
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to find a polynomial p that, under the given iteration method, has an attracting
periodic orbit (an “attracting cycle”) of period n > 2. This attracting cycle must
attract a neighborhood of the cycle, and it would persist under small perturbations
of p, so convergence to a root fails on an open set of starting points for an open set
of polynomials. Therefore, our theorem establishes that the Weierstrass method is
not generally convergent for polynomials of degrees 3 or higher. (Other ways of
failure of general convergence are of course conceivable but have apparently never
been observed).

It is well known that the Weierstrass method has another problem: some orbits
are not defined forever. The Weierstrass method W,,: C¢ — C? is not defined
whenever two coordinates in C? coincide; this problem may occur even after any
number of iteration steps from a starting vector with distinct entries.

Our second main result establishes the existence of a very different kind of prob-
lem for the Weierstrass method that apparently was not known: there are orbits
in C? for which the iteration is always defined that converge to oo (in the sense
that the orbit leaves every compact subset of C%). This problem exists (at least) for
every polynomial of degree d > 3 that has only simple roots. In fact, we prove a
slightly stronger result; see Section 3.3.

Theorem B (The Weierstrass method has escaping points). For every polynomial p
of degree d > 3 with only simple roots, there are vectors in C* whose orbits under W,
tend to infinity. The set of escaping points contains a holomorphic curve.

We have subsequently established the existence of similar escaping orbits also
for the Ehrlich—-Aberth-method, as well as for the Weierstrass method in which the
components of the approximation vectors in C? are updated immediately upon
computation (Gauss-Seidel update scheme); see [Rei22]. In the present paper, we
consider simultaneous updates of all components (Jacobi update scheme).

It might be interesting to observe that this problem does not exist for Newton’s
method: here, oo is a “repelling fixed point”, and all points sufficiently close to oo
will always iterate closer toward the roots. For degenerate polynomials like Z +—
74, all Newton orbits converge to the single root, while Weierstrass has escaping
orbits even for Z +» Z3 (see Remark 3.12).

We cannot resist stating an analogy to the dynamics of transcendental entire
functions in one complex variable: all such functions have escaping points (points
that converge to co under iteration); see [Eré89]. Already Fatou observed that in
many cases, the set of escaping points contains curves to co; in the 1980’s Ere-
menko raised the conjecture that all escaping points were on such curves to oc.
This conjecture was established for many classes of entire functions, and disproved
in general, in [RRRS11]. It is plausible that the set of escaping points for ¥, has
the following property: every escaping point can be joined with co by a curve con-
sisting of escaping points.

There is a substantial body of literature on root finding in general, and on back-
ground on our methods in particular. In particular, there is an excellent survey by
Pan [Pan97] about various known methods and their properties, with a recent up-
date [Pan21]; let us also mention the survey by McNamee [McNO2] and the book
series [McNO7,MP13], as well as the references in all these papers.
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Structure of this paper. In Section 2, we describe some background on Newton’s
method and its properties, in order to describe analogies and to build up some in-
tuition. Basic properties of the Weierstrass method are then described in Section 3.
In particular, we discuss escaping points for the Weierstrass method, starting with
the simple polynomial Z +— Z3, and give a proof of Theorem B.

In Section 4, we describe some algebraic properties of the Weierstrass method
and its periodic points. In the final Section 5 we focus on the case of cubic polyno-
mials, giving an explicit description of periodic points of low periods; in particular
we give a proof of Theorem A.

Notation and conventions. All our polynomials will be univariate and over the
complex numbers, so we have polynomials p € C[Z] (the indeterminate variable
will usually be called Z). The associated Newton map is denoted N, the Weier-
strass map W,,. In general, we denote the n-th iterate of a map F' by F°". When
we want to highlight that a point z € C? is a vector, we write z for (z1,...,24). The
Jacobi matrix of a map F at a point z is denoted D(F),.

A polynomial p € C[Z] is monic if its leading coefficient equals 1; that means, if
the roots of p are av, ..., aq, that p(Z) = [[;(Z — «;). It turns out that both for
Newton and for Weierstrass, it is sufficient to consider monic polynomials.

2. NEWTON’S METHOD AND ITS PROPERTIES

Even though the main results in this paper are about the Weierstrass method, we
provide a review of the Newton method in order to build up intuition and explain
analogies, especially since some of these analogies were guiding us in our research.
Interestingly, much more is known about the global dynamics of Newton’s method
than about the Weierstrass method.

Newton’s method is perhaps the most classical root-finding method. One of its
virtues is its simplicity: to find roots of a monic polynomial p(Z) = [[;(Z — o),
update any approximation z € C to a root by

-1

2.1 Ny(z) =2z — p(z) =z— Z !

p'(2) 2 a

and hope that the new number is a better approximation to some root, at least after
a few more iterations. Of course, as long as the roots of p are not known, it is the
expression in the middle of (2.1) that is used to evaluate the Newton iteration. The
right hand side involving the roots cannot be computed, but it may be helpful in
analyzing the properties of the Newton map. Since only the expression p/p’ enters
into the Newton formula, there is no loss of generality in considering only monic
polynomials.

An important property of Newton’s method is its compatibility with affine trans-
formations. We denote the space of all monic polynomials of degree d with complex
coefficients by P/; this is an affine space of dimension d. It can be identified with C?
by taking the coefficients of Z* for k = 0,1,...,d — 1 as coordinates. Alternatively,
it can be seen as the quotient S;\C?, where C? parameterizes the d roots and
the symmetric group S, acts by permutation of the coordinates on C?. The group
Aff(C) of affine transformations of C acts on P/, via its action on the roots of the
polynomials.
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Lemma 2.1 (Newton’s method and affine transformations). If p is a polynomial and
T:C — C, z+— az+ 5, is an affine transformation, then

Np,=ToN,oT™
i.e., the Newton dynamics for p and T'p are affinely conjugate via T.

Proof. The defining equation (2.1) can be written as

1 1
z — Np(2) _Zz—uj’

where the «; are the roots of p. From this, the claim is obvious. O

Lemma 2.1 shows that the dynamics of N, is conjugate (and therefore essentially
unchanged) if we replace p by another polynomial in its orbit under Aff(C). So the
true parameter space Py, i.e., the space of polynomial Newton maps up to affine
conjugation, is the quotient of P/ by the action of Aff(C). This quotient is not a
nice space: the polynomials with a d-fold root have a one-dimensional stabilizer
under Aff(C), whereas for all other polynomials, the stabilizer is finite. This implies
that the closure of any point in P, contains the point e representing the polynomials
with d-fold roots. Removing this point, however, results in a reasonable space,
which has complex dimension dim P, — dim Aff(C) = d — 2.

There are two fairly natural ways to construct this space. We can use the ac-
tion of Aff(C) to move two of the roots to 0 and 1. The remaining roots form
a (d — 2)-tuple of complex numbers specifying the polynomial. This representa-
tion is not unique, since we can re-order the roots (and then normalize the first
two roots again). This gives an action of the symmetric group S;, and we obtain
Py \{e} = S4\C? 2. We can also use the translations in Aff(C) to make the polyno-
mial centered, i.e., such that the sum of the roots is zero; equivalently, the coefficient
of Z?~! vanishes. The set of such polynomials can be identified with C4~!. This
leaves the action of C* by scaling the roots, which has the effect of scaling the
coefficient of Z* by \¥~* (for k = 0,...,d — 2). Leaving out the origin of C¢~!
(it corresponds to the “bad” polynomials), we obtain P, \ {e} as the quotient of
C4=1\ {0} by this C*-action. The resulting space is a weighted projective space of
dimension d — 2 with weights (2,3, ..., d).

We now fix a period length n. Then the space

Pa(n) = {(p,q) € Pq x C: ¢ has period n under N,}

is a finite-degree cover of Py ; it particular, it also has dimension d — 2. On Pg(n)
we have the holomorphic map p4: (p,q) = (N,")'(¢) associating to each point ¢
of period n its multiplier. It is a standard fact that the cycle consisting of ¢ and its
iterates is attracting (i.e., there is an open neighborhood U of ¢ such that for all
z € U, the sequence (N;""(2))m>0 converges to ¢) if and only if |4 (p, ¢)| < 1.

A great virtue of Newton’s method is its fast local convergence: close to a simple
root, the convergence is quadratic, so the number of valid digits doubles in every
iteration step. Therefore, Newton is often employed for “polishing” approximate
roots (once the roots have been separated from each other). Yet another virtue is
that it can be applied in a great variety of contexts, in many dimensions as well as
for maps that are smooth but not analytic.

However, Newton’s method is not an algorithm but a heuristic: it is a formula
that suggests a hopefully better approximation to any given initial point z. This
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formula says little about the properties of the global dynamics, which is an iterated
rational map. As such, it has a Julia set with “chaotic” dynamics, and which may
well have positive (planar Lebesgue) measure. Worse yet, Newton’s method can
have open sets of starting points that fail to converge to any root, but instead
converge to periodic points of period 2 or higher. Therefore Newton’s method fails
to be generally convergent. The problems occur even in the simplest possible case:
for the cubic polynomial p(Z) = Z* — 27 + 2, the Newton method has an attracting
2-cycle, as illustrated in Figure 1. Steven Smale had observed this phenomenon,
and he asked for a classification of such polynomials [Sma85, Problem 6 on p. 98].
Partially in response to this question, a complete classification of all (postcritically
finite) Newton maps of arbitrary degrees was developed in [LMS22]; in particular,
it implies the following result.

Proposition 2.2 (Polynomials with attracting periodic orbits). For every degree
d > 2, the Newton map of a degree d polynomial can have up to d — 2 attracting
periodic orbits that are not fixed points, and the periods can independently be arbi-
trary numbers 2 or greater. This bound is sharp.

This is a rather weak corollary of the general classification result of postcriti-
cally finite Newton maps, in which the dynamics can be prescribed with far greater
precision. Here we give a heuristic explanation.

The upper bound comes from a well-known fact in holomorphic dynamics. The
Newton map N, of a polynomial p with d distinct roots (of possibly higher multi-
plicity) is a rational map of degree d, and as such it has 2d — 2 critical points. Each
of the roots of p is an attracting fixed point and must attract (at least) one of these
critical points, so up to d — 2 “free” critical points remain. Each attracting cycle of
period at least 2 must attract one of these critical points; thus the bound.

For the lower bound, to establish that up to d—2 cycles of period at least 2 can be
made attracting, the fundamental observation is that the multipliers of these cycles
form a map from (d — 2)-dimensional parameter space to a (d — 2)-dimensional
space of multipliers, so under conditions of genericity one expects this map to have
dense image. This will be not so for Weierstrass; see Section 3.

Newton’s method for polynomials of degree 1 is trivial: the Newton map is the
constant map with value at the root. For degree 2, the dynamics is very simple as
well; we note this here for later use.

Lemma 2.3 (Newton’s method for quadratic polynomials). If p is a polynomial of
degree 2 with distinct roots, then N, is conformally conjugate to the squaring map
z + 2% on the Riemann sphere. In particular, N, has periodic orbits of each exact
period at least 2, none of which are attracting.

Proof. By Lemma 2.1, we can take p(Z) = Z? — 1. Then

22 + 1 -1 2 .

5 =T ' (T(z)?) with T(z)= 1
Now fix n and let w be a primitive (2" — 1)-th root of unity. Then w has exact
order n under the squaring map, so 7~ !(w) has exact order n under N,. The
multiplier of w as a point of order n is 2", and this is the same as the multiplier
of T~!(w) under N,,. O

z+1
Np(z) =

For completeness, we might note that the Newton map for a quadratic polyno-
mial with a double root is conformally conjugate to z — z/2.
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FIGURE 1. For every degree d > 3 and every period m > 2 there
is a polynomial p of degree d so that IV, has a periodic point of
period m that attracts a neighborhood of each of its points. Left:
The Newton dynamics plane for p(Z) = Z3—2Z+2, where N,(z) =

3 3 . . .
22242 = 22,22 has an attracting 2-cycle 0 — 1 — 0; its basin

is shown in black. Right: Detail near center.

z —

Positive results about Newton’s method. Meanwhile, there is a substantial body
of knowledge about the global dynamics of Newton’s method, in stark contrast to
the Weierstrass method. Here we mention some of the relevant results.

For the Newton dynamics N,, any particular orbit may or may not converge
to a root. However, one can estimate that asymptotically at least a fraction of
1/(2log2) =~ 0.72 of randomly chosen points in C will converge to some root
(see [HSSO1, Section 4]). More explicitly, for every degree d there is a universal
set S, of starting points that will find, for every polynomial p of degree d, normal-
ized so that all roots are in the unit disk, all the roots of p under iteration of N,. This
set is universal in the sense that it depends only on d, and it may have cardinality as
low as 1.1d(log d)? [HSSO1]. If one accepts probabilistic results, then cd(loglog d)?
starting points are sufficient to find all roots with guaranteed probability of success,
where ¢ depends only on this probability [BLS13]. Upper bounds on the complex-
ity of Newton’s method to find all roots with prescribed precision ¢ in terms of the
required number of Newton iterations were established in [Sch16,BAS16]; they
can be as good as O(d?*(logd)* + dlog|loge|), which is close to optimal when the
starting points are outside a disk containing the roots (the complexity in terms of
arithmetic operations is comparable except for log d-factors).

In addition to these strong theoretical results, Newton’s method has also been
used successfully in practice for finding all roots of polynomials of degrees exceed-
ing 10° [SS17,RSS17], and it is interesting to compare experimentally the perfor-
mance of the Newton and Ehrlich-Aberth methods; see [SCRT20]: depending on
the complexity of the evaluation of an input polynomial and on the location of its
roots, one or the other method may be faster.

Finally, we might mention that there are several other complex one-dimensional
root-finding iteration methods. In particular, there are families of approximation
methods of all orders that were investigated by Schroder and Konig in the 19th
century [Sch70, K6n84], of which Newton’s method is only the first case (see for
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instance [PPH10,BHO03]; these methods are called the “basic family” in [Kal09]).
However, there is a theorem by McMullen [McM87] that no one-dimensional root-
finding method can be generally convergent. It is natural to ask whether a similar
result holds also for root-finding methods in several variables.

3. THE WEIERSTRASS METHOD

The Weierstrass root-finding method, also known as the Durand-Kerner method,
tries to approximate all d roots of a degree d polynomial simultaneously (unlike
the Newton method, which approximates only one root at a time). Recall that 7}
is the space of monic polynomials of degree d. Let p € P). Then the Weierstrass
root-finding method consists of iterating the (partially defined) map W,: C¢ — C¢,
z — 2', where the components zj, of 2’ are given in terms of those of z by

plze)
Hj;ék(zk o))
This map is defined for all z € C?\ A, where A is the “big diagonal”

(3.1) Z;C = Zk —

A:{ge(Cd:zj:zkforsome1§j<k§d}.

If p is not necessarily monic, then W), is defined to be the same as W,,,., where
c is the leading coefficient of p. It is therefore sufficient to consider only monic
polynomials.

The Weierstrass method converges on a nonempty open subset of C? to a vector
containing the d roots in some order. An obvious problem is that iteration of W),
can land on A and thus fail to be defined, even when the starting point 2 is not
in A. This can happen at any time in the iteration. While this issue is well known
in principle, we provide a proof for a more precise statement in Lemma 3.8.

Moreover, even when an orbit is defined forever, it may fail to converge to roots:
for instance, in the presence of symmetries as pointed out in Section 1. More gener-
ally, different vectors of starting points may converge to the roots in different order,
and the respective domains of convergence in C? must have non-empty boundaries
on which convergence cannot occur. The best possible outcome to hope for would
be that convergence to roots occurs on an open dense subset of C?, ideally with
complement of measure zero.

Obviously, if z; is already a root, then the map has a fixed point in the k-th
coordinate; all roots already found stabilize in the approximation vector (as long
as they are all distinct).

One heuristic interpretation of the Weierstrass method is as follows. Each of
the d component variables “thinks” that all other roots have already been found
and tries to find its own value necessary to match the value of the polynomial at
a single point. To make this precise, write again p(Z) = [[,(Z — ax). Take a

coordinate k € {1,...,d}; if we assume that z; = «; for all j # k, then
(3.2) p(2) = (21 — ag) H(Zk = 2j),
J#k

and then the method simply “finds” the missing root «y, as the only unknown quan-
tity in (3.2) to make the equation fit. This leads to the Weierstrass iteration for-
mula (3.1). For the Weierstrass method, all k variables make the same “assump-
tion” and in general they are all wrong, but it turns out anyway that this leads to
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a reasonable approximation of the root vectors, at least sufficiently close to a true
solution.

We will now show that the Weierstrass method can be interpreted as a higher-
dimensional Newton iteration. Consider the map

d
F:C* — P, (2’1,~-~,Zd)'—>H(Z—Zk)-
k=1

Then the task of finding all the roots of p is equivalent to finding some preimage of p
under F'. To solve this problem, we can employ Newton’s method in d dimensions.
This leads to the iteration

(3.3) z+— z— (D(F),) " (F(z) — p),

which is defined on the set of z € C? where D(F)),, is invertible, which is the case
if and only if z ¢ A. (The “if” direction follows from the proof below; the “only if”
direction is easy.)

Lemma 3.1 (Weierstrass method as higher-dimensional Newton). The map given
by (3.3) is W),

A particular reference for this is [Ker66], where the Weierstrass method is de-
rived as a higher-dimensional Newton method.

Proof. First note that the partial derivative of F' with respect to the k-th coordi-
nate zy, is oF
8—%(2) =- H(Z - 2j),

J#k
where the expression on the right is a polynomial of degree less than d; we identify
the space of such polynomials with C?. If we denote the right hand side of (3.3)

by 2/, we can write (3.3) in the form

(3.4) D(F).(2' —z) =p—F(2).
Written out, this gives
d d

(3.5) Z(z;—zk)H(Z—zj) = H(Z—zk)—p.

k=1 J#k k=1
If we assume that the entries of z are distinct and, separately for each m € {1,...,d},
we set Z < zn,, the product on the right and most products on the left vanish and
the remaining equation gives (3.1) (with m in place of k). O

The following local convergence result is well known, see e.g. [Wei91,Doc¢62].

Lemma 3.2 (Local convergence of the Weierstrass method). For a polynomial p
with distinct roots, every vector consisting of the d roots of p has a neighborhood in C%
on which the Weierstrass method converges quadratically to this solution vector.

Proof. This follows from the fact that W, is Newton’s method applied to F(z) —
P. O

For polynomials with multiple roots, the local dynamics are more complicated.
It is not even true that a neighborhood of the vector containing the roots converges
to the roots; see for instance the case of Z — Z2 discussed in Section 3.2, and
e.g. [HM96] for a more detailed discussion.
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3.1. Properties of the Weierstrass method. We state some elementary and well-
known properties of W, that will be important to us.

Lemma 3.3 (Simple properties of the Weierstrass method).
(1) Letp € P, and T € Aff(C). Then Wy, is conformally conjugate to W,, by T,
ie, Wpp,=ToW,o0 T, where the action of T on C? is component-wise.
(2) For each p € P, W, is equivariant with respect to the natural action of the
symmetric group Sgq on C? by permuting the coordinates: if ¢ € Sy, then
Wp(oz) = oWy (2).

Proof. (1) Writing p = HZZI(Z — «ay) in (3.5), we see that the relation is un-
changed when we replace o, 2, 2, and Z by their images under 7'. Undo-
ing the transformation on Z then gives a valid equation between polyno-
mials, which is equivalent to Wr,(Tz) = TW,(z), ot Wr, =T oW, o T},
where the action of affine transformations on C? is coordinate-wise.

(2) This is clear. O

By the first property we can use the same parameter space P, for the Weierstrass
iteration on polynomials of degree d as we did for Newton’s method.
Equation (3.5) leads to a simple proof of the following useful property.

Lemma 3.4 (Invariant hyperplane). Let p = Z¢ — aZ% ! + .. .. Then the sum of the
entries of W,(z2) is a, for all z € C4\ A.

This was already observed in [Wei91, Paragraph 22].

Proof. Comparing coefficients of Z%~! in (3.5), we see that
d d
Z(Z;C —2p) = —sz +a,
k=1 k=1
which gives the claim. O

This means that the dynamics is effectively only (d — 1)-dimensional and takes
place on the hyperplane z; + ... + z4 = a. As mentioned earlier, we can restrict to
centered polynomials, i.e., a = 0.

Lemma 3.5 (Degree reduction if root is present). Fix k € {1,...,d}. If 2 is a root
of pand z € C?\ A, then Wy (2)k = zi, and the dynamics on the remaining entries is
that of the Weierstrass method for p(Z)/(Z — zy).

Proof. Clear from the definition. O

Lemma 3.6 (Weierstrass in degree 2 is Newton). If p has degree 2, then the dynamics
of W), reduces to Newton’s method for p. In particular, for p with distinct roots, W,
restricted to the invariant hyperplane (which is a line in this case) is conjugate to the
squaring map z + z2, which has no attracting cycles that are not fixed points.

Proof. By Lemma 3.3, we can assume that p(Z) = Z2 — 1 if p has distinct roots. By
Lemma 3.4, all iterates after the initial vector will have the form (z, —z). It is then
easy to check that W,(z, —z) = (w, —w) with w = z — (2% — 1)/(2z) = N,(z). The
last claim follows from Lemma 2.3.

If p has a double root, then IV, and W, are conjugate to N2 and W, respec-
tively; again, W2 agrees with N2 when restricted to the invariant line. O
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When p is linear, then NN, and W), both find the unique root immediately by def-
inition. So Lemma 3.6 tells us that interesting behavior in the Weierstrass method
can occur only when d > 3.

When looking for periodic orbits under W,, Lemma 3.5 tells us that we can
assume that no entry of z is a root of p, since otherwise we can reduce to a case of
lower degree. However, this very observation allows us to extend counterexamples
of low degrees to higher degrees. To do this, we need Lemma 3.7.

Lemma 3.7 (Lifting to higher degrees). Let p be a monic polynomial of degree d and
let o« € C. Set p(Z) = (Z — a)p(Z).
(1) Forapointz = (z1,..., 24, @) with pairwise distinct entries, the Jacobi matrix
D(Wj),; has the form

D(W ) 2z *dx1
D(W5).- = ( lepdl_ )\X

with 2/ = (z1,...,24) and

N S )
151 (= z))

(2) If ¢ € C? is a periodic point of W, of period n such that all eigenvalues
of D(W3™"),, have absolute values strictly less than 1, then for || sufficiently
large, G := (q,) € C¥*! is a periodic point of Wj of period n such that all
eigenvalues of D(W3"); have absolute values strictly less than 1.

Proof. The first claim results from an easy computation.

Now assume that ¢ € C? is a periodic point of W), of period n. By Lemma 3.5, § =
(g, o) is a periodic point of W;; of period n. We obtain an analogous formula relating
the derivatives of ;" at ¢ and Wg™ at g, with the product A\q - - - A\,,_1 replacing A,
where \,, arises from (W;™(q), «). In particular, the eigenvalues of D(W;"),; are
those of D(W;"),, together with Ag - A, ;1. As [a] — oo, we see that A, — 0 for
all 0 < m < n, and the claim follows. O

We now provide the result, mentioned earlier, that orbits may fail to be defined
after any finite number of iterations. We are grateful to Roland Roeder for suggest-
ing a simple argument for this result.

Lemma 3.8. For every polynomial p with only simple roots and degree at least 2 and
every n > 1, the Weierstrass method W), has starting points that are defined for exactly
n iterations before they land on the diagonal A and thus fail to be defined further.

Proof. Write p(Z) = H;l:l(Z — a;) with all «; distinct. Fix the last d — 2 coordi-
nates of z to be ag,...,ay. Then the dynamics reduces to Newton’s method for
(Z — a1)(Z — a); see Lemmas 3.5 and 3.6. By Montel’s theorem, every point
of every rational map has an infinite backwards orbit and thus preimages for ev-
ery finite number of iterations (with the exception of maps that are conformally
conjugate either to a polynomial or to z ++ 2~ and thus have a critical point of
maximal degree, which is clearly not the case for Newton maps). In particular, the

point z = (a1 + az2)/2, which corresponds to the point (z, z,as,...,aq) € A for
the Weierstrass map W, has preimages distinct from z and co under any iterate
OfN(Z—al)(Z—OZQ)' O
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3.2. The dynamics of W s. In this section we prove some results on the dynamics
of the Weierstrass iteration in the simple case when p(Z) = Z3. By Lemma 3.4, we
can restrict consideration to the hyperplane H = {z; + 22 + 23 = 0}. We will show
that all starting points in H outside a set of measure zero converge to the unique
root vector (0,0,0), but that there are uncountably many orbits that converge to
infinity, even arbitrarily close to (0, 0,0).

From Lemma 3.3(1) and since the unique root 0 of Z? is invariant under scaling,
it follows that Wys(Az) = AWz (z), so Wys induces a rational map ¢: PH — PH,
where PH ~ P! is the complex projective line obtained by considering the nonzero
points of H up to scaling.

Writing a nonzero point in H up to scaling in the form (1, z, —1 — z) (the missing
scalar multiples of (0,1, —1) correspond to the limit case z = o), we find that

(3.6) Wys(l,z,—1 — 2) = s(2)(1,p(2), =1 — ¢(2))
with
R e

We can say something about the dynamics of ¢.

Lemma 3.9 (Dynamics of ¢). The map ¢ has two attracting fixed points at w and w?,
where w = €*™/3 is a primitive cubic root of unity. Let z ¢ C. If Im(z) > 0, then
©°"(2) converges to w as n — oo, and if Im(z) < 0, then ¢°"(z) converges to w? as
n — oo. The real line is forward and backward invariant under .

Proof. Conjugating ¢ by the Mébius transformation M (z) = (w?z —w?)/(z —w), we

obtain 0.8 41
fiz)=(M o\poM)(z)—zz?)—H.

This map f is the product of z with the composition of z + 2% by z + (22 +
1)/(z + 2); the latter is an automorphism of the open unit disk (and also of the
complement of the closed unit disk in the Riemann sphere). Therefore, |f(2)| < ||
when 0 < |z| < 1and |f(z)| > |#| for |z| > 1 (in other words, f is a Blaschke product
with a fixed point at z = 0). This implies that the open unit disk is attracted to the
fixed point 0 of f, while the complement of the closed unit disk is attracted to oo;
the unit circle is forward and backward invariant (and maps to itself as a covering
map with degree 4). Translating back to ¢, this gives the result. d

From this, we can deduce the following statement on the global dynamics of Wys.

Theorem 3.10 (Convergence of Ws). If z € H is not a scalar multiple of a vector
with real entries, then W% (z) converges to the zero vector. The convergence is linear
with convergence factor 2/3.

Note that the convergence factor is the same as for Ns.

Proof Let z € H be such that 2 is not a scalar multiple of a vector with real entries.
In particular, 2z is not the zero vector. By symmetry, we can assume that the first
entry is nonzero; then z = 21(1,2,—1 — z) with z = 25/2; € C\ R. We then have
that ¢°"(z) # oc for all n > 0 by Lemma 3.9, and

n—1
Wi (z) = 21 [ s(0™(2) - (Le"(2), =1 = ¢°"(2)).
k=0
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By Lemma 3.9 again, ¢°"(z) converges to w or w?. Since s(w) = s(w?) = 2/3,
the factor in front will linearly converge to zero with rate of convergence 2/3,
whereas the vector will converge to (1,w,w?) (if Im(2) > 0) or to (1,w? w) (f
Im(z) < 0). O

We have seen that orbits of starting points in H that are not scalar multiples
of real vectors converge to zero, whereas there are real vectors in H whose orbits
tend to infinity; see Section 3.3. There are also starting points whose orbits cease
to be defined after finitely many steps; this occurs if and only if some iterate is
a multiple of (1,1, —2) or one of its permutations. On the other hand, there are
many real starting points in H whose orbits tend to zero (one example is obtained
by replacing o with —« in the proof of Theorem 3.11). In fact, we expect that
almost all real starting points have this property: numerically, the geometric mean
of |s(z)| over orbits under ¢ seems to tend to 2/3, and also the geometric means
of |s(z)| along periodic orbits of length n > 3 under ¢ are less than 1 for small
such n and appear to also tend to 2/3 as n tends to infinity. To escape to infinity, an
orbit would have to achieve a geometric average of |s(z)| that is at least 1, though,
which, given the behavior we observed, should only be possible for very specific
starting points. It would be interesting to provide a rigorous justification for this
heuristic explanation.

3.3. Escaping points. In this section we prove Theorem B: the Weierstrass itera-
tion W, has escaping points for all polynomials of degree d > 3 with distinct roots.

We first continue our study of the cubic case, d = 3. As observed earlier, we can
always assume that our polynomial p is centered, i.e., has the form p = Z3+aZ +0.
Then the image of W, is contained in the plane H = {z; + 22 + 23 = 0}, so
it is sufficient to consider the induced map H — H. We identify H with C? by
projecting to the first two coordinates. We can then extend W, to a rational map
P? — P2, which is given by the following triple of quartic polynomials, as a simple
computation shows.

(211221 20) — (21(21 — 22) (21 + 222) (221 + 22) — (21 + 222) (2} + az12] + b2])
(3.8) s zo(21 — 22) (21 + 222) (221 + 22) + (221 + 20) (25 + azp2d + b23)
s20(z1 — 22)(21 + 222) (221 + 22))

Here the line at infinity is given by 2o = 0; it is forward invariant, and the induced
dynamics on this projective line is given by the rational map ¢ from Section 3.2.

Theorem 3.11 (Escaping orbits for cubic polynomials). For every cubic polyno-
mial p, there are starting points z € C3 such that the iteration sequence Wy (2))
exists for all times and converges component-wise to infinity. The set of escaping points
contains a holomorphic curve.

Proof. Let
_VBHVT

5
Then one can check that the point gy = (1 : « : 0) on the line at infinity is 2-periodic
for the extension of W), to P2. We consider ¢, as a fixed point of the second iterate
of this extension. Its multiplier matrix has eigenvalues

—ad + 6o+ 4 L
——=2-1

120° — 7204+ 43 = 43 +12V/7 > 1 and VT7e(0,1).
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The eigenspace for the first of these eigenvalues is tangential to the line at infinity,
whereas the eigenspace for the second eigenvalue points away from the line. So the
point gy has a stable manifold (see [PdM82, Ch. 2, Section 6] for the general theory)
that meets the (complex) line at infinity locally only at ¢y and is a holomorphic
curve by [Hub05, Cor. 8]. In particular, all points ¢ € H that lie on the stable
manifold and are sufficiently close to gy will converge in P? to the 2-cycle that g
is part of. Since the points of this 2-cycle are on the line at infinity (and different
from (1:0:0), (0:1:0), (1:—1:0), which are the points corresponding to the
lines z; =0, zo = 0 and z3 = —z; — 2o = 0), the claim follows. O

Remark 3.12. When p = Z3, the stable manifold of ¢y is the complex line joining it
to (0: 0:1). So in this case, every scalar multiple of (1,«, —1 — «) € H escapes to
infinity.

Now Theorem B follows from Theorem 3.11 in the following way. Write p = p1ps
with p; of degree 3 and p, with simple roots. By Theorem 3.11 there is a vector
q1 € C3 that escapes to infinity under W,,,. Now set ¢ = (¢1, q2), where g € C4~3
has the roots of p, (in some order) as entries. Then iterating IV, on ¢ has the effect
of fixing the last d — 3 coordinates, whereas the effect on the first three is that
of W,,; see Lemma 3.5. In particular, the first three coordinates of the vectors in
the orbit of ¢ under W, tend to infinity. Note that this result covers a slightly larger
set of polynomials than those with simple roots: the cubic factor p; is arbitrary, so
p can have a multiple root of order at most 4 or two double roots.

Taking iterated preimages under W, of the curve to infinity whose existence
we have shown in Theorem 3.11, we obtain countably infinitely many (complex)
curves to infinity full of escaping points. Here we restrict to iterated preimage
curves ending in an iterated preimage of the point ¢y (notation as in the proof
above) that is on the line at infinity. Two of the immediate preimage curves end
at the origin, which is a point of indeterminacy for the rational map (3.8) induced
by W,,. There are very likely other escaping points, but we expect the set of escaping
points to be of measure zero within H.

4. ALGEBRAIC DESCRIPTION OF PERIODIC ORBITS

Since we will be using methods from Computer Algebra to obtain a proof of
Theorem A, we now discuss how we can describe the periodic points of W, of any
given period algebraically. We begin with a description of W, itself.

4.1. Algebraic description of W,,. For the purpose of studying periodic orbits un-
der W, algebraically as p varies, equation (3.5) is preferable to (3.1), since it is
a polynomial equation involving the entries of z and 2z’ and the coefficients of p,
rather than an equation involving rational functions. The following result shows
that we do not get extraneous solutions by doing so, in the sense that all solutions
we find that involve points in A arise as degenerations of “honest” solutions living
outside A.

Proposition 4.1 (Polynomial equation describing iteration). Fix p € P). The alge-
braic variety in C? x C? described by equation (3.5) is the Zariski closure of the graph
of W,, (which is contained in (C%\ A) x C9).

Proof Let V, denote the variety in question. Equation (3.5) corresponds to d equa-
tions in the 2d coordinates of z and 2/, so each irreducible component of V,, must
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have dimension at least d. We have to show that no irreducible component is con-
tained in A x C%. We do this by showing that dim(V,, N (A x C%)) < d.

Assume that z € A. We first consider the simplest case that z; = 25, but 23, ..., 24
are distinct. Substituting Z < z; in (3.5), we obtain that p(z;) = 0, so that z; must
be a root of p. The subset of A consisting of z with this property has dimension d—2.
Substituting Z < z;, with k£ > 3, we see that z;, is uniquely determined by z (it is
still given by (3.1)). On the other hand, taking the derivative with respect to Z on
both sides and then substituting Z «+ z;, we see that 2] + 2} is uniquely determined,
so the fiber above z of the projection of V,, to the first factor has dimension 1. So
the part of V, N (A x C%) lying above points z with only one double entry has
dimension d — 1.

In general, we see by similar considerations (taking higher derivatives as neces-
sary) that when z has entries of multiplicities mq,...,m; (wWith my + ...+ m; =d
and some m; > 2), then these entries must be roots of p of multiplicities (at least)
my — 1,...,my — 1, and the fiber of V,, above z is a linear space of dimension
(mi—1)4...+ (m; — 1) = d — I. On the other hand, the set of z of this type has
dimension #{j : m; = 1} < [, so the dimension of the corresponding subset of V/,
is < d.

So we have seen that V,N (A x C¢) is a finite union of algebraic sets of dimension
< d; therefore it cannot contain an irreducible component of V. O

Remark 4.2. As in the proof above, we will usually think of (3.5) as a system of
d equations that are obtained by comparing the coefficients of the various powers
of Z on both sides. Note that the equation for the coefficient of Z7 is of degree d — j
inz,..., 24 2, ..., 2. So the total system has degree d!.

4.2. Periodic points. We use equation (3.5) to obtain a system of equations rep-
resenting periodic points. Fix the degree d and the period n. We consider nd vari-
ables, grouped into n vectors z(*) = (zik),...,zfik)), for 0 < k < n, which we
think of as representing an n-cycle z(0), 2(V) = W, (2(9), ..., z(=D = W, (2("=2),
20 = W,(2("~Y). We therefore define the scheme P/ (n) C P, x C"¢ by collect-
ing the equations arising from comparing coefficients on both sides of (3.5), where
we replace (z,z') successively by (z(@,2(1), (2, 2®), ..., (z2»=Y, 20); p runs
through the monic degree d polynomials in 7. This encodes that 2(® s z(1) s
oo 207D (0 under W,. We then take Py(n) to be the quotient of P/(n) by
the group of affine transformations on C, acting via

T (p. 20,207 = (@p, 10T Y).

We expect the fibers of the projection P;(n) — P, to be finite, i.e., for each
polynomial p, there are only finitely many points of period n under W,,. Lemma 4.3
gives a criterion for when this is the case.

Lemma 4.3 (Criterion for finiteness of n-periodic points). Let Péo)(n) C €™ pe
the fiber of P/(n) above p = Z<. The projection P’ (n) — P/ is finite if and only if
PO (n) = {0}

d
Proof. We first note that since the unique root 0 of Z¢ is fixed by scaling, the same is

true for Péo) (n) under simultaneous scaling of the coordinates. So PU(ZO) (n) ={0}is
equivalent to 7>§°> (n) being zero-dimensional. In particular, if P;O)(n) # {0}, then
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the projection is not finite, since the fiber above Z¢ has positive dimension. This
proves one direction of the claimed equivalence.

Now assume that the projection is not finite, so there is some p € P, such
that the fiber P'”(n) above p has positive dimension. Let P'”(n) c P"¢ denote

the projective scheme obtained by homogenizing the equations defining P/ (n) and

specializing to p. Then Plgp ) (n) meets the hyperplane at infinity of P"¢. But the

intersection of Pu(lp ) (n) with the hyperplane at infinity is exactly the image of P U(IO) (n)
under the projection C"? \ {0} — P"4~1. So this image is nonempty, which implies
that Péo)(n) contains nonzero points. This shows the other direction. O

We can test the condition “73((10) (n) = {0}” with a Computer Algebra System by
setting up the ideal that is generated by the equations defining Péo) (n), together
with zio) — 1 (for symmetry reasons, if there is some nonzero point, then there is

one with z§0) # 0, and by scaling, we can assume that z§°> = 1). Then we compute
a Groebner basis for this ideal. The condition is satisfied if and only if this Groebner
basis contains 1. We did this for d = 3 and small values of n.

Lemma 4.4 (Finiteness of n-periodic points). For every cubic polynomial p with at
least two distinct roots, there are only finitely many points of period n < 8 under W),
For cubic polynomials with a triple root, the statement holds for all n < 8 except
n = 0.

Proof. The claim follows for n € {1,2,3,4,5,7,8} from Lemma 4.3 and a computa-

tion as described above. For n = 6, we find that Péo) (6) consists of six lines through
the origin (plus the origin with high multiplicity). These six lines correspond to 6-
cycles of rotation type (see Section 5 for the definition). By an explicit computation
(see also Proposition 5.9), we check that the fiber above any polynomial with at
least two distinct roots of the scheme describing 6-periodic points of rotation type
is finite. For the remaining components of P4(6), we find that the corresponding
part of Péo) (6) has the origin as its only point; we can then conclude as in the proof
of Lemma 4.3 that there are only finitely many 6-periodic points not of rotation
type for all cubic polynomials. d

Remark 4.5. Based on the evidence provided by our computations and the fact
that we obtain as many equations as we have variables, we expect that for cubic
polynomials without a triple root, the statement of Lemma 4.4 holds for all n: for
this to fail, the equations would have to satisfy an unexpected dependence relation,
which is less likely to occur as the complexity (as measured by n) grows. For cubic
polynomials with a triple root, we similarly expect that the 6-periodic points of
rotation type are the only exceptions, i.e., there are no points of exact order n > 2
except the 6-periodic points of rotation type described in the proof above.

We do not venture to formulate a conjecture for polynomials of degrees higher
than 3. We did verify the criterion of Lemma 4.3 also for d = 4 and n = 1,2, 3,
however; beyond that, the computations become infeasible.

See [Sto] for our Magma code for the computations mentioned above.
There is a simple argument that shows that periodic points of any order always
exist.
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Lemma 4.6 (Existence of periodic points). Fix a monic polynomial p of degree d > 2
with distinct roots. Then W), has periodic points of all periods n > 1.

Proof For n = 1, all the vectors consisting of the roots of p in some order are fixed
points. So we fix now some n > 2. Write p(Z) = H?Zl (Z—0a). Let w be a primitive
(2" —1)-th root of unity. Then w has exact period n under the squaring map z ~ 22,
so by Lemma 3.6, there is a point (21, 22) of exact order n for the Weierstrass map
associated to (Z — o1)(Z — az). By Lemma 3.5, the point

z=(z1,22,08,..., )
then has exact period n under W, O

One might ask whether there are always periodic points of all periods that do
not fix any coordinate (or even, for which all coordinates have the same period n).

We are interested in attracting periodic points, i.e., points ¢ € C? with the
property that there is a period n > 2 and a neighborhood U of ¢ in C? so that
Wymn(z) — q asm — oo for all z € U. Consider the linearization D(W;")|, of
the first return map at the point q. We call this the multiplier matrix of ¢q. Local
fixed point theory relates the topological property of being attracting to an alge-
braic property of this matrix, as in the following statement, which is a consequence
of the fact that a differentiable map is locally well approximated by its derivative.

Lemma 4.7 (Attracting fixed point). The fixed point ¢ of a differentiable map W :
C* — C* is attracting if all eigenvalues of D(W), have absolute values strictly less
than 1. It cannot be attracting unless all eigenvalues have absolute values at most 1.

In the context of points of period n, we consider W = W;". Lemma 4.7 then
tells us that ¢ can only be attracting when all eigenvalues of its multiplier matrix
have absolute value at most 1. Equivalently, the characteristic polynomial of the
multiplier matrix has all its roots in the closed complex unit disk. The set of monic
polynomials of degree d with this property forms a compact subset .4, of P.

In the following, we will always assume that we pick a representative in the
affine equivalence class of the polynomial in question that is centered, i.e., with
vanishing sum of roots. Then the dynamics of W, takes place in the linear hyper-
plane H given by 21 + ... + z4 = 0, and we get P;(n) C Py x H™. We can identify
Pa(n) with its image in P; x H obtained by projection to the first two factors,
(p, 29, ..., 2"=D) = (p,29). Then the points of P4(n) are represented by pairs
(p,q), where p is a centered polynomial and ¢ € H satisfies W;"(q) = ¢. Since we
restrict to H, the multiplier matrix of any periodic point g is of size dim H = d — 1.

To study whether the n-cycles parameterized by P;(n) can be attracting, we
would like to associate to each such point (p, q) the d — 1 eigenvalues of the mul-
tiplier matrix of ¢ (the eigenvalues do not change under affine conjugation, so this
gives a well-defined map). However, there is no natural order on these eigenval-
ues. To capture them as an unordered (d — 1)-tuple, we express the eigenvalues
instead through their elementary symmetric functions and hence through the char-
acteristic polynomial of the multiplier matrix. In this way, we obtain an algebraic
morphism (and therefore a holomorphic map) 4, : Pa(n) — Pj;_;, in much the
same way as in the context of Newton’s method. Here we think of P,_, as the
space of coefficient vectors of the characteristic polynomials.

Our goal is now to find out if the image of g ,, meets A4_1, the set of polyno-
mials all of whose roots are in the closed unit disk.
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Since we expect that Py(n) is a finite-degree covering of Py, it should in partic-
ular have dimension dim P; = d — 2. This would imply that the image of j4,, has
dimension at most d — 2 (and we expect it to be exactly d — 2), so it is contained
in a proper algebraic subvariety of P/_,. Each irreducible component of P;(n) will
map to an irreducible component of this subvariety. Such a subvariety of codimen-
sion at least 1 does not have to intersect a given bounded subset like .A;_;. This is
a marked difference compared to the situation with Newton’s method, where the
corresponding multiplier map is surjective, and so examples of attracting n-cycles
can easily be found.

So our strategy will be to get as good control as we can on the varieties P;(n) (or
suitable components of them), find the Zariski closure X of their image under g4,
and then check if X meets A,;_;. If it does not, then clearly no stable n-cycle
can exist on the component of P,4(n) that we are considering. If it does, then we
check that it also meets the open subset of A;_; consisting of polynomials with all
roots in the open unit disk; then the intersection will contain a relative open subset
of X and so it will contain points in the image and such that the corresponding
polynomial p has distinct roots.

5. CYCLES FOR CUBIC POLYNOMIALS

We will now restrict consideration to cubic polynomials p. Using affine transfor-
mations, we can assume that p(Z) = Z* + Z + ¢ with some ¢ € C. This choice of
parameterization excludes only (the affine equivalence classes of) Z3 — 1 (which
corresponds to t — oo) and the degenerate case Z3. The induced map to the
true parameter space Ps is a double cover identifying ¢ and —t. We will abuse
notation slightly in the following by writing Ps(n) for what is really the pull-back
of the true P3(n) to the ¢-line via the parameterization we use here. As men-
tioned earlier, for such centered polynomials, the dynamics restricts to the plane
H:{Zl + 22 + 23 :0}

Let 0 (2) denote the k-th elementary symmetric polynomial in the entries of 2.
We introduce the quantities

wo(z) =02(2z) —1 and w;s(z) =o3(2) +t.
(We shift by the elementary symmetric polynomials in the roots of p to move the
image of the fixed points to (0,0).) The map C*> > H — C? given by (ws, w3) has
degree 6.

By the second property in Lemma 3.3, W, induces a map Wp on (a subset of) C2
such that

(w2 (W (2)), ws (W (2))) = Wy (ws(2), ws(2))
forall z € (C*\ A)n H.

Lemma 5.1. Wp is given by

o 1
Wp(we, ws) = g(wg + 2ws — 3w3 — Ytwows + wy + Bwaw?,

dwows + 3tws + dwiws + 2twi — tw; + wiws + 8w§),

where
§ =41 +wo)® + 27(t — ws3)*.

Proof. Routine calculation with a Computer Algebra System. O

Licensed to Mathematical Sciences Research Institute. Prepared on Mon Mar 20 13:33:15 EDT 2023 for download from IP 173.239.64.2.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE WEIERSTRASS ROOT FINDER IS NOT GENERALLY CONVERGENT 857

Note that this explicit expression shows the quadratic convergence to (0,0) when
p has distinct roots, which is equivalent to 4 + 27t? # 0.

Now suppose we have an n-cycle (z(9,z(V) ... 2("=D) under W,. It will be
attracting only if all eigenvalues of the multiplier matrix D(W;"),.«) have absolute

value at most 1. Concretely, we consider the map pg3 ,,: Ps(n) — P4 as discussed in
Section 4.2. The characteristic polynomial will have the form Z? + ¢, Z + ¢, with
co,c1 € C, and we know from the discussion in Section 4.2 that ¢y and ¢; must
satisfy an algebraic relation, i.e., the points (cg,c;) lie on some plane algebraic
curve as we run through all possible characteristic polynomials.

We can also consider the image of this n-cycle under (ws,ws), as the map us
factors through the (ws, ws)-plane. Assuming that n is the minimal period of the
cycle, the image cycle can have minimal period n, n/2 or n/3. The second possi-
bility occurs when n = 2k is even and W;k acts as a transposition on the vectors
in the cycle. In this case, we say that the cycle is of transposition type. The last
possibility occurs when n = 3k is divisible by 3 and W;k acts as a cyclic shift on
the vectors in the cycle. In this case, we say that the cycle has rotation type. We
can then equivalently look at the characteristic polynomial of D(W;") |(wa,w3)(z) (OF
with & in place of n in the transposition or rotation type cases).

We will need a criterion that we can use to show that the two relevant eigen-
values can never simultaneously be in the unit disk, in cases when the relation
between ¢y and ¢; is somewhat involved. Lemma 5.2 provides one such criterion.

Lemma 5.2. Let P(\,u) € C[A, u| be a polynomial. Fix a half-line ¢ emanating
from the origin and some N € Z~. Let B be the sum of the absolute values of the
coefficients of the two partial derivatives of P. If for all j, k € {0,1,...,N — 1},
the distance from P(e*>7"/N ¢27k/NY to ¢ exceeds nB/N, then P(\,u) = 0 has no
solutions in C? with ||, |u| < 1.

Proof. We first show that the assumptions imply that the image of P on the torus
S* x S! is contained in the slit plane C \ ¢. So consider (u,v) € [0,1]* and pick
(4,k) € {0,..., N}? so that |u — j/N|,|v — k/N| < 1/(2N). Note that the sum of
the absolute values of the partial derivatives of (u,v) — F(u,v) := P(e*™™, e2™v)
for u,v € R is bounded by 27 B. This shows that

|P(e*™, 2 — P2/ 2RI | < %HFUHOO + %HFUILx < LN -2nB = B/N.
Since the distance of P(e?™/N ¢27ik/N) from ¢ is by assumption larger than 7B /N,
it follows that P (e e2mv) ¢ ¢.

We now assume that there is a solution with |\, || < 1, so that the curve defined
by P in C? meets the unit bi-disk. Since the curve is unbounded, by continuity
there will be a solution with |A\| = 1 and |u| < 1 or |g| = 1 and |[A\] < 1. By
symmetry, we can assume the former. By the argument principle, the closed curve
v:[0,1] 2 s+ P(X, ¢?™*) has to pass through the origin or wind around it at least
once. However, since the assumptions imply that the image of ~ is contained in
the slit plane C \ ¢, which does not contain the origin and is simply connected, we
obtain a contradiction. O

The general procedure for obtaining the results given below is as follows.
(1) Set up equations for the variety Ps(n) or parts of it using (3.5).
(2) Set up the map pus3,, as a map to the projective plane given by the coeffi-
cients of the characteristic polynomial of the multiplier matrix.
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(3) Use the Groebner Basis machinery of a Computer Algebra System like
Magma [BCP97] or Singular [DGPS19] to find the equation of the image
curve.

(4) Either find a point on the image curve corresponding to a characteristic
polynomial with both roots in the unit disk or show using Lemma 5.2 that
no such points exist.

The available machinery can also be used to obtain additional information on
the components of the curves P;(n), for example smoothness or the (geometric)
genus.

Since the map us3 5, is given by fairly involved rational functions when n is not
very small, Step (3) above may not necessarily be feasible as stated. In this case,
we can instead sample some algebraic points on the variety considered (e.g., by
specializing the parameter ¢ to a rational value and then determining the solutions
of the resulting zero-dimensional system) and consider their images under ps .
Given enough of these image points, we can fit a curve of lowest possible degree
through them (this is just linear algebra). We can then check that this curve is
correct by constructing a generic point on the original variety and checking that its
image lies indeed on the curve.

In the following, we always tacitly assume that the vectors occurring in the cycles
do not contain roots of p. Those that do can easily be described using Lemmas 3.5
and 3.6.

The computations leading to the results given below have been done using the
Magma Computer Algebra System [BCP97] and also in many cases independently
with Singular [DGPS19]. A Magma script containing code that verifies most of the
claims made is available at [Sto].

5.1. Points of order 2. We begin by considering 2-cycles. Note that a 2-cycle of
transposition type fixes one component of the vector, which then must be a root
of p. Since we have excluded cycles of this form (up to the obvious symmetries,
there are three of them, one for each root), no 2-cycles of transposition type have
to be considered.

Proposition 5.3. The 2-cycles form a smooth irreducible curve of geometric genus 0;
it maps with degree 12 to the t-line. So for each polynomial, there is (generically) one
orbit of 2-cycles under the natural action of S3 x Co, where the first factor permutes
the vector entries and the second factor performs a cyclic shift along the cycle. The
image in (t,wsq, ws)-space is the curve

wy = —3, 27t* — 45twsz + 20w; — 20 =0

of genus 0. The characteristic polynomial X? + ¢ X + co of the multiplier matrix at a
point on this curve satisfies the relation ¢y + 2¢; + 6 = 0. In particular, no 2-cycle can
be attracting.

Proof. This follows the method outlined above. Note that when both eigenvalues
have absolute values at most 1, we have |¢g| < 1 and |¢q] < 2. O

5.2. Points of order 3. We begin by considering the 3-cycles of rotation type. They
can be defined by (3.5) together with (21, 25, 25) = (22, 23, 21) (for one choice of the
cyclic permutation involved). Their images under (ws, w3) are fixed points of .
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Proposition 5.4. The 3-cycles of rotation type form two smooth irreducible curves (as
t varies) of geometric genus 0, according to which of the possible two cyclic permuta-
tions results from the action of W,; the map to the t-line is of degree 6 in both cases.
The images of both curves in (t, w2, ws)-space agree; the image curve is given by the
equations
3
wa = =3, 216t? — 360tws + 152ws — 1 = 0,

describing a curve of genus 0. The characteristic polynomial of the multiplier matrix

at a point on this curve (as a fixed point under Wp) has the form X2 4+ 3X + a for
some a € C. In particular, such a 3-cycle cannot be attracting.

Proof. This again follows the procedure outlined above. The characteristic polyno-
mials lie on the curve ¢; = 3. So the sum of the eigenvalues is —3, hence it is not
possible that both eigenvalues are in the closed unit disk. O

Now we consider “general” 3-cycles, i.e., 3-cycles that are not of rotation type.

Proposition 5.5. The 3-cycles that are not of rotation type form two irreducible
curves of geometric genus 19, which each map with degree 72 to the t-line and are
interchanged by the action of any transposition in Ss. Each curve therefore contains
8 orbits of 3-cycles under the action of A3 x Cs, and there are in total 8 orbits under
S3 x (s, for each fixed t. The coefficients (cg, c1) of the characteristic polynomial of
the multiplier matrix at a point in such a 3-cycle give a point on a rational curve of
degree 12 that can be parameterized as (co(u)/ca(u), c1(u)/ca(u)), where

co(u) = —9u'? — 162u" — 693u'® + 1434u° + 11958u® — 32202u" — 182301u°

+ 578742u° + 2069910u* — 919718u> — 30656851 + 892254u + 264295,
c1(u) = u'? + 26 + 2300 + 693u° — 3867u® — 5844u” + 123074u°

— 38381u° — 1320149u* + 4205522 + 4310940u2 — 4206447y + 1442574,
co(u) = —9u'® — 63u” + 301u® + 1126u" — 7693u’ — 3641u°

+ 52375u* 4 135261 — 104463u? — 47919u + 20987 .

In particular;, no such 3-cycle can be attracting.

Proof. The computations get quite a bit more involved, so we give more details
here. We work in 7-dimensional affine space over Q with coordinates (¢, xo, yo, 1,
Y1, %2, Y2), where the three vectors in the cycle are z2\9) = (z;,y;, —z; — y;) for
j = 0,1,2. We first set up the scheme giving the cycle z2(9) — 2(1) s 2 s 2(0)
under W,. Then we remove the subschemes corresponding to cycles that have a
fixed component or to 3-cycles of rotation type. The resulting scheme is a curve
mapping with degree 144 to the ¢-line. Its projection to the (z2, y2)-plane is a curve
of degree 48, whose defining polynomial factors into two irreducibles of degree 24
each that are interchanged by =2 <> y2. Let ) denote one of the factors, consid-
ered as a bivariate polynomial. Since the projection is birational, this induces the
splitting of the original curve into two components. We were able to compute the
genus by working with the birationally equivalent plane curve given by Q(z,y) = 0.
It has 222 simple nodes (six of which are defined over Q(v/6); the remaining 214
are conjugate) and a pair of conjugate singularities defined over Q(v/—3) that each
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contribute 6 to the difference between arithmetic and geometric genus. We obtain
g:¥—222—2~6:19
as claimed.

This is a case where we had to use the sampling-and-interpolation trick to deter-
mine the image curve of i3 3 on one of the components.

After showing that the image curve has geometric genus 0 (there is one point
of multiplicity 4 at (8, —9) that gives an adjustment of 8, and there are 47 further
simple nodes, so we obtain g = 11-10/2 — 8 — 47 = 0) and finding some smooth ra-
tional points on it, we computed a parameterization modulo some large prime that
maps 0, 1, oo to three specified rational points and lifted it to Q. It is then easy to
verify that we indeed obtain a parameterization of the curve over Q. We then used
Magma'’s (fairly new and contributed by the third author) ImproveParametrization
command to simplify the resulting parameterization.

Finally, we use Lemma 5.2 to show that there is no attracting 3-cycle (not of
rotation type). We find the polynomial P (), ) = 0 that gives the relation between
the eigenvalues \ and p (by substituting (co,c1) < (Ap, —(A + p)) in the equa-
tion relating the coefficients of the characteristic polynomial) and check that the
criterion of Lemma 5.2 is satisfied when /¢ is the positive real axis and N = 18.

5.3. Points of order 4. Judging by the heavy lifting that was necessary to deal with
case of general 3-cycles, looking at general n-cycles with n > 4 seems too daunting
a task to attack with confidence along the lines described here. We can, however,
consider cycles with extra symmetries. Here we look at 4-cycles of transposition
type.

Proposition 5.6. The 4-cycles of transposition type form three irreducible smooth
curves of geometric genus 1, each of degree 24 over the t-line, that are permuted by
a cyclic shift of the coordinates. The characteristic polynomial X2 + ¢; X + ¢ of the
multiplier matrix at any associated point (considered as a point of order 2 under W,,)
satisfies the relation

34cic? +169cic? — 675cac] — 2997cocs — 2187¢S + 68¢p + 984cjcy + 3359cic?
— 19182c5c} — 88965¢qc) — 91584c] + 4254c] + 29059¢c1 — 936885 et
— 634050coc; — 809379¢] + 76045¢) + 60846¢5c; — 725626¢c0¢7 — 1171592¢5

+ 4870033 + 4167623cocy + 8653407¢F + 5442895¢) + 15506760c; — 35154225 = 0,

which describes a curve birationally equivalent to the elliptic curve over Q with Cre-
mona label 15a4.

Proof. We set up the variety describing 4-cycles of transposition type as a subscheme
of 5-dimensional affine space with coordinates ¢, z¢, yo, 1, y1, Where ¢ is the param-
eter and the iteration satisfies

(%0, Yo, =0 — yo) —> (1, Y1, =21 — Y1) — (Yo, o, —To — Yo),

and we remove the component consisting of cycles in which the last coordinate is
fixed. This results in a smooth irreducible curve of degree 24 over the ¢-line that
has genus 1. We find the image curve in the (cp, ¢1)-plane. We compute that the
geometric genus of the image curve is 1 and find a smooth rational point on it. This
allows us to identify the elliptic curve it is birational to. O
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Corollary 5.7. There exist values of the parameter t such that there are attracting
4-cycles of transposition type. Such parameters can be found near t = 175.

Proof. From the explicit equation given in Proposition 5.6, we find that there is
a characteristic polynomial that has a double root near —0.68916660883309 when
t = to ~ 177.68741192204597. This shows that there exists an attractive 4-cycle for
this parameter ¢,. This property persists through an open neighborhood of #.

It is not hard to verify that for the parameter ¢ = 175, a vector in one of the
attractive cycles is close to

z = (—4.53015514106975, —5.36138870553106, 9.89154384660081).

The corresponding characteristic polynomial (of the multiplier matrix of VNV;,DQ) is
close to

A% 4+ 1.3508745390644 1\ + 0.545942857402263.

The two (complex conjugate) eigenvalues thus have equal absolute value

~ 1/0.545942857402263 ~ 0.738879460671538,

so this 4-cycle is still attractive. O

The left part of Figure 2 shows a one-dimensional complex slice for the dynamics
of Wysy 74175 for zo = —5.36 fixed and z; in a neighborhood of —4.5; the basin of
the attractive 4-cycle is shown in black.

Remark 5.8. The region in the ¢-plane consisting of parameter values for which an
attracting 4-cycle of transposition type exists is a union of two components, mapped
to each other by ¢ — —t. Each of them is symmetric with respect to the real axis
and contains the real interval +¢ € [160,180]. The component containing values
with positive real part is shown in Figure 2 in blue.

One can verify numerically that as ¢ increases along the real axis beyond the
boundary of this region, a symmetry-breaking bifurcation occurs, and we find an
adjacent region where attracting 4-cycles of general type (i.e., not of transposition
type) exist. This region is shown in green on the right in Figure 2.

In Figure 3 we show how these regions are located relative to the parameter
space of cubic Newton maps, in terms of a parameterization that is more commonly
used in this context. It is apparent that these regions in parameter space are quite
small.

In addition, the left part of Figure 2 shows that the basin of attraction of the at-
tracting 4-cycles is also quite small as a subset of the dynamical plane. It is therefore
not very surprising that examples of polynomials for which the Weierstrass method
exhibits attractive cycles had not been found previously by numerical methods.

It is well known that the parameters A for which the Newton map has attract-
ing cycles of period 2 or greater are organized in the form of little Mandelbrot
sets, finitely many for each period, and that every parameter in the bifurcation lo-
cus (common boundary point of any two colors) contains, in every neighborhood,
infinitely many such little Mandelbrot sets. In Figure 4 we display one of these re-
gions in parameter space where attractive 4-cycles exist for Newton’s method. This
period 4 component ranges roughly from imaginary parts 0.62095 to 0.6272 along
the imaginary axis, hence is of diameter about 0.00625; for comparison: the pe-
riod 4 component for Weierstrass has imaginary parts between 0.88439 and 0.88589,
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Si

160 165 170 175 180

FIGURE 2. Left: The dynamics on the slice of C? given by z5 =
—5.36, with Rez; € [-5,—4] and Imz; € [-0.5,0.5]. The black
region is the intersection with the immediate basin of attraction
around a periodic point of order 4 for Wys, 5, with ¢ = 175. The
six colors correspond to the six fixed points given by the various
orderings of the three roots; points converging to a fixed point are
given the appropriate color and are the brighter the faster they
approach the fixed point. Similar colors correspond to fixed points
with the same first component.

Right: Parameter values ¢t € C for which there exists a stable 4-
cycle of transposition type (left region, blue) or a stable 4-cycle
without extra symmetry (right region, green). The components
touch at a point where the multiplier matrix under Wf has eigen-
value —1.

hence diameter about 0.0016, which is roughly comparable (even though there is
no uniform Euclidean scale across parameter space).

5.4. Points of order 6. Finally, we consider 6-cycles of rotation type.

Proposition 5.9. The 6-cycles of rotation type form two irreducible smooth curves of
geometric genus 5, each of degree 24 over the t-line, that are permuted by a transposi-
tion of the coordinates. The characteristic polynomial X2 + ¢, X + ¢, of the multiplier
matrix at any associated point (considered as a point of order 2 under Wp) satisfies
a relation that specifies a curve of geometric genus 0 and degree 5. This curve can be
parameterized as (co(u)/ca(u), c1(u)/cz2(u)), where

co(u) = —36u’ — 12u* + 60u> + 236u> + 260u — 4,
c1(u) = —4u® — 51u* — 90u® + 59u? + 42u + 5,
co(u) = —9u* —18u® + u? + 10u — 1.

In particular, no such 6-cycle can be attracting.

Proof. We set up the variety describing 6-cycles of rotation type as a subscheme of 5-
dimensional affine space with coordinates ¢, xo, 3o, 21, y1, Where t is the parameter
and the iteration satisfies

(%0, Y0, =0 — yo) — (T1,y1, =1 — Y1) — (Yo, —To — Yo, To),
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FIGURE 3. The parameter space of cubic polynomials up to affine precomposi-
tion, parameterized as p(Z) = (Z—1)(Z+ 3% —\)(Z+ 5+ ) with A € C; shown
is the complex A-plane. This is a standard parameterization used to visualize
Newton dynamics, which the picture illustrates: the three colors indicate to
which of the three roots 1, —% + A, and —% — ) the free critical point 0 con-
verges. A point is colored black when there is no convergence.

The top picture shows a global view of parameter space, with two subsequent
magnifications shown below (first left, then right), and further magnifications
shown in Figure 4. The regions shown on the right in Figure 2, which indi-
cate parameter values for which an attractive 4-cycle exists for the Weierstrass
iteration, are superimposed on the last magnification (shown in yellow and
converted to the different parameterization used here).
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FIGURE 4. Sequence of close-ups toward one of the largest “little
Mandelbrot sets” around attracting cycles of period 4 for the New-
ton iteration, starting with the first two pictures in Figure 3 (top
and left); the square in the bottom of the latter shows the domain
where the magnifications start that are shown here.

and we remove components coming from 3-cycles of rotation type. This results in
a smooth irreducible curve of degree 24 over the t-line that has genus 5. We find
the image curve in the (cg, ¢1)-plane. Since the degree and the coefficient size are
moderate, we can directly check that the curve has geometric genus 0 and then find
a parameterization. We then use the explicit equation and Lemma 5.2 with ¢ the
negative real axis and N = 12 to verify that no characteristic polynomial lying on
the curve can have both roots in the unit disk. O

5.5. Proof of Theorem A. The results obtained in this section provide a proof of
part (2) of Theorem A. Proposition 5.6 and Corollary 5.7 give a proof of part (1)
for the case d = 3. To obtain the conclusion for all d > 3, we invoke Lemma 3.7.
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