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Abstract

Joint object matching, also known as multi-image matching, namely, the problem of
finding consistent partial maps among all pairs of objects within a collection, is a crucial
task in many areas of computer vision. This problem subsumes bipartite graph matching
and graph partitioning as special cases and is NP-hard, in general. We develop scalable lin-
ear programming (LP) relaxations with theoretical performance guarantees for joint object
matching. We start by proposing a new characterization of consistent partial maps; this in
turn enables us to formulate joint object matching as an integer linear programming (ILP)
problem. To construct strong LP relaxations, we study the facial structure of the convex
hull of the feasible region of this ILP, which we refer to as the joint matching polytope. We
present an exponential family of facet-defining inequalities that can be separated in strongly
polynomial time, hence obtaining a partial characterization of the joint matching polytope
that is both tight and cheap to compute. To analyze the theoretical performance of the pro-
posed LP relaxations, we focus on permutation group synchronization, an important special
case of joint object matching. We show that under the random corruption model for the in-
put maps, a simple LP relaxation, that is, an LP containing only a very small fraction of the
proposed facet-defining inequalities, recovers the ground truth with high probability if the
corruption level is below 40%. Finally, via a preliminary computational study on synthetic
data, we show that the proposed LP relaxations outperform a popular SDP relaxation both
in terms of recovery and tightness.
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1 Introduction

Object matching techniques are widely used in many areas of computer vision such as image
analysis, object recognition, robotics, biomedical identification, and object tracking. While
there is a rich literature on finding isomorphisms between a pair of objects, the task of joint
object matching, also known as multi-image matching, i.e., finding consistent maps among all
pairs of objects within a collection is underdeveloped. The most classic example for joint object
matching is the problem of matching feature points among many images of the same object, a
step used for instance in image recognition [13] and in structure from motion [3]. Almost all early
approaches to tackle joint object matching relied on sequential matchings of pairs of objects often
yielding erroneous results when the input data is noisy. Joint object matching is NP-hard in
general; common techniques for tackling this problem are graph neural networks [27, 38|, spectral
methods [32, 28, 36], and semidefinite programming (SDP) relaxations [22, 7, 39, 21]. Indeed,
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to date, the only existing convex relaxations for joint object matching are SDP relaxations. It
is well-understood that in spite of their polynomial-time complexity, SDPs are too expensive
to solve and are often impractical for large-scale problems. In this paper, we develop scalable
LP relaxations with theoretical performance guarantees for joint object matching; we start by
formally defining the problem.

1.1 Problem Statement

We consider the problem of joint object matching in its full generality; that is, when the objects
are only partially similar and the input is possibly incomplete. To formally define this problem,
we introduce some terminology which is mostly adapted from [7]. Suppose that we have a
collection of n objects S;, i € [n] := {1,...,n} each of which consists of d; elements for some
n > 3 and d; > 1 such that max;c, d; > 2. The case with n = 2 is equivalent to bipartite
graph matching (see for example chapter 8 of [34]) and the case with d; = 1 for all i € [n] is
equivalent to graph partitioning (see for example [9]), both of which are well-studied problems
in combinatorial optimization. Given two discrete sets S and &', a subset ¢ C S x &' is called
a partial map if each element of S (resp. S§’) is paired with at most one element of &’ (resp.
S); in particular, not all elements need to be paired. We denote by ¢;; : S; — S; the partial
map between the pair of objects S; and ;. In the special case where all elements in §; and
§; are paired, we say that the two objects have full similarity; otherwise, we say that the two
objects have partial similarity. Note that two objects with full similarity must contain the same
number of elements.

In joint object matching the input consists of noisy pair-wise partial maps (b;;‘ between some
of the objects S; and Sj, i,j € [n]. These input maps are obtained using off-the-shelf pairwise
graph matching algorithms and often contain some erroneous information. An undirected graph
G = (V,€) is called a map graph for the objects S;,i € [n] with V = {51,852, -+ ,S,} and
(Si,S;j) € £ whenever an input partial map ¢;f; is available. For notational simplicity, throughout
this paper instead of (S;,S;) € &£, we write (7, 7) € £. If the map graph is not a complete graph,
we say that the input is incomplete. The objective is to find a collection of consistent partial
maps ¢;; for all 1 <14 < j < n that are close to the input maps. By consistent partial maps, we
imply that for any 4, j,k € [n], whenever an element s € S; is paired with an element s’ € S;
which in turn is paired with an element s” € S, then s and s” are paired as well. This condition
is often referred to as cycle consistency in the literature [22], as consistency can be achieved by
requiring that the composition of maps between two objects is independent of the connecting
path.

In the following, we formulate joint object matching as a mathematical optimization prob-
lem. To this end, we use a binary d; x d; matrix X (i, j) to encode ¢;;; that is, the s, s’ entry
of X(i,7), denoted by X,y (i, ), equals one if and only if (s,s") € ¢;;. It then follows that a
binary matrix X (i, j) satisfying

X(i,)1a; < 1gq,, XT(i,j)1q, < 14, (1)

corresponds to a partial map, where 1,4, € R% denotes a vector of all ones. Moreover, cycle
consistency is achieved by requiring:

X(i,7)X(J, k) < X(i, k),
X(j,)X(0,k) < X(j,k), VI<i<j<k<n, 2)
X(i, k)X (k,j) < X(i,7),

where X (j,i) = X7 (4,7) for any i < j, X(i,7)X(j,k) denotes the standard matrix product
between X (i, ) and X (j, k), and inequalities are all component-wise. In case of full similarity
among all objects, X(i,7) are permutation matrices for all 1 < i < j < n; this special case is



often referred to as permutation group synchronization in the literature (see for example [32]).
It can be checked that cycle consistency in this case is obtained by imposing:

X(,)X(, k) =X, k) Vi<i<j<k<n. (3)
The following example gives an illustration of partial maps and cycle consistency.

Example 1. Let n =3, di =1, do = d3s = 2. Then the following are consistent partial maps:

X(1,2)=(0 1), X(1,3)=(0 0), X(2,3):<(1) 8), (4)

indicating that the only element of object 1 corresponds to the second element of object 2, and
the first element of object 2 corresponds to the first element of object 3. However, the following
partial maps are not consistent:

X(1,2)=(1 0), X(1,3)=(0 1), X(2,3):<8 ?) (5)

This is because we have X11(1,2) = Xi2(1,3) = 1, which by cycle consistency implies X12(2,3) =
1. Indeed by letting X12(2,3) = 1, we obtain consistent partial maps indicating that the only
element of object 1 corresponds to the first element of object 2 and to the second element of
object 3, and the second element of object 2 corresponds to the second element of object 3.

Let X™(i,5) € {0,1}%*% denote the matrix representation of the input partial map qb;?
We would like to find consistent partial maps X (7,7), 1 <i < j < n, so as to minimize

=3 X065 - XG0 )| (6)
(4,9)€E

where ||-|| » denotes the Frobenius norm. Denote by N the number of matched pairs in the input,
Le, N'= 32 )ee 2teld] >_qela;) Xiq(i;7)-  Since matrices X™(i,j) and X(i,j) are binary-
valued, the objective function (6) can be written as:

f:N+ Z <1d¢1de _2Xin(i7j)a X(Z7])>7
(i,9)€€

where (-, -) denotes the standard matrix inner product. It then follows that joint object matching
can be formulated as follows:

min Y <1di1§j —2X(i, §), X(i,j)> (JOM)
(i.4)€€
st X(i,5)1a, < 1g;, XT(i,4)1g, <1g, VI<i<j<n,
X (i, )X (. k) < X3, k),
X(j,1)X (i, k) < X(j, k), VI<i<j<k<n,
X(i, k)X (k, j) < X(4,7),
X(i,7) € {0,1}%*4 V1 <i<j<n.

In this paper, we are interested in the quality of convex relaxations for Problem (JOM). To
date, the only existing convex relaxations for joint object matching are SDP relaxations. In the
following, we describe a widely-used SDP relaxation of Problem (JOM) first proposed in [22].



1.2 SDP relaxations

Assume that there exists a universe U consisting of m elements such that each object S; is a
(partial) image of U and each element in U is contained in at least one object S;. We should
remark that the set U or even its size is not known a priori. We only rely on its existence to
construct the SDP relaxation. Let the matrix Y'(i) € {0,1}%*™ encode the correspondences
between S; and U, i.e., for any s € S; and s € U, the s, s’ entry of Y (i) equals one if and only
if s corresponds to s’. It then follows that X (i,5) = Y (i)Y T (j) for all 1 <4 < j < n. Define

X(i,3) = Iy, for all i € [n], where I;, denotes a d; x d; identity matrix. Let d = Zie[n] d;; denote
by X € {0,1}%*¢ a matrix whose (i, j)-th block is given by X(i,7), where we let X (j,i) =
XT(@,5). Let Y = (YT(1),---,YT(n))T. It can be checked that X = YY7 which implies
X is a rank-m positive semidefinite matrix. Similarly denote by X™ a d x d matrix whose
(i,7)-th block is given by X™(3, ), where we let X™(i,7) = I ,. Then an SDP relaxation of
Problem (JOM) is given by:

min Y (1417 - 2X(0,j), X(ij)) (7)
(i,7)€E

st. X =0, X>0,
X(i,i) = Iy, Vi€ |n],
X(i,j)1a, < lg;, XT(i,4)1g, <14, VI<i<j<n,

where X > 0 and X > 0 mean that X is positive semidefinite and component-wise nonneg-
ative, respectively. In case where X (i,j), 1 < i < j < n, are all permutation matrices, the
authors of [22] proved that the positive semidefiniteness condition X > 0 is equivalent to cy-
cle consistency. This in turn implies that in case of fully similar objects, replacing X > 0 by
X € {0,1}%*4 in Problem (7), one obtains an exact reformulation of Problem (JOM) as a binary
SDP.

It is important to emphasize that the size of the universe m is not known a priori; the
authors of [7] proposed a spectral technique to estimate m using the input data X'™. They
first trim X'™ to remove the bias from over represented rows or columns. Let us denote by
X™ the trimmed matrix. Denote by Ax the k-th largest eigenvalue of X Then they let
M= argmax . cp.g |Ak — Akg1l, where dmax = maxep,) di, and where 71 denotes the estimate
of m. Subsequently, they used this estimate to further strengthen the SDP relaxation (7); that
is, they replaced X > 0 by the following constraint:

(71%; 1);) = 0. (8)

In [39], the authors employed Burer-Monteiro factorization [6] by letting X = YY7 to tackle
the SDP. Recall that Y is a d x m matrix; hence, to benefit from the low-rank approach,
the availability of a good upper bound on the size of the universe is essential. The authors
of [39] observed that the estimation technique of [7] is inaccurate when the input is noisy and
incomplete. They then chose to use the upper bound 2m, where m is obtained by the spectral
method of [7] outlined above. To conclude, constraint (8) should only be used if a reliable upper
bound on the size of the universe is available.

1.3 Recovery guarantees under stochastic models

To perform a theoretical analysis of various existing and new algorithms for data science ap-
plications, a recent stream of research in mathematical data science is focused on obtaining
sufficient conditions for recovery of the ground truth under various stochastic models for the
input (see for example [7, 2, 19, 12, 11, ?]). We say that an optimization algorithm recovers



the ground truth, whenever its unique optimal solution coincides with the ground truth. In the
context of joint object matching, the question can be formally stated as follows: given a prob-
abilistic model for the noise in input partial maps, what is the maximum level of corruption
under which the (optimization) algorithm recovers the ground truth partial maps with high
probability? Throughout this paper, by high probability, we imply the probability tending to 1
as the number of objects n — oo.

Huang and Guibas [22] considered the SDP relaxation (7) for the permutation group syn-
chronization problem and obtained a deterministic sufficient condition for recovery, implying
under a random model recovery is possible with high probability when the corruption level re-
mains below 50%. In [7], the authors considered the general joint object matching with partially
similar objects, together with the SDP relaxation (7) enhanced by constraint (8). They first
significantly improved their earlier deterministic recovery guarantee in [22]. Subsequently, they
focused on the random corruption model, roughly defined as follows: each observed X (i, )
coincides with ground truth independently with probability pirue, and each observed but incor-
rect X™(4,§) is independently drawn from a set of partial maps satisfying E[X™ (4, j)] = %,
where E[-] denotes the expectation of a random variable. Note that, in this model, the authors
assume that the size of the universe m is known a priori, an assumption which often does not
hold. They proved that the SDP relaxation recovers the ground truth with high probability

2
if Pirne > ¢ log” (nm)

/n
spectral methods for solving permutation group synchronization under the random corruption
model. They proved that the spectral algorithm recovers the ground truth with high probabil-

, for some universal large constant C. In [4, 28], the authors considered

ity, if prrue > C'y/ M, where d denotes the number of elements in each object. This recovery
guarantee is nearly optimal in terms of information theoretical limits [8]. In [31], the authors
studied the recovery properties of a spectral algorithm for permutation group synchronization
under the additive Gaussian noise.

To summarize, for joint object matching under the random corruption model, both SDP
relaxations and spectral methods exhibit near optimal recovery thresholds. It is well understood
that solving SDPs is computationally prohibitive for large-scale problems. Spectral methods on
the other hand, only require estimating the leading eigenvector of a matrix, and are quite efficient
in practice. However, works like [30, 33] suggest that spectral methods are extremely sensitive
to slight modification in the generative model. Indeed, convex relaxations enjoy robustness
to adversarial corruptions of the inputs for statistical problems that spectral methods do not.
Therefore, it is of great interest to understand the most efficient convex relaxation algorithms
for solving joint object matching.

1.4 Our contribution

In this paper, we propose scalable LP relaxations with theoretical performance guarantees for
joint object matching. To this end, we first present an alternative characterization of consistent
partial maps. This in turn enables us to formulate joint object matching as an ILP. Subse-
quently, with the objective of constructing strong LP relaxations, we study the facial structure
of the convex hull of the feasible region of the ILP. As part of this polyhedral study, to effectively
approximate cycle consistency, we introduce consistency inequalities, an exponential family of
facet-defining inequalities that can be separated in strongly polynomial time. We next study
the theoretical properties of the proposed LP relaxation for the permutation group synchro-
nization problem; we show that under the random corruption model, a simple LP relaxation
containing only a very small fraction of consistency inequalities, recovers the ground truth with
high probability if pie > 0.585. While in the asymptotic regime our recovery guarantee is
suboptimal, in many cases of practical interest, the corruption level is below %40. It is for
such applications that our proposed LP provides a robust and efficient matching algorithm. In
fact, our numerical experiments suggest that for moderate values of n and d, the proposed LP



relaxation outperforms the SDP relaxation in recovering the ground truth.

The remainder of the paper is organized as follows. In Section 2 we present a novel LP relax-
ation for joint object matching. Subsequently, in Section 3 we focus on the permutation group
synchronization problem under the random corruption model and obtain a recovery guarantee
for the proposed LP relaxation. We present our numerical experiments in Section 4. Section 5
contains further results regarding the facial structure of the joint matching polytope that were
omitted from Section 2.

2 Linear programming relaxation

In this section, we propose a scalable LP relaxation with performance guarantees for joint object
matching. We start by presenting an ILP formulation for Problem (JOM). Let us first obtain a
linear characterization of cycle consistency constraints (2). A collection of partial maps X (i, j),
1 <i < j < n,is consistent if for any 1 <i < j < k <n and for any [ € [d;],t € [d;],q € [d],
whenever two out of the three elements X (¢,7), X¢q(j, k), Xiq(i, k) equal one, the third one
equals one as well. It is simple to check that this condition is enforced by the following system
of inequalities:

_Xlt(i7j) + th(j7 k) + qu(iak) S 17
Xit(i,§) — Xeg(G, k) + Xi(3,k) <1, Vi€ [d],t€[djl,q€ld], 1<i<ji<k<n. (9)
Xlt(ivj) + th<j7 k) - qu(ia k) S 17

Hence an ILP formulation for Problem (JOM) is given by:

min Y <1di1dT], —2xn (i, §), X(z‘,j)> (IP)
(i)e€
s.t. X(Z7])1d] < ]-dj’ XT(Za])]-dl < ]-dia Vi<i<j<n,

=X (i, J) + Xiq(4, k) + Xiq(i, k) < 1,
Xu(1,7) — Xeg(4, k) + Xyq(3, k) <1, Vie[d],t €ld;],q€[dy], VI <i<j<k<n,
Xlt(iuj) + th(jv k) - qu(i,k‘) S 17

X(i,5) € {0,135 vI<i<j<n.

Remark 1. Inequalities (9) can be considered as a generalization of triangle inequalities used
for instance in graph partitioning problems [17, 9]. Given a graph with n nodes, the goal in
graph partitioning is to partition the nodes of the graph into at most K subsets such that some
similarity measure across different partitions is minimized. In this context, for each pair of
nodes i,j € [n] a variable y;; is defined as follows: y;; = 1 if nodes i and j belong to the same
partition and y;; = 0, otherwise. The triangle inequalities are then defined as

Yij +yik — Yk <1, ViF j#ken]

The above inequality states that if i and j are in the same cluster, and i and k are in the same
cluster, then also j and k must be in the same cluster. It then follows that inequalities (9)
are a generalization of triangle inequalities for the case node i of the graph represents object S;
consisting of d; elements where d; > 2 for some i € [n].

Now consider the simple LP relaxation of Problem (IP), that is, the LP obtained by replacing
X (i,5) € {0,1}%*4 by the constraint X (i,5) > 0. Let us refer to this LP as the basic LP. In
the next example, we show that inequalities (9) are not implied by the SDP relaxation (7).

Example 2. Let n = 3 and di = do = d3 = 2; it can be checked that the following is feasible
for Problem (7):

)((1,2):)((1,3):@11 %) X(2,3):<% %) (10)



Now consider the inequality obtained by letting | = t = q = 1 in the second inequality of
system (9):
X11(1,2) - X11(2,3) + X11(1,3) <1.

Substituting (10) in the above inequality yields 3 — % + 3 Z 1.

In the following, we improve the strength of the basic LP relaxation by obtaining a partial
linear characterization of cycle consistency. Subsequently, we establish the strength of the
proposed inequalities by showing that they define facets of the convex hull of the feasible region
of Problem (IP).

2.1 Consistency inequalities

We now present a generalization of inequalities (9) for joint object matching.

Proposition 1. Let 1 < ¢ < j < k < n. Then following inequalities are valid for the feasible
region of Problem (IP):

- Z Z Xiq(i,§) + Z Xa(j, k) + Z Xu(i k) <1,

teD1 gD qE€ D2 teDy
VD C [d;], D2 C [dj], 1 € [dg], D1,D2 # 0

> Xulid) = YD Xl k) + Y Xiglisk) < 1,

teDy teD1 q€D2 q€D2

VDl C [dj], D2 - [dk], l e [dl], Dl,DQ 7’é Q) (11)
> Xuli§)+ Y Xigl k) = > Y Xiglisk) <1,
te Dy q€D> teD1 qeD2

VDI C [dl]7 D2 C [dk]7 le [dj]7 DlaDQ # (D

Proof. Without loss of generality, consider the third inequality in (11), for some [ € [d;]. To see
the validity of this inequality, notice that by condition (1), at most one term in ), Xu(i, j)
and at most one term in ) . Xi4(j, k) equal one. Now suppose that we have Xy (i,5) = 1 for
some ¢ € Dy and X4(j, k) = 1 for some ¢ € Dy. Then by inequalities (9), we have Xz, (i, k) = 1
and this completes the proof of validity. O

Notice that by letting |D1| = |D2| = 1 in inequalities (11), we obtain inequalities (9).
Henceforth, we refer to inequalities (11) as consistency inequalities. The following example
demonstrates that consistency inequalities (11) strengthen the basic LP relaxation of Prob-
lem (IP).

Example 3. Let n = 3 and di = do = ds = 2; it can be checked that the following satisfies
inequalities (9):

X(1,2):(% %) X(2,3):<8 8) X(1,3):<8 %) (12)

Now consider the inequality obtained by letting l = 1, D1 = {1,2}, and Dy = {2} in the second
inequality of system (11):

X11(1,2) + X12(1,2) — X12(2,3) — X22(2,3) + X12(1,3) <1.

Substituting (12) in the above inequality yields % + % —0—-0+ % £ 1. Next consider

X(1,2):<8 8) X(2,3):(8 %) X(1,3):<8 é) (13)

7



It can be checked that (13) satisfies all consistency inequalities with |D1| =1 or |Da| = 1. Now
consider the consistency inequality with | = 2, |D1| = |D2| = 2 given by:

—Xll(l, 2) — X12(1, 2) — X21(1, 2) — X22(1, 2) —|—X12(2, 3) —I—X22(2, 3) +X12(1, 3) —|—X22(1, 3) <1
Substituting (13) in the above inequality yields —0 — 0 — 0 — 0+ % + % + % + % £ 1.

The number of consistency inequalities (11) is exponential in the number of elements d;,
i € [n]. That is, for each 1 < i < j < k < n, we have d;(2% + 2% — 2) 4 d;(2% + 2% — 2) +
d (2% + 24 — 2) consistency inequalities. However, as we detail next, separating over these
inequalities can be done in a number of operations that is polynomial in n and d;, i € [n].

Separation of consistency inequalities. Let us start by defining the separation problem:

The separation problem. Let X (i, ) € [0,1]%*% for all 1 < i < j < n satisfy inequalities (1).
Decide whether X satisfies all consistency inequalities (11) or not, and in the latter case find a
consistency inequality that is violated by X.

Proposition 2. There exists a strongly polynomial time algorithm that solves the separation
problem over all consistency inequalities.

Proof. Let 1 < i < j < k < n and let | € [d;]; consider the third inequality in (11) for
all nonempty D; C [d;], Dy C [dg]. We claim that the inequality that is most violated by
X(i,7) € [0,1]%%9% for all 1 <4 < j < n (if one exists) among all such 2% 4 2% — 2 inequalities
can be found by an algorithm that is strongly polynomial in d;, dx. This in turn implies that the
separation problem over all consistency inequalities can be solved in strongly polynomial time
with respect to n,d;, ¢ € [n]. Define binary variables y;, z, for all t € [d;], ¢ € [di] as follows: for
each t € [d;], we let y4 = 1 if t € D; and y; = 0, otherwise; similarly, for each ¢ € [dy], we let
zq = 1if ¢ € Dy and z; = 0, otherwise. Then to find the most violated consistency inequality,
it suffices to solve the following optimization problem:

max Z th i, )yt + Z qu Jk Z Z th(i7k)ytzq (14)

te[d;] q€ldy) teld;] g€ |dx]
st. oy e {0,134 2 e {0,1}%.
If the optimal value of the above problem is greater than one, the maximizer provides us
with Dj, Dy corresponding to a most violated inequality; otherwise, no violated consistency

inequality exists. Now let us examine the complexity of solving Problem (14). Denote by
f(y, z) the objective function of Problem (14). Defining zZ, = 1 — 2, for all g € [di], we get

F,2) =Y Xa(biy+ Y XigG k)1 =2) = > > Xeglis byl - Z)

teld;) q€ldy] t€[d;] q€d]
= Z th Z ] Z th 1, k yt+ Z qu ]7 1 _éq) + Z Z th(iak)ytiq
te(d;] q€ldg] q€[dg] te(d;] g€ldy]

Since by assumption Xy, (i, k) > 0 for all t € [d;],q € [di] and for all 1 < i < k < n, it can be
checked that f(y, 2), y € {0,1}%, z € {0,1}% is a super-modular function (see for example [20]).
It then follows that Problem (14) can be transformed into the problem of maximizing a super-
modular function and hence can be solved in strongly polynomial time in d; + dj [35]. Hence,
solving the separation problem over all consistency inequalities amounts to (in the worst case)
solving 3d (g) optimization problems of the form (14), where d = max;e () di- O



Remark 2. It can be shown that Problem (14), i.e., the problem of mazimizing a super-modular
quadratic function, can be equivalently solved by solving the following LP [5]:

max Y Xa(i i)y + Y Xiglik)zg— Y Y Kiglik)wg (15)

teld;) q€ldy] teld;] g€ldy]
St Wiy > Y+ 2 — 1, wg >0, VYVt € [di],q € [dy]
y€[0,1]%, = €[0,1)%,

which can be readily solved using a generic LP solver. Note that the above LP has d;dy, + d; + dy.
variables; i.e., yi, 2g, Wiq for all t € [d;],q € [dr]. As we detail in Section 4, to solve the
separation problem over consistency inequalities, we solve Problem (15).

Notice that in order to construct Problem (14) we do not require D; and D3 to be nonempty,
since if at least one of the two subsets is empty, the resulting inequality is implied by inequali-
ties (1) and hence is trivially satisfied.

Block consistency inequalities. Consistency inequalities (11) can be significantly general-
ized as follows:

Proposition 3. Let 1 <1 < j < k < n. Then following inequalities are valid for the feasible
region of Problem (IP):

=Y Xugli )+ Y D Xali k) + D D Xulisk) < |Ds,

teD1 q€Do q€Ds €D teD1 l€Ds
VD C [d;], Dy C [d;], D3 C [dg], D1, D2, D3 # 0.

SN Xuli ) = 30D Xk + 30T Xigli, k) < | Ds,

leDs teDy teD1 qeD2 leDs qe Do

VDlg [dj]a DQQ [dk‘]; D3g [di]7D17D27D37£® (16)
SO Xl + > D Xigli k) = Y > Xugli, k) < | Ds],
teD1 leDs leD3 qe Do teD1 qeD>

VD1 C [d;], Dy C [di], D3 C [dj], D1, D2, D3 # 0.

Proof. Without loss of generality, let us consider the third inequality and let us rewrite this
inequality as

S (X Xl + Y Xulik) = D0 D Kiglisk) < |Dsl

leDs teD;y q€ D> teD1 qeDo

By inequalities (1) for each | € D3 we have >, Xu(i,7) < 1 and > p, Xi4(j, k) < 1. By
proof of Proposition 1, for each [ € D3, if X;;(i,7) = Xi4(j, k) = 1, for some t € Dy and ¢ € Do,
then Xiq(i,k) = 1. Now suppose that there exists Iy # lo € D3 for which this condition is
satisfied; i.e., Xy (4,7) = Xi,4(j, k) = 1 and Xz, (4,5) = Xi,4(j, k) = 1. Then by inequalities (1)
it follows that £ # £ and § # ¢ implying that by inequalities (9), two distinct terms qu(i, k) and
ng(i, k) in the third summation equal one as well. A recursive application of this argument
completes the proof of validity. ]

Notice that by letting |D3| = 1 in inequalities (16), we obtain consistency inequalities (11).
Henceforth, we refer to inequalities (16) as block consistency inequalities. If |Di| + |Da| <
|Ds|, then by (1), block consistency inequalities are redundant as the value of the left-hand
side of these inequalities does not exceed |D;| + |D2z|. However, in general, block consistency
inequalities (16) with | D3| > 1 are not implied by the consistency inequalities (11). The following
example illustrates this fact:



Example 4. Let n = 3 and di = dy = d3 = 2; it can be checked that the following satisfies

inequalities (11):
X(1,2):<8 é) X(2,3):@ ) X(1,3) = <; ;) (17)

Now consider the inequality obtained by letting D1 = {1}, Dy = D3 = {1,2} in the first
inequality of system (16):

NI NI

—X11(1,2) — X12(1,2) + X11(2,3) + X12(2,3) + X21(2,3) + X22(2,3) + X11(1, 3) + X12(1,3) < 2
Substituting (17) in the above inequality yields 0 — % + % + % L 2.

We will further detail on the theoretical strength of block consistency inequalities in the next
section. From a computational perspective however, unlike consistency inequalities (11), the
separation problem for this more general class cannot be reduced to the problem of maximizing
a binary supermodular quadratic function. Indeed, there does not seem to be a reduction to
any known class of polynomially-solvable binary quadratic program [?, 7, 5, ?]. While we leave
the complexity of this separation problem as an open question, we suspect that it is a difficult
problem. Moreover, inequalities (16) are very dense; that is they contain many variables with
nonzero coefficients; a feature that is not computationally desirable. Hence, in this paper, we
do not consider block consistency inequalities for our computational experiments.

2.2 The Joint Matching Polytope

In this section, we establish the strength of the proposed inequalities by performing a brief
polyhedral study of the convex hull of the feasible region of Problem (IP). For simplicity,
throughout this section we assume that all objects have the same number of elements d. We
assume that n > 3 and d > 2. Now consider the feasible region of Problem (IP), that is,
the union of all consistent partial maps corresponding to n objects each of which consists of d
elements. Any consistent partial map X(7,7), 1 < i < j < n, can be equivalently represented

by a binary vector X in RG) defined as

X = (vece(X(1,1)T, vee(X (1,2))T, -+ ,vec(X (1,n))T, vee(X (2,1))T - - -, vec(X (n,n)) )T,
(18)
where vec(X (4,7)) denotes the vectorization of matrix X (i,j). We refer to the convex hull of
such binary vectors corresponding to all consistent partial maps as the joint matching polytope
and denote it by C,, 4. In the following, we refer to a vertex of C, 4 by specifying the corresponding
partial maps, with the understanding that transformation (18) is applied to construct a vertex
from the partial maps. For notational simplicity, we sometimes use a set theoretic notation to
specify the partial maps. Namely, for any ¢ € [d] and i € [n], we denote by i, the g-th element
of object §;. The set M x then represents the consistent partial maps X (i,7), 1 <i < j <n, as
follows: (%t,j'q, l;:l) € My if and only if i, ﬁ'q and k; correspond to an element u in the universe
U, ie., Xig(i,7) = Xa(J, k) = th(z k:) = 1. Moreover, no other element of U,e[n]&, corresponds

to u. We also assume that #; # ]q #* k;, where we define i; = jq when ¢ = j and ¢t = ¢.

With the objective of constructing strong LP relaxations for joint object matching, in the
following, we conduct a brief polyhedral study of the joint matching polytope. Namely, we
obtain several classes of facet-defining inequalities for this polytope. To this end, we first
establish a fundamental property of the joint matching polytope.

Proposition 4. The joint matching polytope Cnq, n > 3, d > 2 is full dimensional, i.e.,
dim(Cp q) = (4)d?.
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Proof. To prove the statement, it suffices to show that C,, 4 contains (g)dQ + 1 affinely inde-
pendent points. Let the first point correspond to partial maps with no paired elements, i.e.,
X(i,j) =0for all 1 <i < j <mn. Next for each 7, j with 1 <7 < j < n, and each £, € [d] con-
sider partial maps with M x = {(%iajﬁ)}» ie., qu(%,j') =1 and X,(7,j) = 0, otherwise. Clearly,
we have a total number of (g) d? such partial maps. It then follows that together with the zero
vertex, the corresponding vertices constitute a collection of (g) d? +1 affinely independent points
in Cp 4. (]

Proposition 5. The nonnegativity constraints Xq(i,j) > 0 for all t,q € [d] and for all1 < i <
Jj < n, are facet-defining for C, 4.

Proof. Without loss of generality, we show that inequality X1;(1,2) > 0 defines a facet of C,, 4.
Consider a nontrivial valid inequality » ;i< 2ot se(q @tq(t, 1) Xeq (i, ) < B for Cp g that is
satisfied tightly by all consistent partial maps X (i,5), 1 < i < j < n in which X;;(1,2) = 0.
In the following, we show that the two inequalities X11(1,2) > 0 and aX < 8 coincide up to a
positive scaling which by full dimensionality of C,, 4 (see Proposition 4) implies X;;(1,2) > 0 is
facet-defining.

First consider the partial maps corresponding to no matched pairs, i.e., X(i,5) = 0 for
all 1 < ¢ < j < n. Substituting this point in aX = f§ yields f = 0. Next consider some
t,G € [d and 1 <17 < j <n such that (i,7,%,4) # (1,2,1,1) and consider the partial maps with
Mx = {(%5,54)}; substituting this point in aX = § gives aiq(%,j) = 0. It then follows that
atq(i,5) = 0 for all ¢,q € [d] and, for all 1 < ¢ < j < n such that (7,5,t,q) # (1,2,1,1). Hence,
inequality aX < /8 can be written as a11(1,2)X;1(1,2) < 0. Since this inequality is valid for
Cn,d, we have aq1(1,2) < 0 and this completes the proof. O

Proposition 6. Inequalities (1) define facets of the joint matching polytope.

Proof. Without loss of generality, we show that inequality qu[d} X14(1,2) <1 defines a facet
of Cp 4. As in the proof of Proposition 5, denote by aX < 8 a nontrivial valid inequality for
Cnq that is binding at all consistent partial maps satisfying » ¢eld) X14(1,2) = 1. Let g € [d]
and consider the partial maps with Mx = {(11,24)}. Substituting this point in aX = § yields:

a14(1,2) =5, Vqeld. (19)

Next, for each ¢ € [d], consider any partial maps of the form Mx = {(11,24), (it,7;)}. Notice
that by definition of My, we have i; # 11, iy # 24, ji # 11, and j; # 24. Substituting such
points in X = § and using (19) give:

ai(i,j) =0, V1<i<j<mn,Vtqeld suchthat (i,t)# (1,1). (20)

Finally for any j € [n] \ {1,2} and any #,4 € [d], consider the partial maps with My =
{(11,2¢,74)}. Substituting such points in aX =  and using (19) and (20) give:

aiq(l,7) =0, V2<j<n, Vqgeld. (21)

By (19)-(21), inequality aX < 8 can be written as 83 1y X14(1,2) < 3. Moreover, since this
inequality is valid for C,, 4, it follows that 3 > 0 and this completes the proof. O

The following proposition establishes the strength of consistency inequalities; that is, con-
sistency inequalities (11) are facet-defining for C,, 4.

Proposition 7. Consistency inequalities (11) define facets of the joint matching polytope for
all nonempty D1, Ds C [d].

11



Proof. Without loss of generality, we show that for any nonempty D;, Dy C [d], the inequality

SX(1,2) = Y0 > Xpg(2.3)+ Y Xig(1,3) <1, (22)

te D1 teD1 qeD> q€Do

defines a facet of C,, 4. Denote by aX < § a nontrivial valid inequality for C,, 4 that is binding
at all consistent partial maps satisfying inequality (22) at equality. Notice that inequality (22)
is binding at a point if in the corresponding partial maps there exists e € M x with 1; € e such
that (i) 2; € e for some ¢ € Dy and 3, ¢ e for all ¢ € Dy or (ii) 2; ¢ e for all t € Dy and 3, € e
for some g € Dy or (iii) 2; € e for some t € D; and 3, € e for some g € D,. First consider the
partial maps with Mx = {(11,2¢)} for some t € D; (resp. Mx = {(11,3,)} for some ¢q € Dy).
Substituting in aX = 3 yields:

alt(1,2) = Oélq(l,?)) =p, Vte D, Vg€& Ds. (23)

Next, consider the partial maps with My = {(11,2,3,)} for some ¢ € D; and some ¢ € Dy;
substituting this point in aX = § and using (23) gives:

Oth(2,3) =—-08, Vte Di,q¢€ Ds. (24)

Now let ¢ € Dj, consider any partial maps of the form Mx = {(11,2;), (ir,7s)} (resp. let
q € Dy, and consider any partial map of the form Mx = {(11, 3¢), (4, js)}). Substituting these
points in X = 5 and using (23) yield:
ay(i,j) =0, V1<i<j<n, Vtqe[d], such that (¢,7) # (1,1) and (25)
(t,q,i,7) # (£,G,2,3), for some t € Dy, § € Do.
Let t € Dy, for any 3 < j < n and any g € [d], consider the partial maps of the form
Mx = {(11,2, jq)}. Substituting in o X = 4 and using (23) and (25) yield:
a1g(1,4) =0, V3<j<n Vged (26)
Finally, let t € D; for any ¢ € [d] \ D2, consider the partial maps Mx = {(11,2¢3,)}.
Substituting in X =  and using (23) and (25) yield
014(1,3) =0, Vg € [d]\ Ds. (27)

Similarly, let ¢ € Ds; for any ¢ € [d] \ D1, consider the partial maps Mx = {(11,24,3:)} to
obtain
o1g(1,2) =0, Vg e [d]\ D, (28)

From (23)-(28), it follows that aX < f can be written as
6( Soxu12)- 3 Y X, 23+ Y qu(1,3)) < B.
teDq teD1 g€Do q€ D>

By the validity of the latter we have § > 0 and this completes the proof. O

Finally, we consider block consistency inequalities (16). The next proposition indicates that
all non-redundant block consistency inequalities (16); namely, those with |D;|+ |Da| > |D3| ,
are facet-defining. The proof is given in Section 5.1.

Proposition 8. Inequalities (16) define facets of the joint matching polytope for all nonempty
Dq,D5, D3 C [d] such that |D1| + |D2| > |D3|

It is interesting to note that the polytope defined by facet-defining inequalities of Proposi-
tions 5-8 does mot coincide with the joint matching polytope even for n = 3 and d = 2. The
following example demonstrates this fact:
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Example 5. Let n = 3 and d = 2; it can be checked that the following satisfies all facet-defining
inequalities of Propositions 5-8:

X(1,2):<(1] é) X(2,3):<% ?) X(1,3):<% %) (29)

2 2 2

Now consider the following inequality:

—X11(1,2) — X12(1,2) — X22(1,2) + X11(2,3) + X21(2,3) + X22(2,3) + X11(1,3)
+X12(1,3) + Xa2(1,3) < 2.

To see the validity of the above inequality, note that by inequalities (1) we have X11(2,3) +
X21(2,3) + X22(2,3) < 2 and X11(1,3) + X12(1,3) + X22(1,3) < 2. Moreover, if X11(2,3) +
X21(2,3) + X22(2,3) = 2, then we must have X11(2,3) = X22(2,3) = 1. This in turn implies
that if X11(1,3) = 1 (resp. Xi12(1,3) = 1 and X22(1,3) = 1), then X311(1,2) = 1 (resp.
X12(1,2) =1 and X92(1,2) = 1). By symmetry, the validity of the inequality for the case with
X11(1,3) + X12(1,3) + Xo2(1,3) = 2 follows. Substituting (29) in the above inequality yields
—% + % + % £ 2, implying the proposed facet defining inequalities do not characterize C3 3.

Obtaining a linear characterization of cycle consistency for joint object matching remains
an open question and is a subject of future research.

2.3 A new LP relaxation for joint object matching

We propose an LP relaxation of Problem (IP) whose feasible set is defined by facet-defining
inequalities of Propositions 5, 6 and 7:

. T in/. - .o
min Z <1di1dj —2X"(4,7), X(’L,j)> (LPF)
(i.j)€€
st X(i,j)1q, < 1g;, XT(i,j)1g, <1q,, VI<i<j<n

-3 Xl + S XaGok)+ S Xalik) <1,

teD1 qeD2 qe D2 teDq
WDy C [, Dy C [dj], L€ [dy), D1, Dy #0, 1<i<j<k<n

M Xuli )= Y0 Y Xl k) + Y Xiglink) <1,

teDy teD1 g€Dy q€ D>
VDy C [d;], Dy Cldi), 1€ [di], D1,Da#0, 1<i<j<k<n

S Xu(h i)+ Y XigG k) = Y Y Xgliyk) <1,
teDy q€ D2 teD1 qeDo

VD: C [di], Do Cldg], L€ [dj], D1, D2 # 0, 1<i<j<k<n
X(i,§) >0, VI<i<j<n.

Recall that the number of consistency inequalities (11) in Problem (LPF) is exponential in the
number of elements d; in object i. However, by Proposition 2, separating over these inequalities
can be done in time that is polynomial in n,d;, i € [n]. By polynomial equivalence of separation
and optimization [16], it then follows that Problem (LPF) is solvable in polynomial time.

As we detailed in Section 1, in joint object matching the size of the universe is not known a
priori. However, some studies [7, 39] have proposed to employ an upper bound estimate on the
size of the universe to tighten their SDP relaxation. Such an upper bound estimate can also be
used to tighten our proposed LP relaxation. Since a reliable estimation of m is based on a good
understanding of the specific application and the input data, and hence is beyond the scope of
this paper, we do not include it in our numerical experiments. However, for completeness, in
Section 5.2 we present a class of valid inequalities that can significantly tighten the LP relaxation
when an estimate on the size of the universe is available.
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3 Recovery for permutation group synchronization

In this section, we study the recovery properties of the proposed LP relaxation under a popular
stochastic model for the input maps. We consider the case with d; = d = m for all i € [n]; this
special case is often referred to as permutation group synchronization in the literature [32, 31,
28]. For simplicity, we assume that the input consists of all possible pair-wise matchings, that
is, we assume that the map graph is complete. Define a;,(i,j) :=1 — 2Xm(z j) for all t, q € [d]
and for all 1 <7 < j < n. As the first step, in this paper, we focus on the basic LP relaxation,
that is, the LP consisting of all consistency inequalities with |D;| = |Dy| = 1:

min Z Z atq (i, §) Xiq(i,7) (P)

1<i<j<ntgqe d]

st > Xy(ij)=1, Vteld, VI<i<j<n, (30)
> Xy(i,4) =1, Vgeld, V1<i<j<n, (31)

Xu(i,7) + Xeq(J, k) — Xig(i, k) < 1,
Xlt(iaj)_th(jak)+qu(i7k) < 1 Vl,t,qe [d}a V1 §Z<]<k§n7 (32)
_Xlt<i7j) + th(j, k) + qu(i, k) <

1,
Xiq(4,§) 20, Vtgeld,VI<i<j<n (33)

The random corruption model. To analyze the quality of the proposed LP relaxation, we
consider the random corruption model [7, 28|, defined as follows:

. - {Y(i)YT (j) with probability pirue,
X (Z’]) = . ..
P;; with probability 1 — pirye,

where Y (i) € {0,1}9%¢ i € [n] encodes the correspondences between the i-th object and
the universe, P;; is an independent random permutation matrix uniformly sampled from d!
permutation matrices, and pyye € [0,1] denotes the probability that each X™(i,j) coincides
with the ground truth. Without loss of generality, we assume that the elements of each object
are ordered so that the g-th element of all objects are matched with each other for all ¢ € [d];
that is, X'"(i,5) = I, whenever the input matches the ground truth. For each 1 <i < j < n,
denote by z;; a Bernoulli random variable with parameter pirue, independently drawn from P;;.
It then follows that:

Xin(i,j) = Zz'de + (1 — zz’j)Pija Vi<i< j<n. (34)

We are interested in addressing the following question:

What is the maximum level of corruption under which the basic LP relaxation recovers the
ground truth with high probability?

Recall that we say an optimization problem (e.g. the LP relaxation) recovers the ground
truth if its unique optimal solution coincides with the ground truth. Moreover, by high proba-
bility we imply that the probability tends to 1 as the number of objects n — co. The following
theorem states that the basic LP relaxation recovers the ground truth with high probability
provided that the corruption level is below 40%:

Theorem 1. Suppose that input maps X™(i,7) for all 1 <i < j < n are generated according

to the random corruption model (34) and assume that d € o((n/ log(n))%). Then Problem (P)
recovers the ground truth maps with high probability if pirue > 0.585.
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In the remainder of this section, we prove Theorem 1 via a number of intermediate steps
stated in six lemmata. Recall that for our ground truth, we assume that the elements of each
object are ordered in a way that for each ¢ € [d], ¢-th elements of all objects are matched with
each other. That is, for each 1 < i < j < n, we have Xy,(i,j) = 1 for all ¢ € [d] and Xy,(i,j) =0
for all t # ¢ € [d]. We first obtain a deterministic sufficient condition under which X is the
unique optimal solution of Problem (P). Subsequently, we focus on the random corruption
model and prove that our deterministic condition implies the recovery guarantee of Theorem 1.

3.1 A deterministic condition for recovery

In the following we obtain a deterministic sufficient condition under which the ground truth is
the unique optimal solution of the basic LP. First, in Lemma 1, we obtain a sufficient condition
under which X is an optimal solution of Problem (P), where we assume that each input map
Xn(4,4), 1 <i < j <nis a permutation matrix. Subsequently, in Lemma 2, we examine the
uniqueness of X. In the following, we define a(j,7) := a’ (4,5) for all 1 < i < j < n.

Lemma 1. For each 1 <i < j <n andt € [d], define
Z S min au(k,i) att(k,j)7 an(k,j) | au(kq)
Q £d Q Bd
" leld\t} ke
1,1 d-1 . N _ (d=2)
+ — (5 — w)( Z att(k,l) + Z att(kaj)> - a +1 (35)

ke[n]\{i} ke[n\{7}
1 ay(i, j) + ay(j, 1) at(i,7)
+ 2 Z ( « 2 Bd )’

n
leld\{t}

and for each 1 <i < j <n andt,q € [d], define

1—=j . _
5t%q

3 (atq(k7j) — aiq(3, J) n “tt(i’j)_a“(k’j)). (36)

d
keln\(ig): @ p
att (k)=

Let a > 0 and B > 0 be parameters independent of n,d. Then X is an optimal solution of
Problem (P), if for each t,q € [d] and for each 1 < i < j < m, the following conditions are
satisfied:

(Z) ifatt(ihj) = aqq(iyj) = atq(imj) = 1; then

520 >0, 0731 >0, (C1)
(11) if aw(i,j) = aqq(i,5) = 1, aig(i,j) = —1, then
5 >1, 60>, (C2)
(111) if aw(i,j) = aqq(i,J) = —1, aq(i,j) = 1, then
i)+ 5 (5204 6131) 2 0. alind) + 5 (955 + 6171) 20 (3)
() if a(i,5) =1, agqe(i,7) = —1, a(i,j) =1, then
(i J) + 6,35+ 020 2 0, (C4)
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(’U) if@tt(i,j) = _]'7 aqq(ivj) = 1? atq(iaj) = ]-7 then
roli, ) + 6,y + 5351 = 0. (C5)

Proof. We start by constructing the dual of Problem (P): define dual variables (i, j) for all
t € [d] (resp. ¢4(i,7) for all ¢ € [d] ) and for all 1 < i < j < n associated with equalities (30)
(resp. equalities (31)). Define dual variables )\lltq(i,j, k), )\lth(z g, k), )\‘?tq(z J. k) forall l,t,q € [d]
and for all 1 <i < j < k < n for the first, the second and the third inequalities of system (32),
respectively. Finally, for inequalities (33), define dual variables jut4(7, j) for all ¢,¢q € [d] and for
all 1 <1i < j <n. It then follows that the dual of Problem (P) is given by:

max - Z Z ()\ltq ] ]7 + )\lth(i,j, k) =+ )\?tq(ihj? k‘)) (D)
1<i<j<k<nlt,q€[d]

S (g + i)

1<i<j<n te[d)

s.t. atQ(iaj) + Tt(ivj) + Cq(i,j) - /‘tQ(ivj) + Z ( Z Alltq(kaivj) - >‘l2tq(k;?i7j) + A?tq(k’i’j))

le[d] ke€[n]:
k<i
Y (= Mgl ko) + A (i, . 5) + Ny (0, k. )
ken):
1<k<j
57 (Nt g, k) + i, g, k) = A2 (i 4, k:))) =0, VhgeldVi<i<j<n, (37)
ke€n]:
k£j
)‘lltq<i7j7 k) = 07 )‘lth(ivjv k) > 07 A?tq(ivjv k) > 07 Vl,t,q S [d}, V1 <i< ] <k <n,
tg(i,j) >0, Vt,ge[d], V1 <i<j<n. (38)

To prove the statement, it suffices to construct a dual feasible point (7,¢, A', A2, A3, i) that
satisfies complementary slackness, i.e., for all 1 <i < j <k <n and all [, ¢,q € [d], we have

o Nyy(ij k) =0if 1 # t and t # g,
o N (i,j,k) =0if I #t and | # g,
* )‘ltq(iaj,k?):Oiflaéqandt;éq,

and fig(i,7) = 0 for all 1 <14 < j <n and for all ¢ € [d].
Moreover, to construct the dual certificate, we make the following simplifications:

o Ny (i, 5, k) = N2, (4,5, k) = A3, (3,7,k) =0, for all t € [d] an for all 1 <i < j < k < n,
o 7(i,j) =c(i,5) forall t € [d] and for all 1 <i < j <mn.

Hence by complementary slackness and our simplifications stated above, for each 1 < i < 7 <mn,
if t = ¢, constraint (37) simplifies to

att(iaj) + 27715(2’]) + Zt(l,]) = O> (39)
where we define

Z (Z >‘ltt k i ] +)‘ltt(k i ])) Z (S‘?It(iakaj) +5‘?lt(iak7j))

d\{t} k<i 1<k<j
+Z Attl ivjvk +)‘ttl(i7j7 k)))a (40)
k>j
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and for each 1 <14 < j < n, ift # ¢, using inequalities (38) to project out fu4(%, j), constraint (37)
simplifies to:
atq(ivj)+ft(i7j)+fq(i7j)+Atq(Z’7j) 207 (41)

where we define

Atq(iuj) = Z (E‘%tq(k'a 7’7.7) - X%tq(k7i’j) + j‘gtq(k/‘a 7’7]) - j‘gtq(kvllvj))

k<1

+ 3 (N k. g) = My (s k. 5) + Mg (i K, §) — Mg, k. 5))
i<k<j

+ (Ngglis g k) = X2y (0,5, k) + Ay (i, 5. k) — X4 (i, 4, k). (42)
k>j

Hence, we need to determine nonnegative A\', A2, A3 satisfying(39) and (41). To this end, for
each 1 <i < j <n and each t € [d] such that ax(i,j) = —1, do the following:

- for each 1 < k < i and for each ¢ € [d] \ {t}, let

Ny (ki §) = L max atq(]’ﬁ);atq(iﬁ) + att(i,k)gdatt(j,k)’ ol "
tht(kvihj) — %max atq(ivk);atq(%k) + att(j,k)ﬁ—datt(i,k)7 ol
- for each i < k < j and for each [ € [d] \ {t}, let
X%qt(i7 ka]) - %ma’X atq(j’k);atq(i7k) + att(i7k)gdatt(jyk)7 0 ) (44)
j\?qt(i’ k,j) = %max atq(lvk);atq(Jvk) + att(jvk)ﬁ—;tt(i:k), 0,
- for each j < k < n and for each [ € [d] \ {t}, let
S‘%tq(ivjv k) = %max atq(’ivk);atq(ﬁk) + att(j,k)[;iatt(iyk), ol )
S‘%tq(ihj? k) = %max aiQ(.Lk);aiq(z’k) + azt(i,k)gdatt(j,k), 0

Moreover, for each 1 <i < j < n and for each ¢ € [d] such that ax(i,j) = 1, do the following:
- for each 1 < k < i and for each g € [d] \ {t}, let

S‘;tt(k%j) = tht(k,i,j) =0, (46)
- for each i < k < j and for each ¢q € [d] \ {t}, let

Nt ik 5) = Ao (i, K, §) = 0, (47)
- for each j < k <n and for each ¢ € [d] \ {t}, let

;\%tq(iaja k) = ;\?tq(iyjy k) =0. (48)

Substituting (43)-(45) in (40), gives:

(i) =2 - 260(6,5),  if au(i,j) = 1 (49)
where (7, j) is defined by (35), and substituting (46)-(48) in (40), yields
(i, 5) =0, if ax(i,j) = 1. (50)
Moreover, substituting (43)-(48) in (42) gives
Atg(irJ) = 0,55+ 5 (51)

where 0! )7 is defined by (36). Finally, substituting (49) and (51) in (39) and (41), we obtain

t—q
the following five cases:
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(1) au(i,j) = agq(i,J) = ag(4,j) = 1: in this case, by (50) we have ¥;(4, j) = ¥X4(4,j) = 0 which
by (39) gives 7¢(i,j) = 74(i,j) = —1/2. Hence, inequality (41) simplifies to As(i,5) > 0.
By (51), the validity of this inequality follows from condition (C1).

(ii) aw(i,j) = agq(i,J) = 1, ayy(i,j) = —1: in this case, by (50) we have ¥.(7,j) = X4(4,j) =0
and hence by (39) we get 7(i,j) = 74(i,j) = —1/2. Hence, inequality (41) simplifies to
A¢q(i,j) > 2. By (51), the validity of this inequality follows from condition (C2).

(ili) aw(i,j) = aqq(i,j) = —1, at(i,j) = 1: in this case by (49) we have (i, j) = 2 — 2r(i, j)
and X4(,7) = 2 —2k4(4, 7). Hence, from (39) it follows that 7(i,j) = % and 74(i,j) =
% Then, inequality (41) simplifies to (4, j) + kq(7,5) + Aeg(d,5) > 0. By (51) this
inequality is implied by condition (C3).

(iv) aw(i,j) =1, agq(i,j) = —1, atg(4, ) = 1: in this case, by (50) we have ¥,(4, j) = 0, and by (49)

we have $y(i, j) = 2—2k,(i, ). Hence by (39) we get 74(i, j) = —1/2, and 7,(i, j) = 2aGD=1
Then, inequality (41) simplifies to k4(i, j) + A¢(4,5) > 0. Finally, by (51), this inequality is
equivalent to condition (C4).

(V) au(i,7) = —1, age(i,5) =1, as(i,j) = 1: by symmetry, this case follows from case (iv).
O

We now provide a sufficient condition under which the ground truth X is the unique optimal
solution of Problem (P). To this end, we use Mangasarian’s characterization of uniqueness of
solution in LP [29]:

Proposition 9 (Part (iv) of Theorem 2 in [29]). Consider an LP whose feasible region is defined
by Ax = b and Cx < d, where x € R™ denotes the vector of optimization variables and, b,d, A, C
are vectors and matrices of appropriate dimensions. Let T be an optimal solution of this LP
and denote by u the dual optimal solution corresponding to the inequality constraints. Let C;
denote the i-th row of C. Define K = {i : C;z = d;, u; > 0}, L ={i: C;Z = d;, u; = 0}. Let
Ck and Cp, be the matrices whose rows are C;, i € K and C;, i € L, respectively. Then T is the
unique optimal solution of the LP, if there exists no x different from the zero vector satisfying

Ar =0, Cgx=0, Crz<O. (52)
We are now ready to establish our uniqueness result:

Lemma 2. Suppose that all inequalities in conditions (C1)-(C5) are strictly satisfied. Then X
is the unique optimal solution of Problem (P).

Proof. Consider the dual certificate (7,¢, A', A2, \3, i) constructed in Lemma 1; to achieve
uniqueness, we perturb this point by requiring fits(i,5) > 0, for all ¢ # ¢ € [d] and for all
1 <4 < j < n; this can be enforced by replacing inequalities (41) by strict inequalities, i.e.,

arq(i,7) + 7 (i, J) +7q(1,4) + Dgg(i, j) >0, Vi#qged, VI<i<j<n.

It can be checked that the above condition is satisfied if inequalities (C1)-(C5) are strictly
satisfied. Hence it remains to show that if fi;q(7, j) > 0, for all ¢ # ¢ and for all 1 <i < j < n,
then X is the unique optimal solution. To this end, we make use of Proposition 9; suppose that
X is not the unique optimal solution of Problem (P). Then there exists X not identically zero,
satisfying condition (52). Since fig(i,5) > 0, from condition (52), it follows that X, (i,5) = 0
for all t # ¢ € [d] and for all 1 < i < j < m. Moreover, by condition (52), we must have
> gea) Xig(i,5) = 0 for all t € [d]. Therefore, Xy(i,j) = 0 forall ¢ € [d] and for all 1 <i < j <n,
which contradicts with the assumption that X must have a nonzero element. Hence X is the
unique optimal solution of Problem (P). O
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3.2 Recovery under the random corruption model

We now consider the random corruption model (34); we prove that our deterministic recov-
ery condition given by conditions (C1)-(C5) implies that under the random corruption model,
Problem (P) recovers the ground truth with high probability, if pyue > 0.585. In this section,
for an event A, we denote by P(A) the probability of A with respect to the random corruption
model. For a random variable Y, we denote by E[Y] the expected value of Y with respect to
the random corruption model. We denote by A — A5 the events that conditions (C1)-(C5) are
strictly satisfied, respectively. We denote by Aecovery the event that Problem (P) recovers the
ground truth under the random corruption model; then by Lemma 2 we have

]P)(AI‘GCOVBI‘y) 2 ]P) <A1 m A2 ﬂ A3 m A4 m A5> .

Since Arecovery contains the intersection of a constant number of events A, to prove recovery
with high probability, it suffices to prove that each A%, i € {1,...5} occurs with high probability.
We establish this in the next four lemmata.

Lemma 3. Suppose that X™(i,5) for all 1 <i < j <n are generated according to the random
corruption model (34). If
B

rue 2 ———>, Al
bt e_a_’_ﬁ ( )

and d € o(y/n/log(n)), then event Al occurs with high probability.

Proof. For each 1 <i < j <mn, for each t,q € [d], and for each k € [n] \ {7, j} define:

Vi gy e P2 [ R i ek ) = 1
Bk n 0 otherwise,
and (ik)—1 | 1—agq(ik)
y2 (i, ) = n—2 [ Z + aé‘gl’ if age(k,j) =—1
bR n 0 otherwise.

It then follows that event A' occurs, i.e., condition (C1) is strictly satisfied, if for all ¢,q € [d]
and all 1 <1i < j <n with ay(i,j) = agq(i, ) = ae(i,j) = 1, we have

1 ..
o9 Z Y;,lq,k(zvj) > 07 (53)
ken]\{4.7}
1 .
— Z qu,k(%]) > 0. (54)
ken]\{4.7}

We start by showing that under assumption (A1), the following inequalities hold for every
t,q € [d] and for every 1 <i < j < n:

1

n—2

- 1 -
> V)] >0 e@=E[— Y ¥36.4)|>0. (55)
keln\ (i} keln\ (i}

€1(d) :=E {

By direct computation we get that for every ¢,¢q € [d] and for every 1 <i < j < n:

A =E[s Y ViG] =E[ 1y Y V0] =@
ken]\{i.j} ken]\{i.j}
:g (ptrue + ! _5true) (ptgle - (1 *ptrue)(é - Bld)> = g192,
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where g1 = d(ptrue + ﬂ) and go = p%‘le - (1- ptrue)(é - ﬁ) Clearly, g, > 0 for all d and

Dirue- Moreover, go is strictly decreasing in d since its derivative with respect to d is —%.

Therefore, to show that go > 0 for every d, it is enough to show that

DPtrue 1 — Dtrue . DPtrue 1 1
=1 — (1 — pir ———)>0
im (1 —py ue)(a 3 d) >

B (67 _d—>oo /8

which follows from assumption (A1l). Hence, €;(d) and ez(d) can be written as a product of two
positive functions for every d and this completes the proof of inequalities (55).

We now show that event A! occurs with high probability. Let A' = A1N AL, where A} (resp.
Al) denotes the event that inequalities (53) (resp. inequalities (54)) are satisfied. To show Al
occurs with high probability, it suffices to show that A} and A} occur with high probability. In
the following, we prove that A% occurs with high probability. The proof for A% follows from a
similar line of arguments.

P(A})

p< —_> nqk<u>>o}>

t,q,1,5 ke[ﬂ]\{w}

( {n Y 4(i,j) —E [n i 5 D Y{&q,k(i,j)} > —fl(d)}>
b ke[n]\{w}

Y

3

Il
~

2 ken]\{s.5}
2P< |- ¥ ¥WuG)-E[—5 3 %69 <el<d>}>
t,q,i,j ke[n]\{z,]} ke[n\{i,5}
—1—P< U {\%2 YDRRANCRI -1 B S AN 2e1<d>})
t,q,1,] en\{s.j} ken]\{4.7}
>1 - ZP();Q S Vi) - E[niQ > V)] m(d))
t,q,05] ke[n]\{.5} ke[n]\{i,5}
2
21—2d2(n—2)26xp<—61(d)(g_2)>7

where the second and fourth lines follow by set inclusion and the sixth line follows from the
union bound. The last line follows from the application of Hoeffding’s inequality [37] by noting
that for each (t, ¢, 1, j) the random variables }/t?q,k (i,7) are independent for all k& € [n]\{i,j} and
can be bounded as |}?q’k(i,j)| < 2. Since €1(d) € ©(%) and by assumption d € o(y/n/log(n)),

we get

€ (d)(n — 2)
2d*(n — 2)% exp ( — 1T

as n — oo. OJ

)—>0

Lemma 4. Suppose that X™(i,7) for all 1 <i < j < n are generated according to the random
corruption model (34). If

o
Dtrue = 5, (A2)
then event A? occurs with high probability.

Proof. For each 1 <1i < j <n, for each t,q € [d] and for each k € [n] \ {i,j} define:

«

_9 atq(k,j)+1 1—att(k,g) 1 if ki) =—1
Yk g) === { T if au (k. )

n -1 otherwise,
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and

67

nilq,k(iv ]) =

n—2 {%(i’k)“ + ) 1 i agg(k, ) = —1
n

-1 otherwise.

It can be checked that event A% occurs, i.e., condition (C2) is strictly satisfied, if for all ¢, q € [d]
and all 1 <@ < j <n with au(i,j) = agq(i, j) = 1, at4(i, j) = —1, we have

1 ..
nf Z Yf’q,k(zuy) > 07 (56)
ke[n\{i.j}
1 ..
nf Z Y:l%k(Z,]) > 0. (57)
ke[n\{i.j}

We start by proving that under assumption (A2), the following inequalities hold for every
t,q € [d] and for every 1 < i < j < mn:

e3(d) :=E { !

n—2

S V)] >0 a@=E[o 3 vh0)] >0 (68)

n
ke[n)\{i.j} ken\{i,5}
By direct computation we get that for every ¢,q € [d] and for every 1 <i < j < n:

s=E[ 1o Y V60| =E[ 1y Y V9] =a@

ken\{i,5} ken]\{i,5}
. 1 — Ptrue \ [ Ptrue . 1 — ptrue , 1 B 1 1 _
_2<ptrue+ d >( ﬁd d (a @)—Fa) 1.

It can be checked that the derivative of the above expression with respect to d is given by
_ 2 2 _ _ 2
— 2(0=prrue)® apjgue) (1- %) — 222‘56 — SP““E%df”“e) 6l g&il“e) , which is negative for all 0 < pgrye < 1

and d > 2. Hence it is enough to show that

1—?mﬂ<ﬁﬁe_1—§mmCi_ﬂdy+a>_120,

2ptrue
(0%

1= lim 2(ptrue n
d—oo

which follows from assumption (A2).

We now show that event A? occurs with high probability. Let A? = A3 N A%, where A?
(resp. A3) denotes the event for which inequalities (56) (resp. inequalities (57)) are satisfied.
To show A? occurs with high probability, it suffices to show that A? and A3 occur with high
probability. Notice that for each t,q € [d] and each 1 < ¢ < j < n, the random variables
}/t?q,k’ Yt‘}%k for all k € [n] \ {4,j} are independent and can be bounded as —1 < }Q‘?q,k(i,j) <3
and —1 < }Q"l%k(i, §) < 3. Hence, the proof that A? (or A2) occurs with high probability is very

similar to that of Al stated in the proof of Lemma 3. That is, it can be checked that

P(A2) > 1 — 2d%(n — 2)%exp ( - Eg’(d)(g_”)

Since e3(d) € ©(1), it follows that P(A%) — 1, as n — oc. O

Lemma 5. Suppose that X™(i,5) for all 1 <i < j < n are generated according to the random
corruption model (34). If

a< <2, (A3)
2

Pirue 1 1 1 1

—a ) rue o ) A4
Rl (A9

1
Ptrue = Z, (A5)
n? > 12d, (AG)

and d € o((n/ log(n))i), then event A3 occurs with high probability.
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Proof. We start by defining a number of random variables associated with inequalities of con-
dition (C3). For each 1 <1i < j < n, for each t € [d] and for each k € [n] \ {7, j} define:

5 9 . ‘ . .
Zyk(i,j) =1~ (d o ) + z Z min{alt(j’z) + attgjij), alt(j’j) + attgfi’ J } (59)
le[d\{t}
For each 1 < i < j <n, for each t € [d| and for each k € [n] define:

1 d—1

Qix(i,7) == (% - uﬁ) (att(kv i) + att(k7j))’ (60)

where we define ay(i,7) = au(j,j) = 0. For each 1 <1i < j < n, for each t € [d] define:

Wt(Z,]) — in Z (atl(iaj)l—atl(ja 7’) +2atté7fcal.])> (61)
le[d]\{t}

Finally, for each 1 <i < j <mn, for each t,q € [d] and for each k € [n] \ {7, j} define:

Zt,k(i,j) + %(at(l(ko’[j)_l + —1—%15(;(16,3') + @tq(i&k)—l + —1—%,21(1'716))

if ay (k) = =1, agy(k, j) = 1
Zi i (iy ) + %(atq(%k‘)—l 4 —1_%)(17;@))

«

Y7 k(ing) = if an(k,i) = 1, age(k,j) = —1
Zip(iyg) + 3 (HaBD=E 4 —lmenlhil)
if ay(k,1) = —1, agq(k,j) =1
(Ztk (45 5) if ay(k,i) = 1, agy(k,j) =1
and
Zo (i ) + 5 (MoCGH= 4 g el SR
it 4 (ki) = —1, age(k, j) = —1
Zo(i, ) + 3 (2albh=l oy —lodan(Gh)y
Yk (ing) = if ay(k,i) = 1, age(k,j) = —1
Zoo(i, §) + §(Aalled=l | —dmeulkd))y
if ay(k,i) = —1, age(k,j) =1
 Zg (3, ) it ap(k,i) = 1, age(k,j) = 1

It then follows that event A3 occurs, i.e., condition (C3) is strictly satisfied, if for all t,q € [d]
and all 1 <@ < j <n with ay(i,j) = age(i,7) = —1,a4(4, j) = 1, we have

. 1 o 1 .
Wt(z7]) + E Z Qt,k(zaj) + n—2 Z qu,k(%]) > 07 (62)
keln) ken]\{4.7}
o 1 . 1 o
Wolio )+ — D Qaulid) + —5 > Yigu(ig) > 0. (63)
keln) ken]\{4.5}

We first prove the following inequalities hold for all ¢,q € [d] and for all 1 <i < j < n:
1 . 1 .
65(d) =K [ﬁ Z} Qt,k(laj) + Z }/t?q,k<z7j):| > 07

kel 2 e
1 . 1 6 /. . (64)
6G(d) =K [ﬁ Z Qq,k(%]) + n—2 Z Y;f,q,k(zaj):| > 0.
keln) ken]\{4.5}
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Notice that by symmetry, e5(d) = €g(d); hence, it suffices to prove the validity of the first
inequality in (64). By direct calculation we get:

1 1.1 1 1.1 1
55(d) :(d - 1)<p‘?rue(a - @) 2ptrue<1 _ptrue)( g(a + @) + ( - g)(& - @))
, 1 1 2 2 1
+(1 = Ptrue) (a + @)(1 —a ﬁ(ﬁ -1) ))
1 — Ptrue [ Ptrue 1 — Ptrue, 1 1 1
+2<ptrue + d ) ( 3d + d (@ - E) — @) (65)
d—1 1 1= Piruc d—2
(- )1t ) -2
o [Phwe 11 11 4 2 (porue — 1D)2(d—1)  2pprue
_2|:t7+(a_g>ptrue+(§_a)} +(a_B) P2 + ﬁd
2pt'rue 1
> > —
— Bd T 4d’

where the inequalities in the last line follow from assumptions (A3), (A4), and (A5).

Next we show that event A3 occurs with high probability. Denote by A3 (resp. A3) the
event that inequalities (62) (resp. inequalities (63)) are satisfied. Then A% = A3 N A3. To show
that A% occurs with high probability, it suffices to show that A3 and A3 occur with probability.
In the following we show that A3 occurs with high probability. The proof for A3 follows from
a similar line of arguments.

P(A})
ZP< ﬂ {WtZ] Zth i2 Z Yt?q,k(iaj)>0}>
t,q,i.j ke [n] ke[n]\{i,j}
:P< {Wt { ] Z th { ] —-E [ﬁ Z Qt,k(iaj):| + 5 Z Y;f?q,k:(ivj)
t,q,5,5 ke [n] ke[n] ke[n)\{i.j}
—E |:n i 2 Z qu,k(%])] > _65(d)}>
ken]\{i,j}
Z}P’< {‘Wt i,j)+ — Z Qrk (1, 7) [l Z Qt,k(iaj)} + %2 Z Yig(is )
b " ke " kel " ke g}
—-E |:77, i 2 Z m?q,k(za])] ) < 65(d>}>
ken]\{i,j}
. €5(d) l . €5(d)
>P ﬂ{‘Wt(’L,])’< 3 } ﬂ{‘ ZthZ] [ ZQt,k(%])} < 3 }
L,i,5 Lyi,g ke(n] " ke[n]
1 5 . . 1 5 65(d)
"N T sl T o)< 4R))).
t,4,i,j ke[n)\{i,j} keln]\{i.j}

where all inequalities follow by set inclusion. It can be checked that |W;(i,5)] < <; hence

by (A6) we get [Wi(i,j)| < 155. Moreover by (65) we have 65—:@ > 7. So we deduce that

[Wi(i, 7)) < 65§d), which in turn implies

{‘Wt(i,j)‘ > 65} — 0. (67)



Combining (66) and (67) we obtain:

P(A7)
1 es(d)
UL 3wt [ 3 Quti )| > 22}
t,i,5 ke[n] ke[n]
DU 5 X e[l 3 v 65;‘”})
£,q,4,3 n\{é.j} ken]\{i,j}
>1—ZP(\ZQW; [HZQt,k<z',j>Hz€5§fl)>
t,1,j k€[n) ke[n]
5 L. 1 5 .. 65(d)
-2 F (\n_z > Vi) -E[=5 3 ¥z % >
t,4,0, ke[n)\{i,5} ken)\{i,5}
2 2 _
>1 — 2dn® exp < — 55(;1l)n> —2d%*(n —2)%exp ( — W),

where the second inequality follows from taking the union bound. The last inequality follows
from the application of Hoeffding’s inequality [37] by noting that for each (¢,%,j) the random
variables Qx(i,j) are independent for all k& € [n] and can be bounded as |Q:(i,7)] < 1.
Moreover, for each (t, g, i, j) the random variables qu,k (i,7) are independent for all k € [n]\{4,j}
and can be bounded as |Y}> k(6 7)] < 6d. By (65), the result follows by letting n — oo, since

d € o((n/log(n))1). O
Lemma 6. Suppose that X™(i,5) for all 1 <i < j <n are generated according to the random

corruption model (34). If assumptions (Al), (A3), (A4), (A5), and (A6) are satisfied, and
deo((n/ log(n))i), then events A* and A® occur with high probability.

Proof. We start by defining some random variables associated with inequalities of conditions (C4)
and (Cb). For each 1 < i < j < n, for each ¢,q € [d] and for each k € [n] \ {7, j} define:

(Zq,k:(i,j) + attz(ko’[j)—l + 1fagék,j) + atq(z;k)—l + _1_%(1621(2‘,@

k)1 L ‘kif att(kvi) =—1, aqq(kaj):_l
Zg(i, ) + L2l g Z1teg(1h)
V(i) = | if ap(k,i) = 1, agq(k, j) = —1
Zg(i, ) + 2alled=l . 1man(h)
lf Cl,tt(k ) 1 aqq(k j) =1

Zq,k(iaj) if att(k ) - 1 aQQ(k ]) - 1

where Z, (i, j) is defined by (59). It can be checked that condition (C4) is strictly satisfied, if
for all t,q € [d] and all 1 <1 < j <n with ay(i,j) =1, a4q(¢,7) = —1, a44(i,j) = 1, we have

1 o 1 -
+ﬁ Z Qq,k(%])"'m Z Yiigk(i,5) >0,

k€ln) ke[n]\{i,j}

where Qg x(i,7) Wq(i,j) and given by (60) and (61), respectively. For each 1 <i < j < n, for
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each t,q € [d] and for each k € [n] \ {7, j} define:

Ztk(l',j)—i—atq(k&j)il + —1—%2(&]') _{_atq(lé[k) 1 + 1— aéqd(zk)

if ay(k,i) = =1, agq(k,j) =
Zy (i, 5) + “albB=l y 1-teh)
qu,k(iﬂj) = 4 if att(kvi) :‘17 aqq(kv.j) =-1
Zth(i,j) + atQ(k(;J)_l + _1_%ié(k7])

if att(kyi) = _17 aqq(kaj) =1
Zt,k(ivj) if att(kai) = 17 aqq(kaj) =1

It then follows that condition (C5) is strictly satisfied, if for all ¢,qg € [d] and all 1 <i < j<n
with au (1, j) = —1, agq(?, j) = atg(i, j) = 1, we have

1 . 1 8 . .
+o > Quiling) + oY Z | Yiqk(i, ) > 0.
ken] ke[n]\{i,j}
We first prove that the following inequalities hold for all ¢,q € [d] and for all 1 <i < j < mn:

[ Z Qq, g ‘7 %2 Z }/t?q,k(lvj)} > 07
ke[n] ken]\{ij} (68)
= [ Z Quk(1,7) %2 Z Y&’k(i,j)} > 0.
ke[n] ken]\{i,j}

Notice that by symmetry, e7(d) = eg(d); hence, it suffices to prove the validity of the first
inequality in (68). By direct computation we get

1

Bd
1 1 2 2 1

) + 2ptrue(]~ - ptrue)(— (
(1= purwe) (= + 30 i 1)2)>
1

er(d) =(d 1) (Phel -

1 — i, r 1 — pir 1 1
+4(ptrue + Dt ue) (pt ue DPtrue (7 _ 7) . >

d 3d 4 ‘Bd o) 2p3d
d—1 1 1= powe\  d—2
(W_a)<1_2(ptrue+ y )>— 1
Dtrue 1 — Ptrue 1 1
—e(d I
SD+5r T~ Ga o
265(d)7

where €5(d) is defined by (64). The last inequality follows from the proof of Lemma 3 which in
turn follows from assumption (Al). Hence, e7(d) > 0 is implied by e5(d) > 0 which by proof of
Lemma 5 is valid if assumptions (A3), (A4), and (A5) hold. It remains to show that events
A% A5 occur with high probability. Note that for each (t,q,1,j), random variables Yt ‘. w1, 7)
(resp. Y2 4/ 1(i,7)) are independent for all k& € [n]\ {4, j} and can be bounded as |Yt’7q7k(z J)| <6d
(resp. |Y2 wk(5,J)| < 6d). Hence, by assumption (A6), the associated proof for event A3 of
Lemma 5 can be repeated verbatim to show A% and A® occur with high probability. O

We are now ready to prove the main result of this section.
Proof of Theorem 1. Let a = 1.172 and S = 1.657; then it is simple to verify that for
Prue > 0.585, assumptions (Al)-(A5) of Lemmata 3-6 are satisfied. Moreover, assumption
d € o((n/ log(n))%) implies that (A6) is satisfied for n large enough and this completes the
proof. O
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In the proofs of Lemmata 3-6, to prove the positivity of expectations of certain random
variables, we show that these expectations are non-increasing functions of d and hence we show
their positivity for the limiting case d — oco. Indeed assumptions (A1)-(A5) can be slightly
relaxed if such asymptotic analysis is avoided. That is, for each d > 2, we consider the following
optimization problem:

o B P (69)
st P8 4 (1 i) (3 = ) 2 0.
o 1) - 1 1)
(P 4 (L Do (3~ 2) + (& — 2y Pre = PED) e

1
Z < Ptrue < 1,
0<a<p<2

where the first constraint is stated in the proof of Lemma 3, the second constraint is stated in
the proof of Lemma 4, and the third constraint is stated in the proof of Lemma 5. Then for
each d € [2,400), the optimal value pj,,. of the above problem serves as a recovery threshold of
Problem (P). While we are unable to obtain an analytical solution for Problem (69), we solve
this problem numerically with high accuracy using the global solver BARON [25] for d € [2,50].
Results are depicted in Figure 1; for example, this figure indicate that for d = 2, the LP recovers
the ground truth with high probability if pirye > % While by performing a worst-case analysis,
we have obtained a more conservative bound of piue > 0.585 for the recovery threshold of the
LP, Figure 1 suggests that this bound is a good approximation for d 2 40.

0.6

—-+exact threshold

0.4 - -worst-case threshold

é 1 6 1 ‘5 2‘0 25 3‘0 35 4‘0 4‘5 50
d
Figure 1: Recovery thresholds for Problem (P): the worst-case recovery threshold pf,,. = 0.585

is given by Theorem 1 and the exact recovery threshold is obtained by solving Problem (69)
numerically for each d € [2, 50].

We conclude this section by acknowledging that this theoretical study serves as a starting
point for understanding the recovery properties of LP relaxations for joint object matching.
Obtaining recovery guarantees for the general problem with partially similar objects and in-
complete map graphs together with investigating the impact of consistency inequalities (11) on
the power of LP relaxations are topics of future research.

4 Numerical Experiments

In this section, we conduct a preliminary numerical study to demonstrate the desirable nu-
merical properties of proposed LP relaxations for joint object matching. A comprehensive
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Table 1: Exact solution of permutation group synchronization with n = 20 using the MIP solver
Gurobi. All CPU times are reported in seconds and are averaged over 5 random instances. g
denotes the MIP relative gap upon termination and is averaged over 5 random instances.

d, pirue) | MIP time | gye (%) | LP time

0.3) | >25000 | 11.5% | 3.8
0.4) | >25000 |75% |22
0.5) | >25000 | 10.5% | 2.8
0.3) | >25000 | 155% |5.3
0.4)
0.5)

> 25000 | 24.9% 10.2

(
(
(
(
E
( > 25000 | 21.1% | 114

3,
37
3,
47
4,
47

computational study that includes various real data sets from the literature is a topic of fu-
ture research. Throughout this section, we focus on the special case of permutation group
synchronization problem and generate problem instances according to the random corruption
model (34). Moreover, our numerical experiments are all performed on the NEOS server [10].

4.1 Exact solution of the ILP

We start by demonstrating that even for small instances, the exact solution of joint object
matching using the state-of-the-art MIP solvers is beyond reach. To this end, we solve Prob-
lem (IP) using GAMS/Gurobi [18]. We set a time limit of 25,000 seconds; all other parameters
are set to their default values. We set n = 20, d € {3,4}, and ptue € {0.30,0.40,0.50}. For
each combination of (n,d, pyrue), we run 5 random instances. We find that the MIP solver is
unable to solve any of these instances to optimality within the time limit. More detailed results
are shown in Table 1; for each (n, d, pyrue), We provide the average relative gap of the MIP upon
termination. The relative gap is defined as gy = ‘BP'%F{TF', where BF is the objective function
value of the current best integer solution, while BP is the best possible integer solution. For
each case, we also report the average solution time of the corresponding basic LP given by
Problem (P). As practical instances of joint object matching have larger values for (n,d), this
experiment conveys the need for developing efficient convex relaxations for this problem.

4.2 The basic LP versus the SDP

Next we compare recovery properties of the basic LP relaxation (P) with those of the popular
SDP relaxation (7) strengthened with constraint (8). In the following, we consider a more
general random model than the random corruption model given by (34); namely, we do not
assume that the map graph is complete. Let pops € (0,1]; for each 1 < ¢ < j < n, with
probability pops the input map X™(i, 5) is generated according to (34); otherwise, the input map
between objects ¢ and j is not observed and we set at,(7, j) = 0 for all ¢, ¢ € [d]. For our numerical
experiments, we set n = 20, d € {3,4,5}, and pops € {3,1}. We set puye € [p : 0.02 : p], where
[p : 0.02 : p] denotes a regularly-spaced vector between p and p using 0.02 as the increment
between elements, and where p (resp. p) is chosen small enough (resp. large enough) so that
the recovery rate is zero (resp. one). For each combination of (n,d, pirue, Pobs) We conduct 50
random trials. We count the number of times the optimization algorithm returns the ground
truth X as the optimal solution; dividing this number by total number of trials, we obtain the
empirical recovery rate. In addition to the empirical recovery rate, we compute the empirical
tightness rate. That is, we compute the fraction of times the optimization algorithm returns
a binary solution. Recall that if the solution of the LP/SDP relaxation is binary, then it is
feasible for Problem (JOM) and hence is optimal for the original nonconvex problem.
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Figure 2: Empirical rates of recovery and tightness of the basic LP relaxation versus the SDP
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Figure 3: Comparing the CPU times of solving the basic LP relaxation (711p) vs solving the
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All LPs and SDPs are solved with GAMS/MOSEK [1]. Results are shown in Figure 2: in all
cases, the basic LP outperforms the SDP in terms of recovery and tightness. Moreover, the CPU
times are compared in Figure 3. As can be seen from this figure, in most of the experiments
the LP solver is 2-4 times faster than the SDP solver. We should remark that we ran these
experiments setting all options to their default values. That is, we did not use any technique to
expedite either the LP or the SDP solver. In particular, for solving the LP relaxation employing
a cutting plane type algorithm together with dual simplex often leads to significant speedups.
From this experiment we make three important observations:

(i) Unlike the SDP relaxation, the quality of the basic LP relaxation degrades by increasing d;
this is due to the fact that the basic LP includes only 6(d) of consistency inequalities which
are 0(d2%?) in total; as we detail next, we address this shortcoming by considering a stronger
LP relaxation, i.e., Problem (LPF).

(ii) Unlike the SDP relaxation, the quality of the basic LP relaxation does not quickly degrade
by decreasing pops. For the random model described above and for the SDP relaxation, the
authors of [7] obtain a recovery guarantee of the form ptrue > 6( \/ﬁ) Recall that our
theoretical analysis in Section 3 is under the assumption that the map graph is complete, i.e.,
Pobs = 1.0. Our numerical experiments suggest that in case of the basic LP, as a function of

Pobs, the recovery threshold grows slower than \/}%; we plan to explore the exact form of

this relationship as a next step.

(iii) Unlike the SDP relaxation, the basic LP relaxation returns a binary solution in many cases
for which it fails in recovering the ground truth. Recall that if the LP solution is binary,
then it is optimal for Problem (JOM). Indeed, in most practical settings, asking for the exact
recovery of the ground truth is not realistic. Hence obtaining sufficient conditions for the
tightness of the LP relaxation under proper stochastic models is of key importance and is a
topic of future research.

4.3 The basic LP versus the double LP

We now illustrate the impact of consistency inequalities (11) in strengthening the basic LP
relaxation (P). To this end, we consider the following simple two-step algorithm:

1. The basic LP relaxation, i.e., Problem (P) is solved; if the optimal solution X is binary-
valued, then the algorithm terminates and returns X as the optimal solution.

2. If X is not binary-valued, then at most 1000 consistency inequalities that violate X are
generated by solving the separation problem (15). The cutting planes are added to the
basic LP and the augmented LP is solved using the dual simplex algorithm with X as the
starting point. The solution of this augmented LP is reported as the optimal solution.

We refer to this two-step algorithm as the double LP. To understand the impact of consistency
inequalities (11), we compare the performance of basic LP and double LP with respect to
recovery and tightness rates.

We set n = 10, d = 5, pops € {0.5,0.75,1}, and pyue € [0.3 : 0.02 : 1.0]. As before,
for each combination of (n,d, ptrue, Pobs), We conduct 50 random trials. As the cutting plane
algorithm described above cannot be efficiently implemented in the GAMS modeling language,
the two-step algorithm is implemented in JuMP [14] and all corresponding LPs are solved with
Gurobi [18]. Results are depicted in Figure 4; as can be seen from this figure, while there is no
visible difference between the recovery rates of the basic LP and the double LP, the tightness
rate of the double LP is significantly better than that of the basic LP. This improvement is
more significant for sparser problems; that is, problems with smaller po,s. We believe that
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Figure 4: Empirical rates of recovery and tightness of the basic LP relaxation versus the double
LP relaxation under the random corruption model.

this phenomenon is due to the cutting plane strategy employed in Step 2 of double LP and
is not an inherent property of consistency inequalities. Namely, in order to keep the overall
computational cost low, in Step 2 of double LP, we add the first 1000 violated consistency
inequalities obtained by solving the separation problem (15). For denser problems, that is, for
problems with larger pohs, in almost all cases, many more consistency inequalities are violated
by X. Hence, an upper bound of 1000 for the number of violated inequalities is often too small.
However, increasing this number will increase the cost of solving the augmented LP. Hence,
for dense problems, a more elaborate strategy such as adding top 1000 most violated cuts or
conducting multiple rounds of cut generation seems more appropriate.

We conclude by emphasizing that our goal in this experiment was to convey the effective-
ness of consistency inequalities (11). Indeed, solving double LP is not equivalent to solving
Problem (LPF) as double LP contains only a small subset of consistency inequalities (11). An
efficient solution of Problem (LPF) via devising effective cut generation and cut management
algorithms for consistency inequalities is a subject of future research. Finally, an effective in-
corporation of consistency inequalities in a branch-and-cut framework to solve Problem (JOM)
to global optimality is an interesting future direction as well.

5 Appendix

5.1 Facetness for block consistency inequalities

Proof of Proposition 8. Without loss of generality, we prove for any nonempty D1, Do, D3 C
[d] with |Dy| + |D2| > | D3|, the following defines a facet of the joint matching polytope C,, 4:

S X2+ > X(1,3) = DD Xug(2,3) < IDyl.

leDs teD; qE€ D2 teD1 qeD>

(70)
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We start by identifying the set of consistent partial maps in C, 4 that satisfy inequality (70)
tightly. Subsequently, we show that any nontrivial valid inequality o X < 3 for C, 4 that is
satisfied tightly at all such maps coincides with (70) up to a positive scaling. Since C,, 4 is full
dimensional, this in turn implies that inequality (70) defines a facet of C,, 4.

A consistent partial map is binding for inequality (70), if for every [ € Ds, there exists
e; € Mx with 1; € ¢; satisfying one of the following conditions:

(i) 2 € ¢ for some t € Dy and 3, ¢ ¢ for all ¢ € Do,
(ii) 2¢ ¢ ¢ for all t € Dy and 3, € ¢; for some g € Ds,
(iii) 2; € ¢ for some t € Dy and 3, € ¢; for some ¢ € D».

Now consider a consistent partial map MY satisfying conditions (i) or (ii) above for all I € D
such that for some t' € Dy we have 2y ¢ ¢, for all | € D3. Notice that such a consistent partial
map exists since by assumption |Dy| + |Da| > |Ds|. Moreover, suppose that MY contains no
matched pairs other than those required by conditions (i)-(ii), i.e., MY = {e;, | € D3} with
le;] = 2 for all | € D3. Next consider another consistent partial map obtained from /\/l}( by
replacing a matched pair of the form (1;,2;) for some fe Dyandl € Dy by (1;,2¢), where
t' € Dy is the index defined above. Notice that this flipping operation results in a consistent
partial map that is also binding for (70). Substituting these two partial maps in X = f yields
a;;(1,2) = a;,(1,2). Using a similar line of arguments for all possible consistent partial maps
satisfying conditions (i) or (ii) for all [ € D3 together with 2, ¢ e; for some t' € Dy (3y ¢ ¢; for
some t' € Dy) for all | € D3, we conclude that for each [ € Ds, we have

Ozlt(l,Q) = Oélq(l,B), Vt € D1, Yq € Ds. (71)

Next consider a consistent partial map M3 satisfying conditions (i) or (ii) above for all I €
Ds \ {i} and suppose that for [ condition (iii) is satisfied, i.e., ¢; = (1;,24,3;) for some te Dy
and ¢ € Dy. Consider a second consistent partial map satisfying conditions (i) or (ii) above for
all | € D3\ {I} where [ # [ and suppose that for [ condition (iii) is satisfied with e; = (17,24, 34).
In addition, suppose that in both these maps, no additional matched pairs other than those
required by conditions (i)-(iii) exist. Substituting these two maps in X = § and using (71)
yield aj;(1,2) = ag(1,2) and a;,(1,3) = ag,(1,3). Using a similar line of arguments for all
possible pairs of partial maps satisfying assumptions above, we obtain:

Oélt(l 2) = Oélq(l 3) @ Vt € D1, Yq € Do, VI € Ds. (72)
Moreover, substituting the partial map corresponding to ./\/l%( in X = (3 and using (72) we
obtain a,(2,3) = —3/|Ds]. It then follows that

B

Oétq(27 3) = —@,

Vt € Dy, Vq € Ds. (73)

Next consider a consistent partial map M3 satisfying conditions (i) or (ii) above for all [ € D3
of the form M3 = {e; : | € D3} with || = 2 for all I € D3. Construct another consistent
partial map of the form M3 U {(it,j,)} for some (i,7,t,q) € Q, where

Q={G.itg):a<i<j<nteldqgeldu{ita:j>4teld\Dsqeld]

(
@it 4<i<nteld\Digeldfu{B.itag:4<jznteld\Dygeld)
o{(1,2.t,) : t € [d]\ Dy,q € [d]\ Dy U {(1,3,t.0) : t € [d] \ Da,q € [d]\ Dy }
o{(2:3.1.9) st € [d]\ Drq € [d)\ Daf.
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Substituting these two partial maps in aX =  yields
atg(i,7) =0, V(i q.i,7) € Q. (74)

Consider the consistent partial map Mg( defined above with the additional assumption that
for some ¢ € Dy (resp. § € D2), we have (1;,2;) ¢ M3 (vesp. (1;,34) ¢ M%) for all [ € Ds.
Notice that such a partial map always exists since by assumption |D1| 4 |Ds| > |D3|. Construct
another consistent partial map of the form:

o M¥ = M3 U{(1;,2)} (resp. M% = M3} U{(1;,34)}) for some | ¢ Ds. Substituting
M3, M in aX = B gives a;;(1,2) = 0 (resp. «j;(1,3) = 0). Using a similar line of
arguments for all possible partial maps satisfying the assumptions above, we obtain

a(1,2) = ag(1,3) = 0, Vi€ [d]\ Ds,Vt € Dy,¥q € Ds. (75)

. MS = M35 U{(2;,74s)} (resp M3 = M3 U{(34,45)} ) for some 4 < j < n and some

€ [d]. Substituting M3, M% in aX = 3 gives a;,(2,7) = 0 (resp. a;s(3,7) = 0). Using

a smular line of arguments for all possible partial maps satisfying the assumptions above,
we obtain

as(2,]) = ags(3,7) =0, V4 <j<nVte Di,Vqge Dy, Vs € [d]. (76)

. /\/l3 = M3 U{(2;,3,)} for some g € [d] \ Dy (resp. M% = M3 U {(2,3;)} for some

€ [d] \D1) Substituting M%, M% in aX = 3 gives a;,(2,7) = 0 (resp. a;s(3,5) = 0).

Using a similar line of arguments for all possible partial maps satisfying the assumptions
above, we obtain

a44(2,3) =0, Vte[d\ Dy,q€DyorVte Dy qel[d\ Dy. (77)

Consider a consistent partial map M% satisfying conditions (i) or (ii) above for all I € D3 of
the form M‘)L( = {e; : | € D3} with |¢;| = 2 for all [ € Ds. Consider some [ € Dj for which
e; = (1;,2;) for some ¢ € Dy (resp. e; = (1;,34) for some ¢ € D). Construct another consistent
partial map of the form

o« M4 = M4 u{(1 i 34), (24,34)} for some ¢ € [d] \ D (./\;l4 = ./\/l%( U {(llA7 2;),(24,34)} for
some t € [ ]\ D1). Substituting these two partial maps in aX = § and using (77) we
obtain a;(1,2) = 0 (resp. j,(1,3) = 0). More generally it can be checked that

an(1,2) = ayg(1,3) =0, Vi€ Dy ¥t € [d]\ Dy,Yq € [d] \ Do. (78)

o« M4 = Mgl( U{(1},7s), (24, 4s)} (resp. ML = /\/l%( U{(1},7s), (34, 7s)}) for some 4 < j <n
and s € [d]. Substituting these two partial maps in aX = § and using (76) we obtain
a;(1,7) = 0. More generally, it can be checked that

as(1,5) =0, V4<j<nVleDsVse [d. (79)

From (70)-(79) it follows that the inequality aX < 8 can be equivalently written as

|D3|(Z(2Xn12 > Xu13) - Y Xu2.3) <4

leD3 teDy q€D> teD1 qeD>

Since aX <  is nontrivial and valid, we have 8 > 0 and this completes the proof.
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5.2 Size inequalities

In this section, we assume that an upper bound 7 on the size of the universe is available and
we utilize 7 to improve our proposed LP relaxation. As in Section 2, consider a collection of n
objects each consisting of d;, i € [n] elements; that is, we have a total number of d = Dicn) i
elements. Let NV denote the set consisting of all these elements, i.e., N' = Uien)Yte[a,)it- Define
Amin = minie[n} d; :and Amax = MaX;e|n] d;, where we assume dpyax > 2. Let 1 € {dmax, . ..,d—1}.
Notice that m = d is a trivial upper bound and cannot be exploited to improve the relaxation.

Proposition 10. Consider a subset N' C N of cardinality m~+1. Then the following inequality
is valid for the feasible region of Problem (IP):

YooY Xyl =1, (80)

1<i<j<nte[d;]q€(d;]:
it,Jg €N’

where iy and j, denote the t-th element of object S; and the q-th element of object S;, respectively.

Proof. To see the validity of inequality (80), suppose that X,(i, j) = 0 for all i, j, € N'. Since
by assumption |N’| = m+1, it then follows that the size of the universe is at least m + 1, which
contradicts with the assumption that m is an upper bound on the size of the universe. ]

Henceforth, we refer to inequalities of the form (80) for all N/ C N as size inequalities. The
following example demonstrates that size inequalities can tighten the proposed LP relaxation.

Example 6. Let n = 3 and di = do = d3 = 2; moreover, suppose that m = 3. Then it can be
checked that the following is feasible for Problem (LPF):

X(1,2):<8 8) X(1,3):(8 ?) X(2,3):<(1] 8). (81)

Now consider a size inequality obtained by letting N' = {11, 12, 21,22} in inequality (80):
X11(1,2) + X12(1,2) + X21(1,2) + X22(1,2) > 1.

Substituting (81) in the above inequality yields 0+ 0+ 0+ 0 2 1.
Next, suppose that m = 4 and consider the point:

X(1,2):(8 ‘D X(1,3):<8 8) X(2,3):(8 8) (82)

Again, it can be checked that (82) is feasible for Problem (LPF). Consider now the size inequality
obtained by letting N' = {11,21,22,31,32}:

X11(1,2) + X12(1,2) + X11(1,3) + X12(1,3) + X11(2, 3) + X12(2,3) + X21(2, 3) + X22(2,3) > 1.
Substituting (82) in the above inequality yields 0+04+0+0+0+0+0+0 2 1.

Remark 3. Let us revisit the graph partitioning problem described in Remark 1; namely, the
problem of partitioning the nodes of a graph into at most K subsets [?] Let N denote a subset
of [n] with |N| = K + 1. Then the clique inequality associated with N is defined as

i,jEN:i<j

Now, let t € [dmin] and consider a size inequality (80) with N' = {i; : i € I C [n]}, where
|I| = m + 1; that is, the inequality:

D Xulij) > 1. (84)

1,J€1:1<g
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Comparing (83) and (84), it follows that for a particular type of N, the corresponding size
inequalities have the same form as clique inequalities. However, we would like to remark that
while a clique inequality (83) associated with a clique of size r contains (r;“l) variables, a size
inequality (84) associated with N' of cardinality r may contain different number of variables.

For instance, let n =5, d; = 3 for all i € {1,...,5}, and suppose that m = 4. Then letting
N ={11,19,15,21,22} in (80), we obtain the size inequality

Xll(l, 2) + X12(1, 2) + X21(1, 2) + ng(l, 2) + X31(1, 2) + X32(1, 2) >1,
consisting of six variables, while letting N' = {11,21,31,41,42}, we obtain a size inequality

X11(1,2) + X11(1,3) + X11(1,4) + X12(1,4) + X11(2,3) + X11(2,4) + X12(2,4)
+X11(374) +X12(3a4) > 17

consisting of nine variables.

Hence size inequalities (80) can be considered a generalization of clique inequalities for joint
object matching. It is well-known that the separation problem over clique inequalities (83) is
NP-hard [15]. Various heuristics for separating clique inequalities have been proposed in the
literature [15] and similar ideas could be developed to efficiently separate over size inequalities.
However, such a computational study is beyond the scope of this paper.

Remark 4. Consider the following variant of joint object matching: find a collection of con-
sistent partial maps X (i,7) € {0,1}4%% for all 1 <i < j <n corresponding to a universe of at
most m elements so as to minimize (6). It can be checked that this problem can be equivalently
solved by solving the ILP obtained by adding all size inequalities (80) to Problem (IP).
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