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ABSTRACT

Cryo-Electron Tomography (cryo-ET) is an emerging 3D
imaging technique which shows great potentials in structural
biology research. One of the main challenges is to perform
classification of macromolecules captured by cryo-ET. Re-
cent efforts exploit deep learning to address this challenge.
However, training reliable deep models usually requires a
huge amount of labeled data in supervised fashion. Annotat-
ing cryo-ET data is arguably very expensive. Deep Active
Learning (DAL) can be used to reduce labeling cost while
not sacrificing the task performance too much. Nevertheless,
most existing methods resort to auxiliary models or complex
fashions (e.g. adversarial learning) for uncertainty estimation,
the core of DAL. These models need to be highly customized
for cryo-ET tasks which require 3D networks, and extra ef-
forts are also indispensable for tuning these models, rendering
a difficulty of deployment on cryo-ET tasks. To address these
challenges, we propose a novel metric for data selection in
DAL, which can also be leveraged as a regularizer of the em-
pirical loss, further boosting the task model. We demonstrate
the superiority of our method via extensive experiments on
both simulated and real cryo-ET datasets. Our source Code
and Appendix can be found at this URL.

Index Terms— Deep active learning, Cryo-electron to-
mography, Classification

1. INTRODUCTION

Recent efforts [1, 2, 3] exploit deep learning to perform var-
ious tasks on cryo-ET data, especially subtomogram classi-
fication for separating macromolecules with respect to their
structures. Nevertheless, training successful deep networks
relies on numerous labeled data in supervised fashion, which
has been demonstrated more reliable than unsupervised and
semi-supervised learning [4]. Unfortunately, annotating cryo-
ET data is extremely expensive. One solution is using deep
active learning (DAL) to select and annotate a portion of all
unlabeled data and use the selected data to train a task model
in supervised fashion.
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Most existing methods [5, 6, 7, 8, 4, 9] resort to specially
designed auxiliary models (e.g. VAE [10]) or complex train-
ing fashions (e.g. adversarial [9, 8, 7]) to estimate data uncer-
tainty. In addition, a recent study [5] designs a GCN (graph
convolutional network) [11] to estimate uncertainty, and an-
other work [4] facilitates such an estimation with a predicted
loss, learned by an auxiliary network. However, these meth-
ods are not a good fit for cryo-ET tasks since customizing
the auxiliary models to 3D structures is arguably challenging
and a well tailored training scheme is also necessary, render-
ing a difficulty of deployment in real DAL scenarios. While
the Bayesian methods [12, 13] are free of auxiliary models,
they still suffer from inefficiency due to thousands of feed-
forward steps for each unlabeled data sample. Several other
methods [14, 15] need to solve classical optimization prob-
lems when estimating data uncertainty, such as K-center or
0-1 Knapsack problem, yielding very inefficient pipelines for
uncertainty estimation. Therefore, these methods are not suit-
able for cryo-ET tasks either.

To address the aforementioned challenges, we propose a
simple yet effective DAL method, which is highly compatible
with cryo-ET tasks. The core idea is to adopt the distance be-
tween the task model and its mean version to estimate uncer-
tainty for unlabeled data. The weights of the mean model can
be easily obtained by averaging that of the task model at dif-
ferent training stages. Therefore, for an individual unlabeled
sample, our computed distance reflects how the sample’s pos-
terior deviates from its average posterior (obtained from the
mean model). In data selection phase, the unlabeled data of a
higher such distance will be selected for annotation. However,
such selected data may result in over-fitting, a common issue
in DAL, due to the deviation brought to the task model. To
reduce this deviation introduced by newly annotated data, we
conversely leverage the distance (again, between task model
and its mean version) as a regularizer to the task loss. Experi-
mental results on cryo-ET tasks demonstrate the competence
of our method. More importantly, since our method is free of
auxiliary models or learning fashions, it is quite applicable to
cryo-ET tasks.

We summarize our main contributions as follows. Firstly,
we propose a novel uncertainty estimator for cryo-ET data in
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DAL. Secondly, we leverage the proposed estimator as a regu-
larizer to train the task model, aiming to enhance the general-
ization. We then unify uncertainty estimation and task model
training in one framework. Lastly, we theoretically interpret
why our method works and conduct extensive experiments to
validate its efficacy on both simulated and real cryo-ET data.

2. METHOD

We firstly present the pipeline of our method and then discuss
why it works. We summarize our method in Algorithm 1.

Algorithm 1: Proposed DAL method for cryo-ET.
Input :

T : task model; M : mean model;
{XU}: unlabeled training pool;
{XL, YL}: labeled training pool;
C: number of deep active learning (DAL) cycles;
E: number of epochs within each cycle;

Output:
T ;

1 begin
2 for i← 1 to C do
3 initialize T
4 for j ← 1 to E do
5 train T with {XL, YL};
6 update M based on T with the EMA

algorithm;
7 select a subset {XK} from {XU} according to the

distance between T and M ; (size of {XK} is
determined by the annotation budget)

8 human oracles (or equivalent) annotate each XK

with YK ;
9 update {XL, YL} and {XU}, respectively:

10 {XL, YL} ← {XL, YL} + {XK , YK};
11 {XU} ← {XU} − {XK};
12 return T ;

2.1. Pipeline of the Proposed Method

Notation. We denote an unlabeled pool with {XU} and a la-
beled pool with {XL, YL}, which is initially empty. Active
learning is to select data from {XU} for annotation and to
add the newly annotated data to {XL, YL}, which is used to
train the task model. The number of selected samples is de-
termined by a given annotation budget. We use T to denote
the task model and T (·) the feed-forwarding operation. M
and M(·) denote the mean model and its feed-forwarding op-
eration, respectively. For the other notations, we follow the
definitions in Algorithm 1.
Data Selection. For each unlabeled sample XU , we com-
pute D(T (XU ),M(XU )) as the uncertainty for XU , where
D(·) denotes a certain distance metric, such as MSE or KL
divergence. We select unlabeled data of higher D value for
annotation. In fact, this selection scheme aims to pick out the

data which leads to a higher deviation of output posteriors.
We leave a discussion of its rationale in Section 2.2.
The Mean Model and EMA. Exponential moving average
(EMA) imposes greater significance on recent data and less
significance on earlier data. This can be easily achieved by us-
ing a smoothing coefficient. [16] pioneered to apply the EMA
technique in deep learning research. We denote the weights
of T with θ, and compute the weights θ′ of M using

θ′t = αθ′t−1 + (1− α)θt, (1)

where t refers to a training step and α denotes the smoothing
coefficient. We use α = 0.999 for all the experiments.

In our method, the architecture of the mean model M is
exactly the same as that of the task model T . The weights of
M can be obtained using Eq. (1). As a result, M does not
need to be trained in the whole DAL procedure, leading to a
high efficiency of the proposed method.
Regularizer to Task Loss. Unfortunately, data of higher de-
viation may result in poor generalization of the task model
due to over-fitting. To mitigate this issue, we propose to use
D as a regularizer to the task loss, aiming to reduce the de-
viation introduced by newly annotated data. As a result, the
entire loss function of the task model can be written as

L = Ltask + λ ∗D(T (XL),M(XL)), (2)

where Ltask is an empirical loss (e.g. cross-entropy loss in
classification) and λ is a trade-off coefficient. We choose un-
labeled data of higher D(T (XU ),M(XU )) during data selec-
tion but minimize D(T (XL),M(XL)) for labeled data dur-
ing the task model training. Therefore, such a fashion to some
extent can be regarded as “adversarial”. Since the model
M will not be trained, minimizing Eq. (2) only updates the
model T to make it approach M , leading to a reduced devi-
ation for the labeled data XL. This helps to mitigate over-
fitting and enhance the generalization of T .
The Distance D. There are multiple options for the distance
metric D, such as MSE over feature space and KL divergence
over output posteriors. In our method, D has two modali-
ties. Specifically, during data selection, we choose the KL
divergence as D over the posteriors of the two model outputs.
Then the uncertainty of XU can be reformulated as

uncertainty(XU ) = KL(s(T (XU )), s(M(XU ))), (3)

where s(·) denotes the softmax computation. During the task
model training, we choose MSE as D over the output logits
before softmax. Then Eq. (2) can be rewritten as

L = Ltask + λ ∗MSE(T (XL),M(XL)). (4)

We observe that such a setting of D yields the best perfor-
mance, and provide an experimental analysis of D in the ab-
lation study.



2.2. Why Our Method Works

The rationale of a DAL method can be interpreted from two
aspects, namely data selection and task model training. Here,
we discuss the rationale of our method from these two aspects.
Deviation-based Data Selection. This type of schemes have
been demonstrated very effective in traditional active learning
[17, 18, 19]. However, little work has managed to extend it
for DAL. In addition, the deviation in a dataset is widely ac-
knowledged to be capable of reflecting data uncertainty, but
it fails to take task model into consideration. As illustrated in
Eq. (3), for unlabeled data, our method evaluates how its pos-
terior deviates from its average posterior (obtained from the
mean model). Therefore, our method takes into account both
data and task model, leading to a more accurate uncertainty
estimation in the DAL context.

3. EXPERIMENT

We evaluate our method using three simulated and one real
cryo-ET datasets. We compare our method with the state-
of-the-art DAL baselines on the classification task. Given an
unlabeled pool, we follow a common practice to randomly
select 10% of the data for annotation and use it as the initial
labeled data, which is kept the same for all the methods. We
run each experiment for 3 trials and report the mean results.
We refer readers to Appendix 1.1 for the training details, and
Appendix 1.2 for an analysis of time efficiency.

3.1. Cryo-ET Datasets

Simulated Data. We follow [20] to prepare the simulated
data. All the simulated datasets consist of 50 classes but with
three different SNRs (i.e. infinity, 0.05, and 0.03), leading
to three datasets. A SNR of infinity is equivalent to “noise-
free”. Each dataset includes 24000 training and 1000 testing
samples, uniformly distributed across 50 classes. Each sam-
ple is a subtomogram, which is a 3D subimage of a tomogram
that is likely to contain a single macromolecule.
Real Data. The real cryo-ET data [21, 22] is collected from
medical practices. The dataset consists of 4318 training sam-
ples and 1080 testing samples, distributed across 10 classes.
It is a highly imbalanced dataset. For the training data, the
number of samples in each class varies from 320 to 876. For
the testing data, such a number varies from 80 to 219.

3.2. Classification Performance

Model Selection. For the task model, we customize the origi-
nal ResNet-18 [23] with 3D operations (e.g. 3D convolutions)
to fit the cryo-ET input that is 3D grey scale image. We utilize
the same architecture for the mean model, but its weights will
not be updated via gradient descent. Both models are ran-
domly and independently initialized. We use the same task
model for all the compared methods for fair comparison.
Results and Analysis. We compare our method with typi-
cal DAL baselines, including mc-dropout [13], core-set [15],
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Fig. 1. Performance comparison between our method and the
state-of-the-art DAL baselines on the cryo-ET datasets.

vaal [8], and ll4al [4]. As illustrated in Fig. 1, our method out-
performs the others on all the datasets. In addition, we have
the following observations. Firstly, for almost each label-
ing budget, our method yields higher accuracy, demonstrat-
ing its reliability. Secondly, the real cryo-ET dataset is highly
imbalanced and the superior performance demonstrates our
method’s robustness to imbalanced data. Lastly, as the noise
level increases (i.e. SNR005 to SNR003), our method still
yields better results, demonstrating its robustness to noise.

3.3. Ablation Study

Distance Metric. As shown in Eq. (3), we use the KL diver-
gence as D over the output posteriors to estimate uncertainty
for unlabeled data. Here, we investigate what if MSE is used
over output logits for uncertainty estimation. As illustrated
in Fig. 2 Left, the KL divergence yields much better results,
suggesting that the metric D should be used over output pos-
teriors rather than over output logits for uncertainty estima-
tion. However, for the regularizer in Eq. (4), we observe that
employing MSE as D over output logits yields a better per-
formance.
Effect of the Regularizer. As shown in Eq. (4), we pro-
pose to use a regularizer to reduce the deviation introduced
by newly annotated data. In Fig. 2 Right, we study the trade-
off coefficient λ. As can be seen, the performance is severely
degraded when the regularizer is not used (i.e. λ = 0, namely
noema in the figure). For the other λ values, the results are
slightly different. At the last cycle (i.e. annotation budget of
40%), the results are very close, indicating that there is no
need of an extra effort to fine-tune this hyper-parameter. We
use λ = 0.03 in all the experiments of our method.
Semi-Supervised Fashion. Till now, the regularizer in Eq.
(4) only takes as input labeled data. Since the computation of
MSE in Eq. (4) does not have to rely on label information,
the regularizer can also work with unlabeled data, naturally
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Fig. 2. Left: Comparison of the distance metrics (D) on the
50-class simulated dataset with a SNR of 0.03; Right: Com-
parison of the trade-off coefficients (λ in Eq. (4)) on the 50-
class simulated dataset with a SNR of 0.05.
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Fig. 3. Left: The performance of our method and its semi-
supervised version on the 50-class simulated dataset with a
SNR of 0.03; Right: Comparison between selecting data of
lower deviation and selecting that of higher deviation. This
experiment is conducted on the 50-class simulated dataset
with a SNR of 0.05.

leading to a semi-supervised fashion, even though Ltask can
only be computed with labeled data. As shown in Fig. 3 Left,
the semi-supervised version of our method further improves
the task model performance, demonstrating the scalability of
our method. Note that we conduct all the other experiments
of our method in supervised fashion only, aiming at fair com-
parisons with the DAL baselines.

Lower vs Higher Deviation. As discussed in Section 2.1,
we select unlabeled data of higher deviation for annotation.
Here, we investigate what if data of lower deviation is selected
for annotation. As shown in Fig. 3 Right, selecting data of
higher deviation yields superior results. This observation also
validates the rationale of our data selection scheme.

Number of Classes. To explore how the number of classes
in a dataset impacts our method performance, we run experi-
ments on the simulated datasets of 10 and 50 classes, respec-
tively. We compare the final accuracy at the last cycle (i.e.
annotation budget of 40%), and show the performance im-
provement in Fig. 4. As illustrated, our method outperforms
the others by a larger margin on the 50-class datasets than on
the 10-class datasets, regardless of noise levels (i.e. SNR003
or SNR005), demonstrating the superiority of our method on
datasets that consist of more classes.

Fig. 4. The performance improvement of our method over the
others on the 10-class and 50-class simulated datasets. Top:
With a SNR of 0.03 for both datasets; Bottom: With a SNR
of 0.05 for both datasets.

4. CONCLUSION

In this paper, we propose a deviation based scheme for unla-
beled data selection in deep active learning, highly applicable
to cryo-ET challenges. To reduce the deviation incorporated
by newly annotated data, we propose a regularizer for the task
model training, leading to enhanced generalization. We unify
the data selection and the task model training in a deep ac-
tive learning framework and interpret its rationale based on
the dropout and the deviation theories. We also show that our
method can be easily extended to a semi-supervised fashion.
Experimental results demonstrate the efficacy and efficiency
of our method on both simulated and real cryo-ET data.
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Manuela Pérez-Berlanga, Frédéric Frottin, Mark S
Hipp, F Ulrich Hartl, et al., “In situ structure of neuronal
c9orf72 poly-ga aggregates reveals proteasome recruit-
ment,” Cell, vol. 172, no. 4, pp. 696–705, 2018.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the CVPR, 2016, pp. 770–778.


	 Introduction
	 Method
	 Pipeline of the Proposed Method
	 Why Our Method Works

	 Experiment
	 Cryo-ET Datasets
	 Classification Performance
	 Ablation Study

	 Conclusion
	 References

